CN101287964B - 电容测量范围的信号处理方法 - Google Patents

电容测量范围的信号处理方法 Download PDF

Info

Publication number
CN101287964B
CN101287964B CN2006800380911A CN200680038091A CN101287964B CN 101287964 B CN101287964 B CN 101287964B CN 2006800380911 A CN2006800380911 A CN 2006800380911A CN 200680038091 A CN200680038091 A CN 200680038091A CN 101287964 B CN101287964 B CN 101287964B
Authority
CN
China
Prior art keywords
signal
amplitude
sampling
electrode
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2006800380911A
Other languages
English (en)
Other versions
CN101287964A (zh
Inventor
C-E·格斯塔埃松
S·T·彼得森
S·约翰森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hexconn Stock Co.
Hexagon Technology Center GmbH
Original Assignee
Hexagon Metrology AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hexagon Metrology AB filed Critical Hexagon Metrology AB
Publication of CN101287964A publication Critical patent/CN101287964A/zh
Application granted granted Critical
Publication of CN101287964B publication Critical patent/CN101287964B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/241Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes
    • G01D5/2412Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes by varying overlap
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/241Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/2403Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by moving plates, not forming part of the capacitor itself, e.g. shields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/241Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes
    • G01D5/2412Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes by varying overlap
    • G01D5/2415Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes by varying overlap adapted for encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains

Abstract

一种用于电容测量范围的信号处理方法,意图用于长度或角度的测量,包括能够相对于彼此移动的两部件,其设有一起形成电容器的电极,电容器的幅度是可变的并取决于如由能够相对于彼此移动的两部件之间的正弦关系(xc)详细说明的相对位置,其中第一部件具有在一个测量周期上均匀分布的n个电极而第二部件具有每测量周期一个电极,并且第一部件中的电极被给予n个交替的电压,其中所述交替电压相对于彼此的时间移置为(图I),这里t0是所述交替电压的n个周期的长度,其中第二移动部件的电极以电容方式获得由一个或数个所述交替电压构成的信号,并且这里合成信号的振幅合成取决于两部件之间的相对位置(x)。对于n个采样的每一个,对所述振幅合成的全部n个信号贡献被分别测量和存储。

