CN101277754B - 碳膜 - Google Patents

碳膜 Download PDF

Info

Publication number
CN101277754B
CN101277754B CN2006800367921A CN200680036792A CN101277754B CN 101277754 B CN101277754 B CN 101277754B CN 2006800367921 A CN2006800367921 A CN 2006800367921A CN 200680036792 A CN200680036792 A CN 200680036792A CN 101277754 B CN101277754 B CN 101277754B
Authority
CN
China
Prior art keywords
technology
film
carbon
gas
carbon film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2006800367921A
Other languages
English (en)
Other versions
CN101277754A (zh
Inventor
梅-布瑞特·哈格
乔恩·阿维德·李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MemfoACT AS
Original Assignee
MemfoACT AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MemfoACT AS filed Critical MemfoACT AS
Publication of CN101277754A publication Critical patent/CN101277754A/zh
Application granted granted Critical
Publication of CN101277754B publication Critical patent/CN101277754B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0067Inorganic membrane manufacture by carbonisation or pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • B01D71/0211Graphene or derivates thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • C01B3/503Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/524Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from polymer precursors, e.g. glass-like carbon material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • C04B35/62209Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse using woody material, remaining in the ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6267Pyrolysis, carbonisation or auto-combustion reactions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0022Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
    • C04B38/0032Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors one of the precursor materials being a monolithic element having approximately the same dimensions as the final article, e.g. a paper sheet which after carbonisation will react with silicon to form a porous silicon carbide porous body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/108Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/081Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/082Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/048Composition of the impurity the impurity being an organic compound
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • C04B2111/00801Membranes; Diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/05Methods of making filter

