Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberCN101304682 A
Publication typeApplication
Application numberCN 200680040548
PCT numberPCT/US2006/038223
Publication date12 Nov 2008
Filing date29 Sep 2006
Priority date29 Sep 2005
Also published asCA2624109A1, CN101304682B, CN101304683A, CN101304683B, CN101360447A, CN101360447B, CN101365375A, CN101365375B, CN103479331A, EP1928305A1, EP1928306A1, EP1937137A1, EP1940286A1, EP2275026A1, EP2279691A1, US7843572, US7847949, US7872759, US8149418, US8289522, US8384907, US8760663, US8928889, US9304121, US9513276, US20070081236, US20070121196, US20070229801, US20070233396, US20110058178, US20110144504, US20110149296, US20130100455, US20130148106, US20130176571, US20150049339, WO2007038787A1, WO2007041376A1, WO2007041382A1, WO2007041412A1
Publication number200680040548.2, CN 101304682 A, CN 101304682A, CN 200680040548, CN-A-101304682, CN101304682 A, CN101304682A, CN200680040548, CN200680040548.2, PCT/2006/38223, PCT/US/2006/038223, PCT/US/2006/38223, PCT/US/6/038223, PCT/US/6/38223, PCT/US2006/038223, PCT/US2006/38223, PCT/US2006038223, PCT/US200638223, PCT/US6/038223, PCT/US6/38223, PCT/US6038223, PCT/US638223
Inventors吉列尔莫J蒂尔尼, 吴汪烈, 布雷特尤金鲍马, 德维尔叶林, 本杰明J瓦科奇
Applicant通用医疗公司
Export CitationBiBTeX, EndNote, RefMan
External Links: SIPO, Espacenet
Arrangements and methods for providing multimodality microscopic imaging of one or more biological structures
CN 101304682 A
Abstract
Method and apparatus according to an exemplary embodiment of the present invention can be provided. For example, first data associated with a first signal received from at least one region of at least one sample can be provided based on a first modality, and second data associated with a second signal received from the at least one sample can be provided based on a second modality which is different from the first modality. Third data associated with a reference can be received. Further data can be generated based on the first, second and third data. In addition, third data associated with a second signal received from the at least one sample can be obtained. Each of the third data can be based on a further modality which is different from the first modality and the second modality, and the further data can be further determined based on the third data. Further, the first modality can be a spectral-encoded modality, and the second modality can be a non-spectral-encoding modality.
Claims(30)  translated from Chinese
1.一种设备,包括: 至少一个第一装置,其配置成提供基于第一模态的与从至少一个样本的至少一个区域接收的第一信号相关联的第一数据,和基于不同于所述第一模态的第二模态的与从所述至少一个样本接收的第二信号相关联的第二数据,其中所述至少一个第一装置进一步配置成接收与基准相关联的第三数据;以及至少一个第二装置,其配置成基于所述第一、第二和第三数据生成进一步的数据。 1. An apparatus, comprising: at least one first device, which is configured to provide a first modality based on the received at least one sample from at least one region of a first signal associated with a first data, and based on the different from the said first mode and a second mode of second data associated with the second signal received from the at least one sample of said at least one of wherein said first means is further configured to receive a third data associated with the reference ; and at least one second device, which is configured to further data based on the first, second, and third data generation.
2. 根据权利要求1所述的设备,其中,所述第一模态为镨编码共焦显微术。 2. The apparatus according to claim 1, wherein said first mode is encoded confocal microscopy praseodymium.
3. 根据权利要求1所述的设备,其中,所述第二模态为荧光成像。 3. The apparatus according to claim 1, wherein said second fluorescence imaging modality.
4. 根据权利要求1所述的设备,进一步包括显微镜装置,其与所述第一和第二装置相关联。 4. The apparatus according to claim 1, further comprising a microscope apparatus, which is associated with said first and second means.
5. 根据权利要求1所述的设备,进一步包括射束扫描装置,其配置成将电磁辐射转送到所述至少一个区域。 5. The apparatus according to claim 1, further comprising beam scanning means configured to electromagnetic radiation transferred to said at least one region.
6. 根据权利要求1所述的设备,其中,所述至少一个第二装置生成作为所述进一步的数据的函数的(i) 二维图#^ (ii)三维图像中的至少一种。 6. The apparatus of claim 1, wherein said second means for generating at least one further data as a function of the (i) at least one two-dimensional map # ^ (ii) the three-dimensional image.
7. 根据权利要求1所述的设备,其中,基本上同时地获得所述第一和第二数据。 7. The apparatus according to claim 1, wherein, substantially simultaneously obtain the first and second data.
8. 根据权利要求1所述的设备,其中,所述第一和第二数据与所述至少一个样本上的近似相同位置相关联。 8. The apparatus according to claim 1, wherein said first and second data with the associated at least approximately the same position on a sample.
9. 根据权利要求1所述的设备,其中,所述第一和第二数据中的至少一个是通过使用所述第一和第二数据中的另一个来获得的。 9. The apparatus according to claim 1, wherein said first and second data by using at least one of said first and second data to obtain another.
10. 根据权利要求1所述的设备,其中,在探针或单个罩中的至少一个中提供所述第一和第二装置。 10. The apparatus of claim 1, wherein one of said first and second means provided in at least a single probe or a hood.
11. 根据权利要求1所述的设备,其中,所述第一和第二装置包括公共部件。 11. The apparatus according to claim 1, wherein said first and second means includes a common member.
12. 根据权利要求11所述的设备,其中,在源装置或检测器装置中的至少一个中提供所述Z〉共部件。 12. The apparatus of claim 11, wherein at least one Z is provided in the source device or detector device> Total member.
13. 根据权利要求1所述的设备,其中,所述至少一个第一装置配置成获得镨编码显孩t信息。 13. The apparatus of claim 1, wherein said at least one first encoding means configured to obtain significant child praseodymium t information.
14. 根据权利要求1所述的设备,其中,所述至少一个第一装置配置成获得明视场、暗视场、相位反差、极化、上^Jt或及^射显^t信息中的至少一种。 14. The apparatus of claim 1, wherein said at least one first means configured to obtain bright-field, dark-field, phase contrast, polarization, or the ^ Jt ^ and ^ t was shot information in at least one.
15. 根据权利要求1所述的设备,进一步包括配置成从所述第一模态改变到所述第二模态的进一步的装置。 15. The apparatus according to claim 1, further comprising configured to change from the first mode to the second mode further means.
16. 根据权利要求1所述的设备,其中,所述至少一个第一装置配置成获得与具有多个波长的源装置提供的信号相关联的光学相干断层扫描信息,并且进一步包括多个检测器,其配置成检测作为波长函数的所述第二和第三信号之间的谱干涉。 16. The apparatus of claim 1, wherein said at least one first means is configured to obtain a signal associated with the optical source means having a plurality of wavelengths coherence tomography provide information, and further comprising a plurality of detectors configured to detect the interference spectrum as a function of wavelength between the second and third signals.
17. 根据权利要求1所述的设备,其中,所述至少一个第一装置配置成获得与波长随时间变化的源装置提供的信号相关联的光学相干断层扫描信息。 17. The apparatus according to claim 1, wherein said at least one first means is configured to obtain an optical signal associated with the source device to provide a time-varying wavelength coherence tomography information.
18. 根据权利要求1所述的设备,其中,所述至少一个第一装置进一步配置成接收与基准相关联的第三数据,并且所述至少一个第二装置配置成进一步基于所述第三数据生成所述进一步的数据。 18. The apparatus of claim 1, wherein said at least one first means is further configured to receive the reference data associated with the third, and the at least one second device is configured to further based on the third data generating the further data.
19. 根据权利要求1所述的设备,进一步包括:至少一个第三装置,其配置成基于所述第一数据或所述第二数据中的至少一个来控制所述第一装置中的至少一个。 19. The apparatus according to claim 1, further comprising: at least one third device, which is configured to be controlled based on at least one of said first data or second data in said at least one first means .
20. 根据权利要求1所述的设备,进一步包括: 至少一个第四装置,其配置成基于所述第一和第二数据生成图像。 20. The apparatus according to claim 1, further comprising: at least one fourth means configured to generate an image based on the first and second data.
21. 根据权利要求1所述的设备,进一步包括:至少一个第五装置,其配置成生成基于所述第一数据的至少一个第一图像和基于所述第二数据的至少一个第二图像,其中所述第一和第二图像作为所述第一和第二数据的函数而彼此相关联。 21. The apparatus according to claim 1, further comprising: at least one fifth means configured to generate a first image based on at least one of the second data based on the at least one second image of the first data, wherein said first and second image as a function of said first and second data associated with each other.
22. 根据权利要求1所述的设备,其中,所述至少一个第一装置配置成获得光学相干断层扫描信息。 22. The apparatus of claim 1, wherein said at least one first means is configured to obtain information on optical coherence tomography.
23. 根据权利要求1所述的设备,其中,所述至少一个第一装置配置成获得光频域千涉测量信息。 23. The apparatus of claim 1, wherein said at least one first means is configured to obtain optical frequency domain interference measurement information.
24. —种i殳备,包括:至少一个第一装置,其配置成提供基于第一模态的与从至少一个样本的至少一个区域接收的第一信号相关联的第一数据、基于不同于所述第一模态的第二模态的与从所述至少一个样本接收的第二信号相关联的第二数据以及与从所述至少一个样本接收的第二信号相关联的至少一个第三数据,其中所述至少一个第三数据中的每一个基于与所述第一模态和所述第二模态不同的进一步的模态;以及至少一个第二装置,其配置成基于所述第一、第二和第三数据生成进一步的数据。 24. - species i Shu apparatus, comprising: at least one first device, which is configured to provide a first mode based on the received from the at least one region of at least one sample of a first signal associated with a first data, based unlike at least one third of the first mode and the second mode of the at least one sample of the second signal received from said second data associated with the at least one sample and received from the second signal associated data, wherein said at least one third of each of the data based on the first mode and the second mode further different modes; and at least a second device configured to based on the first First, second and third data to generate further data.
25. 根据权利要求24所述的设备,其中,所述至少一个第一装置配置成获得光学相干断层扫描信息。 25. The apparatus according to claim 24, wherein said at least one first means is configured to obtain information on optical coherence tomography.
26. 根据权利要求24所述的设备,其中,所述至少一个第一装置配置成获得光学相干显^t信息。 26. The apparatus of claim 24, wherein said at least one first means is configured to obtain optical coherence significant ^ t information.
27. 根据权利要求24所述的设备,其中,所述至少一个第一装置配置成获得全场光学相干显^t信息。 27. The apparatus of claim 24, wherein said at least one first means is configured to obtain optical coherence audience information significantly ^ t.
28. —种设备,包括:至少一个第一装置,其配置成提供基于第一镨编码模态的与从至少一个样本的至少一个区域接收的第一信号相关联的第一数据,和基于第二非谱编码模态的与从所述至少一个样本接收的第二信号相关联的第二数据; 以及至少一个第二装置,其配置成基于所述第一和第二数据生成进一步的数据。 28. - kind of equipment, comprising: at least one first device, which is configured to provide a first praseodymium based coding mode and received from the at least one region of at least one sample of a first signal associated with a first data, and based on the Two non-spectral coding mode with at least one sample of the second signal received from said associated second data; and at least one second device, which is configured to generate additional data based on the first and second data.
29. —种方法,包括:提供基于第一模态的与从至少一个样本的至少一个区域接收的第一信号相关联的第一数据,和基于不同于所述第一模态的第二模态的与从所述至少一个样本接收的第二信号相关联的第二数据;接收与基准相关联的第三数据;以及基于所述第一、第二和第三数据生成进一步的数据。 29. - method, comprising: providing a first mode based on the received from the at least one region of at least one sample of a first signal associated with a first data, and based on the first mode is different from the second mold a second state with a second data signal associated with at least one sample from said received; receiving third data associated with the reference; and further generating data based on said first, second and third data.
30. —种方法,包括:提供基于第一模态的与从至少一个样本的至少一个区域接收的第一信号相关联的第一数据、基于不同于所述第一模态的第二模态的与从所述至少一个样本接收的第二信号相关联的第二数据以及与从所述至少一个样本接收的第二信号相关联的至少一个第三数据,其中所述至少一个第三数据中的每一个基于与所述第一模态和所述第二模态不同的进一步的模态;以及基于所述第一、第二和第三数据生成进一步的数据。 30. - method, comprising: providing a first mode based on the received from the at least one region of at least one sample of a first signal associated with a first data, based on the first mode is different from the second mode and the second data signal associated with a second sample of at least one received from the third data and at least one second signal received from the at least one sample of the associated, wherein said at least one third data based on each of the first mode and the second mode further different modes; and further data based on the first, second, and third data generation. 31. —种方法,包括:提供基于第一镨编码模态的与从至少一个样本的至少一个区域接收的第一信号相关联的第一数据,和基于第二非镨编码模态的与从所述至少一个样本接收的第二信号相关联的第二数据;以及基于所述第一和第二数据生成进一步的数据。 31. - method, comprising: providing a first praseodymium based coding mode and the first data received from the at least one region of at least one sample of the first signal associated with, and based on the second non-coding modes and praseodymium from a second data signal associated with a second of said at least one received sample; and generating additional data based on the first and second data.
Description  translated from Chinese