Description

电容测量范围的信号处理方法
技术领域
本发明介绍用于测量电信号的幅度关系的方法,所述电信号由它们之间具有固定时间移置、但一个或数个分量信号具有不同振幅的数个相同频率的信号构成。
背景技术
本发明主要适用于由瑞典专利7714010-1中和该专利的应用(瑞典专利9202005-6,8604337-9和0003110-4)中介绍的电容测量系统类型中的信号处理。
本发明意图获得比迄今为止使用过的信号处理单元给出更高精度、更高分辨率、更快速地更新和更低噪声电平的简单的信号处理单元。
在瑞典专利7714010-1中介绍了希望本发明应该应用于其上的电容测量装置类型。在瑞典专利9202005-6、8604337-9和0003110-4中介绍了基于瑞典专利7714010-1的多种应用。
上述列出的专利介绍了一种基于提供至少三个电极的第一传感器部件来测量线性尺寸或角度的系统,三个电极被供给在时间上具有固定相对移置的电子脉冲,其中来自位于第二传感器部件上的传感器电极的输出信号,此后被称为“合成信号”的时间移置取决于与上述测量电极相连的电容的大小,而该时间移置用于检测两个传感器部件的位置,即,它们的相对位置。
瑞典专利7714010-1介绍了一种信号处理方法,其中通过二进制计数器的时间测量从检测电极的载有信息的合成信号中提取位置的值,二进制计数器与测量信号同步起作用。这通过允许合成信号的零(图1a中的最低信号)对锁定电路(locking circuit)进行控制而获得,锁定电路保持二进制计数器为零时的条件。
不过,具有正弦波形形式(例如图1a中示出的那些)、具有足够好正弦波形形式、以及所需的振幅精度和频率稳定度的信号难以产生,而且更重要的是,产生它们很昂贵。
因此,在一种优选设计中对输入信号使用方波脉冲(图1b中的R、S和T)而不是正弦波。由具有不同时间移置和振幅的方波信号构成合成信号将作为其结果,而且它将采用如在图1b中最下面示出的阶梯外观。不过,当检测电极的位置改变时,在这种情况下合成信号的零不随着电容改变而类似地改变:它们通过四分之一机械周期阶梯状移置。为了获得更精确的位置值,必须使用先进的带通滤波器将方波脉冲的全部谐波从合成信号中过滤除。滤波操作之后仅保留输入频率中正弦形状的基波,并因此形成如图1a中所示的正弦形状的合成信号。随后执行使用小心定义的标准校准测量系统,以补偿带通滤波器性质上的缺点。
当方波信号被用作如上所述电容测量系统的输入时,是合成信号的振幅合成构成其位置信息。根据上述现有技术,必须将合成信号的位置信息从振幅域转换到时间域。这通过滤波的帮助从合成信号中去掉所有谐波而发生。不过,存在与此相关的几个缺点。
需要先进和昂贵的带通滤波器来滤除所有谐波。此外,难以制造确实具有相同性质的滤波器,并且出于这个原因滤波器通常不能相互调换。这意味着如果有调换滤波器单元的必要就必须要再次校准测量系统。
使用波形的零的方法还对合成信号中的偏移敏感,这是因为相对于零级电势的零的位置受到合成信号中出现的任何不对称的影响。
另外,利用波形的零的方法还对来自例如信号处理单元的电路的串音敏感,串音可能给出经过滤波的合成信号中的瞬时升高。如果这些串音的时间位置靠近于合成信号的零电势,就可能在零的分析中产生误差。
所介绍系统的另一个优点在于合成信号的频率不是恒定的:作为多普勒效应的结果,它随着两个传感器部件之间的相对运动速度而改变。
出于这个原因,仅当两个电轴承(bearing)部件固定时,合成信号和参考信号才具有相同的频率。
频率中的变化意味着当在运动期间进行测量时,取决于运动的方向和速度,合成信号的零的周期“tsumma”比参考频率的周期更大或更小。由于计数器频率受到参考信号的频率和周期“t”的恒定控制,所以读出要么太低要么太高的计数器值。
合成信号的频率随速度而变化的第二影响在于不能将带通滤波器设计成对于参考信号的基频的限制如所需的那样尖锐-由于频率变化导致必须接受一定的带宽。这意味着滤波不能产生对于避免误差的位置检测所需的合成信号的良好正弦波形。
需要参考信号基频的一个完整的周期,以产生一个测量值,这是因为通过参考信号的基频确定更新的频率(每秒钟新测量的数量)。
通过为了执行时间确定而使用的信号的频率确定测量的分辨率。如果需要增加测量精度(resoltion),就有必要减小参考信号的基频或增大要用于执行时间测量的信号的频率。
由带通滤波器的相位和参考信号的基频确定时间延迟的幅度。通过取决于系统中噪声状况的滤波的度数(degree)确定带通滤波器的相位。为了减小时间延迟,可以减小滤波的度数或通过增大要用于执行时间测量的信号的频率来增加测量精度,或两者。
上述提出的论点已清楚地说明难以在获得高精度测量和高频率更新的同时获得小的时间延迟。
现有技术的缺点总结为:
·需要先进而昂贵的带通滤波器来滤除合成信号中的谐波。
·难以制造相同的滤波器。
·系统对影响合成信号的零检测的偏移敏感。
·系统对影响合成信号的零检测的串音敏感。
·由于影响合成信号的零检测的多普勒效应,不可能如所需的那样滤波。
·难以在获得高测量精度和高频率更新的同时获得小的时间延迟。
发明内容
因此,本发明的一个目的是获得一种新方法,利用其可消除上述现有技术的缺点。
本发明的一个特征是在合成信号的振幅域(图4中的Vo)中,而不是如上所述的其时域中进行工作,这使得不必在振幅域和时域之间转换,并且以这种方式避免合成信号的位置信息的质量变差。
