CN101273183B - 用于增产的可降解纤维体系 - Google Patents

用于增产的可降解纤维体系 Download PDF

Info

Publication number
CN101273183B
CN101273183B CN200680022068.3A CN200680022068A CN101273183B CN 101273183 B CN101273183 B CN 101273183B CN 200680022068 A CN200680022068 A CN 200680022068A CN 101273183 B CN101273183 B CN 101273183B
Authority
CN
China
Prior art keywords
fiber
liquid
polymer
fluid
proppant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200680022068.3A
Other languages
English (en)
Other versions
CN101273183A (zh
Inventor
迪安·M·威尔伯格
克里斯托弗·N·弗雷德
马里纳·布洛瓦
安·M·W·霍弗
菲利普·F·沙利文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prad Research and Development Ltd
Original Assignee
Prad Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prad Research and Development Ltd filed Critical Prad Research and Development Ltd
Publication of CN101273183A publication Critical patent/CN101273183A/zh
Application granted granted Critical
Publication of CN101273183B publication Critical patent/CN101273183B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/68Compositions based on water or polar solvents containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/08Fiber-containing well treatment fluids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/30Viscoelastic surfactants [VES]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S507/00Earth boring, well treating, and oil field chemistry
    • Y10S507/922Fracture fluid
    • Y10S507/924Fracture fluid with specified propping feature

Abstract

给出一种使利用支撑剂或砾石处理井筒所必需的金属交联增稠剂的量降到最小的方法。该方法包括利用纤维帮助在粘性携带液中运送、悬浮和布置支撑剂或砾石,否则携带液的粘度不足以防止颗粒沉降。给出的纤维具有为了支撑剂运送而优化的性质,但是在处理后降解成在水中有例如钙和镁离子存在时不沉淀的产品。交联聚合物携带液被确定不会被存在于纤维中的污染物或纤维过早降解释放的降解产物而损害。