Abstract

一种制造碳膜的工艺,包括:(i)用纤维素和半纤维素的混合物与酸反应;(ii)流延该混合物以形成膜;(iii)使所述膜干燥;及(iv)使所述膜碳化。

Description

碳膜
本发明涉及用于制造碳膜和后续的碳膜再生的工艺,以及通过经特殊预处理的前驱体材料得到的新型碳膜本身。
科学家多年来一直在研究分离工业气流的组分的方法。在石油化学工业中,从与之对应的烯烃中分离烷烃是一个主要的研究领域。例如为了减少全球变暖的影响而从气流中分离二氧化碳的方法及例如在可以循环使用氢气时从气流中回收氢气的方法也已受到广泛研究。
总的来说,可以通过使用各种化学和/或物理溶剂的可逆吸收方法,或通过吸附剂(如活性碳)床中的可逆吸附,从例如含有甲烷、氮气和/或一氧化碳的气体混合物中分离如二氧化碳和/或氢气这样的气体。因为用于处理二氧化碳和氢气的现有工艺非常耗能,并依赖于附加化学药品的使用,所以成本以及增加的对环境保护的需求导致需要更加高效的工艺来超越分离工艺的热时代。膜技术就是这样的一种非热分离技术。膜分离还可以显著减轻重量并减少空间需求。
对亦称为碳分子筛膜(CMSM)的碳膜的研究已达二十年以上,已知碳膜兼具对气体的高渗透性和高选择性两者。
萨乌菲(Saufi)等人在Carbon 42(2004)241-259(《碳》,2004年,42卷,241-259页)中总结了制造碳膜的一般条件。他们称这样的膜的形成通常涉及六个阶段:(1)选择前驱体;(2)制备聚合物膜;(3)预处理;(4)热解/碳化;(5)后处理;(6)构造模块。
对前驱体的选择很重要,因为不同的前驱体会产生不同类型的碳膜。适合的前驱体包括热固性树脂、石墨、炭、沥青、植物,及较新的合成聚合物,如聚酰胺和聚丙烯腈。酚醛树脂和纤维素是已广泛用于形成碳膜的材料。
例如,GB 2207666公开了含纤维素的膜。US 4685940也记载了由再生纤维素制成的碳膜。
本发明的发明人意外地发现,由一些组分,即纤维素组分和半纤维素组分经特殊处理的混合物形成的碳膜可以得到具有特别有利的组成的膜。发明人发现,在用酸,如三氟醋酸处理这样的混合物时,可以使纤维素组分解聚为可形成有利的碳膜的寡糖或单糖。
发明人还意外地发现,这样的碳膜可以容易地再生。已知碳膜会遭受老化效应的影响,即碳膜会随着时间推移表现出渗透性和选择性的损失。各种再生方法在现有技术中是已知的。其中包括热再生、化学再生、电热再生、超声波再生,或微波再生。其中,热再生、化学再生和微波再生方法不是首选,因为这些方法非常耗能且不能在使用膜时执行。相反,需要在膜不能执行其预期的功能时对膜执行再生。该停工时间(down time)在工业规模上从经济上来说不可行。当然,可以使用两组膜,但这会增加成本且在转换膜以允许再生时仍然有停工时间。
此外,热再生还有可能将碳燃尽的缺点。化学再生需要耗时和高成本的用于去除化学药品的后处理操作,而微波再生需要使用不受微波影响的非膜材料。
碳膜中连续的石墨烯片(graphene sheet)使碳膜导电并使电热再生成为有吸引力的选择。电热再生有这样的附加优点:可以在分离工艺继续进行时使电流通过碳膜,以在使用碳膜时执行电热再生。本发明的碳膜出人意料地能够以此方式进行电热再生。
因此,从一个方面看,本发明提供一种制造碳膜的工艺,该工艺包括:
(i)用能够水解纤维素键以形成寡糖或单糖的酸来处理纤维素和半纤维素的混合物;
(ii)流延该步骤(i)所得的混合物以形成膜;
(iii)使所述膜干燥;及
(iv)使所述膜碳化。
从另一方面看,本发明提供可通过上文所述的工艺获得的碳膜。
从另一方面看,本发明使用上文所述的碳膜对气体混合物进行分离,如从含有二氧化碳或氢气的混合物中分离二氧化碳或氢气。
从另一方面看,本发明提供用于从气体混合物中分离其中含有的气体的方法,如从含有二氧化碳或氢气的混合物中分离二氧化碳或氢气,其中包括使所述气体混合物透过上文所述的碳膜。
碳膜通常可以采取有支撑体或无支撑体的两种形式。无支撑体的膜可以是中空纤维、平板膜或毛细管。有支撑体的膜(其中薄膜由支撑体承载)可以是平板状的或管状的。本发明的碳膜可以采取这些形式中的任何一种形式,但优选地为中空纤维或由支撑体承载的平板膜。
本发明的碳膜成膜的第一阶段涉及选择和预处理前驱体材料。在本发明中,前驱体材料必须至少由纤维素组分和半纤维素组分组成。纤维素指植物中主要的多糖,即β-D-葡萄糖单元键合在一起并脱水以形成例如由2000至4000个单元组成的链所产生的聚合物。
半纤维素是存在于植物细胞壁中的另一种类型的多糖,可溶解在稀碱溶液中并可通过稀碱溶液提取。这两种组分通常存在于如树这样的植物中。因此使用合适的植物浆提取物或植物浆本身,尤其是木浆,可以方便地提供纤维素和半纤维素的混合物。
在流延前驱体以形成膜之前,需要用能够水解纤维素键以形成寡糖或单糖的酸来处理前驱体材料。三氟醋酸(TFA)在这方面特别有用。也可以使用其他酸,如硫酸、硝酸、盐酸。如TFA这样的有机酸可以独立使用(即未稀释),而无机酸优选地稀释使用。酸或其溶液优选地应能够形成含有前驱体材料的溶液,即应能够溶解纤维素组分。
相对于浆料使用的酸量并不非常重要,虽然优选的是酸有较多富余。酸中前驱体材料的浓度可以处于1重量百分比的数量级。前驱体材料在酸中的曝露时间会影响膜的最终性能。因此,亦称为水解时间的曝露时间定义为在酸中初次溶解混合物的时间直到前驱体膜干燥时的时间(即步骤(i)至(iii)的时间),该曝露时间可以在7天至100天的范围中,如14至80天的范围中,优选地21至35天的范围中。
此外优选的是在膜流延之前在用酸处理的纤维素的混合物中添加至少一种金属盐。通常认为添加金属盐可以增强膜的导电性从而允许其更好地再生。
适合的金属盐是过渡金属盐和硅盐(在此情况应视为落在术语“金属”的范围中)。特别优选的金属包括Ca、Mg、Fe(如Fe3+),Si、Ag和Cu。盐可以是氧化物、氯化物、硫酸盐或硝酸盐,尤其是硝酸盐。非常优选的化合物是硝酸铁。
需要仔细控制所添加的金属盐的量,以增强所形成的膜的导电性但避免增加脆性。过高的金属负载会使碳膜过脆。因此,存在力学性能和导电性之间的折中。金属盐相对于混合物重量的适合的量包括0.5至6重量百分比,如1至5重量百分比。
在成膜之前,优选的是如通过超声波降解,使混合物的各组分完全混合。然后以有支撑体或无支撑体的形式使用各种现有技术流延成膜。对于制造有支撑体的膜,有各种选项可用于用薄膜涂覆支撑体。其中包括超声波沉积、浸涂、气相沉积、旋涂,及喷涂。
适合的支撑体材料也是公知的,其中包括陶瓷、钢和石墨。