用于提供一个或多个生物结构的多模态显微成l象的装置和方法相关申请的交叉引用本申请基于并要求2005年9月29日提交的序列号为60/721,802的美国专利申请的权益,其整体内容通过引用结合于此。 CROSS apparatus and method for providing one or more biological structures into multi-modal microscopic objects l REFERENCE TO RELATED APPLICATION This application is based and require a serial number September 29, 2005 filed 60 / 721,802 United States Patent Application rights, the entire contents of which are incorporated herein by reference. 技术领域本发明一般涉及用于提供一个或多个生物结构的多模态显微成像的装置和方法,并且具体地涉及例如使用谱编码共焦显微("SECM")、荧光SECM、光学相干断层扫描("OCT")、镨域("SD" ) -OCT、光频域干涉测量("OFDI")和光相干显微("OCM")过程来实施生物样品的反射和/或荧光显微。 The present invention relates generally to an apparatus and method for providing one or more of the biological structure of multi-modal microscopic imaging, and in particular to the use of spectrum coding such as confocal microscopy ("SECM"), fluorescence SECM, optical coherence tomography ("OCT"), praseodymium domain ("SD") -OCT, optical frequency domain interferometry ("OFDI") and optical coherence microscopy ("OCM") procedure to implement the biological sample reflection and / or fluorescence microscopy. 背景技术基因变化的分子^J和表型之间的关系的确定一般利用了生物样品的銜见结构的准确的二维和三维^^征。 BACKGROUND Molecular genetic changes ^ determine the relationship between the J and phenotype generally use the title of a biological sample accurate two- and three-dimensional see ^^ levy structure. 然而,运动和小的尺度使得许多活体生物样品更加难以评估。 However, sports and small scales so many living biological samples more difficult to assess. 光学技术提供了以高分辨率对生物样品进行成像的潜力。 Optical technology offers the potential for high-resolution imaging of biological samples. 对于某些应用,基于内源性对照的光学成^M目对于需要外源性试剂的技术是有利的, 因为这样的有利过程可以允许在少量准备的情况下,以样品的天然状态并且在多个时间点对样品进行分析。 For some applications, based on endogenous control as ^ M optical head is advantageous for the technical needs of exogenous agents, since such process may advantageously allows in the case of a small amount of preparation, and the natural state of the sample in a multi- time points samples were analyzed. 作为例子,在此描述了用于使胚胎心脏微观结构可视化的几种内源性对照成像模态:如D. huang等人的"Optical coherence tomography", Science 254, pp. 1178-1181 (1991)中描述的光学相干断层扫描("OCT")的两种示范性形式、如SA B叩part等人的"Investigation of developing embryonic morphology using optical coherence tomography", Dev Biol 177, pp. 54-63 (1996)中描述的时域光学相干断层扫描("TD-OCT,,)以及如MA Choma等人的"Sensitivity advantage of swept source and Fourier domain optical coherence tomography", Optics Express 11, pp. 2183-2189 (2003)和SH Yun等人的"High-speed optical frequency-domain imaging" , Optics Express 11, pp. 2953-2963 (2003)中描述的光频域成^f象("OFDI")。可以提供并使用另外的例子,包括两种反射显微技术,例如在E. Beaurepaire等人的"Full-field optical coherence microscopy". Optics Letters 23, pp. 244-246 (1998)、 A. Dubois等人的"Ultrahigh-resolution full-field optical coherence tomography", Appl Opt 43, pp. 2874-2883 (2004)和G Moneron等人的"Stroboscopic ultrahigh-resolution full-field optical coherence tomography", Opt Lett 30, pp. 1351-1353 (2005)中描述的全场光学相千显微("FFOCM"),以及如G丄Tearney等人的"Spectrally encoded confocal microscopy", Optics Letters 23, pp. 1152-1154 (1998)和C. Boudoux等人的"Rapid wavelength-swept spectrally encoded confocal microscopy" , Optics Express 13, pp. 8214-8221 (2005) 中描述的镨编码共焦显微("SECM")。 As an example, in this description for the embryo heart microstructure visualization endogenous control of several imaging modalities: as D. huang et al., "Optical coherence tomography", Science 254, 1178-1181 pp (1991). described optical coherence tomography ("OCT") of two exemplary forms, such as SA B rapping part, et al. "Investigation of developing embryonic morphology using optical coherence tomography", Dev Biol 177,. 54-63 pp (1996 ) described in the time domain optical coherence tomography ("TD-OCT ,,) and as MA Choma et al" Sensitivity advantage of swept source and Fourier domain optical coherence tomography ", Optics Express 11, pp. 2183-2189 (2003 ) and SH Yun et al., "High-speed optical frequency-domain imaging", Optics Express 11, light. 2953-2963 pp (2003) described as the frequency domain into ^ f ("OFDI"). You can provide and use Another example, includes two reflection microscopy techniques, such as E. Beaurepaire et al. "Full-field optical coherence microscopy". Optics Letters 23, pp. 244-246 (1998), A. Dubois et al. "Ultrahigh -resolution full-field optical coherence tomography ", Appl Opt 43, pp. 2874-2883 (2004) and G Moneron et al.," Stroboscopic ultrahigh-resolution full-field optical coherence tomography ", Opt Lett 30, pp. 1351-1353 Overall Optics (2005) describes the relative thousand microscopic ("FFOCM"), as well as G Tearney Shang et al. "Spectrally encoded confocal microscopy", Optics Letters 23,. 1152-1154 pp (1998) and C. Boudoux et al, "Rapid wavelength-swept spectrally encoded confocal microscopy", Optics Express 13, praseodymium coding. 8214-8221 pp (2005) described confocal microscopy ("SECM"). 例如,TDOCT技术可以使用^^目干干涉测量来获得具有大约10 nm 的分辨率和高达2mm的深度处的横截面图像。 For example, TDOCT ^^ mesh technology can be used to obtain a dry interferometric measurement resolution of about 10 nm and a cross-sectional images of the depths of up to 2mm. 参见:SA Boppart等人的"Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography", Proc Natl Acad Sci USA 94, pp. 4256-4261 (1997); S. Yazdanfar等人的"High resolution imaging of in vivo cardiac dynamics using color Doppler optical tomography" , Optics Express 1, pp. 424-431 (1997); TM Yelbuz等人的"Optical coherence tomography: a new high-resolution imaging technology to study cardiac development in chick embryos", Circulation 106, pp. 2771-2774 (2002); VXD Yang等人的"High speed, wide velocity dynamic range Doppler optical coherence tomography (Part II): Imaging in vivo cardiac dynamics of Xenopus laevis,,, Optics Express 11, pp. 1650-1658 (2003);以及W. Luo 等人的"Three-dimensional optical coherence tomography of the embryonic murine cardiovascular system", Journal of biomedical optics 11, 021014(2006)。示范性OFDI技术可以被认为是TDOCT技术的衍生,其能够以显著更高的帧率获取图像,如R. Huber等人的"Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm", Optics Express 13, pp. 10523-10538 (2005)中描述的那样。 See also: SA Boppart et al "Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography", Proc Natl Acad Sci USA 94, 4256-4261 pp (1997); S. Yazdanfar et al. "High resolution imaging of in. vivo cardiac dynamics using color Doppler optical tomography ", Optics Express 1, pp 424-431 (1997); TM Yelbuz et al." Optical coherence tomography: a new high-resolution imaging technology to study cardiac development in chick embryos ", Circulation . 106, pp 2771-2774 (2002); VXD Yang et al., "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part II): Imaging in vivo cardiac dynamics of Xenopus laevis ,,, Optics Express 11, pp. 1650-1658 (2003); and W. Luo et al., "Three-dimensional optical coherence tomography of the embryonic murine cardiovascular system", Journal of biomedical optics 11, 021014 (2006) exemplary OFDI technology can be considered TDOCT technology. derivatives, which can be significantly higher frame rate captured image, such as R. Huber et al. "Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm", Optics Express 13, pp . 10523-10538 (2005) as described. OFDI 技术中的高速度能够实现真实四维UD)显微(例如作为时间函数的三维显微)。 OFDI technology to achieve true high-speed four-UD) microscopy (for example as a function of time three-dimensional microscopy). 全场光学相干显孩史("FFOCM")技术能够利用低相干干涉测量和较高的数值孔径物镜来获得全三维的亚细胞水平的分辨率。 Optical coherence significant child audience history ("FFOCM") technology to take advantage of low coherence interferometry and high numerical aperture to obtain a full three-dimensional subcellular resolution. 这样的FFOCM技^f艮可能显著慢于OFDI技术。 Such FFOCM technology ^ f Burgundy may be significantly slower than OFDI technology. 示范性SECM技术可以具有反射共焦显微的形式,使用该技术可以以比使用FFOCM技术可能获得的速度显著更高的速度获得具有微米等级分辨率的二维图像。 Exemplary SECM techniques may have the form of reflection confocal microscopy, using this technique can be faster than using FFOCM technology may get a significantly higher rate to obtain a two-dimensional image with micron level resolution. 虽然这些自然对照过程中的每一个都可以单独地用于对胚胎心脏的#^见结构进行成像,但是当组合时,这些过程可以提供一组强有力的工具, 用于早期心肌形态和动态二维、三维和四维表征。 Although these natural control processes may each be used individually # ^ see embryonic heart structure imaging, but when used in combination, these processes can provide a set of powerful tools for early myocardial morphology and dynamic II dimensional, three-dimensional and four-dimensional characterization. 将这些不同的模态组合成一个单个显微镜装置可以具有另外的优点,比如(a)比较不同格式、不同分辨率和视场的图像、(b)同时获取结构信息和功能信息和/或(c) 可以使用一个仪器而不需要移动或改变样品来完成这些任务。 These different modes are combined into a single microscope apparatus may have additional advantages, such as (a) Comparison of different formats, different resolutions and fields of view of the image, (b) at the same time to obtain structural information and function information, and / or (c ) You can use one instrument without the need to move or change the sample to complete these tasks. 发明内容本发明的目的之一是要克服现有技术系统的某些缺陷和缺点(包括上面在此描述的那些),并且提供示范性实施例,该示范性实施例提供了一个或多个生物结构的多模态显微成像。 SUMMARY OF THE INVENTION It is an object of the present invention is to overcome some of the drawbacks and disadvantages of prior art systems (including those described herein above) and provides an exemplary embodiment, one or more of the exemplary embodiment bio Multi-modal microscopic imaging structures. 这样的示范性实施例可以使用谱编码共焦显微("SECM")、荧光SECM、光学相干断层扫描("OCT")、 语域("SD" )-OCT、光频域干涉测量("OFDI")和ibf目干显微("OCM") 过程来实施生物样品的反射和/或荧光显微。 Such exemplary embodiments may use spectrum coding confocal microscopy ("SECM"), fluorescence SECM, optical coherence tomography ("OCT"), Register ("SD") -OCT, optical frequency domain interferometry ("OFDI" ) and ibf mesh dry microscopy ("OCM") procedure to implement the reflection of a biological sample and / or fluorescence microscopy. 例如,生物样品的分析一般4吏用其#^见结构和功能的可视化,优选地具有对样品的微小改变。 For example, the analysis of biological samples is generally 4 officials with their # ^ see the structure and function of visualization, preferably with a slight change of the sample. 根据本发明的一个示范性实施例,可以在单个显微镜装置中提供多个不同成^^态的组合。 According to an exemplary embodiment of the present invention, it may be provided to a plurality of different states ^^ microscope combined in a single apparatus. 根据本发明的某些示范性实施例的每种示范性技术可以提供不同且互补的成像能力,包括高速(例如每秒1000帧)和高轴向分辨率(4-16 mm)的体内横截面成像、体内真实四维成像、体外具有各向同性细胞分辨率(例如1-2 pm)的三维显微以及体内二维亚细胞成像。 Each exemplary technique in accordance with certain exemplary embodiments of the present invention may provide a different and complementary imaging capabilities, including high-speed (e.g., 1000 per second) and high axial resolution (4-16 mm) in cross-section in vivo imaging, real 4D imaging in vivo, in vitro cell isotropic resolution (for example, 1-2 pm) two dimensional microscopy and in vivo cell imaging Latvia. 当组合时,这些示范性成^^态可以实现生物样品的形态和动态的更加完整的图像。 When used in combination, these exemplary into ^^ state can form a more complete and dynamic image of the biological sample. 因此,本发明的示范性实施例包括用于获取多模态賴^见数据的装置和方法。 Therefore, the exemplary embodiment of the present invention comprises means for obtaining multi-modal Lai ^ see data devices and methods. 例如,根据一个示范性实施例,可以使用独特宽带宽或快速波长扫描源与插在扫描机构和成傳邊镜之间的光学器件的组合。 For example, according to one exemplary embodiment, a combination of unique wide bandwidth or a fast wavelength scanning source and interposed between the scanning mechanism and a transmission side mirror optics. 可以例如在不移动样品的情况下,同时和/或连续地获取数据。 May, for example, without moving the sample, simultaneously or successively obtaining data and /. 例如,可以共同配准从不同模态获得的数据,以便能够并排和/或在彼此顶部重叠地显示。 For example, co-registered data obtained from different modalities, to be able to side and / or overlapping each other at the top. 可以用互补的方式从所有的数据集中获得定量信息。 It can be used in a complementary manner to obtain quantitative information about all centralized data. 因此,可以提供根据本发明的示范性实施例的方法和设备。 Therefore, it can provide a method and apparatus according to an exemplary embodiment of the present invention. 例如,可以基于第一模态提供与从至少一个样本的至少一个区域接收的第一信号相关联的第一数据,并且可以基于不同于所述第一模态的第二模态提供与从所述至少一个样本接收的第二信号相关联的第二数据。 For example, based on the first mode to provide a first data signal associated with a first received from the at least one sample of at least one region, and may be based on the second modality different from providing the first modality from said at least a second data signal associated with a second received sample. 可以接收与基准相关联的第三数据。 You may receive a third data associated with the reference. 基于所述第一、第二和第三数据可以生成进一步的数据。 Based on the first, second and third data may generate further data. 另夕卜,可以获得与从所述至少一个样本接收的第二信号相关联的第三数据。 Another evening Bu, the third data can be obtained from the at least one sample received second signal is associated. 所述第三数据中的每一个可以基于不同于所述第一模态和所述第二模态的进一步的模态,并且可以基于所述第三数据来进一步确定所述进一步的数据。 The third data may be based on each different from said first mode and said second mode further modal, and may be further determined based on the data of the third additional data. 进一步,所述第一模态可以是潜编码模态,并且所述第二模态可以是非i普编码模态。 Further, the first modality can be latent coding mode and the second mode may be non-coding mode i general. 在本发明的另一个示范性实施例中,所述第一模态可以是荧光成像。 In another exemplary embodiment of the present invention, the first mode may be a fluorescent imaging. 可以提供显微镜装置和/或射束扫描装置。 It can provide a microscope apparatus and / or a beam scanning device. 射束扫描装置可以配置成将电磁辐射转送到所述至少一个区域。 Beam scanning device may be configured to be transferred to said electromagnetic radiation at least one region. 进一步,可以作为所述进一步的数据的函数产生二维图像和/或三维图像。 Further, as a further function of the two-dimensional image data generated and / or three-dimensional image. 可以基本上同时获得所述第一和第二数据。 Can be obtained substantially simultaneously said first and second data. 另夕卜,所述第一和第二数据可以与所述样本上的近似相同位置相关联,和/或可以通过使用所述第一和第二数据中的另一个来获得。 Another evening Bu, the first and second data may be associated with approximately the same location, and / or by using the first and second data to obtain another on the sample. 根据本发明的进一步的示范性实施例,可以在探针和/或单个罩中提供设备。 According to a further exemplary embodiment of the present invention, the device may be provided in the probe and / or a single housing. 还可以使用这样的示范性设备和方法获得镨编码显^t信息以及明视场、暗视场、相位反差、极化、上反射(epireflectance)和/或反射显微信息。 You can also use this exemplary apparatus and method for obtaining significant ^ t praseodymium coding information and the bright-field, dark field, phase contrast, polarization, on reflection (epireflectance) and / or reflection microscopy information. 可以进一步使用这样的示范性设备和方法从所述第一模态改变到所述第二模态。 It may further exemplary use of such apparatus and method to change from the first mode to the second mode. 可以获得与具有多个波长的源装置提供的信号相关联的光学相干断层扫描信息。 Optical signals associated with the source device can be obtained having a plurality of wavelengths to provide coherence tomography information. 可以提供多个检测器以检测作为波长函数的第二和第三信号之间的i普干涉。 We can provide multiple detectors to detect as a function of wavelength between the second and third signals i Cape interference. 可以获得与波长随时间变化的源装置提供的信号相关联的光学相干断层扫描信息。 The optical signal can be obtained with the source device associated with a time-varying wavelength coherence tomography provide information. 基于所述第一和第二数据可以生成至少一个图#>。 Based on the first and second data may be generated by at least one #>. 另夕卜, 可以基于所述第一数据生成第一图像,并且可以基于所述第二数据生成第二图像。 Another Bu Xi, a first image may be generated based on the first data, and may generate a second image based on the second data. 所述第一和第二图像可以作为所述第一和第二数据的函数而彼此相关联。 Said first and second image as a function of said first and second data associated with each other. 可以获得光学相干断层扫描信息和/或光频域干涉测量信息。 Optical coherence tomography can get information and / or optical frequency domain interferometry information. 结合所附的权利要求书,当阅读以下对本发明实施例的详细描述时, 本发明的其它特征和优点将会变得明显。 Combined with the claims of the appended claims, when reading the following detailed description of embodiments of the present invention, other features and advantages of the invention will become apparent. 附图说明结合示出了本发明的示意性实施例的附图,从以下详细描述中,本发明的进一步的目的、特征和优点将会变得明显,其中:图l是《吏用宽带宽源的示范性SECM系统的示意图;图2是示范性SD-OCT系统的示意图;图3是4吏用宽带宽源的示范性OCM系统的示意图;图4是4吏用宽带宽源的示范性FFOCM系统的示意图;图5是使用宽带宽源的示范性荧光SECM系统的示意图;图6是使用波长调谐源的示范性SECM系统的示意图;图7是使用波长调谐/调制源的示范性OFDI系统的示意图;图8是使用波长调制/调谐源的示范性OCM系统的示意图;图9是使用波长调制/调谐源的示范性FFOCM系统的示意图;图10是根据本发明的第一示范性实施例的使用宽带宽源的示范性组合SECM7SD-OCT/OCM系统的示意图;图11是根据本发明的第二示范性实施例的使用宽带宽源的示范性组合SECM/SD-OCT/FFOCM系统的示意图;图12是根据本发明的特殊示范性实施例的示范性多模态显微镜滑动器的示意图;图13是根据本发明的第三示范性实施例的使用波长调谐源的示范性组合SECM/OFDI/OCM系统的示意图;图14是根据本发明的第三示范性实施例的使用波长调谐源的示范性组合SECM/OFDI/FFOCM系统的示意图;图15a-15m是使用TDOCT和OFDI过程的示范性实施例在体内获得的光滑爪蟾(Xenopuslaevis)心脏(阶段49)的各种示范性图4象;图16a-16m是使用FFOCM过程的示范性实施例在体外获得的爪蟾心脏的各种示范性三维图像;图17a-17h是使用SECM过程的示范性实施例在体内获得的示范性高分辨率共焦图像;图18a-18e是使用根据本发明的方法和装置的示范性实施例获得的爪蟾心脏中的动脉瘤扩张的示范性图像;以及图19a-19x是使用根据本发明的方法和装置的示范性实施例获得的由乙醇暴露引起的异常心脏形成的示范性图像。 Brief Description of the drawings shows an illustrative embodiment of the present invention, from the following detailed description, further objects, features and advantages of the invention will become apparent, in which: Figure l is "officials with wide bandwidth schematic diagram of an exemplary SECM source system; Figure 2 is a diagram illustrating an exemplary SD-OCT system; Figure 3 is a schematic 4 officials with broad bandwidth source exemplary OCM systems; Figure 4 is an exemplary four officials with wide bandwidth sources FFOCM schematic system; FIG. 5 is a schematic wide broadband source exemplary fluorescence SECM system; FIG. 6 is a schematic view an exemplary SECM system using wavelength tunable sources; FIG. 7 is a wavelength tuning / modulation source exemplary OFDI system schematic; Fig. 8 is a schematic view of wavelength modulation / tuner source exemplary OCM systems use; FIG. 9 is a schematic view of a wavelength modulation / tuner source FFOCM exemplary use of the system; Figure 10 is a first exemplary embodiment of the present invention. wide broadband source schematic exemplary SECM FIG. 11 is a composition according to a second exemplary embodiment of the present invention / SD-OCT / FFOCM system; the use of wide bandwidth sources schematic exemplary combination SECM7SD-OCT / OCM systems ; FIG. 12 is a schematic view of an exemplary multi-modal slider special microscope according to an exemplary embodiment of the present invention; FIG. 13 is a wavelength tunable source SECM exemplary embodiment of a combination according to the third exemplary embodiment of the present invention / OFDI schematic view of a wavelength tunable source exemplary combination of SECM Figure 14 is a third exemplary embodiment of the present invention / OFDI / FFOCM systems;; / schematic OCM system of Figure 15a-15m is using exemplary TDOCT and OFDI process Example smooth body obtained in Xenopus (Xenopuslaevis) Heart (stage 49) Fig various exemplary image 4; FIG. 16a-16m is used FFOCM various exemplary embodiments of an exemplary process obtained in vitro Xenopus heart of the three-dimensional image; FIG. 17a-17h is a process using an exemplary SECM body obtained in Example exemplary high-resolution confocal image; FIG. 18a-18e is obtained in accordance with an exemplary embodiment using the method and apparatus of the present embodiment of the invention. Xenopus heart aneurysm expansion exemplary image; and Figure 19a-19x is the use cases were caused by an abnormal heart ethanol exposure exemplary image formed according to an exemplary embodiment of the method and apparatus of the present invention. 贯穿附图,除非另外声明,否则相同的标号和字符用于指示图示实施例的相同特征、元件、部件或部分。 Throughout the drawings, unless otherwise stated, the same reference numerals and characters are used to indicate the same feature of the illustrated embodiment, elements, components or portions. 此外,虽然现在将参考附图详细地描述本发明,但是这将结合示意性实施例进行。 In addition, although the present invention will now be described in detail with reference to the accompanying drawings, but it will combine exemplary embodiments. 能够对描述的实施例进行改变和修改,而不认为脱离了如所附权利要求所限定的本发明的真实范围和精神。 The described embodiments can be changed and modified without departing from the true scope and that the spirit as defined in the appended claims the invention. 具体实施方式示范性SECM技术能够提供组织或生物样品的亚细胞水平分辨率的图像。 DETAILED DESCRIPTION Exemplary SECM technology to provide a biological sample of tissue or subcellular resolution. SECM图像可替选地表示来自样本的荧光或来自样本的反射。 SECM image may represent a fluorescent or reflected from a sample from a sample alternatively. 图l 描绘了使用宽带源的示范性SECM装置的示意图。 Figure l depicts a schematic diagram of an exemplary SECM apparatus using broadband sources. 在这个示范性配置中, 准单色或宽带光100照射可替选地为分束器的环行器110。 In this exemplary configuration, the quasi-monochromatic or broadband light 100 irradiated alternatively as a beam splitter 110 circulator. 在一个实施例中,这个环行器或分束器是光纤耦合的。 In one embodiment, the circulator or a beam splitter is a fiber-coupled. 光纤的核心可以充当用于共焦显微系统的针孔。 Core optical fiber acts as a pinhole can confocal microscopy system. 光纤可替选地具有多重包覆,其传输光,使得例如^JC样本的光为单模而收集的光则为多模。 Coated optical fiber may have multiple Alternatively, the transmission of light, so that light e.g. ^ JC sample was collected single-mode optical multimode. 来自这个元件的光可以入射在扫描机构115上,该扫描机构115扫描射束的角度,以便在样本上产生一个或多个横向扫描。 Light may be incident on the element from the scanning mechanism 115, the scan angle of the beam scanning mechanism 115 to generate one or more horizontal scanning on the sample. 扫描机构可替选地为共振扫描仪、检流计扫描仪、多边形扫描镜、声光扫描仪等等中的一种。 Alternatively scanning mechanism resonance scanner, galvanometer scanners, polygon scan mirror, acousto-optic scanners, etc. in one. 望远镜设备可以用于将扫描轴成像到物镜130的后焦平面。 Telescope device can be used to image the back-focal plane scan axis 130 of the objective lens. 来自扫描机构的光然后可以;故引向波长^元件120 如传输衍射光栅、棱镜、光栅棱镜、双棱镜光栅棱镜(DP-GRISM)等等。 The light from the scanning mechanism can then be; it leads to the wavelength ^ components such as transmission diffraction grating 120, a prism, a grating prism, a double prism grating prism (DP-GRISM) and so on. 这个示范性元件可以*宽带宽源中的不同波长,以以取决于波长的变化的角度在物镜130上入射。 The exemplary elements may * high bandwidth sources of different wavelengths in order to change the wavelength that depends on the angle of incidence on the objective lens 130. 在一个示范性实施例中,透镜可以具有产生小焦斑的数值孔径,或者可替选地透镜具有大于0.2的高NA。 In one exemplary embodiment, the lens may have a focal spot to produce a small numerical aperture, or alternatively greater than 0.2 lens having a high NA. 物镜130将每个波长区域聚焦到样本上,其中样本160上的每个波长区域可以定位在不同的空间位置。 The objective lens 130 focuses each wavelength to the sample region, wherein each wavelength region on the sample 160 may be positioned at different spatial locations. 对于衍射光栅和物镜,这些示范性元件可以在样本上形成波长编码线140,其中线上的每个位置由不同的波长区域编码。 For the diffraction grating and the objective lens, the wavelength of the exemplary elements coding line 140 may be formed on the sample, wherein the position of each line is coded by a different wavelength regions. 来自样本160的光可以衫L^射返回通过图1的示范性系统。 L ^ light emitted from the sample 160 can shirt back through the exemplary system of FIG. 散焦光可以被光纤的包覆滤去,而聚焦(例如共焦)光则被传输返回通过环行器/分束器110到达分光计,该分光计测量返回的光145的镨含量。 Defocus light can be filtered optical fiber coating, and focus (e.g., confocal) were transmitted back through the optical circulator / beam splitter 110 reaches the spectrometer, the spectrometer measurement light 145 returns the content of praseodymium. 通过测量在图像上形成一条线的这个镨,解码作为空间位置函数的共焦传送。 By measuring the praseodymium forming a line on the image, a function of spatial position as the decoding confocal transmission. 针对扫描机构115的每个角位置形成连续的线,从而形成镨编码共焦显微图像。 Forming a continuous line for each angular position of the scanning mechanism 115, thereby forming a praseodymium encoded confocal microscopy images. 图2描绘了示范性谦域OCT系统的示意图。 Figure 2 depicts a schematic diagram of an exemplary Qian domain OCT system. 与示范性SECM系统相反,示范性SD-OCT可以通过使用傅立叶域中的相干光栅来提供生物样品的横截面图像。 In contrast with the exemplary SECM system, the exemplary SD-OCT can provide cross-sectional images of biological samples by the use of coherent raster Fourier domain. SD-OCT图像典型地可以具有较低的分辨率(大约3-10 Hm),并且可以具有较大的视场(几个毫米)。 SD-OCT image may typically have a lower resolution (about 3-10 Hm), and may have a larger field of view (a few millimeters). 在这个示范性SD-OCT 系统中,宽带宽或准单色源200可以被输入到干涉仪中,该干涉仪可以是基于光纤的。 In this exemplary SD-OCT system, the wide bandwidth or quasi-monochromatic source 200 can be input to an interferometer, the interferometer can be based on optical fiber. 光纤耦合的光可以被传输到环行器210和分束器220。 Fiber-coupled light can be transmitted to the circulator 210 and the beam splitter 220. 当耦合到环行器210中时,光可以优选地被分束器220随后分离,以便光的一部分可以被传输到基准臂225, 一部分被传输到样本臂235。 When coupled to the circulator 210, the light may preferably be followed by separation of the beam splitter 220, so that part of the light may be transmitted to the reference arm 225, the arm portion 235 is transmitted to the sample. 来自基准臂225的光可以从镜230 (例如基准)反射到分束器220或者可替选地被传输返回到分束器220。 The light from the reference arm 225 from mirror 230 may reflect (e.g., reference) beam splitter 220, or alternatively may be transmitted to the beam splitter 220 returns. 在一个示范性实施例中,分束器220可以配置成将大多数的光传输到样本臂235。 In one exemplary embodiment, the beam splitter 220 may be configured to transmit most of the light to the sample arm 235. 来自样本臂光纤的光然后可以被引向透镜和扫描机构240。 Light from the sample arm optical fiber can then be directed to the lens 240 and the scanning mechanism. 扫描机构可以以任意的一维或二维模式扫描样本臂235 的光。 Scanning mechanism may be any one-dimensional or two-dimensional model to scan the sample arm 235 light. 可以将光从扫描机构传输到透镜250,该透镜250在一个示范性实施例中可以具有如此的NA,以至于共焦参ltt够大,以允许在生物样品或样本260中进行横截面成像。 Optical scanning means can be transmitted to the lens 250 from the lens 250 in an exemplary embodiment may have such a NA, that confocal parameter ltt large enough to allow a cross-sectional imaging of biological samples or 260 samples. 从样本传送的光可以被传输返回通过设备到达环行器/分束器210,并且被引向分光计280。 Light can be transmitted back through the sample transmitted from the device to reach the circulator / beam splitter 210 and is guided to the spectrometer 280. 例如通过在中央处理单元或计算机2卯中对镨干涉信号进行背景扣除、将A空间重新映射到k空间以及逆傅立叶变换,可以重构组织之内的作为深度的函数的反射(A线)。 For example by a central processing unit or computer 2 d in the interference signal of praseodymium background subtraction, the A space remapped to the k-space, and an inverse Fourier transform, can be reconstructed within the organization as a reflection function of depth (A line). 针对每个扫描^I位置获得连续的A线,从而重构样本的横截面图像。 ^ I get continuous A-line position for each scan, thus reconstructed cross-sectional image of the sample. 现有技术中已知的可替选的示范性实施例,包括通过镨干涉的短时傅立叶变换("STFT")、多普勒敏感SD-OCT和极化敏感SD-OCT从样本中获得"^ft息的能力在内, 也可以用于从生物样品中提取额外信息,诸如吸收、流动和双折射。图3描绘了示范性光学相干显微("OCM")系统的示意图。示范性OCM系统可以使用共焦显微和OCT技术的组合,这是有利的,因为两种这样的示范性技术的轴点扩散函数可以相乘,以便提供更大程度的光学分割。在OCM系统的一个示范性实施例中,来自宽带宽源的光可以被输入到调制元件310中,以便调制频率逼近干涉仪中的镨干涉的频率。这种示范性调制元件可以是Michdson干涉仪、脉冲成形设备、谱过滤器等等中的一种。该调制也可以随时将镨相位转移某个量,以l更连续的镨可以被减去以仅提取镨干涉项。在调制元件之后,光可以被传输到环行器/分束器320,然后如果使用的是环行器的话则到达分束器330。光可以再次被传输到基准臂335和样本臂345。来自基准臂335的光被镜340反射。来自样本臂345的光可以被传输到xy扫描仪350,该xy扫描仪350可替选地为共振扫描仪、检流计扫描仪、多边形扫描镜、声光扫描仪等等中的一种或其组合。来自扫描仪350的光可以被引向物镜355,以便可以在样本之内扫描紧密焦斑。可替选地以任意的三维扫描物镜或样本360,以便于从样本之内的不同部分进行数据收集。光被从样本360传输返回到环行器/分束器320并随后到i^险测设备。在一个实施例中,检测器为分光计,并且通过以与示范性SD-OCT所进行的类似的方式从样本中获得A线来获得OCM 数据。在谱调制实施例中,检测器可替选地为同步于源调制元件310的光电二极管或其它单个检测器。示范性锁定或扣除技术可以用于提取OCM 信号。全场光学相干显微术典型地为自由空间干涉测量技术,其使用宽带宽源来获得生物样品的横向高分辨率光学片段。图4A描绘了示范性FFOCM系统的示意图,其中宽带宽光400被传输到分束器410。光被分离到样本臂423和基准臂422中。根据一个示范性实施例,基准臂422中的光可以被引向415基准物镜420并到达能够轴向移动的镜425。样本臂423中的光可以被引向样本物镜430并到达样本440。在一个示范性实施例中,基准和样本物镜420、 430具有类似特性。在另一个示范性实施例中,可以用浸液对物镜420、 430进行优化, 该浸液具有类似于样本的折射率。 