Description

用于增产的可降解纤维体系
背景技术
本发明涉及微粒运送;更具体地涉及在油田增产处理中的微粒运送;甚至更具体地涉及浆化在粘度不足以防止微粒沉积的粘性携带液中的支撑剂(proppant)和砾石运送(gravel transport);甚至更具体地涉及在这样的流体中包含有助于运送并抑制沉降的纤维;最具体地涉及在处理后降解成降解产物的这种纤维,该降解产物在水中的离子例如钙和镁存在时不会沉淀,并涉及交联聚合物携带液的选择,该携带液不会被存在于纤维或降解产物中由纤维的过早降解释放的污染物而损害。 
烃(油、凝析油和气)典型地从钻入包含它们的地层的井中生产。通常,因为各种原因,例如包含资源的地层的固有的低渗透率或由于钻井和完井导致的地层的损害,烃进入井中并从而流到地面的流动低,而不满足需要。当存在这种情况时,通常对井“增产(stimulate)”。增产的最通常形式之一是水力压裂(hydraulicfracturing),其中将流体注入井中,然后在超过地层“压裂”压力的压力下将其注入地层。形成裂缝并在地层内发展,大大地增加了流体可以流过进入井内的表面面积。当释放注入压力时,裂缝闭合;因此,一种叫作“支撑剂”的微粒被包括在压裂流体中,以便当压力释放后裂缝不能完全闭合,而是在支撑剂上闭合,因此压裂表面由一层支撑剂保持分离,流体可以通过其流到井内。压裂流体通常必须具有用于两个目的的最小粘度。第一,流体的粘性越大,裂缝越容易通过注入更多的流体而变宽,第二,越粘的流体将越容易运送支撑剂,因此称作“携带”液。但是,当流体通常情况下通过聚合物增加粘度,尤其是通过交联聚合物增加粘度时,至少一些聚合物或交联聚合物在处理后留在裂缝中。这种留在裂缝中的增粘剂抑制了期望开采的流体流出地层、通过裂缝、进入井筒到达地面的流动。在一定程度上,对粘性的需要可以通过以更高的速度注入流体而补偿,但是因为各种原因,例如设备和成本的限制,这并不总是理想的方法。也可以通过非聚合物方法提供粘度,例如使用泡沫、乳状液和粘弹性表面活性剂流体体系,但是有时这些不是解决方案的选择。操作人员也可以选择使用可获得的最不具有损害性的聚合物,但是这些聚合物可能是昂贵的。 
一些操作人员已经选择的使成本和聚合物损害最小化的解决方案是使用尽可 能少的聚合物。一种这样的方法是平滑水处理(slickwater treatment)(也称作水基液压裂处理)(其中最小支撑剂和流体粘度,例如仅为约3cP,这与利用典型地具有至少100cP(通常比这高得多)的粘度的交联聚合物携带液的常规作业相反)。为了弥补低的粘度,这样的作业通常以高的速度泵入以有助于产生裂缝和运送支撑剂,但是裂缝高度的增加可能过多,很少的支撑剂被置入,并且支撑剂可能沉降在裂缝底部。这种沉降随着流体分解发生或者简单地作为初始设计粘度不够的结果而发生。有时,操作人员尝试折衷平滑水混合与常规作业的组合,这可能导致出现每一种作业的缺点。 
典型地,当操作人员选择借助于基于聚合物的携带液使用更加常规的压裂方法时,他们尝试使用最低可能的聚合物浓度,以使聚合物导致的损害降到最小。最近发现,倘若选择合适长度、直径和硬度的纤维并在正确的浓度下使用,包括支撑剂在携带液中的浆液中的纤维可以用于帮助在较低粘度和/或较低浆液流速下运送支撑剂(参见SPE68854和SPE91434)。这样的纤维也具有这样的优点,它们改善了支撑剂充填层的性质,例如其流体导流能力、其帮助防砂的能力,和对支撑剂颗粒流回井筒的阻力。但是,尽管增产处理已经非常成功,仍然还有改进的空间;以前典型地用于纤维的材料或者(玻璃或诺沃洛伊德(novoloid))在地层条件下不降解或者不具有用于支撑剂运送的最优硬度或(聚对苯二甲酸乙二醇酯)降解成能够减少压裂最终效果的产品。 
发明内容