对于无支撑体的膜,通常是中空纤维膜,可以使用现有的旋涂工艺,例如在A·伊德瑞斯(A.Idris)等人的Optimization of cellulose acetate hollow fiber reverseosmosis membrane production using Taguchi method,J.Membrane Sci.205(2002)223-237(《使用田口(Taguchi)方法优化醋酸纤维素中空纤维逆向渗透膜的制造》,《膜科学杂志》,2002年,205卷,223-237页),及由M·穆尔德(M.Mulder)所著的Basic Principles of Membrane Technology,2nd ed.,Kluwer,The Netherlands1996(《膜技术基本原理(第二版)》,克鲁维尔,荷兰,1996年)中所述。对于无支撑体的平板膜,可以简单地将用酸处理过的纤维素和半纤维素的溶液倾倒至适合的表面,如特富龙(Teflon)表面上。
一经形成,就需要使膜干燥。这可以任何现有的方式实现,如通过曝露在真空炉中之后的常压干燥实现。通过以较慢的干燥开始干燥工艺,可以想到膜的均匀性可得到提高。约100℃的干燥温度较合适。在碳化之前,在该温度下处理多数膜,如对膜进行氧化、拉伸或化学处理。本发明的另一个优点是:在形成本发明的碳膜期间,这样的预处理不是必须的。
碳化工艺是碳膜制造过程中最重要的步骤。在受控的气氛下以特定的加热速率加热膜的前驱体达特定时间。该工艺使得可以制造带有孔的碳膜,并使产物具有分子尺度上的特定的微孔性,其微孔性使碳膜具有分子筛特性。
在本发明中,碳化优选地在真空气氛或惰性气氛,如氩气中执行。最终的碳化温度可以在300至900℃的范围中,优选地在500至600℃的范围中,如550℃。加热速率可以是每分钟0.5至2℃,如每分钟1℃,虽然在加热过程期间,可能有仅保持温度而不加热的各种时间段。这些时间段称为停留(dwell)。在碳化工艺期间可能存在若干次停留,如2至7次停留。这些停留可能持续约0.5至2小时,如1小时的持续期,并优选地均匀分布在整个加热工艺期间。图2示出可由本领域技术人员处理的适合的加热规程。
通常认为头两次停留对去除水和溶剂的残留痕量来说很重要。因此碳化工艺优选地至少包括两次停留。后续的停留允许碳基(carbon matrix)重新排列并在以乱层排列的石墨烯片层之间形成微孔。如果加热速率保持较低,如低于1.5℃/分钟,则可以避免晚期的停留。
在碳化工艺期间使用碳化催化剂是现有方法。本发明的工艺的又一个优点是可以不需要这样的催化剂。因此可以在不使用催化剂的情况下实现碳化。
一旦达到最终温度,碳化工艺可以在该温度下继续进行1至5小时,如2小时。此后,在用环境空气吹扫加热炉并将膜移除之前使碳膜冷却。
通过该工艺形成的平板碳膜具有1至100μm范围中,如25至90μm范围中的厚度。孔径一般在0.2至1nm的范围中,如0.25至0.6nm的范围中,并优选地在尺寸上均匀。采取中空纤维形式的膜可以具有5μm至1mm范围中的厚度,及约1微米至300微米的壁厚。
在本发明的范围之内,可以对所形成的碳膜进行后碳化处理,以便可能精细调节孔的尺寸和分布或修复可能存在于膜中的缺陷。这样的方法包括后氧化、化学气相沉积、后热解和涂覆(coating)。萨乌菲(上文所述)在其论文中总结了可能的后碳化处理。然而,一个特别优选的实施例是本发明中制造的膜不需要这样的后碳化处理。
如上所述,本发明的碳膜可以电热再生。因此,可以跨膜施加电流以实现再生。此外,可以在使用膜时执行再生。跨膜施加电流并不影响其分离气体混合物的能力。在某些情况下,例如,在分离二氧化碳时,渗透性实际上增加了。希望不受限于理论,可以想到:让直流电通过可以使所吸附的气体,如二氧化碳快速高效地从膜上脱附。碳骼和二氧化碳之间的范德华力受到电流干扰或可能被电流反向。结果,所吸附的二氧化碳从微孔表面释放或受微孔表面排斥而发生脱附。同样的效果可以应用于其他吸附的气体。
跨膜施加的电流可以变化但不能过高,否则会使膜燃烧。1至60mA,优选地20至40mA,如30mA的电流较合适,虽然电流取决于碳膜的尺寸而不同。发明人还发现,再生工艺不仅可以周期性地执行,还可以连续地执行以最大化气体分离。
因此,从又一方面看,本发明提供从气体混合物中分离其中含有的气体的工艺,所述工艺包括使所述气体混合物透过上文所述的碳膜,使直流电通过所述碳膜以周期性地或连续地再生所述膜。
可以使用本发明的膜从气体混合物中分离的气体包括二氧化碳和氢气。优选的分离组合包括从天然气中分离氢气/甲烷、氢气,从生物气或天然气中分离二氧化碳,从煤气化或碳氢化合物的蒸气重整中分离任何作为组分的氢气/二氧化碳/甲烷/一氧化碳。膜通过选择性地对特定气体比其他气体更具渗透性来分离气体,如下面的示例中所示。
在适合的装置或模块中安装膜的方式会影响膜的性能。本领域技术人员可以定制模块以适合其需要。因此,可以使用一系列按上述工艺制造的具有不同孔径的碳膜。
现参考下面的非限制性示例和附图进一步描述本发明。
附图说明
图1示出碳化用的实验装置。前驱体膜(未示出)放置在由不锈钢端盖(2)密封的氧化铝管(1)中。使用管式炉(3)进行加热。碳化反应发生在真空中,因此管(1)通过管道(4)经隔膜阀(5)连接到真空泵(6)。冷阱(7)使碳化工艺期间排放的任何蒸气冷凝,而任何微粒物质被收集在微粒过滤器(8)中。压力变送器(9)测量系统中的压力。
图2示出用于碳化的时间/温度规程。
图3示出作为TFA曝露时间的函数的纯浆料重量损失(550℃,2小时浸渍)。误差条线(error bars)具有两倍于每个碳化批次的标准偏差的长度。
图4示出不同前驱体在TFA中的曝露时间(单种气体在30℃,2巴下)所对应的碳的分离性能(550℃,2小时浸渍)。
图5示出用于膜测试单元和电热再生的实验装置。使用铝带(12)和环氧树脂(13)固定碳膜(10)。导电胶(14)允许单芯电缆(15)连接到膜的相反侧。O形密封圈(11)位于圆盘(16)中,且可以通过孔(17)用螺栓将圆盘(16)连接到支架。电力由电源(18)供给。
图6示出电流对CO2渗透性的影响。其中示出作为CO2曝露时间的函数的有电流和没有电流时的相对CO2流量。每次渗透测试在30℃,2巴给进压力下持续7小时。通过于30℃下静态曝露在1大气压的CO2中使碳退化。
示例1:成膜
浆料(纤维素和半纤维素的混合物)以约1重量百分比的浓度溶解在三氟醋酸(TFA)中。水解时间为6天、14天或74天。
将该溶液搅拌一整夜,然后用VibraCell 130(美国康涅狄格州的Sonics &Materials公司)6mm棒以80微米的振幅超声波降解达2分钟。
在室温下在特富龙TM盘上流延成膜。覆盖该膜以使其免受灰尘干扰并使膜表面上方的气氛饱和以便减缓蒸发速率,从而增加所产生的膜的均匀性。流延膜前驱体被置于室温下并于4天后最终在真空炉中在105℃下干燥约18小时。