Known in the art may implement alternative exemplary embodiment, including praseodymium interference by short-time Fourier transform ("STFT"), Doppler-sensitive SD-OCT and polarization-sensitive SD-OCT received "from the test samples ^ ft interest including the ability to be used to extract additional information from a biological sample, such as absorption, flow and birefringence. Figure 3 depicts an exemplary optical coherence microscopy ("OCM") system schematic exemplary OCM The system can use confocal microscopy and OCT technology portfolio, which is advantageous because the pivot point spread function of two such exemplary technique may be multiplied in order to provide a greater degree of optical resolution. In an exemplary embodiment of the OCM system embodiment, the light source from the wide bandwidth can be inputted to the modulation element 310, so that the interferometer modulation frequency approximation praseodymium frequency interference. This exemplary modulation element can be Michdson interferometer, pulse shaping equipment, spectral filter and so one. The modulation can always be a certain amount of praseodymium transfer phase to l can be more continuous praseodymium Pr subtracted to extract only the interference term. After the modulation element, light may be transmitted to the circulator / a beam splitter 320, and then if you are using a circulator is reached, then the beam splitter 330. The light can be transmitted to 335 and sample arm 345. The light from the reference arm 335 of the reference arm is 340 mirror again from the sample arm 345 light can be transmitted to the xy scanner 350, the xy scanner 350 may alternatively one or a combination of the resonance scanner, galvanometer scanners, polygon scan mirror, acousto-optic scanners, etc. in. from the scan 350 meter light can be directed to the objective lens 355, so that you can scan in a sample of the close focal spot. Alternatively an arbitrary three-dimensional scanning lens or sample 360 in order to sample from different parts of the data collection. Light is returned from the sample 360 is transmitted to the circulator / beam splitter 320 and then to i ^ risk measurement device. In one embodiment, the detector is a spectrometer, and by a similar manner to the exemplary SD-OCT conducted A line obtained from the sample data obtained OCM Example, the detector can be synchronized with the source modulation element 310 is a photodiode or other single detector. exemplary locking Alternatively or deduction techniques can be used to extract the spectral modulation embodiment OCM signal. Optical coherence microscopy audience typically free space interferometric technique, which uses a wide bandwidth optical source to obtain a high-resolution lateral segment of the biological sample. FIG. 4A depicts a schematic diagram of an exemplary FFOCM system, wherein the wide bandwidth Light 400 is transmitted to the beam splitter 410. The light is separated into the sample arm 423 and reference arm 422 in accordance with one exemplary embodiment, the reference arm 422 reference light may be directed to the objective lens 420 and reaches 415 can move axially mirror 425. The sample arm 423 light can be directed to the sample lens 430 and reaches the sample 440. In one exemplary embodiment, the reference and sample the objective lens 420, 430 having similar characteristics. In another exemplary embodiment, You can use the immersion objective lens 420, 430 is optimized, the immersion liquid having a refractive index similar to the sample. 样本可以耦合到提供任意三维移动的台443。 Samples may be coupled to provide any three-dimensional movement of the table 443. 使用透镜445可以将来自基准臂422和样本臂423的光成像到CCD 摄影机450上。 You can use the lens 445 from the reference arm and sample arm 422 light imaging CCD camera 423 to the 450. CCD摄影机445检测由样本臂422和基准臂423的干涉产生的条紋。 CCD camera 445 detects the interference fringe by the sample arm 422 and reference arm 423 generated. 针对基准臂镜425的不同位置可以典型地检测多个图像。 Typically, a plurality of images can be detected for different positions of the reference arm mirror 425. 可以算术组合示范性图像,以便从样本之内的光学分段中提取信息。 Arithmetic combination may be an exemplary image in order to extract information from the optical segment of the sample. 在如图4B所示的FFOCM系统的另一个示范性实施例中,宽带宽光源451可以耦合到调制元件如Michelson干涉仪或其它干涉仪(例如Mach-Zehnder、 Sagnac)或^瞽改变单元中。 Another exemplary FFOCM system shown in Fig. 4B embodiment, wide bandwidth light source 451 may be coupled to the modulation element such as a Michelson interferometer or other interferometer (e.g., Mach-Zehnder, Sagnac) ^ blind or change unit. 对于Michelson干涉仪的情况,来自源451的光可以被传输到分束器452。 In the case of the Michelson interferometer, the light from the source 451 may be transmitted to the beam splitter 452. 光然后可以净皮分离到用于示范性臂A 453和臂B 455的两个臂中。 Light can then be used to clean skin isolated exemplary arm A 453 and B 455 arm two arms. 来自臂A 453的ibMl传输到镜并^A射返回到分束器。 A ibMl transmitted from the arm 453 to the mirror and shoot ^ A return to the beam splitter. 来自臂B455的光同样地被传输到镜456,并M 射返回到分束器452。 The light from the arm B455 in the same manner is transmitted to the mirror 456, and returns to the M radio beam splitter 452. 臂A中的路径长度U和臂B中的路径长度U之间的差IL - Lbl可以被设置为基本上等于第二干涉仪中的基准和样本臂之间的i?M圣长度差。 IL difference in arm A and arm B U path length of the path length between U - Lbl can be set to be substantially equal to i second interferometer reference and sample arm length difference between the holy M?. 臂A或B中的至少一个可以配置成改变路径长度以在其中的光中产生相移。 Arm A or B can be configured to change at least one of the path lengths of light to produce a phase shift therein. 在一个示范性实施例中,通过移动镜中的一个或快速扫描光延迟线可以改变路径长度。 In one exemplary embodiment, by moving a mirror or fast scanning optical delay line can change the path length. 通过压电换能器、检流计、线性马达等等可以驱使移动。 Piezoelectric transducers, galvanometer, linear motor driven and so can move. 可替选地,通过声光调制器或电光调制器中的一种可以生成路径长度变化。 Alternatively, you can generate a change in the path length through the acousto-optic modulator or an electro-optic modulator. 基准和样本臂光两者可以在分束器处组合,并被传输到具有分束器459的另一个静态干涉仪,该分束器459将光分别分开到基准臂458和样本臂457中。 Both reference and sample arm light beam combiner in place, and is transmitted to the beam splitter 459 having another static interferometer, the beam splitter 459 are separated from the light to the reference arm 458 and a sample arm 457. 来自臂457、 458两者的光可以分别照射基本上类似的物镜460、 470。 From arm 457, 458, respectively, both light irradiation can substantially similar lens 460, 470. 在基准臂458中,基准物镜460可以被带到聚焦在反射器465 上,而在样本臂中,样本物镜470则将样本臂光聚焦在样本480上或之内。 In the reference arm 458, the reference to the objective lens 460 may be focused on the reflector 465, while the arms in the sample, the sample lens 470 will focus the light in the sample arm 480, or within the sample. 样本480或样本物镜470可以安装到台481,所述台481能够在手动控制或计算机控制之下任意三维地移动样本480。 480 samples or sample lens 470 may be mounted to table 481, the table 481 can be under manual control or computer control any three-dimensional movement of the sample 480. 基准臂458和样本臂457的路径长度之间的路径长度差可以基本上等于第一干涉仪的ILa-Lbl。 Path length difference between the path length of the reference arm 458 and sample arm 457 may be substantially equal between the first interferometer ILa-Lbl. 分别来自基准和样本臂458、 457的光可以在分束器459处组合,并且经由透镜485成像到CCD阵列4卯或检测器的阵列上。 Respectively from the reference and sample arms 458, 457 of the light can be on or CCD array detector 4 d array beamsplitter 459 combined, and through the lens 485 is imaged onto. 通过由CCD 490在镜456移动的同时或者在镜456的不同位置处获取的图像的线性组合可以生成FFOCM图像或数据。 A linear combination of the image by the CCD 490 while moving in the mirror 456 or 456 acquired in the mirror at different locations can generate FFOCM images or data. 通过CPU 495提供FFOCM图像的处理、显示和存储。 Provide FFOCM image processing by CPU 495, display and storage. 使用累积或平均来增加信噪比。 To increase the use of cumulative or average SNR. 图5描绘了配置成荧光检测并JW吏用宽带宽源的SECM系统的示范性实施例。 Figure 5 depicts configured to detect fluorescence and JW officials with broad bandwidth source SECM system exemplary embodiments. 例如,来自源500的光可以被传输到分束器510,该分束器510 将光分离到两个路径515和520中。 For example, the light from the source 500 may be transmitted to the beam splitter 510, the beam splitter 510 into two separate light paths 515 and 520. 两个臂/路径都终止在镜420和525 上,其中至少一个臂具有随时改变的路径长度或相位。 Two arms / paths are terminated in mirrors 420 and 525, wherein the at least one arm having a path length change at any time or phase. 从两个臂530返回的光可以耦合到分束器510,并且被引向535包含光栅或色散元件540和物镜550的SECM探针。 From the two arms 530 can be coupled to the return light beam splitter 510, and is directed to the probe 535 comprises SECM grating or a dispersive element 540 and the objective lens 550. 如在此讨论的那样,光栅和物镜550的布置将镨编码线560聚焦在可以安装到三维台的样品562上或之内。 As discussed above, the grating and the objective lens 550 is arranged to focus praseodymium coding line 560 can be mounted on the three-dimensional table or within 562 samples. 样本之内的荧光可以被照射的光激发,传输返回通过物镜550,被另一个透镜565成像到检测器570上。 Fluorescence within the sample can be irradiated with excitation light, transmitted back through the objective lens 550, a lens 565 is imaged onto another detector 570. 检测到的光可以由处理装置(例如CPU) 580数字化并转换成图像中的线。 The light can be detected by the processing means (e.g., CPU) 580 and converted into digital image line. 可以在射束扫描机构537的不同位置处生成图像中的另外的线。 You can generate additional image lines at different positions of the beam scanning mechanism 537. 通过具有照射相同移动镜520的窄带宽源的示范性干涉仪521,可以校正移动镜中的非线性。 By irradiating the same movable mirror having a narrow bandwidth source 520 of an exemplary interferometer 521, the movable mirror can be corrected in the nonlinear. 图6描绘了使用波长调谐源600的SECM系统的示范性实施例的示意图。 Figure 6 depicts a schematic view of a wavelength tunable source SECM system 600 of an exemplary embodiment. 例如,源600可以耦合到环行器/分束器610中。 For example, source 600 may be coupled to the circulator / beam splitter 610. 根据一个示范性实施例,来自分束器610的光经由光纤被传输到扫描仪,该扫描仪可替选地还包含将扫描轴投影到物镜625的后焦平面的望远镜透镜成像系统。 According to an exemplary embodiment, the light from the beam splitter 610 is transmitted through the optical fiber to the scanner, the scanner may alternatively further comprises scanning axis projected onto the objective lens back focal plane of the telescope lens 625 imaging system. 来自扫描机构的光被传输到色散元件620 (诸如衍射光栅、棱镜、GRISM 或DP-GRISM等等)。 Light from the scanning mechanism 620 is transmitted to the dispersive element (such as a diffraction grating, a prism, GRISM or DP-GRISM etc.). 来自620的光被传输到可以将射束聚焦在样本635 之内的优选地具有高NA的物镜625。 From 620 is transmitted to the light beam can be focused within the sample 635 preferably has a high NA objective lens 625. 在任何时间点,来自波长扫描源600 的一个波长可以照射样本的不同部分。 At any point in time, a wavelength from the wavelength scanning irradiation source 600 may be different portions of the sample. 随着扫描源600的波长随着时间变化,可以沿着样本635之内的线630扫描射束。 With the wavelength scanning source 600 to change over time, you can beam scans along lines 630 635 within. 从样本635传送的光可以被传输返回分别通过元件625、 620和615,由光纤或针孔进行空间滤波, 并被传输返回到环行器/分束器610。 Return light can be transmitted from the sample 635 are transmitted through the elements 625, 620 and 615, an optical fiber or a pinhole spatial filter and is returned to the circulator transmitting / splitter 610. 来自分束器610的光可以被引向检测器640,并且由处理装置(例如CPU) 650进行数字化、显示和数字存储。 Light from the beam splitter 610 may be directed to a detector 640, and the processing means (e.g. CPU) 650 to digitize, display and digital storage. 在波长调谐源的一次全扫描之后获得图像中的单根线。 Obtaining an image of a single line after a full scan wavelength tuning source. 可以在扫描机构的不同位置处获取线以形成图像。 Line can be obtained at different positions to form an image scanning mechanism. 从样本传送的由波长调谐源600激发的荧光可替选地可以由检测器660检测以形成荧光图像。 From the excitation wavelength tuning source 600 sample fluorescence transmitted alternatively by the detector 660 can detect the fluorescence image to be formed. 图7描绘了示范性OFDI系统的示意图。 Figure 7 depicts a schematic diagram of an exemplary OFDI system. 在这个示范性OFDI系统的一个示范性实施例中,波长调谐源可以耦合到基于光纤的环行器705和分束器705。 Example, the wavelength tunable source may be coupled to the circulator 705 and the beam splitter 705 in a fiber-based exemplary OFDI system of this exemplary embodiment. 来自环行器705的光可以被传输到分束器705,该分束器705 在优选实施例中配置成将大多数的光发送到样本臂725。 Light from the circulator 705 may be transmitted to the beam splitter 705, the beam splitter 705 in the preferred embodiment is configured to transmit most of the light to the sample arm 725. 向基准臂715转送的这种分离的光可以由反射器720终止,并M送返回到分束器710 和环行器705。 This separation may terminate the optical reference arm 715 forwarded by the reflector 720, and M send returns to the beam splitter 710 and the circulator 705. 样本臂725中的光被传输到扫描机构730和成傳邊镜735, 该成像透镜735具有足够低的NA以允许生物样品740的横截面成像。 Sample arm 725 in the light scanning mechanism 730 is transmitted to the transmission side and a mirror 735, the imaging lens 735 has a NA sufficiently low to allow the cross-sectional imaging of biological samples 740. 光从基准镜720和样本740反射,在环行器705处重组,并且由光纤750引向检测器设备755,该检测器设备755在示范性实施例中可以包含双平衡检测器。 Light from the reference mirror 720 and sample 740 reflected in the reorganization of the circulator 705, and directed by the fiber optic equipment 755 750 detector, the detector device 755 in an exemplary embodiment may contain double balanced detector. 光由检测器设备755数字化,并且数字信号被传输到CPU760。 Light by the detector device 755 digitized and the digital signal is transmitted to the CPU760. 以与使用示范性SD-OCT系统/过程的处理类似的方式处理镨干涉,例如扣除背景,将入空间转换到k空间,以及进行逆傅立叶变换以产生A线。 In the processing using an exemplary SD-OCT system / procedure analogous manner praseodymium interference, such as background subtraction, the transition to the k-space into the space, and inverse Fourier transform to produce A-line. 可以作为扫描机构位置的函数获取A线,从而产生横截面OFDI图1象。 A line can be obtained as a function of the position of the scanning mechanism, resulting in a cross-sectional image OFDI FIG. 现有技术中已知的可替选的示范性实施例,包括通过镨干涉的短时傅立叶变换("STFT,,)、复谱域处理、多普勒敏感OFDI和极化敏感OFDI从样本中获得镨信息的能力在内,也可以用于从生物样品中提取额外信息,诸如吸收、流动和双折射。图8描绘了使用波长调谐/调制源的OCM系统的示范性实施例的示意图。例如,波长调制装置805可以在源上产生镨图案例如镨的正弦调制,其可以随时变化以对应于样本和基准臂之间的干涉产生的镨干涉调制。来自源800和/或调制装置805的光可以耦合到光纤环行器/分束器810中, 并l^被传输到优选地将大多数的光引向样本臂830的分束器815。基准臂820中的光被引向基准反射器825或传输元件。样本臂830 中的光可以被传输到xy扫描仪,该xy扫描仪可以包括检流计、共振扫描仪、多边形扫描仪、声光扫描仪、电光扫描仪等等中的一种或多种。来自扫描仪的光优选地被传输到望远镜837和优选地具有高NA的物镜840 。 物镜840将光聚焦在优选地附着到三维台847的样本845之内。光从样本返回通过元件840、 837和835,并且优选地耦合返回到样本臂831中的光纤或针孔的核心中以滤去散焦光。光被引向环行器810并被传输到检测器855,被数字化并被传输到CPU 860。在一个示范性实施例中,通过以与使用示范性OFDI系统和过程进行的方式类似的方式从样本中获得A线可以获得OCM数据。例如,在示范性镨调制系统和过程中,检测器可以同步于源调制元件805。在这种情况下可以使用锁定或扣除技术来提取OCM信号。通过针对xy扫描;W^ 835的每个位置获取数据可以生成示范性图像。从样本传送的荧光可以进一步借助于分色镜或滤光器853和第二检测器865来检测。图9描绘了使用波长调谐/调制源卯0的FFOCM系统的示范性实施例。光源可以在其带宽之上被调谐,或者可替选地被调制以包含与干涉仪的谱干涉调制提供的频率基本上类似的镨调制频率。来自源卯0的光可以耦合到分束器卯5,并且分别被引向由各自物镜920、 930终止的样本臂910和基准臂915。基准臂物镜920将基准臂光聚焦到反射器上,光^ 返回到分束器卯5。样本臂光由930聚焦到样品935上或之内。从样本传送的光在卯5处与基准臂光组合,并且由透镜940成像到CCD阵列950 上。图像可以针对波长扫描源的每个波长或源的不同调制模式而被获得, 并且由CPU 960进行算术组合以重构示范性FFOCM光学片段。 Known in the art may implement alternative exemplary embodiment includes praseodymium interference by short-time Fourier transform ("STFT ,,), complex spectral domain processing, Doppler sensitive OFDI and polarization-sensitive OFDI from the sample praseodymium, including the ability to obtain information to be used to extract additional information from a biological sample, such as absorption, flow and birefringence. Figure 8 depicts an exemplary use of wavelength tuning / modulated source OCM system schematic of an embodiment. e.g. light, wavelength modulation device 805 can generate a pattern on the source praseodymium e.g. sinusoidal modulation praseodymium, which may change at any time Pr corresponding to the reference samples and the interference generated between arm interferometric modulator. from the source 800 and / or 805 of the modulation means It may be coupled to the fiber circulator / beam splitter 810, and is transmitted to the l ^ Most preferably the sample arm light 830 toward beam splitter 815. The reference arm 820 is guided to the optical reference reflector 825 or transmission components. sample arm 830 light can be transmitted to the xy scanner, the xy scanner may include a galvanometer, resonant scanner, polygon scanner, acousto-optic scanners, electro-optical scanners, etc. in one or more of the light from the scanner is preferably transmitted to the telescope 837 and preferably has a high NA objective lens 840. The objective lens 840 to focus the light is preferably attached to the three-dimensional table sample of 845 847 light returned from the sample by elements 840, 837 and 835, and preferably coupled back to the core of the fiber sample arm 831 or pinholes in defocused light to filter light is guided to the circulator 810 and is transmitted to the detector 855 is digitized and is transmitted to the CPU 860. In an exemplary embodiment, by way of an exemplary OFDI system and use processes similar way to get A line can be obtained from the sample OCM data. For example, in an exemplary modulation system and praseodymium process, the detector can be synchronized with the source modulation element 805. In this case, you can use the lock or deduction techniques to extract the OCM signals for xy scanning;.. W ^ 835 to obtain data for each location can be generated from the exemplary image sample fluorescence can be further transmitted by means of a dichroic mirror or filter 853 and the second detector 865 detects Figure 9 depicts the use of wavelength tuning / modulated source system 0 d FFOCM exemplary embodiment in which the light source Bandwidth is tuned above, or may alternatively be modulated to contain the interferometer spectrum frequency modulation interference praseodymium provide substantially similar modulation frequency of the light from the source d 0 can be coupled to the beam splitter 5 d, and were the objective lens 920 is directed by the respective sample arm 930 and reference arm 910 terminates 915. The reference arm of the objective lens 920 is focused on the reference arm light reflectors, light returns to the beam splitter ^ d 5. sample arm light is focused by 930 in or on the sample 935 from the light and the reference arm optical combiner d 5 in the sample transmitted by the lens 940 and imaged onto a CCD array 950. The image may be different for each wavelength modulation mode or source wavelength scanning source It is obtained, and the CPU 960 arithmetically combined to reconstruct an exemplary FFOCM optical segment. 根据本发明的一个示范性实施例,上述示范性系统及其可替选的示范性实施例可以组合以形成多模态成像系统。 According to an exemplary embodiment of the present invention, the above-described exemplary systems and their alternative exemplary embodiments can be combined to form a multi-modality imaging system. 通过以下可以提供系统和/或装置的这种示范性组合:生产分开的系统,并且配置它们的光学器件,以便它们可以从生物样品的相同部分中获得图像。 The following can be provided by a combination of such exemplary systems and / or devices: the production of a separate system, and configure their optical devices so that they can acquire images from the same biological sample. 可以在这样的组合模态系统中提供不同的波长、扫描和检测机构。 It can provide different wavelength scanning and detection agencies in this combination modal system. 可替选地,可以使用它们共享以提供更加有效、成本效率的设备的许多共同部件来实施不同的装置。 Alternatively, you can use them to provide a more efficient shared many common parts cost efficient equipment to implement different devices. 图IO描绘了根据本发明的示范性实施例的多模态系统的示意图,其使用宽带宽源1000和分光计1080来提供同时且共同配准的SD-OCT、 OCM、 SECM和荧光SECM数据和/或图像。 IO depicts a schematic diagram multimodal system according to an exemplary embodiment of the present invention, the use of wide bandwidth source and the spectrometer 1000 and 1080 to provide both co-registered SD-OCT, OCM, SECM SECM and fluorescence data and / or images. 例如,来自宽带宽源1000 的光可以可替选地耦合到镨调制单元1005中。 For example, the light from the broad bandwidth source 1000 may be coupled to praseodymium modulation unit 1005 alternatively. 来自镨调制单元1005的光耦合到环行器1010和分束器1015中。 From praseodymium modulation unit 1005 is optically coupled to the circulator 1010 and the beam splitter 1015. 如果使用了环行器,则来自环行器1010的光^L传输到优选地将大多数的光引向样本的分束器1015。 If the circulator, the circulator 1010 from light ^ L is preferably transmitted to the majority of the light toward the sample beam splitter 1015. 基准臂1020中的光被传输到基准反射器1025,该基准反射器1025可以移动或改变1020的路径长度,和/或可以是不可移动的。 The reference arm 1020 is transmitted to the reference optical reflector 1025, the reference reflector 1025 can move or change the path length of 1020, and / or may be non-removable. 如果允许基准臂移动,则使用现有技术中已知的处理,使用示范性SD-OCT装置和/或过程,可以实施传统时域OCT (例如TD-OCT)装置和/或过程,或者可以获得复镨域。 If the reference arm is allowed to move, then the process known in the art, using the exemplary SD-OCT apparatus and / or processes, may be implemented conventional time domain OCT (e.g., TD-OCT) apparatus and / or process, or may be obtained praseodymium complex domain. 样本臂1030中的光被传输到滤光/分色/WDM设备1035,该设备在从分束器到样本的方向上传输样本臂光。 1030 sample arm light is transmitted to the filter / dichroic / WDM device 1035, the device transmits the sample arm light from the beam splitter to the sample orientation. 来自1035的光被引向能够以高速或慢速在两个方向上扫描射束的射束扫描机构1040。 From the beam scanning mechanism 1035 capable of light is directed at a high speed or slow speed in both directions of the scanning beam 1040. 射束扫描机构1040还可以包含望远镜,用于将扫描仪成像到透镜1055的后焦平面上。 Beam scanning mechanism 1040 may also contain a telescope for imaging scanner to the back focal plane of the lens 1055. 来自扫描机构1040的光可以被传输到包含多个光学元件的滑动器1045。 The light from the scanning mechanism 1040 may be transmitted to the slider 1045 includes a plurality of optical elements. 例如,当滑动器1045位于不同位置时,可以实施SD-OCT、 OCM、 SECM 和/或荧光OCM装置/过程中的一个或多个或其组合。 For example, when the slider 1045 is in a different location, you can implement SD-OCT, OCM, SECM and / or fluorescence OCM device / process, one or more or combinations thereof. 来自滑动器1045的光可以被传输到物镜1055,该物镜1055在一个实施例中安装到能够改变物镜的透镜旋转台。 Light from the slider 1045 may be transmitted to the objective lens 1055, the objective lens is attached to the 1055 case, the objective lens can be changed in one embodiment of the rotary table. 滑动器1045和/或旋转台1050可以处在计算机控制之下,用于成像模态的自动选择。 Slider 1045 and / or 1050 may be under the turntable computer control, automatic selection of the imaging modality used. 光由物镜1055聚焦到样本1060上或之内,所述样本1060可以安装到计算机控制的三维平移台1065。 Inner light is focused by the lens onto the sample 1060 or 1055 of the sample 1060 can be installed to a computer-controlled three-dimensional translation stage 1065. 反射的光被传输返回通过设备到达1010,其然后将光重新引向分光计。 The reflected light is transmitted back through the device reaches 1010, which then redirected light spectrometer. 使用在此描述的装置和/或过程处理检测到的>^射光以形成示范性SD-OCT、 OCM、 SECM图像。 The use of devices and / or processes described herein processing the detected> ^ incident light to form exemplary SD-OCT, OCM, SECM images. 如图10所示,荧光可以经由滤光/分色^yWDM设备1035被重新引向第二检测器到达第二检测器1075。 10, the fluorescence can be via filter / dichroic ^ yWDM device 1035 is re-directed to the second detector reaches the second detector 1075. 来自1075的荧光用于重构生物样本1060的荧光共焦图像。 1075 fluorescence from the fluorescence of the biological sample 1060 for reconstructing a confocal image. 在使用不可见近红外光的情况下,可见瞄准射束可以耦合到示范性系统中,与近红外光共同入射,以允许成像位置的可视化。 In the case where the invisible near-infrared light, the visible aiming beam may be coupled to the exemplary system, together with the near-infrared light is incident to permit visualization of the imaging position. 可替选地或者另外,借助于显微镜上的可替选的成像端口,可以提供研究中的样品的白光图像。 Alternatively or in addition, by means alternatively on microscope imaging port, we can provide white light imaging studies of samples. 现有技术中已知的可替选的示范性实施例,包括通过镨干涉的短时傅立叶变换(STFT)、多普勒敏感SD-OCT和极化敏感SD-OCT从样本中获得谱信息的能力在内,也可以用于从生物样品中获得额外信息,诸如吸收、流动和双折射。 Known in the art may implement alternative exemplary embodiment, including praseodymium interference by short-time Fourier transform (STFT), Doppler-sensitive SD-OCT and polarization-sensitive SD-OCT obtain spectral information from the sample including the ability to be used to obtain additional information from the biological sample, such as absorption, flow and birefringence. 在图11中描绘了配置成从其它三个模态中以不同的波长根据本发明提供SD-OCT、 OCM、 SECM和FFOCM图像和数据的可替选的示范性多模态实施例。 It depicts an exemplary embodiment of the multi-modal arranged from the other three modes at different wavelengths provide SD-OCT, OCM, SECM and FFOCM images and data according to the present invention can be an alternative in Figure 11.在这个示范性实施例中,宽带宽源1100可替选地耦合到镨调制单元1105。来自镨调制单元1105的光耦合到环行器1110和分束器1115中。如果使用了环行器1110,则来自环行器1110的光可以被传输到优选地将大多数的光引向样本的分束器1115。基准臂1120中的光被传输到基准反射器1125,该基准反射器1125可以是固定的,和/或可以改变基准臂1120的缚4圣长度。在允许基准臂1120移动的情况下,通过现有技术中已知的方法,对于SD-OCT可以使用示范性传统时域OCT ( TD-OCT ) 过程或复镨域。样本臂1130中的光被传输到能够以高速或慢速在两个方向上扫描射束的射束扫描机构1135。射束扫描机构U35还可以包括望远镜,用于将扫描仪成像到透镜1160的后焦平面上。来自扫描机构1135的光被传输到二色分离器/WDM 1140,其传输用于SD-OCT、 OCM和SECM 模态的激发光并且可以^Jt FFOCM光。例如,类似于如图3所示的示范性FFOCM系统可以经由1140耦合到射M径中。来自1140的光被引向包含多个光学元件的滑动器1150; 当滑动器可以位于不同位置时,提供SD-OCT、 OCM、 SECM或FFOCM 中的一种或其组合。来自滑动器1150的光被传输到物镜1160,该物镜1160 在一个实施例中安装到能够改变物镜的透镜旋转台1155。滑动器1150和/或旋转台U55可以处在计算机控制之下,用于成傳模态的自动选择。光由物镜1160聚焦到样本1165上或之内,所述样本1165可以安装到计算机控制的三维平移台1170。反射的光被传输返回通过设备到达环行器1110,其然后将光重新引向分光计。通过在此描述的方法可以处理检测到的反射光以形成示范性SD-OCT、 OCM、 SECM图像。可以经由滤光/ 分色^/WDM设备1140将FFOCM光重新引向FFOCM系统1175。在使用不可见近红外光的情况下,可见瞄准射束可以耦合到图11中示出的示范性系统中,与近红外光共同入射,以允许成像位置的可视化。可替选地或者另外,借助于显微镜上的可替选的成像端口,可以提供研究中的样品的白光图像。现有技术中已知的可替选的示范性实施例,包括通过谱干涉的短时傅立叶变换(STFT)、多普勒敏感SD-OCT和极化敏感SD-OCT从样本中获得镨信息的能力在内,也可以用于从生物样品中提取额外信息,诸如吸收、流动和双折射。图12描绘了根据本发明的可以用于多模态成〗象的滑动器的布置的示范性实施例。例如,光学元件可以包含在壳体1200中,该壳体1200可以手动平移,或者可以在计算机或自动控制之下平移。每个滑动器位置可以终止于提供一个或多个成傳模态的不同滑动器位置1205、 1210、 1230、 1260。滑动器位置1205、 1210、 1230、 1260可以耦合到物镜旋转台。在一个示范性实施例中,滑动器位置1205不包含光学元件(空气)或光学元件窗口。在这个示范性配置中,显^t镜被配置成执行FFOCM。对于滑动器位置1210,透镜设备1212和1213可以配置成扩>^射束并照射包含包围透射光栅1220的两个棱镜1215和1225的DP-GRISM。这个示范性配置提供了进行SECM成像的能力。使用扫描跨越样本的谱编码线的扫描机构也可以在这个位置实施示范性OCM过程。对于滑动器位置1230, 透镜设备1240、 1250可以配置成使用或不使用射束放大来对射束角度进行成像。这个滑动器位置1230可以使用示范性SDOCT过程提供成像。对于滑动器位置1260,透镜设备1270、 1280被配置成扩展扫描射束以允许使用示范性OCM过程进行成像。虽然多模态成像系统的某些实施例已使用了宽带宽源,但是组合系统的示范性实施例还可以包括波长调谐/调制源和单个或多个检测器配置, 并且这样的示范性实施例在图13中示出。例如,在图13中,波长调谐/ 调制源1300耦合到环行器1305和分束器1310中。如果使用了环行器, 则来自环行器1305的光被传输到优选地将大多数的光引向样本的分束器1310。基准臂1315中的光被传输到基准反射器1320,该基准反射器1320 可以是固定的,或相反可以改变1315的路径长度。在允许基准臂移动的情况下,通过现有技术中已知的方法,传统示范性时域OCT (TD-OCT) 过程可以被提供或者复镨域可以被使用用于实现OFDI模态。样本臂1325 中的光被传输到滤光/分色/WDM设备1330,该设备在从分束器到样本的方向上传输样本臂光。来自1330的光被引向能够以高速或慢速在两个方向上扫描射束的xy射束扫描机构1335。射束扫描机构1335还可以包括望远镜,用于将扫描仪成像到透镜1353的后焦平面上。来自扫描机构1335的光被传输到包含多个光学元件的滑动器1340;当滑动器位于不同位置时,可以提供OFDI、 OCM、 SECM 或荧光OCM模态中的一种或其组合。来自滑动器1340的光被传输到物镜1353,该物镜1353在一个实施例中安装到能够改变物镜的透镜旋转台1350。滑动器1340和/或旋转台1350可以是手动的,处在计算机控制之下,用于成像模态的自动选择。光由物镜1353聚焦到样本1355上或之内, 所述样本1355可以安装到计算机控制的三维平移台1360。反射的光被传输返回通过设备到达1305,其将光重新引向检测器设备1380,该检测器设备1380适合于检测OFDI、波长调谐OCM或SECM信号、图像和/ 或数据。通过上述方法由CPU 1385处理检测到的jl射光以形成示范性OFDI、 OCM、 SECM图像。荧光可以经由滤it/分色衞WDM设备1330被重新引向第二检测器到达第二检测器1370。来自1370的荧光用于重构生物样本1355的荧光共焦图像。在使用不可见近红外光的情况下,可见瞄准射束可以耦合到系统中,与近红外光共同入射,以允许成像位置的可视化。可替选地或者另外, 借助于显微镜上的可替选的成像端口,可以提供研究中的样品的白光图像。现有技术中已知的可替选的示范性实施例,包括通过镨干涉的短时傅立叶变换(STFT )、多普勒敏感SD-OCT和极化敏感SD-OCT从样本中获得镨信息的能力在内,也可以用于从生物样品中提取额外信息,诸如吸收、流动和双4斤射。在图14中描绘了根据本发明的系统的另一个示范性多模态实施例, 该系统配置成提供OFDI、 OCM、 SECM和FFOCM图像、数据和其它信息,其中从其它三种模态中以不同波长提供FFOCM信号。在这个示范性实施例中,波长调谐源1400可替选地耦合到镨调制单元1405。来自语调制单元1405的光耦合到环行器1410和分束器1415中。如果使用了环行器1410,则来自环行器1410的光#_传输到优选地将大多数的光引向样本的分束器1415。基准臂1420中的光被传输到基准反射器1425,该基准反射器1425可以是固定的,或者可以相反地改变1420的路径长度。在允许基准臂1420移动的情况下,通过现有技术中已知的方法,对于OFDI 数据可以提供传统时域OCT (TD-OCT)过程和模态或者可以获得复镨域。样本臂1430中的光被传输到能够以高速或慢速在两个方向上扫描射束的射束扫描机构1435。射束扫描机构1435还可以包含望远镜,用于将扫描仪成像到透镜1465的后焦平面上。来自扫描机构1435的光被传输到二色分离器/WDM1445,其传输用于OFDI、 OCM和SECM的^JL光但;L^射FFOCM光。类似于图3和/或图4的( 一个或多个)系统的示范性FFOCM系统可以经由二色分离器/WDM 1445耦合到射束路径中。来自二色分离器/WDM 1445的光被引向包含多个光学元件的滑动器1455;当滑动器1455 位于不同位置时,提供OFDI、 OCM、 SECM或FFOCM数据和/或图像中的一种或其组合。来自滑动器1455的光被传输到物镜1465,该物镜1465在一个示范性实施例中安装到能够改变物镜的透镜旋转台1460。滑动器1455和/或旋转台1460可以处在计算机控制之下,用于成傳模态的自动选择。光可以由物镜1465聚焦到样本1470上或之内,所述样本1470可以安装到计算机控制的三维平移台1475。