给出一种处理井筒和井筒穿透的地层的方法,其中该方法包括注入纤维和支撑剂在粘性携带液中的浆液的步骤。在没有纤维情况下的携带液的粘度不足以防止支撑剂在运送过程中沉降。在处理后纤维降解成在存在钙或镁离子的情况下不会沉淀的产品。注入步骤可以任选地在地层破裂压力以上进行,其中在没有纤维情况下携带液的粘度可任选地在注入停止后不足以防止支撑剂在裂缝闭合之前在裂缝的沉降。 
合适的纤维选自取代和非取代的丙交酯、乙交酯、聚乳酸、聚乙醇酸、聚乳酸和聚乙醇酸的共聚物,乙醇酸与其它包含羟基、羧酸基或羟基羧酸基部分的共聚物,乳酸与其它包含羟基、羧酸基或羟基羧酸基部分的共聚物,及其混合物。 
典型地,该纤维具有约2mm至约25mm的长度,优选地约3mm至约18mm。典型地,该纤维具有约0.1旦尼尔至约20旦尼尔,优选地约0.15旦尼尔至约6旦尼尔。在地层温度在约4小时至100天的时间内纤维降解。
在一种实施方式中,携带液包含硼酸盐交联聚合物。该聚合物可以是在约1.92g/L(约16ppt)至约3.6g/L(约30ppt)之间,优选为约1.92g/L(约16ppt)至约2.88g/L(约24ppt)浓度的瓜尔胶。携带液可以包括pH值控制剂,其存在的量足以在注入之前中和任何存在于纤维中的酸以及在裂缝闭合之前中和由纤维产生的任何酸。酸被中和到例如足以在地层温度在剪切率为100sec-1时保持存在纤维的流体的粘度在约75cP以上的程度。pH值控制剂选自胺,或碱土金属、铵和碱金属盐的倍半碳酸盐、碳酸盐、氢氧化物、氧化物、碳酸氢盐,或有机羧酸盐,例如胺,三乙醇胺或四亚乙基五胺。硼酸盐交联剂是硼酸或焦硼酸钠。该流体可任选地也包括交联延迟剂,例如山梨糖醇。 
在另一实施方式中,携带液包括用锆酸盐交联的聚合物,例如羧甲基羟基丙基瓜尔胶。聚合物的浓度在约2.64g/L(约22ppt)至约3.6g/L(约30ppt)之间。锆酸盐(zirconate)交联剂例如为乳酸锆。该流体可任选地包括凝胶稳定剂,例如硫代硫酸钠。 
在又一实施方式中,流体包括破乳剂。 
在再一实施方式中,携带液可以利用粘弹性表面活性剂例如两性离子表面活性剂增稠,例如内铵盐或者酰氨基胺氧化物(amidoamine oxide)。在再一实施方式中,携带液可以是乳状液,可为起泡的或增能的,或者可以是diutan、黄原胶(xanthan)、硬葡聚糖或羟乙基纤维素。 
附图说明
附图1描述了在本发明中使用的纤维的分解速度和温度关系。 
附图2表示了许多流体在几个温度的粘度和时间关系,其中一些流体适于本发明,一些不适于本发明。 
具体实施方式
我们已经发现合适的纤维在水力压裂和砾石充填中有助于运送、悬浮和放置支撑剂,然后降解以把纤维在支撑剂充填层的出现降到最小或消除,而不释放具有以下性质的降解产物:或者a)与在压裂水或砾石充填的携带液或地层水中出现的某些多价离子反应以产生防碍流体流动的物质,或者b)降低合适的金属交联聚合物为携带液增粘的能力。我们将其中合适的纤维和利用合适金属交联聚合物体系增粘的流体用于浆化并运送支撑剂的体系,称为“纤维/聚合物增粘剂”体系或“FPV”体系。 
将主要根据水力压裂描述FPV体系,但是它也适于砾石充填,或适于在一个操作中压裂并砾石充填(例如称为压裂和充填(frac and pack)、压裂-n-充填(farc-n-pack)、压裂-充填(frac-pack)、增产充填处理(StimPac treatment)、或者其它名字),其也被扩展到增产从地下地层生产烃、水和其它流体。这些操作在水力压裂或砾石充填中的“砾石”中包括泵入“支撑剂”(在产生裂缝后把裂缝支撑开的天然或合成材料)浆液。在低渗透率地层,水力压裂处理的目的通常是形成长的高的表面区域裂缝,其大大增加了流体从地层到井筒的流动路径的数量。在高渗透率地层,水力压裂处理的目的典型地是产生短、宽、高导流性(condctive)的裂缝,以避开在钻井和/或完井中导致的近井损害,以确保岩石和井筒之间良好的流体连通,并且也增加可获得的用于流体流入井筒的表面积。