示例2:碳化过程
在管式炉(TZF 12/100/900)中在真空下使膜碳化,使用可用的氧化铝管和不锈钢网格作为膜的支撑体。该装置在图1中示出。
基本规程中包括最终温度550℃,保持2小时,1℃/分钟的加热速率及若干次停留。该规程在图2中示出。在达到最终温度之后,在用环境空气吹扫加热炉并将膜移除之前,使系统自然冷却到低于50℃的温度。
示例3:渗透测试
使用不可渗透的铝带遮盖圆形碳膜,留出所定义的渗透区域。然后沿着铝带和碳的界面涂敷环氧树脂。在测试单元中使用覆盖有滤纸的烧结金属盘作为膜的支撑体。在30℃和2巴的给进压力(渗透侧抽空)下在标准的升压装置(pressure-rise set-up)(MKS
Figure GSB00000411767600062
压力传感器,0-100巴范围)中测试单种气体并进行Lab
Figure GSB00000411767600063
数据记录。该实验方法和装置在K·C·奥布莱恩(K.C.O′Brien),W·J·科洛斯(W.J.Koros),T·A·巴波里(T.A.Barbari)和E·S·桑德斯(E.S.Sanders)的A newtechnique for the measurement of multicomponent gas transport throughpolymeric films,J.Membrane Sci.,29(1986)229-238(《测量多组分气体透过聚合物膜的传输的新方法》,《膜科学杂志》,1986年,29卷,229-238页)和M·R·科尔曼(M.R.Coleman)的博士论文Isomers of fluorine-containing polyimides forgas separation membranes,PhD thesis,Univ.of Texas at Austin TX,USA,1989(《用于气体分离膜的含氟聚酰亚胺异构体》,美国德克萨斯大学奥斯汀分校,1989年)中描述。
测试顺序都是氮气、氢气、甲烷、氧气、二氧化碳、SF6,最后再是氮气,以便测量任何程度的老化(性能损失)。该测试顺序可以防止强吸附气体干扰碳中的更加理想或不相关的气体的性能。测试持续几小时或几天,以确保扩散的瞬态相通过。渗透系统在每次气体测试之间抽空一整夜。
示例4:水解时间对无金属添加剂的用浆料得到的碳的性能的影响
表1
对用纯浆料得到的碳曝露于TFA下达不同时间(在550℃下,浸渍2小时条件下碳化)的说明。
Figure GSB00000411767600071
*碳化前,#碳化后。
(碳批次的重量损失是相对于前驱体膜重量的重量损失。直径缩小涉及碳化之前和之后的直径。)
解聚和呋喃的形成可以解释表1中在TFA曝露时间增加时增加的碳生成量。呋喃因为其芳香性而尤其热稳定。呋喃还比左旋葡聚糖更具挥发性,左旋葡聚糖是纤维素的已知的主要碳化中间体,因此能够承受高温。
还可以推测,较小的片段与较长的链相比可以更加容易地移动,因此会形成碳的芳香乱层结构(类似于可石墨化碳的碳中间相)。较长的链较不易变,并较难在形成碳相之前重新排列其自身。
示例5:
以浆料(纤维素和半纤维素的混合物)为原材料并以不同的水解时间重复示例1至3。所得到的半纤维素重量损失结果在图3中用图表示出。
示例6:渗透结果
使用示例5中的膜对几种气体进行的渗透测试的结果中与CO2/CH4对应的部分在表2和图4中给出。
表2
用纯浆料得到的碳(550℃,2小时浸渍)分别曝露在TFA下达6、14和74天的结果。
Figure GSB00000411767600072
Figure GSB00000411767600081
(可转换Barrer为kmol×m×m-2×s-1×kPa-1,除以2.99×1015)
仅6天的TFA曝露可以得到表现出努森(Knudsen)扩散(参见例如O2和N2)及表面扩散(参见例如CO2和SF6)的膜。两周后,已达到水解工艺中的临界阈值,且CO2/CH4分离性能看来随时间推移而增加。根据图4,14和74天之间的曝露时间变化对渗透性影响较小。
结果表明:呋喃是实现有高分离性能的微孔性的关键中间体。对应于最长的水解时间(图4)可获得最佳的分离性能(渗透性和选择性的最佳组合)。到呋喃的转化随水解时间的增加而增加。有利的是该中间体不仅在碳化工艺期间形成,还在碳化之前通过酸处理形成。
示例7:再生
以木浆为原材料用14天的TFA处理来重复示例1至3。以各种浓度添加硝酸铁(FeN)到TFA/浆料溶液中。在一个批次中,金属含量为1.8重量百分比,而在另一个批次中,金属含量为4.4重量百分比。
使用电热再生。测试使用软钎焊作为将单芯电缆连接到膜的方法。使用焊剂来增加锡钎料在碳上的湿润性,但较差的粘着性仍然是一个问题。因此,使用双组分导电环氧树脂。在测试用的膜上(无遮盖)施加增加的电流密度,并发现30mA(17.5V DC)是碳可在室温下承受几个小时的电流密度。100mA的电流会使碳燃烧。然后遮盖(mask)碳膜。在普通的环氧树脂已干燥,且发现膜已具备功能之后,用导电胶在膜的输入侧相对的区域处连接单芯电缆,然后导电胶凝结(图5)。
在每次渗透测试中施加的电流持续7小时,并使用30mA的恒定直流电。在每次气体测试之间使膜抽空一整夜。为了评估电流的影响,也对同一批次中不连接电线的碳(non-wired carbon)进行渗透测试(每天7小时)。通过于30℃下静态曝露在1大气压的CO2中使碳退化。设计出实验序列使两种膜具有相似的处理过程。
膜数据和单种气体的渗透性在表3中给出。
表3
含金属硝酸盐的木浆(单种气体,供给侧2巴,30℃下)的碳化的结果(550℃,2小时浸渍)。
Figure GSB00000411767600091
(可转换Barrer为kmol×m×m-2×s-1×kPa-1,除以2.99×1015)
示例8:退化和再生:
选择含有4.4重量百分比的FeN的碳用于退化和再生实验,因为其导电性较高。表4给出连接电线的(wired carbon)碳和不连接电线的碳(non-wired carbon)的一些关键结果。
表4
连接电线的碳和不连接电线的碳的性能概要(单种气体在30℃和2巴下)。
Figure GSB00000411767600092
*假设类似于连接电线的膜。
施加电流可以使总体CO2渗透性增加65%,而总体CH4渗透性不变。对于不连接电线的碳,CO2渗透性降低一半以上。
图6示出老化和再生实验的结果。由于这些碳来自相同的碳化批次,因此假设不连接电线的碳和连接电线的碳开始时的渗透性相同。结果表明施加的电流具有显著影响。电流不仅可以用作周期性的再生方法,而且可以按连续的方式使用,以有助于CO2的透过,而阻止CH4