反射的光被传输返回通过设备到1410,其将光重新引向分光计。 The reflected light is transmitted back through the device 1410 to which the light redirected spectrometer. 通it^此描述的方法处理检测到的jl射光以形成OFDI、 OCM、 SECM图像。 This method is described through it ^ processing detected jl incident light to form OFDI, OCM, SECM images. 可以经由滤光/分色镜/WDM设备1445将FFOCM光重新引向FFOCM系统1450。 Can via optical / dichroic mirror / WDM equipment 1445 FFOCM light redirected FFOCM system 1450. 在使用不可见近红外光的情况下,可见瞄准射束可以耦合到示范性系统中,与近红外光共同入射,以允许成像位置的可视化。 In the case where the invisible near-infrared light, the visible aiming beam may be coupled to the exemplary system, together with the near-infrared light is incident to permit visualization of the imaging position. 可替选地或者另外,借助于显微镜上的可替选的成像端口,可以提供研究中的样品的白光图4象。 Alternatively or in addition, the aid may alternatively imaging ports that provide research on the microscope sample Figure 4 white elephant. 现有技术中已知的可替选的示范性实施例,包括通过镨干涉的短时傅立叶变换(STFT )、多普勒敏感OFDI和极化敏感OFDI 从样本中获得镨信息的能力在内,也可以用于从生物样品中提取额外信息,诸如吸收、流动和双4斤射。 Known in the art may implement alternative exemplary embodiment includes praseodymium interference by short-time Fourier transform (STFT), Doppler-sensitive OFDI and polarization-sensitive OFDI obtained from the sample, including the ability to praseodymium information, It can also be used to extract additional information from biological samples, such as absorption, flow and dual 4 pounds shot.