由于在这种情况下时间计数器必须对每个新测量值执行完全循环的事实,所以传统系统的更新速率的限制也得以避免。还可以将根据本发明的信号处理单元设计成在实际A/D转换时使A/D转换器与电容传感器单元和与信号处理的其它电路电绝缘。这保证了低噪声电平和对于外部电子干扰相当不敏感。
本发明的另一个优点在于电子构造明显更简单更廉价。因此,不需要带通滤波器。还可以省略二进制计数器和锁定电路以及与它们有关的存储器电路。它们被相对便宜的信号处理器代替。省略带通滤波器的一个主要优点在于不可能象已经叙述的那样制造具有完全相同性质的这种滤波器。因此,不可能在服务期间调换这些滤波器,而这曾经意味着改变滤波器时必须重新调节测量系统。对比之下,根据本发明设计的所有单元获得相同的性质并全部可调换。
总之,这意味着本发明提供更快速、更精确和更廉价的信号处理系统,具有信号处理电路的完全可调换性。
现将本发明介绍为一种适用于电极系统的非限制性优选设计,在电极系统中施加到发送器(transmitter)电极的输入信号由四个对称方波信号构成,通过四分之一周期的时间移置这四个对称方波信号可相互移置,而脉冲长度、脉冲之间的间隔和振幅是相等的,并且以发送器(transmitter)电极和接收器电极之间的电容根据位置(x)的正弦波函数而变化的方式设计电极。
附图说明
现将借助于附图更详细地介绍本发明,其中:
图1a和1b示出主要基于上述瑞典专利7714010-1的现有测量系统的图。
图2a示出可以应用本发明于其中的电极安排的例子。
图2b示出传感器中机械运动和电容之间的关系。
图3示出时间上移置的用R、S、T和U表示的四个测量信号的例子,其中S相对于R在时间上移置四分之一个周期,T相对于R在时间上移置二分之一个周期,而U相对于R在时间上移置四分之三个周期。执行根据本发明的振幅测量处的时刻T1、T2、T3和T4也在图中原理性地示出。
图4示出电容测量系统的电参数的示意图。
图5示出包含关于电极系统相对位置的信息的、具有振幅上的不同的典型合成信号。
图6示意性示出使用本发明的信号处理单元的功能。
图7示出怎样由覆盖四分之一个L的长度的多个数值分离的阶梯(step)建立机械周期的长度L。
具体实施方式
本发明意图由已知类型的电容传感器的输出信号获得数字位置信息。
简单地说,这种传感器行使如下的功能:
当图2a中的电极21向右移动时,它将与电极R的上升度数重叠,其中重叠面积(area)的大小是电极21的位置(x)的函数,电极R在图2b中用连续的线R示出。因此,电极21和在这种情况下是R的相互作用的电极之间的电容与重叠的面积直接成比例。
在此之后电极21将按顺序与电极S、T和U相继重叠,其中重叠面积的尺寸是图2b中的函数S、T和U。
由于传感器包括发送器电极R、S、T和U的数个周期,如图中用虚线表示的那样,所以表面相互作用线沿着全部希望的测量区域形成连续的函数,如图2b中所示。
将交替的输入电压施加到每个发送器电极R、S、T和U,对于每个发送器电极而言其交替电压具有相位(时间移置)。
位置(x)处的纵线与曲线R、S、T和U的交叉点(图2b)示出由电极21获得的相应输入信号的预期振幅贡献。
我们现在更详细地示出合成信号的外观与接收器电极21(图2a)和发送器电极R、S、T、U之间相对位置之间的理论关系。
此后信号R、S、T、U将被表示为v1、v2、v3和v4,以有助于陈述,相应于电极(R、S、T和U)与接收器电极21的交叉点的电容函数表示为C1(x)、C2(x)、C3(x)和C4(x)。
图4原理性地并以简化方式示出用于电容传感器的电路图,如由瑞典专利7714010-1详细说明的那样,表示当前已知的技术。
在图中将电容传感器中的电极表示为电容器(condenser)。每个电容器的电容C1(x)、C2(x)、C3(x)和C4(x)是可变的,并因此它作为位置(x)的函数而变化,如图2b中所示出的那样。这可以表达为:
Figure S2006800380911D00061
θ n = ( n - 1 ) π 2 och n=[1...4]
这里L是相应于电容函数(见图2b)的一个周期的机械长度。
激励电容的输入信号v1、v2、v3和v4可以是例如频率为f0、振幅为
Figure S2006800380911D00063
并且相对于彼此具有90度相位移置的周期性方波(图3)。图3还示出合成信号vo(x,t),正如它可以在图2b中在某些随机选择的值(x)处所呈现的那样。
可以将输入电压写为:
Figure S2006800380911D00064
Figure S2006800380911D00065
n=[1...4]
sgn ( x ) = + 1 , x &GreaterEqual; 0 - 1 , x < 0
利用电容器CL将合成信号vo(x,t)加载到地。来自传感器的输出信号是传感器的机械位置(x)和时间“t”的函数,而该信号在图5中更详细地示出。正如该图清楚说明的那样,为每个单独的发射器电极识别振幅分量是容易的。
来自传感器的输出信号可以数学地写为:
v o ( x , t ) = 1 C L + &Sigma; n = 1 4 C n ( x ) &Sigma; n = 1 4 C n ( x ) v n ( t )
正如图5中清楚表现的那样,来自传感器的输出信号包括四个不同的DC电平:vo1、vo2、vo3和vo4。这四个DC电平的幅度是传感器中机械位置(x)(图2b)的函数,并可以写为:
Figure S2006800380911D00069
Figure S2006800380911D00071
我们可以在四个DC电平的表达式中看出v01/v03和v02/v04对分别构成传感器中机械位置(x)的cosine函数和sine函数。这种关系被用在本发明的优选设计中。
上述介绍和图3清楚地说明信号的总和产生具有四个电平的合成信号(图5),其两个电平v03和v04是电平v01和v02(相对于合成信号的平均值)的翻转。
本发明基于来自传感器的输出信号(v0)中四个振幅电平(v1、v2、v3和v4)的测量,正如我们已经在上面示出的那样,其电平是彼此相对移动的两个电极系统的相对位置(x)的函数。
在输入信号的周期“t=1/f0”中均匀分布的四个不同的固定时刻T1、T2、T3和T4处执行测量(图3)。
正如我们已经在前面示出的那样,v01/v03和v02/v04对分别构成传感器中机械位置(x)的cosine函数和sine函数。
每对v01/v03和v02/v04的两个分量幅度是彼此相对于合成信号的平均值的镜像图象,该平均值通常与零电势一致。
通过数字化v01和v03之间、以及v02和v04之间的差别,可以不依赖于传感器的输出信号中存在的任何零偏移而得到结果。
数字化的值用于传感器的机械位置的数字计算。
图6示出电子系统的原理图。
来自传感器的输出信号v0在运算放大器“InAmp”中被放大并借助于同步滤波器在时刻T1、T2、T3和T4被滤波,至存储电容器CR、CS、CT和CU,在这里值以电势的形式被存储。
同步滤波器包含电阻(R)、模拟1至4多路转换器(图6中的1:4)及其控制电路、和电容器CR、CS、CT和CU
同步滤波器对信号进行控制,以使DC电平v01(在时刻T1附近)被滤波并(被采样)存储在电容器CR中、电平v02(在时刻T2附近)被滤波并(被采样)存储在电容器CS中、电平v03(在时刻T3附近)被滤波并(被采样)存储在电容器CT中、电平v04(在时刻T4附近)被滤波并(被采样)存储在电容器CU中。
在DC电平在存储电容器中(在时刻T1、T2、T3和T4附近)的每次滤波和(采样)存储操作之后,v01和v03之间的差异(在第一A/D转换器,ADC1中、在时刻T1和T3附近)被数字化,同样v02和v04之间的差异(在第二A/D转换器,ADC2中、在时刻T2和T4附近)也被数字化。
X=v01(x)-v03(x)
Y=v02(x)-v04(x)
另外,以A/D转换期间存储电容器以及ADC1和ADC2与输入级电绝缘的方式对滤波、(采样)存储和A/D转换进行控制,这是因为模拟1至4多路转换器(图6中的1∶4)在A/D转换期间不被连接。
以这种方式可获得对干扰的高度不敏感和数字化测量值中的低噪声电平。
然后可以借助X和Y值计算传感器的机械位置(x)。这可以根据X的绝对值是否大于或小于Y的绝对值,通过例如对X/Y或对Y/X应用arctan函数来执行。
被计算的位置可以表达为:
x c = L 8 &pi; [ &pi; - 4 a tan [ Y X ] ] , | X | > | Y | L 8 &pi; [ &pi; + 4 a tan [ X Y ] ] , | X | &le; | Y |
每次一个新的测量值(v01、v02、v03和v04)存储在CR、Cs、CT和CU中时执行位置的新计算。对输入信号频率的每个周期“t=1/f0”的位置的四个计算以这种方式(图3)获得,这意味着测量系统的更新频率四倍于在前系统的频率。
以这种方式计算的(x)值覆盖了覆盖四分之一机械周期L的面积。因此,用一个机械周期L获得四次这种位置值,幅度从0到L/4(图7)。
根据X的绝对幅度是否大于或小于Y的绝对幅度,通过检查X或Y是否为正或负,可以确定已经进行的是周期L的哪个象限的测量(图7中的函数P)。根据本发明的系统将以这种方式在一个完整机械周期L内测量绝对值。
P = 0 , X > 0 2 , X < 0 , | X | > | Y | 1 , Y < 0 3 , Y > 0 , | X | &le; | Y |
一旦已经确定(P)的值,就可以根据下列表达式获得机械周期L中的绝对位置:
x = x c + P L 4 , P=[0,1,2,3]
在图6中示出由于明显原因借助于两个A/D转换器ADC1和ADC2的A/D转换。
实际上,只使用一个A/D转换器是有利的,不仅在于获得有利的成本而且避免了由两个A/D转换器“ADC1”和“ADC2”的性质之间的任何差异可能产生的误差。这可以通过使用交替将v01/v03和v02/v04对连接到A/D转换器的输入端的另一个多路转换器而成为可行。
上述给出的介绍仅仅是根据本发明信号处理安排的适当设计的例子。
可以用多种不同方式设计用于测量所述类型的长度和角度的电容系统。例如可以将电极的几何形状设计成这种方式,即,正如在优选设计中的那样电容成为运动的线性函数、或sine函数,或运动的其它三角函数。
本领域技术人员还将实现本发明应用于使用自由选定数量的输入信号n,这里n>2。还将实现本发明用于不同于sine形式的电容和位置之间的其它关系,只要该关系可以用数学表达式来描述。还可以使用不同于上述优选设计中使用的用于脉冲宽度的其它关系。
还将最终实现利用适当修改根据本发明的信号处理还将利用sine形式的输入信号起作用。