砾石也是天然或合成材料,其可以与支撑剂相同或不同。砾石充填用于防“砂”。砂是给予任何来自地层能够被带入生产设备的颗粒物质例如粘土的名称。砾石充填是用于防止产生地层砂的防砂方法,例如其中在井筒内置入钢制筛管(steel screen),并且外环(surrounding annulus)由制备的特定尺寸的砾石充填,该砾石设计成防止能够堵塞地下或地面设备并减少流动的地层砂通过。砾石充填的主要目标是稳定化地层,同时导致最小的对井的生产能力的损害。有时在没有筛管的情况下进行砾石充填。高渗透率的地层经常胶结不好,因此需要防砂;也可能损害高渗透率的地层,所以也需要压裂。因此,通常将想要短宽裂缝的水力压裂处理合并到具有砾石充填的单个连续(“压裂和充填”)操作中。为了简化,下文中我们可能提及一次操作(压裂和充填)或砾石充填中的水力压裂、压裂和砾石充填中的任一个,是意指它们的全部。 
FPV体系尤其适于压裂致密的气井,其典型地为具有延长的裂缝闭合时间的低渗透环境;在这种情况下,裂缝在注入停止后保持敞开数小时,携带液可以分解并且不再悬浮支撑剂。FPV体系允许低的聚合物含量、降低的裂缝高度增加(因为能够使用低的粘度)、降低的支撑剂沉降和增加的保持的渗透率(改善了无量纲裂缝导流能力(dimensionless fracture conductivity)),所有这些导致改善了生产率。当使用包含了会与其它可降解纤维的降解产物沉淀的高浓度钙或其它离子(例如高达12,000ppm的钙)的浓盐水时,FPV体系也尤其适于砾石充填。 该体系也尤其适于原生水含钙和镁这样的离子比较多的情形,原生水在处理后将流入裂缝。 
一些以前用于运送、悬浮和放置支撑剂的纤维(例如聚对苯二甲酸乙二醇酯)降解成副产物,该副产物可在原生水中存在过量钙或镁离子的情况下析出盐。可以对其它纤维采取预防措施,例如但不限于泵送前置液和/或泵送酸或鳌合溶解剂,吸附或吸收合适的鳌合剂到纤维上或纤维内,或者加入防止沉淀的流体沉淀抑制剂或金属清除剂离子。对于FPV体系的纤维,不必要在原生水中对这些阳离子屏蔽和采取这些预防或纠正措施。 
早期利用纤维帮助运送支撑剂的处理,有时称作“纤维辅助的运送”处理,典型地是平滑水处理(也称作水基液压裂处理)(具有最少的支撑剂和流体粘度,例如仅为约3cP),这与利用典型地具有至少100cP(通常比这高得多)的粘度的交联聚合物携带液的常规处理相反。现在已经发现,如果使用低浓度的交联聚合物携带液(例如在流体使用的温度(在100sec-1)具有至少约50cP,优选地至少约75cP的粘度),将改善在流体中使用纤维的处理,在通常在致密气藏中发现的较硬岩石中尤其是这样,在这种岩石中较高的粘度提供增加的裂缝宽度。FPV体系消除了流体粘度对流体的支撑剂运送特性的影响。它允许使用低得多的聚合物含量来实现支撑剂布置而没有降低支撑剂的覆盖率;这意味着不期望的裂缝高度增长的几率更小,并减少了由于聚合物或交联聚合物导致的压裂损害。需要的粘度取决于以下因素的影响:例如岩石硬度;纤维的量、类型(identity)、尺寸和硬度;泵速和持续时间;只在一定程度上取决于支撑剂尺寸、浓度和密度。需要的粘度可以通过工业上的数学模型或试验,例如那些已知的缝隙流动试验来确定。油田服务公司和合同测试公司(contract testing company)可以进行这些确定。 
用于本发明的合适的纤维材料包括取代和非取代的丙交酯、乙交酯、聚乳酸、聚乙醇酸、聚乳酸和聚乙醇酸的共聚物,乙醇酸与其它包含羟基、羧酸基或羟基羧酸基部分的共聚物,乳酸与其它包含羟基、羧酸基或羟基羧酸基部分的共聚物,或前述材料的混合物。其它适于使用的材料是在美国专利No.4 848 467;4 957 165和4 986 355中描述的那些羟基乙酸(乙醇酸)与自身或其它包含羟基、羧基酸或羟基羧酸基部分的聚合物。用于本发明纤维的合适材料也在描述于公开号为2003/002195和2004/015260的美国申请中。其它聚合物,例如那些在其它温度或其它pH值下降解的聚合物,或者那些具有不同化学相 容性的聚合物,例如聚乙烯醇,可以任选地与合适的携带液调节剂一起使用。 