Claims (18)

1.一种制造碳膜的工艺,包括:
(i)用能够水解纤维素键以形成寡糖或单糖的酸来处理纤维素和半纤维素的混合物;
(ii)流延步骤(i)所得的混合物以形成膜;
(iii)使所述膜干燥;及
(iv)使所述膜碳化。
2.如权利要求1所述的工艺,其特征在于,所述酸是三氟醋酸。
3.如权利要求1或2所述的工艺,其特征在于,在步骤(ii)之前,将金属盐添加到步骤(i)所得的混合物中。
4.如权利要求3所述的工艺,其特征在于,所述金属盐构成所述混合物的0.5至6重量百分比。
5.如权利要求3所述的工艺,其特征在于,所述金属盐是硝酸铁。
6.如权利要求1所述的工艺,其特征在于,使用木浆提供所述纤维素和半纤维素的混合物。
7.如权利要求1所述的工艺,其特征在于,步骤(i)至(iii)需要7至100天。
8.如权利要求7所述的工艺,其特征在于,步骤(i)至(iii)需要21至35天。
9.如权利要求1所述的工艺,其特征在于,最终碳化温度是500至600℃。
10.如权利要求1所述的工艺,其特征在于,碳化步骤(iv)至少包括两次停留。
11.如权利要求1所述的工艺,其特征在于,步骤(iv)在不使用催化剂的情况下实现。
12.如权利要求1所述的工艺,其特征在于,还包括再生步骤(v),在该步骤中跨所述碳膜施加电流。
13.如权利要求12所述的工艺,其特征在于,所述电流为1至60mA。
14.一种通过权利要求1至13中任一项所述的工艺获得的碳膜。
15.权利要求14所述的碳膜在分离气体混合物中的应用。
16.一种用于从气体混合物中分离其中含有的气体的工艺,所述工艺包括使所述气体混合物透过权利要求14所述的碳膜。
17.如权利要求16所述的工艺,其特征在于,使直流电通过所述碳膜以周期性地或连续地再生所述碳膜。
18.如权利要求16或17所述的工艺,其特征在于,所分离的气体是二氧化碳或氢气。
CN2006800367921A 2005-08-05 2006-08-04 碳膜 Expired - Fee Related CN101277754B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0516154.2 2005-08-05
GBGB0516154.2A GB0516154D0 (en) 2005-08-05 2005-08-05 Carbon membranes
PCT/GB2006/002926 WO2007017650A1 (en) 2005-08-05 2006-08-04 Carbon membranes

Publications (2)

Publication Number Publication Date
CN101277754A CN101277754A (zh) 2008-10-01
CN101277754B true CN101277754B (zh) 2012-06-06