Claims (12)

1.一种用于电容测量范围的信号处理方法,意图用于长度或角度的测量,包括能够相对于彼此移动的两部件,其设有一起形成电容器的电极,电容器的幅度是可变的并取决于如由能够相对于彼此移动的两部件之间的正弦关系(xc)详细说明的相对位置,其中第一部件具有在一个测量周期上均匀分布的n个电极而第二部件具有每测量周期一个电极,并且第一部件中的电极被给予n个交替的电压,其中所述交替电压相对于彼此的时间移置为
Figure FSB00000031109700011
这里t0是所述交替电压的周期的长度,其中第二移动部件的电极以电容方式获得由一个或数个所述交替电压构成的信号,并且这里合成信号的振幅合成取决于两部件之间的相对位置(x),其特征在于,对于n个采样的每一个,对所述振幅合成的全部n个信号贡献被分别测量和存储。
2.根据权利要求1所述的方法,其特征在于,所述振幅合成的测量通过通常被称为“采样-保持”的方法利用n个时刻处的采样被执行,执行测量的时刻相对于输入信号是固定的并在一个信号周期内均匀分布。
3.根据权利要求1所述的方法,其特征在于,采样被执行成与输入信号同步。
4.根据权利要求2所述的方法,其特征在于,所述振幅值的“采样-保持”过程在基频(f0)的每个周期内被相继执行并且为n个采样的每一个分别存储值。
5.根据权利要求1至3中的任一项所述的方法,其特征在于,以电势形式存储在存储电容器中的振幅值根据已知A/D转换技术被数字化。
6.根据权利要求5所述的方法,其特征在于,采样和A/D转换被相继执行并且在A/D转换期间A/D转换器与传感器信号电绝缘。
7.根据权利要求5所述的方法,其特征在于,输入相位的数量n=4。
8.根据权利要求7所述的方法,其特征在于,A/D转换以对并以微分方式被执行,其中来自采样记数1和3的振幅值形成一对而来自采样记数2和4的振幅值形成第二对。
9.根据权利要求1至3中的任一项所述的方法,其特征在于,通过以下算法获得相对位置(xc):
x c = L 8 &pi; [ &pi; - 4 a tan [ Y X ] ] , | X | > | Y | L 8 &pi; [ &pi; + 4 a tan [ X Y ] ] , | X | &le; | Y |
其中:
X=v01(x)-v03(x)
Y=v02(x)-v04(x)
x是传感器中机械位置,vo1、vo2、vo3和vo4是来自传感器的输出信号所包括的四个不同的DC电平,这四个DC电平的幅度是传感器中机械位置x的函数,L是相应于电容函数的一个周期的机械长度。
10.根据权利要求9所述的方法,其特征在于,相对位置(xc)的数字化和计算每信号周期被执行n次,其中用于计算的振幅值通过用于每次计算的一个采样步骤被接连更新。
11.根据权利要求7所述的方法,其特征在于,A/D转换利用两个A/D转换器执行,其中一个数字化振幅值1和3,而另一个数字化振幅值2和4。
12.根据权利要求5所述的方法,其特征在于,A/D转换利用一个多路A/D转换器执行。
CN2006800380911A 2005-10-14 2006-10-03 电容测量范围的信号处理方法 Expired - Fee Related CN101287964B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE0502272-8 2005-10-14
SE0502272A SE529249C2 (sv) 2005-10-14 2005-10-14 Förfarande vid signalbehandling vid kapacitiva mätskalor
PCT/SE2006/050369 WO2007043962A1 (en) 2005-10-14 2006-10-03 Method for signal processing of capacitive measurement scales