极好的用于本发明的纤维的材料是特定有机酸的固体环状二聚物或者固体聚合物,其在已知的可控制的温度、时间和pH值条件下水解;降解产物是有机酸。合适材料的一个例子是乳酸的固体环状二聚物(称作“丙交酯”),其熔点为95℃至125℃(取决于旋光性)。另一个是乳酸的聚合物(有时称作聚乳酸(或“PLA”)或聚乳酸酯(polylactate)或聚丙交酯)。另一个例子是乙醇酸的固体环状二聚物(称作“乙交脂”),其熔点为约86℃。另一个例子是乙醇酸(羟基乙酸)的聚合物,也称作聚乙醇酸(“PGA”)或聚乙交酯。另一个例子是乳酸和乙醇酸的共聚物。这些聚合物和共聚物是聚酯。通常使环状二聚物聚合以形成用以制备纤维的最终聚合物,但是对于低温操作,纤维可以直接由固体环状二聚物制成。原样的商业可获得材料包括一些游离酸(例如高达约5%),和一些溶剂(典型地为水)。 
Cargill Inc.,Minneapolis,MN,USA拥有的Nature Works LLC,Minnetonka,MN,USA生产叫作“丙交酯”的固体环状乳酸二聚物,并由其生产分子量和结晶度变化的乳酸聚合物或聚乳酸,这些都在种类商标名NatureworksTM PLA名下。虽然从Nature Works目前可获得的PLA最通常的分子量为至多约100 000,但是任何聚丙交酯(由任何制造商通过任何工艺制造的)和任何结晶度的任何分子量的材料都可以用于本发明的实施方式中。PLA聚合物在室温下为固体,并且通过水解形成乳酸。那些从Nature Works可获得的PLA通常具有约120℃至约170℃的结晶熔化温度,但是其它温度也是可获得的。聚(d,l-丙交酯)可从北京和台湾的Bio-Invigor获得,其分子量为至多500 000。Bio-Invigor也供应聚乙醇酸(也称作聚乙交酯)和乳酸和羟基乙酸的各种共聚物,通常称作“polyglactin”或聚(丙交酯-共-乙交酯)。所有这些材料的水解反应速度尤其是由以下因素所控制:分子量、结晶度(晶体与无定形材料的比例)、外观(固体尺寸和形状)以及在聚丙交酯存在的情况下由两种光学异构体的量控制。(天然形成的l-丙交酯形成部分结晶聚合物;合成的dl-丙交酯形成无定形聚合物。)非晶性区域比晶性区域更容易水解。较低的分子量、较小的结晶度和更大的表面-质量比都导致较快的水解。通过升高温度、通过加入酸或碱或通过加入与水解产品反应的物质都能加速水解。 
均聚物更易结晶;除非共聚物是嵌段共聚物否则趋向于是无定形的。对于均聚物,结晶度可以通过制造方法控制;而对于共聚物,结晶度可以通过制造 方法和丙交酯与乙交酯的比例和分布控制。聚乙交酯可以制成多孔的形式。一些纤维在水解之前在水中溶解得非常慢。 
可以涂覆本发明的纤维以减缓水解。合适的涂层包括聚乙交酯和ε-己内酯(polycaprolate)(乙交酯和ε-己内酯的共聚物)和硬脂酸钙,它们两个都是疏水的。聚乙交酯和ε-己内酯自身慢慢水解。通过任何方法在用于本发明纤维的材料表面上形成疏水层都延迟水解。注意到这里的涂层指封装或仅指通过化学反应或通过形成或添加另一种材料(例如油)的薄膜来改变表面。直到水接触纤维材料才会发生降解。 
纤维原位(即,在放置它们的位置)自毁。尽管通常在裂缝中的支撑剂充填层中,但是那个位置也可以是井筒、射孔和砾石充填中的悬浮液中,作为井筒或裂缝的壁上的滤饼的部分,或者在地层中的天然裂缝中或者晶簇中。纤维/聚合增稠体系可以用于碳酸盐和砂岩中。这些材料的特别优势是本发明的纤维和产生的酸是无毒的并可生物降解。 