Family

ID=34984167

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800367921A Expired - Fee Related CN101277754B (zh) 2005-08-05 2006-08-04 碳膜

Country Status (10)

Country Link
US (1) US7947114B2 (zh)
EP (1) EP1909949B1 (zh)
JP (1) JP5328351B2 (zh)
CN (1) CN101277754B (zh)
AT (1) ATE505259T1 (zh)
DE (1) DE602006021313D1 (zh)
DK (1) DK1909949T3 (zh)
ES (1) ES2364912T3 (zh)
GB (1) GB0516154D0 (zh)
WO (1) WO2007017650A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109152982A (zh) * 2016-04-29 2019-01-04 陶氏环球技术有限责任公司 改进的含有碳分子筛膜的过渡金属及其制备方法

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009190957A (ja) * 2008-02-18 2009-08-27 Zukosha:Kk 導電性炭素材料の製造方法および導電体の製造方法
JP5046122B2 (ja) * 2008-03-17 2012-10-10 独立行政法人産業技術総合研究所 自立メソポーラスカーボン薄膜。
GB0807267D0 (en) 2008-04-21 2008-05-28 Ntnu Technology Transfer As Carbon membranes from cellulose esters
CA2691305C (en) * 2008-06-10 2013-06-25 Ngk Insulators, Ltd. Carbon membrane and method for manufacturing the same
NO330123B1 (no) * 2009-07-11 2011-02-21 Sargas As Lav CO2-anlegg for utvinning av oljesand
CN101757859B (zh) * 2010-03-05 2012-05-23 沈阳工业大学 一种炭膜反应器及其使用方法
JP5465610B2 (ja) 2010-06-08 2014-04-09 本田技研工業株式会社 カーボンの製造方法
WO2012041998A1 (de) * 2010-10-01 2012-04-05 Basf Se Verfahren zur herstellung von kohlenstoffmembranen
CN101948108B (zh) * 2010-10-02 2012-05-09 上海交通大学 氧化石墨纸的制备方法
CN102125810B (zh) * 2011-01-24 2013-01-02 中国矿业大学 一种重组族组分制备煤基复合炭膜的方法
CN102166481B (zh) * 2011-03-07 2013-04-24 中国矿业大学 一种基于煤中沥青质族组分制备复合炭膜的方法
EA027725B1 (ru) * 2011-12-20 2017-08-31 Джорджия Тек Рисёч Корпорейшн Способ формирования углеродной мембраны
WO2013112164A1 (en) 2012-01-26 2013-08-01 Empire Technology Development, Llc Graphene membrane with regular angstrom-scale pores
WO2013136869A1 (ja) * 2012-03-16 2013-09-19 日本碍子株式会社 分離膜の製造方法、分離膜複合体の製造方法、及び分離膜複合体
US9156702B2 (en) 2012-07-25 2015-10-13 Empire Technology Development Llc Graphene membrane repair
US9114423B2 (en) 2012-07-25 2015-08-25 Empire Technology Development Llc Repairing graphene on a porous support
SG11201504692SA (en) * 2012-12-19 2015-07-30 Lockheed Corp Perforated graphene deionization or desalination
WO2015031116A1 (en) * 2013-08-29 2015-03-05 V-GRID Energy Systems Hydrogen separation from synthesis gas near stp
CN103818900B (zh) * 2014-03-19 2015-10-28 中南林业科技大学 一种以一次性纸质餐具为原料制备石墨烯的方法
US10086337B2 (en) 2014-11-30 2018-10-02 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Composite carbon molecular sieve membranes having anti-substructure collapse particles loaded in a core thereof
WO2017114174A1 (zh) * 2015-12-31 2017-07-06 济南圣泉集团股份有限公司 一种石墨烯电热材料及其应用
CN106082164B (zh) * 2016-06-09 2018-03-27 周虎 一种碳膜及其生产方法与生产设备
US10112149B2 (en) 2016-06-30 2018-10-30 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Metallopolyimide precursor fibers for aging-resistant carbon molecular sieve hollow fiber membranes with enhanced selectivity
WO2018005924A1 (en) 2016-06-30 2018-01-04 L'Air Liquide Société Anonyme Pour L'Étude Et L'Exploitation Des Procedes Georges Claude Metallopolyimide precursor fibers
US10143973B2 (en) 2016-06-30 2018-12-04 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Metallopolyimide precursor fibers for aging-resistant carbon molecular sieve hollow fiber membranes with enhanced selectivity
US10183258B2 (en) 2016-06-30 2019-01-22 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Metallopolyimide precursor fibers for aging-resistant carbon molecular sieve hollow fiber membranes with enhanced selectivity
CN107824056A (zh) * 2017-11-21 2018-03-23 邢彻 一种用废旧芳香族聚酰胺反渗透膜制备炭分子筛膜的方法
CN111065448B (zh) 2017-12-04 2022-07-19 株式会社Lg化学 用于制造气体分离膜的方法和气体分离膜
CN108211820B (zh) * 2018-01-29 2020-11-17 浙江工商大学 一种导电无机陶瓷膜材料及制备方法
WO2019164954A1 (en) * 2018-02-20 2019-08-29 Georgia Tech Research Corporation Molecularly-mixed composite membranes and methods for making the same
US11666865B2 (en) 2018-05-02 2023-06-06 Dow Global Technologies Llc Method of making carbon molecular sieve membranes
US11420154B2 (en) * 2018-05-02 2022-08-23 Dow Global Technologies Llc Method of making carbon molecular sieve membranes
WO2020075075A1 (en) * 2018-10-08 2020-04-16 Universidade Do Porto Process for preparation of cellulose based carbon molecular sieve membranes and membranes thereof
CN111285686B (zh) * 2018-12-07 2021-06-04 南京动量材料科技有限公司 一种复合多孔碳膜的制备工艺及电容器
CN110124612B (zh) * 2019-04-02 2022-03-11 江苏镇江固利纳新能源科技合伙企业(有限合伙) 一种空气处理用微米级厚度的透气碳膜及其制造方法
CN112619322A (zh) * 2021-01-15 2021-04-09 王忠良 一种代替熔喷布的空气过滤膜及其制备方法
CN112934000B (zh) * 2021-03-09 2022-03-25 宁波大学 一种pvdf微滤膜的改性方法
JP7423171B2 (ja) 2022-03-30 2024-01-29 本田技研工業株式会社 トルクリミッタ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4685940A (en) * 1984-03-12 1987-08-11 Abraham Soffer Separation device
US20030101866A1 (en) * 2000-04-20 2003-06-05 Andreas Noack Separation of fluid mixtures using membranized sorption bodies
CN1455699A (zh) * 2000-09-14 2003-11-12 昭和电工株式会社 用于纯化全氟化碳的吸附剂、其生产方法、高纯八氟丙烷和八氟环丁烷、和其用途