Publications (2)

Publication Number Publication Date
CN101287964A CN101287964A (zh) 2008-10-15
CN101287964B true CN101287964B (zh) 2011-10-26

Family

ID=37943080

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800380911A Expired - Fee Related CN101287964B (zh) 2005-10-14 2006-10-03 电容测量范围的信号处理方法

Country Status (6)

Country Link
US (1) US7956622B2 (zh)
EP (1) EP1943482B1 (zh)
JP (1) JP4914899B2 (zh)
CN (1) CN101287964B (zh)
SE (1) SE529249C2 (zh)
WO (1) WO2007043962A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009031664A1 (de) * 2009-07-04 2011-01-05 Camille Bauer Ag, Wohlen Kapazitiver Drehwinkelsensor
CN101949682B (zh) * 2010-08-14 2012-10-24 桂林广陆数字测控股份有限公司 绝对位置测量容栅位移测量方法、传感器及其运行方法
EP2629061B1 (en) * 2012-02-14 2014-09-17 SICK STEGMANN GmbH Method for operating a capacitive position sensor and capacitive position sensor
JP5958318B2 (ja) * 2012-12-12 2016-07-27 日立金属株式会社 放電電荷量測定方法及び放電電荷量測定装置
JP5880884B2 (ja) 2013-05-31 2016-03-09 株式会社デンソー 回転状態検出装置
EP3040689B1 (de) * 2014-12-04 2017-07-19 Hexagon Technology Center GmbH Absoluter kapazitiver Winkelencoder
JP6823483B2 (ja) * 2017-02-02 2021-02-03 株式会社ミツトヨ 変位検出器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4420754A (en) * 1977-12-09 1983-12-13 Stiftelsen Institutet For Mikrovagsteknik Vid Tekniska Hogskolan Measuring device for capacitive determination of the relative position of two with respect to one another moveable parts
DE3711062A1 (de) * 1987-04-02 1988-10-20 Herbert Leypold Kapazitive absolute positionsmessvorrichtung
US5077635A (en) * 1990-05-22 1991-12-31 Robert Bosch Gmbh Capacitive position sensor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2237639B (en) * 1989-10-31 1994-07-06 British Gas Plc Measurement system
CH685214A5 (fr) * 1991-10-15 1995-04-28 Hans Ulrich Meyer Capteur capacitif de position.
US6492911B1 (en) * 1999-04-19 2002-12-10 Netzer Motion Sensors Ltd. Capacitive displacement encoder
JP3520233B2 (ja) * 2000-01-21 2004-04-19 春夫 小林 Ad変換回路
SE516952C2 (sv) * 2000-09-04 2002-03-26 Johansson Ab C E Vinkelgivare
US6873163B2 (en) * 2001-01-18 2005-03-29 The Trustees Of The University Of Pennsylvania Spatially resolved electromagnetic property measurement
GB2390167B (en) * 2002-06-25 2005-07-13 Hubbell Inc Method and apparatus for testing an electrical component
FR2844048B1 (fr) * 2002-08-30 2005-09-30 Nanotec Solution Systeme et procede de mesure sans contact d'un deplacement ou positionnement relatif de deux objets adjacents par voie capacitive, et application au controle de miroirs
US7196527B2 (en) * 2004-02-17 2007-03-27 Stridsberg Innovation Ab Redundant compact encoders
CN101218512A (zh) * 2004-06-23 2008-07-09 Fe技术服务公司 电容传感技术
US7545289B2 (en) * 2006-07-17 2009-06-09 Synaptics Incorporated Capacitive sensing using a repeated pattern of sensing elements