合适的纤维的长度为约2-25mm,优选约3-18mm,最优选约6mm;它们具有约0.1-20旦尼尔,优选地约0.15-6旦尼尔,最优选地约1.4旦尼尔。这样的纤维对于颗粒运送是最优的。 
用于制备金属交联聚合物增粘剂的合适的聚合物包括:例如,多聚糖,例如取代的半乳甘露聚糖如瓜尔胶,由甘露糖和半乳糖组成的高分子量半乳甘露聚糖,或瓜尔胶衍生物,例如羟丙基瓜尔胶(HPG),羧甲基羟丙基瓜尔胶(CMHPG)和羧甲基瓜尔胶(CMG),疏水改性的瓜尔胶,含瓜尔胶化合物和合成聚合物。典型地使用基于硼、钛、锆或铝复合物的交联剂来增加聚合物的有效分子量并使它们更好地适用于高温井中。 
有效的水溶性聚合物(条件是选择的具体例子与本发明的纤维相容)的其它适合种类包括聚乙烯基聚合物、聚甲基丙烯酰胺、纤维素醚、木质素磺酸盐(酯)和其铵盐、碱金属盐和碱土金属盐。其它典型的水溶性聚合物的更具体例子是丙烯酸-丙烯酰胺共聚物、丙烯酸-甲基丙烯酰胺共聚物、聚丙烯酰胺、部分水解的聚丙烯酰胺、部分水解的聚甲基丙烯酰胺、聚乙烯醇、聚乙酸乙烯酯、聚亚烷基氧化物、羧基纤维素、羧基烷基羟乙基纤维素、羟乙基纤维素、其它半乳甘露聚糖、通过发酵淀粉提取糖(starch-derived sugar)(例如黄原胶)获得的杂多糖,和其铵盐和碱金属盐。 
在较小程度上使用纤维素衍生物,例如使用或不使用交联剂的羟乙基纤维 素(HEC)或羟丙基纤维素(HPC)、羧甲基羟乙基纤维素(CMHEC)和羧甲基纤维素(CMC)。尽管黄原胶、diutan和硬葡聚糖三种生物聚合物已经显示具有极好的支撑剂悬浮能力,但是它们比瓜尔胶衍生物昂贵,因此不经常使用它们,除非它们可以在低浓度下使用。 
线性(非交联的)聚合物体系是可以使用的,但是通常不是优选的,因为这需要更多的聚合物。可以使用所有的交联聚合物体系,其包括例如延迟的、为了高温优化的、为了与海水一起使用优化的、在各种pH值下缓冲的、为了低温优化的交联聚合物体系。可以使用任何交联剂,例如硼、钛,和锆。适当的硼交联聚合物体系的非限制性例子包括,用硼酸交联的瓜尔胶和瓜尔胶代用品,四硼酸钠,和封装的(encaplsulated)硼酸盐;硼酸盐交联剂可以与缓冲剂和pH值控制剂以及延迟剂一起使用,所述pH值控制剂例如氢氧化钠、氧化镁、碳酸氢三钠,和碳酸钠、胺(如羟烷基胺、苯胺、吡啶、嘧啶、喹啉,和吡咯烷、和羧酸盐如醋酸盐和草酸盐),所述延迟剂例如山梨糖醇、醛和葡糖酸钠。合适的锆交联聚合物体系的非限制性例子包括,那些由乳酸锆(例如钠乳酸锆)、三乙醇胺、2,2’-亚氨基二乙醇和这些配体的混合物交联的聚合物体系,包括当用碳酸氢盐调节时。适当的钛酸盐的非限制例子包括,例如用羟基乙酸延迟的三乙醇胺和乳酸盐和它们的混合物。能使用或包括任何其他的化学添加剂,条件是它们经过与本发明的纤维和纤维降解产物的相容性测试(纤维或其降解产物或流体中的化学物质都不互相干扰功效,也不干扰在作业中可能遇到的流体,例如原生水或冲洗液)。例如,一些作为浓缩品的标准交联剂或聚合物通常包含如异丙醇、正丙醇、甲醇或柴油等材料。 
因为纤维降解释放酸,所以尤其优选两种金属交联的聚合物体系。这些优选的流体对伴随纤维降解的酸的释放相对不敏感。(可以使用其它流体,在不含有害物质的条件下或对于短时处理尤其是这样,但是可能稳定性差一些。)优选的硼酸盐交联流体最初具有高的pH值,例如超过约11.5。3.6g/L(30ppt)纤维的降解将把pH值降到约9-9.5。在该pH值下硼酸盐流体仍然交联。但是如果pH值降到约9以下,流体就开始分解。相反地,PLA的分解速度在pH值为约5时最低;它在低的和高的pH值下速度增加,在高的pH值下比在低的pH值下增加得快。下面的实施例1中描述的纤维在pH值6至7下在121℃(250
Figure 2006800220683_0
)预期的井下寿命为约5-6小时;在该温度pH值为约10时为约3-4小时;在该温度pH值为约12时为约2-3小时。在pH值为约12时, 纤维在104℃(220)预期的井下寿命为约5-6小时,在约93℃(200