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1118626A (en) 1964-10-22 1968-07-03 Gen Electric Co Ltd Improvements in or relating to the production of carbonaceous materials
DE2104680A1 (de) 1971-02-02 1972-08-10 Sigri Elektrographit Gmbh Verfahren zur Herstellung von Kohlenstoffkörpern
US4737421A (en) * 1983-12-27 1988-04-12 Showa Denko Kabushiki Kaisha Method for producing a carbon sheet and a fuel cell separator
US4738872A (en) * 1985-07-02 1988-04-19 International Fuel Cells Carbon-graphite component for an electrochemical cell and method for making the component
US4670300A (en) * 1985-07-03 1987-06-02 International Fuel Cells Corporation Carbon-graphite component for an electrochemical cell and method for making the component
JPS62176908A (ja) * 1986-01-29 1987-08-03 Kuraray Chem Kk 炭素分子篩の製法
GB2207666B (en) 1987-08-06 1992-03-18 Israel Atomic Energy Comm Carbon membranes and process for producing them
JP2728448B2 (ja) * 1988-08-18 1998-03-18 三菱化学株式会社 二次電池
JPH02227401A (ja) * 1989-02-28 1990-09-10 Daikin Ind Ltd 含フッ素セルロースエステル誘導体
JPH0360478A (ja) 1989-07-25 1991-03-15 Oji Paper Co Ltd 多孔質炭素板の製造方法
JPH0376821A (ja) 1989-08-21 1991-04-02 Oji Paper Co Ltd 多孔質炭素板の製造方法
DE4104513C2 (de) 1990-02-14 1996-11-28 Chmiel Horst Adsorber
JPH05507302A (ja) * 1990-04-16 1993-10-21 イーストマン コダック カンパニー 低分子量セルロースエステルの製造
US5102855A (en) * 1990-07-20 1992-04-07 Ucar Carbon Technology Corporation Process for producing high surface area activated carbon
US5240474A (en) * 1991-01-23 1993-08-31 Air Products And Chemicals, Inc. Air separation by pressure swing adsorption with a high capacity carbon molecular sieve
JPH07213916A (ja) * 1994-02-03 1995-08-15 Babcock Hitachi Kk ハニカム触媒の製造法
IL108883A (en) * 1994-03-07 1998-03-10 Rotem Ind Ltd Process for the production of hollow carbon fiber membranes
JPH0867513A (ja) 1994-08-30 1996-03-12 Risho Kogyo Co Ltd 分子篩炭素とその製造方法
JPH09173829A (ja) 1995-12-26 1997-07-08 Nippon Chem Ind Co Ltd 空気浄化剤および空気浄化用フィルター
US5912424A (en) 1997-03-31 1999-06-15 Lockheed Martin Energy Research Corporation Electrical swing adsorption gas storage and delivery system
JPH111315A (ja) 1997-06-10 1999-01-06 Dainippon Ink & Chem Inc 球状活性炭素材複合体及びその製造方法
DE19823561A1 (de) 1998-05-27 1999-12-02 Horst Chmiel Flächenförmiges adsorbierendes Material
JP3572213B2 (ja) * 1999-01-18 2004-09-29 信越化学工業株式会社 低置換度ヒドロキシプロピルセルロース
JP2001009247A (ja) 1999-07-02 2001-01-16 Asahi Chem Ind Co Ltd 炭素中空繊維膜用のセルロース系中空繊維膜および炭素中空繊維膜の製造方法
KR100744984B1 (ko) * 1999-11-16 2007-08-02 혼다 기켄 고교 가부시키가이샤 전기 이중층 캐패시터용 전극 및 그것의 제조 방법
JP2001353429A (ja) 2000-04-27 2001-12-25 Ryohei Mihara 植物廃材を主原料とした細多孔質性膜の製造方法
US6427944B1 (en) * 2000-07-13 2002-08-06 Bbnt Solutions Llc Systems and methods for using airborne communication nodes
JP2002355538A (ja) 2001-05-30 2002-12-10 Asahi Medical Co Ltd 炭素繊維中空糸膜用セルロース中空糸膜およびその製造方法
WO2003072640A2 (en) * 2002-02-25 2003-09-04 Cabot Coproration Compositions comprising continuous networks and monoliths
JP4465433B2 (ja) * 2002-10-02 2010-05-19 独立行政法人科学技術振興機構 リグニン系マトリックスを有するガラス複合材料
US7267710B2 (en) * 2003-03-28 2007-09-11 Mitsubishi Heavy Industries, Ltd. Method of and apparatus for regenerating adsorbent