在本发明的另一个示范性实施例中,显微镜可以配置成允许从样本的两侧进行成像。 In another exemplary embodiment of the present invention, the microscope can be configured to allow for imaging from both sides of the sample. 例如,可以从样本之上执行SDOCT、 SECM和OCM过程,而可以用从下面照射样本的成傳速镜执行FFOCM过程。 For example, you can perform SDOCT, SECM and OCM process from above the sample, and the process can be used to perform FFOCM illuminating the sample from below into a transmission speed mirror. 在这样的示范性配置中,样本可以安装在显微镜载玻片和薄盖玻片之间,以允许从两侧进行成i象。 In this exemplary configuration, the sample may be mounted between the microscope slide and a thin cover glass, from both sides to allow the image to i.

在此描述的示范性系统可以用各种不同的格式、速度、分辨率、视场和对比机制来提供生物样品的多模态成像。 In this description of the exemplary system can use a variety of different formats, speed, resolution, field of view and contrast mechanisms to provide a biological sample multi-modality imaging. 每个图像数据集可以是二维或三维的,并且可以共同配准到其它各个成像模态的数据集。 Each image data set may be a two-dimensional or three-dimensional, and may be co-registered to each other imaging modality data set. 现有技术中已知的计算机处理方法可以用于以各种不同的成像格式显示不同的数据集, 所述成#^格式包括三维体积可视化、四维表示以及处理的二维、三维和四维数据集,其中处理设备被配置成使所关心的重要区域突出。 Known in the art of computer processing methods can be used to display different sets of data in a variety of different imaging formats, including the format as # ^ visualization of three-dimensional volume, four-dimensional representation and processing of two-dimensional, three-dimensional and four-dimensional data set wherein the processing device is configured to important areas of interest so that projection. 任何一个或多个数据集可以相对于其它数据集而被显示,并且可以从个别数据集的组合中导出全面的全部包括的数据集。 Any one or more data sets can be compared to other data sets are displayed, and you can export all include a comprehensive set of data from the combined individual data set. 可以在数据集的二维、三维和四维环境中从数据集导出定量信息。 Quantitative information can be derived from the data set in a two-dimensional, three-dimensional and four-dimensional environmental data set. 图傳Jt据也可以与生物样品的传统荧光或明视场图像组合。 Illustrated Jt It can also be combined with the traditional fluorescent biological sample or a bright-field image.

例子 Example

以下提供的是实施以研究使用根据本发明的示范性多个成傳厲态来对发育中的光滑爪蟾心脏进行成像的例子。 Provided below is implemented to study according to an exemplary use of the present invention into a plurality of states to pass strict on developing Xenopus laevis heart is imaged examples. 示范性方法 An exemplary method

Bench-Top示范性OCT和OFDI系统 Bench-Top exemplary OCT and OFDI systems

在示范性TDOCT配置中,借助于l糾目干反射测量进行轴向测距,其中在时间上连续地探测各个深度点。 In an exemplary TDOCT configuration by means of dry eye correction l reflectance measurements axial distance, which continuously detect in time the individual depth points. 使用了以1.3pm为中心的宽带宽(50nm)源,提供组织中大约10jum的轴向分辨率(n = 1.4)。 Used to 1.3pm centered wide bandwidth (50nm) source, provide the organization axial resolution of about 10jum (n = 1.4). 帧率为每秒20 (2kHz A线速率、100 x 500像素)。 A frame rate of 20 per second (2kHz A line rate, 100 x 500 pixels).

示范性OFDI过程和系统可以使用其中所有深度点被同时获取的频^Jt测量。 Exemplary OFDI procedures and systems can use one frequency for all depth points are acquired simultaneously measure ^ Jt. 这种技术提供了信噪比(SNR)方面的数百倍改进,如MA Choma等人的"Sensitivity advantage of swept source and Fourier domain optical coherence tomography", Optics Express 11, pp. 2183-2189 (2003) 以及SH Yun等人的"High-speed optical frequency-domain imaging", Optics Express 11, pp. 2953-2963 (2003)中描述的那样。 This technique provides a signal to noise ratio (SNR) improvement areas hundreds of times, such as MA Choma et al., "Sensitivity advantage of swept source and Fourier domain optical coherence tomography", Optics Express 11,. 2183-2189 pp (2003) and SH Yun et al., "High-speed optical frequency-domain imaging", Optics Express 11, pp. 2953-2963 (2003) are as described. 示范性OFDI系统和过程可以4吏用快速扫描的波长可调谐的激光器作为光源。 Exemplary OFDI system and process can be used to quickly scan 4 officials wavelength tunable laser as a light source. 扩展空腔半导体激光器使用腔内镨过滤器,如MA Choma等人的"Sensitivity advantage of swept source and Fourier domain optical coherence tomography", Optics Express 11, pp. 2183-2189 (2003)以及C. Boudoux 等人的"Rapid wavelength-swept spectrally encoded confocal microsc叩y", Optics Express 13, pp. 8214-8221 (2005)中描述的那样。 Extended cavity semiconductor laser cavity praseodymium use filters such as MA Choma et al "Sensitivity advantage of swept source and Fourier domain optical coherence tomography", Optics Express 11, pp. 2183-2189 (2003) and C. Boudoux et al. The "Rapid wavelength-swept spectrally encoded confocal microsc knock y", Optics Express 13, pp. 8214-8221, as in the (2005) describes.

激光器特征为高达64kHz的扫描重复率、以1320nm为中心的lllnm 的宽调谐范围和30mW的高平均输出功率(组织上为7mW)。 Laser scanning is characterized by the repetition rate of up to 64kHz, wide tuning range centered lllnm 1320nm and high average output power of 30mW (the organization 7mW). 轴向分辨率为组织中10nm。 Axial resolution organization 10nm. 系统进一步包括声光移频器(25MHz),用于去除频域反射测量中固有的深度简并,如SH Yun等人的"Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting", Optics Express 12, pp. 4822-4828 (2004)中描述的那样。 The system further comprises an acoustic optical frequency shifter (25MHz), for removing the frequency domain reflectometry inherent depth degenerate, such as SH Yun et al., "Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting", Optics Express 12, pp. 4822-4828 (2004) are as described. 实施极化分集检测以消除基于光纤的OFDI系统中的极化伪像。 Implement polarization diversity detection to eliminate OFDI system based on fiber polarization artifacts. 双平衡光接收器用于通过减少激光强度噪声来改善成像灵敏度。 Double-balanced optical receiver for by reducing the laser intensity noise to improve the imaging sensitivity. 用2通道模拟到数字转换器以14位的分辨率以100MHz的采样率对光接收器输出进行数字化。 With 2-channel analog-to-digital converter with 14-bit resolution with a sampling rate of 100MHz optical receiver output to be digitized.

示范性TDOCT和高速OFDI配置被结合到解剖光显^L镜中。 Exemplary TDOCT and high-speed OFDI is bonded to the anatomical configuration of light was ^ L mirror. 扫描系统包括准直透镜(5mm射束直径)、用于横向扫描的两个同步检流计扫描仪、聚焦透镜(50mm焦距)以及朝着样本向下偏转射束的小镜。 Scanning system includes a collimator lens (5mm diameter beam), two horizontal scanning synchronization galvanometer scanner, the focusing lens (50mm focal length) and the deflected beam toward the sample down a small mirror. 对于示范性TDOCT和OFDI配置,横向分辨率为16 nm,其中共焦^lt为330 )im。 For exemplary TDOCT and OFDI configuration, the lateral resolution of 16 nm, wherein confocal ^ lt to 330) im. 通过在逐帧的基础上从收缩末期的心脏表面位置减去舒张末期的心脏表面位置,直接从体积数据中确定与局部心脏活动相关联的位移。 By subtracting the diastolic frame by frame basis from the surface of the heart systolic heart surface position location, directly determine the displacement of the local cardiac activity associated with the data from the volume. 使用 Use

颜色检查表来显示位移。 Color checklist to show displacement. 通过使用OsiriX软件来完成体积再现和三维可视化。 By using OsiriX software to complete volume rendering and visualization.

使用具有200nm的调谐范围、以1250nm为中心的激光源来执行高分辨率OFDI过程,其中两个半导体光学放大器用作增益媒介,如WY Oh 等人的"Wide tuning range wavelength-swept laser with two semiconductor optical amplifiers", IEEE Photonics Technology Letters 17, pp. 678-680 (2005)中描述的那样。 Having a tuning range of 200nm to 1250nm as the center of the laser light source to perform high-resolution OFDI process in which two semiconductor optical amplifier as the gain medium, such as WY Oh et al., "Wide tuning range wavelength-swept laser with two semiconductor optical amplifiers ", IEEE Photonics Technology Letters 17, pp. 678-680, as (2005) describes. 实现了组织中4 ji m的轴向分辨率。 To achieve the axial resolution of the organization 4 ji m. 使用NA = 0.2的物镜,横向分辨率为2 nm。 Using an objective lens NA = 0.2, the horizontal resolution of 2 nm. 使用20kHz的A线速率(每帧500A线),成像速率为每秒40帧。 A line rate of 20kHz using (lines per frame 500A), an imaging rate of 40 frames per second. 执行极化分集和双平衡检测,并且用2通道模拟到数字转换器以12位的分辨率以10MHz的采样率对光接收器输出进行数字化。 Executive polarization diversity and dual balance detection, and with 2-channel analog-to-digital converter with 12-bit resolution with 10MHz sampling rate optical receiver output to be digitized.