Figure 2006800220683_2
)为约15至18小时。优选地,纤维在地层温度在从约4小时至约100天的时间内降解。三乙醇胺稳定流体直到从纤维释放的酸的浓度达到在85%的三乙醇胺水溶液中约2gpt。这些流体为什么会优选的另一个原因是使用具有纤维的延迟流体更好一些,因为纤维在水中的分散在交联之前更好。 
第一种优选的金属交联聚合物体系是硼交联瓜尔胶,其设计用于延迟交联并对低的瓜尔胶浓度优化。它例如由利用瓜尔胶或瓜尔胶浆液、硼酸、固体或浓缩氢氧化钠,和作为稳定剂/延迟剂的山梨糖醇制成;它可能包含粘土稳定剂,比如氯化钾或四甲基氯化铵,另外的稳定剂比如硫代硫酸钠(通常作为五水合物获得)和三乙醇胺、杀菌剂、分解剂和分解剂助剂。例如在约110℃(约230
Figure 2006800220683_3
)温度使用的这种流体的一个特别优选的例子由下述物质制成:约2.16g/L(18ppt或磅每千加仑)的瓜尔胶;2L/1000L(2gpt)的50%的四甲基氯化铵水溶液;1L/1000L(1gpt)的包含约30%至50%的烷氧基化多元醇、树脂和碳氢化合物溶剂在甲醇、异丙醇(propan-2-ol)和二甲苯的共混物的防乳化剂;2L/1000L(2gpt)的包含约15%的乙氧基C11-C15直链和支链醇的水溶液、异丙醇和乙二醇一丁醚的混合物的表面活性剂;0.74g/L(6.21ppt)的硼酸;1.74g/L(14.52ppt)的氢氧化钠;2L/1000L(2gpt)的85%的三乙醇胺水溶液;和2L/1000L(2gpt)的48%的d-山梨糖醇(延迟剂)水溶液。该流体可任选地也包含分解剂,例如但不限于过硫酸铵或溴酸钠。这种制剂在以下情况时使用:例如在约1.92g/L(约16ppt)至约3.6g/L(约30ppt)的瓜尔胶浓度以及具有上面所列的添加剂的量;优选地例如在浓度高达约2.88g/L(约24ppt)并具有1-2L/1000L(1-2gpt)的50%的四甲基氯化铵水溶液;0至1L/1000L(0-1gpt)的如上所述表面活性剂;1-2L/1000L(1-2gpt)的如上所述防乳化剂;0.74g/L(6.21ppt)的硼酸;1.74g/L(14.52ppt)的苛性钠;0-2L/1000L(0至2gpt)的85%的三乙醇胺水溶液;和1-3L/1000L(1-3gpt)的48%的d-山梨糖醇水溶液。 
第二种优选的金属交联聚合物体系是锆交联的羧甲基羟丙基瓜尔胶(CMHPG),其例如在约79℃(约175
Figure 2006800220683_4
)至约121℃(约250
Figure 2006800220683_5
)的温度,尤其是超过约110℃(约230
Figure 2006800220683_6
)是特别合适的。这种流体由下列材料组成:例如约2.64g/L(约22ppt)的羧甲基羟丙基瓜尔胶和约20g/L(167ppt)的KCl;4L/1000L(4gpt)的30%硫代硫酸钠水溶液(凝胶稳定剂);0.1L/1000L(0.1gpt) 的75%乙酸和14%的异丙醇水溶液;和0.52L/1000L(0.52gpt)的23%乳酸锆(交联剂)的甲醇(14%)-水溶液。这种制剂例如在以下情况下使用:约2.64g/L(约22ppt)至约3.6g/L(约30ppt)的羧甲基羟丙基瓜尔胶浓度以及具有例如约20-50g/L(约167-417ppt)的KCl;约2-7L/1000L(2-7gpt)的30%硫代硫酸钠水溶液;约0.1-0.12L/1000L(0.1-0.12gpt)的75%乙酸和14%的异丙醇水溶液;和0.45-0.65L/1000L(0.45-0.65gpt)的23%乳酸锆(交联剂)的甲醇(14%)-水溶液;优选地在约3.00g/L(约25ppt)下具有20g/L(167ppt)的KCl;4L/1000L(4gpt)的30%硫代硫酸钠水溶液;0.12L/1000L(0.12gpt)的75%乙酸和14%的异丙醇水溶液;和0.52L/1000L(0.52gpt)的23%乳酸锆(交联剂)的甲醇(14%)-水溶液。 