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4685940A (en) * 1984-03-12 1987-08-11 Abraham Soffer Separation device
US20030101866A1 (en) * 2000-04-20 2003-06-05 Andreas Noack Separation of fluid mixtures using membranized sorption bodies
CN1455699A (zh) * 2000-09-14 2003-11-12 昭和电工株式会社 用于纯化全氟化碳的吸附剂、其生产方法、高纯八氟丙烷和八氟环丁烷、和其用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAUFI S M ET AL.Fabrication of carbon membranes for gas separation--a review.《CARBON》.2004,第42卷(第2期),241-259,.
SAUFI S M ET AL.Fabrication of carbon membranes for gas separation--a review.《CARBON》.2004,第42卷(第2期),241-259,. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109152982A (zh) * 2016-04-29 2019-01-04 陶氏环球技术有限责任公司 改进的含有碳分子筛膜的过渡金属及其制备方法
CN109152982B (zh) * 2016-04-29 2021-12-28 陶氏环球技术有限责任公司 改进的含有碳分子筛膜的过渡金属及其制备方法

Also Published As

Publication number Publication date
GB0516154D0 (en) 2005-09-14
ATE505259T1 (de) 2011-04-15
US20100162887A1 (en) 2010-07-01
EP1909949A1 (en) 2008-04-16
WO2007017650A1 (en) 2007-02-15
US7947114B2 (en) 2011-05-24
JP2009502724A (ja) 2009-01-29
DK1909949T3 (da) 2011-07-11
DE602006021313D1 (de) 2011-05-26
CN101277754A (zh) 2008-10-01
ES2364912T3 (es) 2011-09-16
EP1909949B1 (en) 2011-04-13
JP5328351B2 (ja) 2013-10-30

Similar Documents

Publication Publication Date Title
CN101277754B (zh) 碳膜
Liang et al. Carbon membrane for gas separation derived from coal tar pitch
Suda et al. Gas permeation through micropores of carbon molecular sieve membranes derived from Kapton polyimide
Tanco et al. Composite-alumina-carbon molecular sieve membranes prepared from novolac resin and boehmite. Part II: Effect of the carbonization temperature on the gas permeation properties
US9533265B2 (en) Gas separation membrane and method of preparing the same
Vu et al. High pressure CO2/CH4 separation using carbon molecular sieve hollow fiber membranes
Elyassi et al. Silicon carbide membranes for gas separation applications
CN102015082B (zh) 源自纤维素酯的炭中空纤维膜
Bhuwania et al. Engineering substructure morphology of asymmetric carbon molecular sieve hollow fiber membranes
Rungta et al. Carbon molecular sieve dense film membranes derived from Matrimid® for ethylene/ethane separation
Campo et al. Carbon molecular sieve membranes from cellophane paper
Kueh et al. Asphaltene-derived activated carbon and carbon nanotube membranes for CO2 separation
Zhang et al. Preparation and characterization of carbon membranes made from poly (phthalazinone ether sulfone ketone)
Acharya et al. Metal-supported carbogenic molecular sieve membranes: synthesis and applications
Fu et al. The significance of entropic selectivity in carbon molecular sieve membranes derived from 6FDA/DETDA: DABA (3: 2) polyimide
JP2014531306A (ja) カーボンナノチューブを含有しているセラミック膜
MXPA03007910A (es) Aparato y metodo para separar gases.
Grainger et al. Evaluation of cellulose-derived carbon molecular sieve membranes for hydrogen separation from light hydrocarbons
Roy et al. Preparation of carbon molecular sieve membrane derived from phenolic resin over macroporous clay-alumina based support for hydrogen separation
CN109761216A (zh) 一种通用的、基于有机锌盐制备多孔碳材料的方法
Efimova et al. Gas permeability through graphite foil: The influence of physical density, membrane orientation and temperature
Zhang et al. TiO2-decorated NaA zeolite membranes with improved separation stability for pervaporation dehydration of N, N-Dimethylacetamide
Garcia et al. High activated carbon loading mixed matrix membranes for gas separations
Yan et al. Preparation and characterization of novel carbon molecular sieve membrane/PSSF composite by pyrolysis method for toluene adsorption
Hägg et al. Carbon molecular sieve membranes for gas separation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: MANFU ACT CO., LTD.

Free format text: FORMER OWNER: NTNU TECHNOLOGY TRANSFER AS

Effective date: 20110914

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20110914

Address after: Dahl, Norway

Applicant after: MEMFOACT AS

Address before: Trondheim

Applicant before: Ntnu Technology Transfer AS

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120606

Termination date: 20140804

EXPY Termination of patent right or utility model