示范性FFOCM系统 Exemplary FFOCM system

例如,FFOCM是一种使用二维并行检测来提供生物样品之内的反射光的亚细胞分辨率图l象的干涉测量技术,如A. Dubois等人的"Ultrahigh-resolution full-field optical coherence tomography", Appl Opt 43, pp. 2874-2883 (2004)和A. Dubois等人的"Three-dimensional cellular-level imaging using full-field optical coherence tomography", Phys Med Biol 49, pp. 1227-1234 (2004)中描述的那样。 For example, FFOCM is a two-dimensional parallel detection of the reflected light to provide a biological sample within subcellular resolution picture interferometry l object, such as A. Dubois et al., "Ultrahigh-resolution full-field optical coherence tomography ", Appl Opt 43, pp. 2874-2883 (2004) and A. Dubois et al.," Three-dimensional cellular-level imaging using full-field optical coherence tomography ", Phys Med Biol 49, pp. 1227-1234 (2004 ) as described. 示范性FFOCM 系统使用来自氙弧灯的空间非相干宽带光来照射样本和使用两个等同的NA = 0.3的水浸显微镜物镜的Linnik干涉显微镜的基准镜。 Exemplary FFOCM System broadband spatially incoherent light from a xenon arc lamp to illuminate the sample and the use of two equivalents of NA = 0.3 microscope objective flooding Linnik interference microscope of the reference mirror. 用具有以650nm为中心的镨响应的CMOS区域扫描摄影机拍摄干涉图像。 CMOS area scan camera with 650nm as the center having praseodymium interference image in response to the shooting. 横向分辨率为2 nm,并且轴向分辨率为1.1 nm。 Lateral resolution of 2 nm, and the axial resolution of 1.1 nm. 对于近似700 mx 700 pm的横向视场,获取时间为每帧2秒。 For the approximately 700 mx 700 pm lateral field of view, the acquisition time of 2 seconds per frame. 通过以1 pm增量将样本移动通过焦点来获得三维数据。 By 1 pm the incremental samples to obtain three-dimensional data by moving the focus. 通过使用OsiriX软件完成体积再现和可视化。 Volume rendering and visualization through the use of OsiriX software.

示范性SECM系统 Exemplary SECM system

例如,SECM是一种反射共焦显微技术,其使用了近红外光,与使用可见光的共焦显微镜相比,允许更深地穿透到组织中,如RR Anderson等人的"The optics of human skin", J Invest Dermatol 77, pp. 13-19 (1981)中描述的那样。 For example, SECM is a reflective confocal microscopy, which uses near-infrared light, visible light and confocal microscopes, allowing deeper penetration into tissue, such as RR Anderson et al., "The optics of human skin" , J Invest Dermatol 77, pp. 13-19 (1981) are as described. 示范性SECM技术与传统激光扫描共焦显微的不同之处在于它将不同的波长投影到样本上的不同位置上,如G J. Tearney等人的"Spectrally encoded confocal microscopy", Optics Letters23, pp. 1152-1154 (1998)中描述的那样。 Exemplary SECM technology with traditional laser scanning confocal microscopy is that it is different at different wavelengths is projected onto different locations on the sample, such as G J. Tearney, et al. "Spectrally encoded confocal microscopy", Optics Letters23, pp. 1152 -1154 (1998) as described. 从样本返回的i普的快速获取4吏得能够高速重构图像。 I returned from the sample P's officials have to be able to quickly obtain 4-speed image reconstruction. 在SECM系统中,如C. Boudoux等人的"Rapid wavelength-swept spectrally encoded confocal microscopy ,, , Optics Express 13, pp. 8214-8221 (2005)中描述的那样,近红外中的来自快速波长调谐源的光(中心波长=1.32"111,瞬时线宽-0.1nm,总带宽-70nm, 重复率高达15.7kHz),被校准到衍射光栅上(每毫米1100线),并且使用1.2NA的60x的物镜(Olympus UPlanApo/IR 60X/1.20W)来聚焦。 In SECM systems, such as C. Boudoux et al "Rapid wavelength-swept spectrally encoded confocal microscopy ,,, Optics Express 13, pp. 8214-8221, as in the (2005) described the near-infrared wavelength tunable source from fast light (central wavelength = 1.32 "111, instantaneous linewidth -0.1nm, total bandwidth -70nm, repetition rates up to 15.7kHz), is calibrated to a diffraction grating (1100 lines per millimeter), and using the 60x objective 1.2NA (Olympus UPlanApo / IR 60X / 1.20W) to focus. 多模光纤用于信号收集,导致0.9jurn的横向分辨率和2.5 pm的轴向分辨率。 Multimode fiber for signal collection, resulting in axial resolution 0.9jurn lateral resolution and 2.5 pm of. 以每秒10帧获取包括500 x 500像素的图像。 At 10 frames per second acquisition includes 500 x 500 pixels. 最大成像深度被限制到物镜的280lim工作距离。 The maximum imaging depth is limited to 280lim working distance objective.

样品制备、乙醇处理和组织结构 Sample preparation, ethanol and organizational structure

从Nasco (Fort Atkinson, Wisconsin)购买光滑爪蟾蛙。 Frog Xenopus laevis purchase from Nasco (Fort Atkinson, Wisconsin). 才艮据Massachusetts General Hospital Subcommittee对Research Animal Care 的批准协议执行动物手续。 It was Gen Massachusetts General Hospital Subcommittee on Research Animal Care approved protocol for animal procedures. 胚胎是通过体外受精获得的,在O.lx的Marc's modified Ringer's (MMR )培养基中孵化(如J. Newport等人的"A major development transition in early Xenopus embryos: Characterization and timing of cellular changes at the midblastula stage", Cell 30, pp. 675-686, 1982中描述的那样),并且根据Meuwkoop and Faber表划分阶段。 Embryos obtained through in vitro fertilization, incubation (such as J. Newport and others in O.lx of Marc's modified Ringer's (MMR) medium "A major development transition in early Xenopus embryos: Characterization and timing of cellular changes at the midblastula stage ", Cell 30, pp. 675-686, 1982, as described), and according to the stage table is divided Meuwkoop and Faber. (参见PD Nieuwkoop和J. Faber的Normal table of Xenopus laevis, Daudin, North-Holland Publishing Company, Amsterdam, 1967)。 (See PD Nieuwkoop and Normal table J. Faber's of Xenopus laevis, Daudin, North-Holland Publishing Company, Amsterdam, 1967).

在0.1XMMR(体积/体积)中进行乙醇处理,不久之后是Mid Blastula Transition (中嚢胚过渡)(如R. Yelin等人的"Ethanol exposure affects gene expression in the embryonic organizer and reduces retinoic acid levels", DevBiol279, pp. 193-204 (2005)中描述的那样),直到成像为止。 Ethanol processing 0.1XMMR (vol / vol), and soon after the Mid Blastula Transition (in Nang embryo transition) (as R. Yelin et al., "Ethanol exposure affects gene expression in the embryonic organizer and reduces retinoic acid levels", DevBiol279, pp. 193-204, as (2005) described below), until the image is reached. 在体内成像之前,使用0.02%的3緣苯甲酸乙酯(A-5040, Sigma)使胚胎麻醉。 Prior to in vivo imaging, using 0.02% 3 edge ethyl benzoate (A-5040, Sigma) embryo anesthesia. 对于TDOCT和OFDI成《象才支术和系统,将胚胎安置在1.5% 的琼脂糖^^板上,其中它们的腹侧面朝上,用麻醉工作^盖。 For TDOCT and OFDI to "like before performing surgery and system, the embryos were placed in a 1.5% agarose ^^ board, where they ventral side up, with the anesthesia work ^ cover. 对于用示范性SECM系统进行成像,将胚胎放置在盖玻片上,以它们的腹侧躺在麻醉緩沖器中,并且从下面进行成像。 For imaging using the exemplary SECM system, the embryos placed on coverslips, lying with their ventral anesthesia buffer and imaged from below. 在MEMFA (0.1MMOPS [pH 7.4], 2mMEGTA, lmM MgS04和3.7%的甲醛)中定影大于一个小时之后,通过示范性FFOCM过程和/或系统进行的体外成像开始。 After MEMFA (0.1MMOPS [pH 7.4], 2mMEGTA, lmM MgS04 and 3.7% formaldehyde) fixing more than one hour, in vitro imaging through exemplary FFOCM processes and / or systems start. 在成像之前,将被定影的胚胎转移到具有lx PBS (8gr NaCl, 0.2gr KC1, 1.44gr Na2HPO4,0.24grKH2PO4)的培养虹中,其中它的腹侧面朝上,由粘土支撑。 Before imaging, it will be fixed embryos transferred into the culture rainbow has lx PBS (8gr NaCl, 0.2gr KC1, 1.44gr Na2HPO4,0.24grKH2PO4), in which it ventral side up, supported by the clay.

在Karnovsky,s Fixative (KII)中另外定影和在tEpon-812 (Tousimis) 中^之后,获得Plastic Histology (塑料组织结构)片段。 Also, after the fixing and tEpon-812 (Tousimis) in ^, obtained Plastic Histology (plastic structure) fragment Karnovsky, s Fixative (KII) in. lpm厚的片段在Reichert Ultracut Microtome上切割,并且用硼酸盐緩冲器(Tousimis)中的亚曱基蓝/甲苯胺蓝进行染色。 lpm thick clips on Reichert Ultracut Microtome cutting, and with borate buffer (Tousimis) in Asia 曱 based blue / toluidine blue stained. 石蜡片段(5jum厚)用Hematoxylin & Eosin (苏木精和伊红)染色。 Paraffin fragment (5jum thick) with Hematoxylin & Eosin (hematoxylin and eosin) staining.

示范性结果 Exemplary Results

在体内用OFDI技术对胚胎心脏进行四维成像 In the body of the embryonic heart be 4D imaging technique using OFDI

对跳动心脏的快速体积成像使得能够评估心跳周期期间的三维形态和功能。 Rapid beating of the heart of volume imaging makes it possible to evaluate the three-dimensional shape and function during cardiac cycle. 与提供体内横截面成像(如图15a和15b所示)的TDOCT相比, 示范性OFDI系统和过程能够以高得多的帧率进行成像,使得可以对跳动心脏进行四维成像而没有心脏门控。 Providing in vivo as compared with the cross-sectional imaging (15a and 15b shown in FIG.) In TDOCT, exemplary OFDI system and process capable of forming a much higher frame rate, so that the beating heart can be imaged without dimensional cardiac-gated . 以每秒20个三维数据集的速率获取爪蟾心脏(阶段49 )的体积OFDI图像(如图15c-15g所示)。 At a rate of 20 per second, three-dimensional data set to obtain Xenopus heart (stage 49) has a volume OFDI image (shown in FIG. 15c-15g). 在收缩末期,OFDI过程的使用表明心室处在其最小体积;心房和动脉干(TA)的体积相反地处在它们的最大值(如图15c和15d所示)。 In systolic, use OFDI process showed ventricle at its minimum volume; atrium and truncus arteriosus (TA) volume of contrast in their maximum (shown in Figure 15c and 15d). 在舒张末期,心室膨胀到其最大体积,而心房和TA的体积则处在它们的最小值(如图15e 和15f所示)。 In diastolic ventricular expanded to its maximum volume, while the volume of the atrium and TA are in their minimum (shown in Figure 15e and 15f). 取自四维数据集的心脏的三维再现(如图15g所示)对应于在其解剖之后的相同心脏的明视场照片(如图15h所示)。 Four-dimensional data set from cardiac dimensional reproduction (shown in FIG. 15g) corresponding to the same anatomical heart after the bright field photograph (shown in FIG. 15h).

对体内胚胎心脏的高分辨率OFDI过程 Embryonic heart in vivo high-resolution OFDI process

虽然示范性OFDI系统能够进行四维成像,但是存在需要较高分辨率来识别细微形态和功能异常的情况。 Although exemplary OFDI system capable 4D imaging, but there is a need to identify high-resolution subtle morphological and functional abnormality. 为了增加分辨率,使用宽带(例如200nm)波长扫描源在体内获得阶段49的爪蟾心脏的OFDI横截面(如图15i-15m所示),如WY Oh等人的"Wide tuning range wavelength-swept laser with two semiconductor optical amplifiers" , IEEE Photonics Technology Letters 17, pp. 678-680 (2005)中描述的那样。 In order to increase the resolution, broadband (e.g., 200nm) wavelength scanning source 49 to obtain cardiac stage of Xenopus in vivo OFDI cross-section (as shown in FIG. 15i-15m), such as WY Oh et al., "Wide tuning range wavelength-swept laser with two semiconductor optical amplifiers ", IEEE Photonics Technology Letters 17, did. 678-680 pp (2005) describes. 与前面描述的TDOCT和OFDI过程和系统的16 JLi m的横向分辨率和10 nm 的轴向分辨率相比,高分辨率OFDI结果的橫向和轴向分辨率分别为2 nm和4 |Li m。 16 JLi m lateral resolution of TDOCT and OFDI procedures and systems previously described and compared to 10 nm axial resolution, lateral and axial resolution high resolution OFDI results were 2 nm and 4 | Li m . 用高分辨率OFDI过程和系统可以清楚地分辨三室爪蟾心脏之内的细节,包括房室瓣动态(如图15i-15k所示)、心室收缩和小梁动态(图15m)。 High-resolution OFDI procedures and systems details can be clearly distinguished three rooms within the heart of Xenopus laevis, including atrioventricular valve dynamics (as shown in Figure 15i-15k), ventricular contraction and trabecular dynamic (Figure 15m). 还可以看到单独的血细胞,从心房通过房室瓣流向心室(如图15k所示)。 You can also see individual blood cells flowing from the atrium ventricle through the atrioventricular valve (as shown in Figure 15k).

在体外使用FFOCM过程对胚胎心脏进行高分辨率三维成像示范性FFOCM过程和系统提供了用几乎各向同性的细胞水平的分辨率对胚胎心脏的微观结构进行成像的能力。 FFOCM process using in vitro embryonic heart high-resolution three-dimensional imaging exemplary FFOCM processes and systems provide the ability to use the cellular level almost isotropic resolution on the microstructure of the embryonic heart imaging. 体积FFOCM图傳橫跨700 x 700x 1000 jam (轴向)的视场。 Volume FFOCM Illustrated across 700 x 700x 1000 jam (axial) field of view. 横向和轴向分辨率分别为2 ju m和1.1 Um。 Lateral and axial resolution was 2 ju m and 1.1 Um. 获取时间对于单个面片段为2秒,对于整个体积为33分钟。 Acquisition time for a single face fragment 2 seconds, the entire volume of 33 minutes. 与使用示范性TDOCT或OFDI过程或系统生成的相比,爪蟾心脏(阶段49) 的示范性FFOCM片段允许更加详细地可视化心室小梁(如图16a和16c 所示)、螺旋瓣(如图16b和16d所示,参见箭头)以及部分心房间隔(如图16d所示,参见箭头)。 Using exemplary TDOCT or OFDI process or system generated compared Xenopus heart (stage 49) exemplary FFOCM fragment allows a more detailed visualization of ventricular trabecular (shown in Figure 16a and 16c), spiral valve (Figure 16b and 16d shown, see arrow) and part of the atrial septum (shown in Figure 16d, see arrow). 心脏的部分透明的体积再现(如图16e-16h所示),揭示了成角的TA(如图16e所示)、主动脉弓(如图16f和16g所示)以及心房的薄壁(如图16g和16h所示)在它们的三维环境中的循环压缩结构。 Partially transparent heart volume rendering (shown in Figure 16e-16h), reveals the angled TA (shown in Figure 16e), aortic arch (as shown in Figure 16f and 16g) and thin-walled atrium (Figure 16g and 16h shown) circulating in their three-dimensional environment packed structure. 剖视图(如图16e所示)示出了精细的三维内部结构,包括小梁(如图16i和16j所示)和房室瓣(如图16k所示)。 A cross-sectional view (FIG. 16e below) shows the internal structure of a three-dimensional fine, including trabecular (16i and 16j shown in FIG.) And atrioventricular valves (shown in FIG. 16k). 紧接于相同胚胎的相应组织结构片段(如图16m所示)示出的房室瓣的放大图(如图161 所示)展示了它的双尖形态。 Immediately to the same embryonic structure corresponding fragment (shown in Figure 16m) shows an enlarged view of the atrioventricular valve (as shown in Figure 161) demonstrated its twin tip shape.

在体内用SECM过程对胚胎心脏进行高速成像 Embryonic heart in vivo high-speed imaging SECM process

示范性SECM过程和系统提供了可与跟FFOCM相关联的那些相比较的横向分辨率,但是是以较高的帧率,使得能够在体内对心脏进行显微。 An exemplary SECM processes and systems with the lateral resolution compared with those associated with the FFOCM, but at a higher frame rate, so that the heart can be microscopic in vivo. 以10/s的帧率、220 x 220 ji m的视场以及分别为1.2和6 pm的横向和轴向分辨率,使用示范性SECM过程和系统在体内对爪蟾心肌(阶段49) 进行成像。 To 10 / s frame rate, 220 x 220 ji m, and the field of view of 1.2 and 6 pm lateral and axial resolution, using the exemplary SECM procedures and systems in the body of the Xenopus myocardium (stage 49) for imaging . 最大穿透深度为280 nm。 The maximum penetration depth is 280 nm. 通过TD-OCT (如图15a和15b所示)和FFOCM (如图16a-16m所示)过禾呈和系统可视化的示范性的相同辦抖(阶段49 ),示出了在腹部表面之下近似280 nm的房室瓣的薄尖(如图17a所示)以及包含小梁内空间之内的单独血细胞的心室和TA的部分 Do the same by TD-OCT (shown in Fig. 15a and 15b) and FFOCM (as shown in Figure 16a-16m) over Wo and system visualization was exemplary shake (stage 49), illustrated in the abdomen below the surface approximately 280 nm thin atrioventricular valve tip (as shown in Figure 17a), and contains a single ventricle and TA blood cells within the trabecular portion of the space

(如图17c所示)。 (Shown in FIG. 17c). SECM图像与相应的组织结构片段很好地相关(如图17b和17d所示)。 SECM image and the corresponding organizational structure fragments correlate well (as shown in Figure 17b and 17d). 来自不同辨抖(阶段47)的一系列帧展示了从TA到主动脉分叉的以单细胞水平观看的调节血流的闭合时(如图17e所示)和开启时(如图17f和17g所示)的螺旋瓣。 Discrimination from different shake (stage 47) shows the time series of frames from the TA to regulate blood flow close to the aortic bifurcation and the single-cell level to watch on (as shown in Figure 17e) (17f and 17g in FIG. below) the spiral valve. 血细胞在小梁之内也是明显的 Of blood cells in the trabecular also evident

(如图17h所示)。 (Shown in FIG. 17h). 能够观察到可以表示核和细胞器的单独肌细胞之内的细胞内特征。 Features can be observed within the cell nucleus and organelles can be represented separately within the muscle cells.