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4420754A (en) * 1977-12-09 1983-12-13 Stiftelsen Institutet For Mikrovagsteknik Vid Tekniska Hogskolan Measuring device for capacitive determination of the relative position of two with respect to one another moveable parts
DE3711062A1 (de) * 1987-04-02 1988-10-20 Herbert Leypold Kapazitive absolute positionsmessvorrichtung
US5077635A (en) * 1990-05-22 1991-12-31 Robert Bosch Gmbh Capacitive position sensor

Also Published As

Publication number Publication date
CN101287964A (zh) 2008-10-15
US20080300808A1 (en) 2008-12-04
JP4914899B2 (ja) 2012-04-11
WO2007043962A1 (en) 2007-04-19
EP1943482A1 (en) 2008-07-16
JP2009511902A (ja) 2009-03-19
SE529249C2 (sv) 2007-06-12
US7956622B2 (en) 2011-06-07
EP1943482A4 (en) 2012-05-16
SE0502272L (sv) 2007-04-15
EP1943482B1 (en) 2016-12-07

Similar Documents

Publication Publication Date Title
CN101287964B (zh) 电容测量范围的信号处理方法
US4733235A (en) Capacitance type displacement measuring instrument
US5668331A (en) Position sensor
CN105588508A (zh) 用lvdt进行位移测量的方法及其传感器铁芯安装结构
CN103868442A (zh) 差分电容位移量的转换和细分方法及电容型线性位移测量系统
EP0765039A2 (en) Rotary encoder
CN102288821B (zh) 三相电路相位差的测量方法、测量装置
JPH0626884A (ja) 位置検出装置
CN102168996A (zh) 光电式编码器
Mochizuki et al. A relaxation-oscillator-based interface for high-accuracy ratiometric signal processing of differential-capacitance transducers
CN104991118A (zh) 一种高分辨异频信号频率测量系统和测量方法
CN102043091A (zh) 数字化高精度相位检测器
CN103282750A (zh) 体积测量分析方法和体积测量装置
CN108333434A (zh) 一种分程式并行结构电容阵列测量电路
KR101203041B1 (ko) 위상차를 이용한 정현파 진폭 측정 방법 및 그 장치
US20090295638A1 (en) Use of a measurement signal evaluation means of a position measuring device to determine the time difference between a first event and a second event
CN102937019A (zh) 一种微弱信号产生装置
EP0241913A2 (en) Method and circuitry for detecting signals of capacitance type transducers for measuring positions
US8217661B2 (en) Apparatus for ascertaining and/or monitoring a process variable
Bo et al. Research on signal subdivision of grating sensor
RU2683378C1 (ru) Способ цифровой демодуляции сигналов фазового волоконно-оптического датчика
CN103782178B (zh) 用于测量运动件的角速度或速度及用于识别该运动件的运动方向的装置
JPH06207805A (ja) 変位測定装置
US10948315B2 (en) Magnetic position detecting device and method
Younes Development of LVDT signal conditioner using waveguide acoustic resonance tube

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20171226

Address after: Swiss Herberge

Patentee after: Hexagon Technology Center

Address before: Stockholm

Patentee before: Hexconn Stock Co.

Effective date of registration: 20171226

Address after: Stockholm

Patentee after: Hexconn Stock Co.

Address before: Custer land, Sweden

Patentee before: Hexagon Metrology Ab

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111026

Termination date: 20201003