爪蟾胚胎中的动脉瘤扩张 Xenopus embryos aneurysm expansion

在胚胎(阶段47)中的一个中,已识别了从TA壁发出的突起。 In the embryo (stage 47) a, it has been identified emitted from the TA projection wall. 以两个不同的深度在体内获得的SECM片段(如图18a和18b所示)揭示了它的嚢形形状,它相对于螺旋瓣的位置,以及单独的血细胞通过该缺陷的流动。 SECM fragment (shown in Fig. 18a and 18b) at two different depths in the body obtained Nang reveals its shape, its position relative to the helical lobe, and a separate blood cells flow through the defect. 在体内使用示范性TDOCT过程和系统也观察到了这种异常性(如图18a所示,参见插图)。 TDOCT in vivo using an exemplary process and system also observed this abnormality (Figure 18a, see illustration). 胚胎然后被定影并用示范性FFOCM过程和系统进行成像。 Embryo is then fixed and exemplary FFOCM imaging processes and systems. FFOCM片段(如图18c所示)和FFOCM体积数据集的三维再现(如图18d所示)示出了整个心脏的环境方面的扩张。 Dimensional reproduction FFOCM fragment (shown in FIG. 18c) and FFOCM volume data set (shown in FIG. 18d) illustrates the expansion of the entire cardiac environment. 在传统的明视场显微之下难以看到(如图18e所示)、但是使用示范性TDOCT、 FFOCM和SECM过程和系统清楚地可视的这个突起可以表示心脏中的TA的嚢形动脉瘤扩张,其否则显现为具有正常的表型。 Under the traditional bright field microscopy difficult to see (as shown in Figure 18e), but using exemplary TDOCT, FFOCM and SECM procedures and systems clearly visible in this projection can be expressed in the heart of Nang TA-shaped artery tumor expansion, which otherwise appears to have a normal phenotype.

由乙醇暴露引起的心脏异常性 Cardiac abnormalities caused by ethanol exposure

心血管畸形可以由遗传(如KL Clark等人的"Transcription factors and congenital heart defects", Annu Rev Physiol 68, pp. 97-121 (2006)中描述的那样)和产生畸形的因素(如SM Mone等人的"Effects of environmental exposures on the cardiovascular system: prenatal period through adolescence" , Pediatrics 113, pp. 1058-1069 (2004)中描述的那样) 造成。 Cardiovascular malformations may consist of genetic (such as KL Clark et al., "Transcription factors and congenital heart defects", Annu Rev Physiol 68,. 97-121 pp (2006) are as described herein) and teratogenic factors (such as SM Mone, etc. al "Effects of environmental exposures on the cardiovascular system: prenatal period through adolescence"., Pediatrics 113, pp 1058-1069 (2004) as described in the) cause. 乙醇是众所周知的致畸物;怀孕期间的人类胚胎暴露于酒精(乙醇) 与胎儿酒精综合症(FAS )相关联。 Ethanol is known teratogen; human embryos exposed to alcohol during pregnancy (ethanol) and fetal alcohol syndrome (FAS) is associated to. (参见KL Jones等人的"Recognition of the fetal alcohol syndrome in early infancy" , Lancet 2, pp. 999-1001 (1973)和JD Chaudhuri的"Alcohol and the developing fetus—a review", Med Sci Monit 6, pp. 1031-1041 (2000))。 (See KL Jones et al., "Recognition of the fetal alcohol syndrome in early infancy", Lancet 2, pp. 999-1001 (1973) and JD Chaudhuri's "Alcohol and the developing fetus-a review", Med Sci Monit 6, pp. 1031-1041 (2000)). 一个估计表明具有FAS的小孩中的54。 One estimate indicates that the child has FAS 54. /。 /. 具有心脏缺陷。 Have heart defects. (参见EL Abel的Fetal Alcohol Syndrome, Medical Economics Books, Oradell, NJ, 1990 )。 (See EL Abel of Fetal Alcohol Syndrome, Medical Economics Books, Oradell, NJ, 1990).

为了研究乙醇对爪蟾心脏发育的致畸效应,将胚胎从中嚢胚过渡(阶段8.5)暴露于不同浓度的乙醇(0.5%-2.5%)。 In order to study teratogenic effects of ethanol on Xenopus heart development, the embryos from Nang embryo transition (Phase 8.5) were exposed to different concentrations of ethanol (0.5% -2.5%). (参见R. Yelin等人的"Ethanol exposure affects gene expression in the embryonic organizer and reduces retinoic acid levels" , Dev Biol 279, pp. 193-204 (2005))。 (See R. Yelin et al. "Ethanol exposure affects gene expression in the embryonic organizer and reduces retinoic acid levels", Dev Biol 279, pp. 193-204 (2005)). 在相同的条件下发育但不暴露于乙醇的同属用作对照。 But it does not belong to exposure to ethanol used as a control in development under the same conditions. 在发育过程期间,我们使用示范性TDOCT过程和系统拍摄胚胎的心脏区域以识别和定量评估致畸效应的程度。 During the development process, we use processes and systems exemplary TDOCT shooting embryonic heart area to identify and quantitatively assess the extent of teratogenic effects. 我们没有观察到0.5%的乙醇处理組(n = 16)和对照组(n = 42)之间的形态差异。 We did not observe differences in morphology to 0.5% ethanol treated group (n = 16) and control group (n = 42) between. 被定义为与对照相比在形态方面具有显著变化的完全成熟的中等致畸效应,在暴露于1%乙醇的少数(25%)胚胎中(n = 28)和暴露于1.5%乙醇的大多数(74%)胚胎中(n = 27)L 现。 Is defined as a full-fledged medium teratogenic effect compared with the control of a significant change in morphology, exposure to a small number (25%) 1% ethanol embryos (n = 28) and exposed to a majority of 1.5% ethanol (74%) embryos (n = 27) L now. 被定义为心管和/或不完全成熟的严重异常循环的严重效应,在2.0% 和2.5%组中的所有胚胎中(分别为n = 17、 n = 7)都被发现。 Is defined as the heart tube and / or severe effect was not fully mature serious abnormal cycle, all embryos in 2.0% and 2.5% in the group (respectively, n = 17, n = 7) were found. 心脏活动在所有的胚胎中都是明显的,即使在具有最严重畸形的胚胎中也是如此。 Cardiac activity at all embryos are obvious, even with the most severe malformations in embryos as well. 使用示范性TDOCT过程和系统,已MJ^照、0.5%、 1.5%、和2.0% 的乙醇处理组的每一个中选择了辦枓(阶段48)以展示典型的表型(如图19a-19d所示)。 Use an exemplary TDOCT processes and systems, has MJ ^ photos, each of 0.5%, 1.5%, and 2.0% ethanol treated group selected to do Tu (stage 48) to show the typical phenotype (Figure 19a-19d shown). 通过识别部分心房间隔(如图19a-19d所示,参见右边图像,用箭头标记隔膜)和房室瓣的存在,可以确定四个辦枓的心脏处在晚期发育阶段。 By identifying atrial septal portion (as shown in Figure 19a-19d, see the picture on the right, marked with an arrow diaphragm) presence and atrioventricular valves can be determined at the heart of four Tu-do during the development phase. TDOCT图^^供了1.5%和2.0%组中被破坏的循环的第一个迹象。 TDOCT Figure ^^ for the first sign of 1.5% and 2.0%, the group destroyed the cycle. 进一步观察到的是来自1.5%和2.0%组中心室之内的较低TDOCT信号,这可归因于这些胚胎中减少的血流。 Further observed that the signal from the lower TDOCT 1.5% and 2.0% group within the central chamber, which can be attributed to reduced blood flow in these embryos. 在图19e-19h中示出了在体内取自腹面的辦抖照片。 In Figure 19e-19h is shown from the ventral surface of the body do shake photo.

在体外用示范性FFOCM系统和过程获取的数据的三维再现允许以高分辨率评估心肌结构,揭示对照和0.5%的辦抖之间的相似性,并且清楚地示出来自1.5%和2.0%组的辦枓中的有缺陷心管循环(如图19i-191 所示)。 Three-dimensional in vitro with an exemplary FFOCM systems and processes data obtained allows the reproduction of high-resolution assessment of myocardial structure, revealing the control and 0.5% do shake the similarity between, and clearly shows from 1.5% and 2.0% group Tu in the office of a defective heart tube loop (as shown in Figure 19i-191). 通过FFOCM体积数据集的片私艮示了与对照(如图19m所示) 和0.5%的(如图19n所示)胚胎相比较的1.5%的(如图19o所示)和2.0%的(如图19p所示)胚胎中的较小的畸变的TA和螺旋瓣(用箭头标记)。 Volume data set by piece FFOCM private Burgundy shows the control (shown in Figure 19m) and 0.5% (as shown in Figure 19n) embryos compared with 1.5% (Figure 19o below) and 2.0% ( As shown in Figure 19p) embryos smaller distortion TA and spiral valve (marked with arrows). 与对照和0.5%的组相比较,心包浮肺在1.5%和2.0%的组中出现(如图19o、 19p、 19s和19t所示)。 Compared with the control group and 0.5%, pericardial floating lung appears (Figure 19o, 19p, 19s and 19t shown) at 1.5% and 2.0% of the group. 乙醇还影响了心室;对照的(如图19q 所示)和0.5%的(如图19r所示)心脏中发育的小梁与以下形成反差: 1.5。 Ethanol also affected ventricle; controls (as shown in Figure 19q) and 0.5% (as shown in Figure 19r) in the development of cardiac trabecular contrast with the following: 1.5. /o的组中:OL育的小梁(如图19s所示)以及暴露于2.0%的乙醇的胚胎中具有稀疏矮小小梁的大心室空腔(如图19t所示)。 / O groups: OL sterile trabecular (shown in FIG. 19s) and 2.0% of the embryos exposed to ethanol little sparse trabecular ventricular cavity large (as shown in FIG. 19t). 相应的组织结构片段证实了我们的一些发现,包括较大乙醇暴露的胚胎中欠发育的小梁(如图19u-19x所示)。 Appropriate organizational structure fragment confirms some of our findings, including a large ethanol exposure due to the development of the embryo trabecular (shown in Figure 19u-19x).

示范性结果的讨论 Discuss exemplary results

发育生物研究中的共同范例是操纵遗传型和监*型。 Developmental Biology Research common example is the manipulation of genetic type and monitoring * type. 形态是表型的重要方面。 Shape is an important aspect of the phenotype. 在心脏中,即使轻微的形态和动态异常性也可能对于适当的心肌功能是决定性的。 In the heart, even a slight morphological and dynamic abnormalities may also be appropriate for myocardial function is decisive. 识别二维和三维中的细微形态和动态变化的能力可以显著地改善这个范例的灵敏度。 The ability to recognize subtle two-dimensional and three-dimensional shape and dynamics of the can significantly improve the sensitivity of this paradigm.

在爪蟾辦科中,心脏结构如心肌壁、隔膜和瓣可能仅有几个细胞那么厚。 Branch office in Xenopus, the cardiac structures such as cardiac wall, the diaphragm and the valve may be only a few cells so thick. 评估形态表型不仅需要分辨这样的精细结构,而且还需JH吏跳动心脏之内的#^见特征可视化的能力,其中典型的位移速度为lmm/s的数量级。 Assess morphological phenotypes not only need to distinguish such fine structures, and the need to JH officials within the heart beating # ^ see features visualization capability, which typically displacement speed lmm / s of magnitude. 如果成像速JLA够高,则可以在心跳周期之内的不同时刻获得胚胎心脏的三维图像。 JLA If the imaging speed is high enough, it can at different times in the cardiac cycle to obtain three-dimensional images of the embryonic heart. 这种示范性四维成像允许动态生理参数的可靠测量,诸如心搏量和喷血分数以及瓣对向、刚度和模块性,这在人类病理生理学方面具有密切模拟。 This exemplary 4D imaging allows reliable measurement of dynamic physiological parameters such as stroke volume and spurting scores and flap on to, stiffness and modularity, which is a close simulation of human physiology pathology. 高分辨率和高速度不是对心脏有效成像的仅有要求。 High resolution and high speed are not effective imaging of the heart is just a request. 在爪蟾胚胎中,心脏从腹部表面之下在200nm和800nm之间延伸。 In Xenopus embryos, from the heart beneath the abdominal surface extending between 200nm and 800nm. 有效的成像方法因此也应当能够在这些深度进行成像而没有信号和分辨率的显著损失。 Thus effective imaging method should be able to be imaged and the resolution of the signal without significant loss in these depths.

使用组织结构片段的三维再现已在体外研究并详细描述了发育光滑爪蟾心脏的形态。 Three-dimensional structure using a fragment has been studied and described in detail to reproduce the smooth development of Xenopus heart shape in the body. (参见TJ Mohun等人的"The morphology of heart development in Xenopus laevis,, , Dev Biol 218, 74-88 (2000))。然而对于组织的研究,样本制备和切片使得难以保存结构真实。结果,对完整心脏在它们的天然环境中进行成像是优选的。使用多种非侵入成像模态如微MRI(参见D. L Kraitchman等人的"In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction" , Circulation 107, pp. 22卯-2293 (2003)和R Wiesmann等人的"Developmental changes of cardiac function and mass assessed with MRI in neonatal, juvenile, and adult mice" , Am J Physiol Heart Circ Physiol 278, pp. H652-657 (2000))、 微CT (参见M. Malyar等人的"Relationship between arterial diameter and perfused tissue volume in myocardial microcirculation: a micro-CT隱based analysis" , Am J Physiol Circ Physiol 286, pp. H2386-2392 (2004)和CT Badea等人的"4-D micro國CT of the mouse heart", Mol Imaging 4, pp. 110-116(2005))、超声(参见S. Srinivasan等人的"Noninvasive, in utero imaging of mouse embryonic heart development with 40-MHz echocardiography" , Circulation 98, pp. 912-918 (1998))和PET (参见LW Dobrucki等人的"Molecular cardiovascular imaging", Curr Cardiol Rep 7, pp. 130-135 (2005)和L. Stegger等人的"Monitoring left ventricular dilation in mice with PET" , J Nucl Med 46, pp. 1516-1521 (2005)),已展示了对体内心脏的结构成像。 (See TJ Mohun et al. "The morphology of heart development in Xenopus laevis ,,, Dev Biol 218, 74-88 (2000)). However, the research organization, sample preparation and sectioning structure makes it difficult to save the real result of complete cardiac imaging are preferred in their native environment using a variety of non-invasive imaging modalities such as micro MRI (see D. L Kraitchman et al. "In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction", Circulation 107, pp. 22 d -2293 (2003) and R Wiesmann et al., "Developmental changes of cardiac function and mass assessed with MRI in neonatal, juvenile, and adult mice", Am J Physiol Heart Circ Physiol 278, pp. H652- 657 (2000)), micro-CT (see M. Malyar et al "Relationship between arterial diameter and perfused tissue volume in myocardial microcirculation: a micro-CT implicitly based analysis", Am J Physiol Circ Physiol 286, pp H2386-2392. (2004) and CT Badea et al., "4-D micro States CT of the mouse heart", Mol Imaging 4,. 110-116 pp (2005)), ultrasound (see S. Srinivasan et al., "Noninvasive, in utero imaging of mouse embryonic heart development with 40-MHz echocardiography ", Circulation 98, pp. 912-918 (1998)) and PET (see LW Dobrucki et al.," Molecular cardiovascular imaging ", Curr Cardiol Rep 7, pp. 130-135 (2005) and L. Stegger et al., "Monitoring left ventricular dilation in mice with PET", J Nucl Med 46,. 1516-1521 pp (2005)), has demonstrated in vivo imaging of cardiac structures.

光学技术使得能够以较高分辨率对胚胎心脏进行成像。 Optical technology enables higher resolution imaging of the embryonic heart. 共焦显微已用于在体外对早期爪蟾心脏发育进行成像(如SJ Kolker等人的"Confocal imaging of early heart development in Xenopus laevis" , Dev Biol 218, pp. 64-73 (2000)中描述的那样),并且用于在体内研究心内流体力在斑马鱼胚胎心脏发生中的作用(如JR Hove等人的"Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis" , Nature 421, pp. 172-177 (2003)中描述的那样)。 Confocal microscopy has been used in the in vitro development of early Xenopus heart imaging (such as SJ Kolker et al., "Confocal imaging of early heart development in Xenopus laevis", Dev Biol 218, as pp. 64-73 (2000) described ), and used in the in vivo study, Flow their strength in zebrafish embryos occurs in the heart (such as JR Hove et al., "Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis", Nature 421, pp. 172-177 (2003), as described). 多普勒TDOCT过程和系统用于研究爪蟾辦枓中的血流,允许组织表面之下的定量速度测量。 Doppler TDOCT processes and systems used to study Xenopus do Tu blood flow, allowing quantitative measurement of tissue beneath the surface speed. (参见JR Hove 等人的"Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis" , Nature 421, pp. 172-177 (2003)和VXDYang、 ML Gordon 、 E. Seng-Yue等人的"High speed, wide velocity dynamic range Doppler optical coherence tomography (Part II): Imaging in vivo cardiac dynamics of Xenopus laevis", Optics Express 11, pp. 1650-1658(2003))。 (See JR Hove et al. "Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis", Nature 421,. 172-177 pp (2003) and VXDYang, ML Gordon, E. Seng-Yue et al. "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part II): Imaging in vivo cardiac dynamics of Xenopus laevis ", Optics Express 11, pp 1650-1658 (2003)).. 由于其有限的成傳速度,使用TDOCT的三维心脏成像以前主要仅在体外展示。 Due to its limited transfer speed to use three-dimensional cardiac imaging TDOCT just before the main show in vitro. (参见SA Boppart等人的"Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography", Proc Natl Acad Sci USA 94, pp. 4256-4261 (1997)、 TM Yelbuz等人的"Optical coherence tomography: a new high-resolution imaging technology to study cardiac development in chick embryos", Circulation 106, pp. 2771-2774 (2002)和W. Luo等人的"Three-dimensional optical coherence tomography of the embryonic murine cardiovascular system" , Journal of biomedical optics 11, 021014 (2006))。 (See SA Boppart et al "Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography", Proc Natl Acad Sci USA 94, 4256-4261 pp (1997), TM Yelbuz et al. "Optical coherence tomography:. A new high-resolution imaging technology to study cardiac development in chick embryos ", Circulation 106, pp. 2771-2774 (2002) and W. Luo et al.," Three-dimensional optical coherence tomography of the embryonic murine cardiovascular system ", Journal of biomedical optics 11, 021014 (2006)).

门控或后获取同步技术已用于避开传统成像方法的有PI^度,使得能够重构心跳周期中的不同阶段的胚胎心脏的三维图像。 Gated or after obtaining synchronization techniques have been used to avoid the conventional imaging methods are PI ^ degrees, making it possible to reconstruct a three-dimensional image of the cardiac cycle different stages of embryonic heart. (参见MW Jenkins等人的"4D embryonic cardiography using gated optical coherence tomography" , Optics Express 14, pp. 736-748 (2006)和M. Liebling等人的"Four-dimensional cardiac imaging in living embryos via postacquisition synchronization of nongated slice sequences" , J Biomed Opt 10, 054001 (2005))。 (See MW Jenkins et al., "4D embryonic cardiography using gated optical coherence tomography", Optics Express 14,. 736-748 pp (2006) and M. Liebling et al., "Four-dimensional cardiac imaging in living embryos via postacquisition synchronization of nongated slice sequences ", J Biomed Opt 10, 054001 (2005)). 对于实验中的一些,我们使用了TDOCT,因为它在我们的实验室中更容易得到,然而示范性OFDI过程和系统能够以高得多的速度提供示范性TDOCT过程和系统的全部的功能性。 For some of the experiments, we used TDOCT, because it is in our laboratory more readily available, but the exemplary OFDI procedures and systems capable of much higher speeds to provide all the functionality of an exemplary TDOCT processes and systems. 示范性OFDI过程和系统提供了对跳动心脏的实时的真实四维成像而不需要心脏门控,并且被发现可用于评估心跳周期期间的心肌壁位移(如图15c-15f 所示)。 Exemplary OFDI procedures and systems provide real-time to the beating heart of true 4D imaging without the need for cardiac gating, and was found to be useful to assess myocardial wall displacement during the cardiac cycle (Figure 15c-15f below).

通过4务改OFDI光源,我们还能够用更高的轴向分辨率U)im)实施实时横截面成像,使得能够使瓣动态(如图15i-15k所示)和单细M 流可视化。 OFDI through 4 traffic light to change, we can also use a higher-resolution axial U) im) implement real-time cross-sectional imaging, making it possible to make the valve dynamics (as shown in Figure 15i-15k) and monofilament M flow visualization. 对于胚胎心脏的亚细胞水平分辨率成像,我们调查研究了示范性FFOCM和SECM过程和系统的使用。 For the embryonic heart of subcellular resolution imaging, we investigated the use of exemplary FFOCM and SECM procedures and systems. 发现FFOCM模态能够用各向同性的细胞分辨率(1-2 urn)提供高质量三维成像。 Find FFOCM modal able to provide high-quality three-dimensional imaging with isotropic cell resolution (1-2 urn). SECM模态展示了可与FFOCM模态相比较的分辨率,但是能够以更高的it^进行成像, 使得能够以亚细胞水平使体内的肌细胞、血液和瓣活动可视化。 SECM mode can be demonstrated in comparison with FFOCM modal resolution, but can be higher it ^ imaging, it makes it possible to make the sub-cellular level in vivo muscle cells, blood, and valve events visualization. 表l概括了每个过程的不同能力,突出了它们的互补性质。 Table l summarizes the different capabilities of each process, highlighting their complementary nature. 表l用于胚胎心脏的光学成像的内生对照模态的比较。 Endogenous Table l for optical imaging of embryonic heart compared to the control modes. 灰色阴影的单元指示具有最好横向分辨率、轴向分辨率和帧率特性的成像技术。 Gray shaded cell indicates imaging technology with the best lateral resolution, axial resolution and frame rate characteristics.

<table>table see original document page 31</column></row> <table>*包括TDOCT和OFDI模态。 <Table> table see original document page 31 </ column> </ row> <table> * including TDOCT and OFDI mode.

示范性TDOCT和FFOCM过程和系统的大穿透深度允许通过作为乙醇致畸表型的部分而发育的心包浮肿对心脏进行成像。 Exemplary TDOCT and FFOCM processes and systems large penetration depth allows ethanol as part of teratogenic and developmental phenotype pericardial edema of cardiac imaging. 我们的初步结果表明乙醇干扰了心脏循环的过程(图19i-l),与对鹌鶉的研究一致。 Our preliminary results indicate that alcohol interferes with the process of the cardiac cycle (Figure 19i-l), consistent with research on quail. (参见WO Twal 等人的"Retinoic acid reverses ethanol-induced cardiovascular abnormalities in quail embryos" , Alcohol Clin Exp Res 21, pp. 1137-1143 (1997))。 (See WO Twal et al "Retinoic acid reverses ethanol-induced cardiovascular abnormalities in quail embryos", Alcohol Clin Exp Res 21, pp. 1137-1143 (1997)). 这项工存中报告的TA尺寸的减少由Cavierrs和Smith预测(参见MF Cavieres等人的"Genetic and developmental modulation of cardiac deficits in prenatal alcohol exposure" , Alcohol Clin Exp Res 24, pp. 102-109 (2000)),但未^^见察到。 The work to reduce memory size reported by TA Smith Cavierrs and prediction (see MF Cavieres et al. "Genetic and developmental modulation of cardiac deficits in prenatal alcohol exposure", Alcohol Clin Exp Res 24, pp. 102-109 (2000 )), but did not see ^^ observed. 可以认为这里描述的欠发育的心室小梁(如图19q-t所示)以前尚表&育。 Can be considered due to the development of ventricular trabecular described herein (as shown in Figure 19q-t) still table before & sterile. 由于在爪蟾和斑马鱼(Daniorerio)中,心室小梁充当His-Purkinje系统的功能等价物(参见D. Sedmera等人的"Functional and morphological evidence for a ventricular conduction system in zebrafish and Xenopus hearts" , Am J Physiol Heart Circ Physiol 284, pp. H1152-1160 (2003)),所以iUt育小梁的确定与已在乙醇处理的鹌鹁(参见WO Twal等人的"Retinoic acid reverses ethanol-induced cardiovascular abnormalities in quail embryos" , Alcohol Clin Exp Res 21, pp. 1137-1143 (1997))和斑马鱼胚胎(参见J. Bilotta等人的"Ethanol exposure alters zebrafish development: a novel model of fetal alcohol syndrome" , Neurotoxicol Teratol 26, pp. 737-743 (2004))中报告的较慢心率相关联。 Since Xenopus and zebrafish (Daniorerio), the ventricular trabecular act as functional equivalents His-Purkinje system (see D. Sedmera et al "Functional and morphological evidence for a ventricular conduction system in zebrafish and Xenopus hearts", Am J Physiol Heart Circ Physiol 284, pp. H1152-1160 (2003)), so iUt trabecular determine fertility has been treated in ethanol quail wood pigeon (see WO Twal et al., "Retinoic acid reverses ethanol-induced cardiovascular abnormalities in quail embryos "., Alcohol Clin Exp Res 21, pp 1137-1143 (1997)) and zebrafish embryos (see J. Bilotta et al.," Ethanol exposure alters zebrafish development: a novel model of fetal alcohol syndrome ", Neurotoxicol Teratol 26, pp . 737-743 (2004)) reported a slower heart rate is associated. 由乙醇处理引起的主动血液循环的中断(WO Twal等人的"Retinoic acid reverses ethanol-induced cardiovascular abnormalities in quail embryos" , Alcohol Clin Exp Res 21, pp. 1137-1143 (1997)和X. Wang 等人的"Japanese medaka (Oryzias latipes):developmental model for the study of alcohol teratology" , Birth Defects Res B Dev Reprod Toxicol 77, pp. 29-39 (2006))可以解释信号从心脏空腔之内的丢失,这也与确定一致。 Active blood circulation caused by the ethanol treatment interruption (WO Twal et al "Retinoic acid reverses ethanol-induced cardiovascular abnormalities in quail embryos", Alcohol Clin Exp Res 21,. 1137-1143 pp (1997) and X. Wang et al. The "Japanese medaka (Oryzias latipes): developmental model for the study of alcohol teratology", Birth Defects Res B Dev Reprod Toxicol 77, 29-39 pp (2006)) can be explained by a signal from the cavity of the heart is lost, this. and also to determine the same.

尽管它们有相对高的穿透深度,由于在这些较早阶段的高度散射,传统光学成像过程中没有一种能够在心脏器官的初起(心管形成,阶段39) 时对心脏进行成像。 Despite their relatively high penetration depth, because of the high scattering in these early stages, the traditional optical imaging process is not capable of beginning in the heart organ (heart tube formation, stage 39) the heart is imaged. 然而,随着胚胎变得光学透明,初始的心脏活动(阶段35)被观察到,并且获得了室形成(大约阶段40 )的初起时的详细结构图像。 However, as the embryos become optically transparent, the initial activity of the heart (stage 35) was observed, and the detailed structure of the obtained image formation chamber (about stage 40) at the beginning. 尤其是对于FFOCM和SECM模态,难以将组织结构与微观数据集相匹配。 Especially for FFOCM and SECM mode, it is difficult to structure and micro data sets match. 胚胎在被处理和嵌入时十分脆弱,使得形态的M成为挑战。 The embryo when it is processed and embedded fragile, making the M form a challenge. 进而,图像应当用10pm数量级的精度与组织结构配准,这用传统切片技术难以实现。 Furthermore, the image should be used 10pm magnitude of precision and organization registration, which is difficult to achieve using traditional slicing techniques.

对于根据本发明的示范性实施例的成像过程,通过内生散射生成对 For according to an exemplary embodiment of the invention the imaging process embodiment, scattering generated by endogenous to

照。 Photos. 进而,分子成像可能对于将基因和蛋白质表达与表型相关是重要的。 Furthermore, molecular imaging may be genes and proteins for expression and phenotype is important. 这样一来,在此描述的示范性系统和方法就可以用于对荧光标签和分子种类进行成像。 As a result, the exemplary systems and methods described herein can be used for fluorescence labeling and imaging of molecular species. 已描述了通过修改源和检测电子器件经由镨编码可以实施荧光成像。 Has been described by modifying the source and detection electronics can be implemented via praseodymium coding fluorescence imaging. (参见JT Motz等人的"Spectral- and frequency-encoded fluorescence imaging" , Opt Lett 30, pp. 2760-2762 (2005))。 (See JT Motz et al., "Spectral- and frequency-encoded fluorescence imaging", Opt Lett 30,. 2760-2762 pp (2005)). 荧光SECM 过程和系统中使用的相同原理可以同样地用于内窥镜的双光子和第二谐波成像。 The same principle used in fluorescence SECM procedures and systems can also be used for the endoscope and the second harmonic two-photon imaging. 使用示范性TDOCT、 OFDI和FFOCM过程和系统中使用的相干检测,可能难以直接检测荧光。 Use an exemplary TDOCT, coherent detection used in OFDI and FFOCM processes and systems, it may be difficult to directly detect fluorescence. 然而,对于OCT模态已经描述了几种分子对照方法。 However, for the OCT mode it has been described several molecular control methods. (参见C. Yang的"Molecular contrast optical coherence tomography: a review" , Photochem Photobiol 81, pp. 215-237 (2005)和SA Boppart等人的"Optical probes and techniques for molecular contrast enhancement in coherence imaging" , J Biomed Opt 10, 41208 (2005))。 (See C. Yang's. "Molecular contrast optical coherence tomography: a review", Photochem Photobiol 81, pp 215-237 (2005) and SA Boppart et al. "Optical probes and techniques for molecular contrast enhancement in coherence imaging", J Biomed Opt 10, 41208 (2005)).

这项工作中提出的天然对照光学成^^莫态允许从不同的有利位置对胚胎心脏进行评估。 The work presented in the natural control of the optical state to allow ^^ Mo from different vantage evaluate embryonic heart. 组合OFDI、 SECM和FFOCM模态可以发挥它们的力量(参见表l)并提供获得更加全面的形态和功能的心M型的能力。 Combination OFDI, SECM and FFOCM modalities can exert their power (see Table l), and provide access to the heart of M type of ability more comprehensive form and function. 同样可以将这种多才莫态范例扩展到其它系统和动物模型。 The same can be such a multi-state paradigm Mo was extended to other systems and animal models. 由于这些非^V 成像技术并不改变样品,所以它们可以顺序地或并行地使用。 Because these non ^ V imaging technology does not change the sample, they can be used in parallel or sequentially. 进而,虽然我们在这项工作中使用了分开的成像系统,但是没有根本性的障碍阻止将它们组合成使用单个波长扫描源的一个成像系统。 Furthermore, although we use separate imaging system in this work, but there is no fundamental obstacle to prevent them combined into an imaging system using a single wavelength scanning source. (参见:SHYun等人的"High-speed optical frequency-domain imaging", Optics Express 11, pp. 2953-2963 (2003); C. Boudoux等人的"Rapid wavelengtti-sweptspectrally encoded confocal microscopy", Optics Express 13, pp. 8214-8221 (2005);以及WY Oh等人的"Wide tuning range wavelength-swept laser with two semiconductor optical amplifiers" , IEEE Photonics Technology Letters 17, pp. 678-680 (2005))。 (See: SHYun et al. "High-speed optical frequency-domain imaging", Optics Express 11, pp 2953-2963 (2003); C. Boudoux et al "Rapid wavelengtti-sweptspectrally encoded confocal microscopy", Optics Express 13. , 8214-8221 pp (2005);. and WY Oh et al., "Wide tuning range wavelength-swept laser with two semiconductor optical amplifiers", IEEE Photonics Technology Letters 17, 678-680 pp (2005))..

前述仅^明了本发明的原理。 ^ Only apparent foregoing principles of the invention. 考虑到在此的教导,对所描述的实施例的各种修改和变更对本领域技术人员而言将会是明显的。 Taking into account the teachings herein, various modifications and changes to the described embodiments of the skill in the art will be apparent. 事实上,根据本发明的示范性实施例的装置、系统和方法,可以与任何OCT系统、OFDI 系统、SD-OCT系统或其它成4象系统一起4吏用,并且例如与2004年9月8日提交的国际专利申请PCT/US2004/029148、 2005年11月2日提交的美国专利申请No. 11/266,779和2004年7月9日提交的美国专利申请No. 10/501,276中描述的那些一起使用,这些专利申请的整体内容通过引用结合于此。 In fact, according to the apparatus, system and method for an exemplary embodiment of the present invention can be used with any OCT system, OFDI system, SD-OCT system or other systems together into four 4 officials like to use, and for example, 8 September 2004 together with those of the international patent application filed PCT / US2004 / 029148, US Patent November 2, 2005 filed No. 11 / 266,779 and US Patent Application No. 2004 年 7 filed May 9 in the 10 / 501,276 described use, the entire contents of these patent applications are incorporated herein by reference. 这样一来,将会意识到的是,本领域技术人员将会设计众多的系统、装置和方法,它们尽管没有在此明确地示出或描述,但却体现了本发明的原理,并从而处在本发明的精神和范围之内。 As a result, it will be appreciated that those skilled in the art will design a number of systems, devices and methods which although not explicitly shown or described, but it reflects the principles of the invention, and thus place within the spirit and scope of the present invention. 另夕卜,就上面尚未明确地将现有技术知识通过引用结合于此而言,明确地以其整体结合于此。 Another evening BU, it has not been clearly above the prior technical knowledge incorporated herein by reference, it expressly incorporated herein in its entirety. 上面引用在此的所有公布都以其整体通过引用结合于此。 All the above-cited publication are herein incorporated by reference in their entirety.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
CN101852982A *15 Apr 20106 Oct 2010万事利集团有限公司Manufacturing method of four-dimensional vivid photograph
CN101852982B15 Apr 201023 May 2012万事利集团有限公司Manufacturing method of four-dimensional vivid photograph
CN102818768A *31 Jul 201212 Dec 2012苏州微清医疗器械有限公司Multifunctional biomedical microscope
CN102822660A *19 Jan 201112 Dec 2012维森盖特有限公司Tomographic Light Field Microscope
CN103134784A *5 Feb 20135 Jun 2013华中科技大学Optical fiber living body fluorescence excitation spectral imaging device
CN103134784B *5 Feb 201329 Apr 2015华中科技大学Optical fiber living body fluorescence excitation spectral imaging device
CN103443579A *30 Mar 201211 Dec 2013爱克发医疗保健公司Method and system for optical coherence tomography
CN104224117A *10 Sep 201424 Dec 2014南京航空航天大学Spectrally encoded confocal and optical coherence tomography cooperative imaging method and system
CN104224117B *10 Sep 201430 Jun 2017南京航空航天大学一种光谱编码共焦与光学相干层析协同成像方法与系统
CN105103190A *7 Jan 201425 Nov 2015加利珀生命科学股份有限公司Whole slide multispectral imaging systems and methods
Classifications
International ClassificationG01N21/64, G02B21/00, A61B5/00, G01B9/02
Cooperative ClassificationG01N2223/419, G01N21/27, G01N2021/1765, G01N33/4833, G01N21/25, G01N23/046, G02B23/2461, G01B9/02087, A61B5/6852, G01B9/02049, G01B9/02064, G02B21/0028, A61B5/0062, G02B23/2476, A61B5/0073, A61B5/0084, A61B5/0068, G01B9/02027, A61B5/0066, A61B5/0075, G01N21/4795, G01N21/6458, G02B23/2423, G02B23/243, G01N21/6486, G01B9/02091, G01B9/02, G01B9/04
European ClassificationA61B5/00P1, A61B5/00P1E, A61B5/68D1H, A61B5/00P1C, G02B23/24D, G01N21/47S, G01N23/04D, A61B5/00P12B, G01N21/64P4C, G02B23/24B2B, G02B23/24B5, G02B23/24B2, A61B5/00P6
Legal Events
DateCodeEventDescription
12 Nov 2008C06Publication
7 Jan 2009C10Request of examination as to substance
30 May 2012C14Granted