对于0.12-0.36kg/L(1-3PPA)的支撑剂含量,纤维的优选浓度是2.40g/L(20ppt);对于0.36-0.6kg/L(3-5PPA)的支撑剂含量,纤维的优选浓度是3.59g/L(30ppt);并且对于超过0.6kg/L(5PPA)的支撑剂含量,纤维的优选浓度是4.80g/L(40ppt)。纤维浓度通常基于支撑剂浓度而变化。优选的聚合物交联流体(例如上文中刚刚描述的那些)显示在下表1中: 
                                表1 
Figure 2006800220683A00800101
通过这些支撑剂、聚合物和纤维浓度,流体具有足够高的稳定性并且支撑剂的沉降足够慢,可提供极好的裂缝导流能力。 
和金属交联聚合物体系一样,也可以使用任何粘弹性的表面活性剂流体体系(比如阳离子的、两性的(amphoteric)、阴离子的、非离子的、混合的和两性离子的(zwitterionic)粘弹性表面活性剂流体体系,尤其是内铵盐两性离子的粘弹性表面活性剂流体体系或氨基胺氧化物表面活性剂流体体系), 条件是它们经过与本发明的纤维和纤维降解产物的相容性测试(纤维或其降解产物或流体中的化学物质都不互相干扰功效或不干扰在作业中可能遇到的流体的,例如原生水或冲洗液)。非限制性的合适的例子包括美国专利5551 516;5 964 295;5 979 555;5 979 557;6 140 277;6 258 859和6 509 301中描述的那些。 
正如已经提到的,虽然纤维降解产物是增稠剂的天然分解剂,对于硼交联聚合物和对于VES体系尤其是这样,但是由于聚合物含量低而且VES体系本身容易分解,这不是主要因素。 
可以使用任何支撑剂(砾石),条件是它与纤维、地层、流体和处理的期望结果相容。这样的支撑剂(砾石)可以是天然的或合成的(包括但不限于玻璃珠、瓷珠、沙,和铝土矿)、涂层的,或包含化学物质;可以顺序地使用或者以各种尺寸或各种材料的混合物使用一种以上支撑剂。支撑剂可以是树脂涂敷的,优选地为预固化的树脂涂敷的,条件是该树脂和可从涂层释放或与本发明其它化学物质接触的其它任何化学物质与它们相容。在相同或不同的井或处理中的支撑剂和砾石可以彼此在材料和/或尺寸方面相同,在这个讨论中术语“支撑剂”意图包括砾石。通常使用的支撑剂为平均粒度为约0.15mm至约2.39mm(约8至约100美国目(U.S.mesh)),更具体地,但不限于0.25-0.43mm(40/60目),0.43-0.84mm(20/40目),0.84-1.19mm(16/20目),0.84-1.68mm(12/20目)和0.84-2.39mm(8/20目)尺寸的材料。通常支撑剂将以约0.12-0.96kg/L,优选地约0.12-0.72kg/L(约1PPA至约8PPA,例如从约0.12-0.54kg/L即约1-6PPA)的浓度存在于浆液中。(PPA是每加仑液体“加入的支撑剂磅数”。) 
最通常地以与用于防砂和防止支撑剂回流的纤维相同的方式和使用相同的设备,将纤维与支撑剂在交联聚合物流体中的浆液混合,例如但不限于美国专利No.5,667,012中描述的方法。在压裂中,对于支撑剂运送、悬浮和布置,纤维通常与充满支撑剂或砾石的流体一起使用,不经常与前置液、冲洗液或类似物一起使用。 
也任选的是,压裂流体可包含设计为通过在压裂区域形成多孔填充层(porous pack)而在压裂操作完成后限制支撑剂回流的材料。这样的材料可以是现有技术中的任何已知材料,从斯伦贝谢在商标名“PropNETTM”下获得的例如其它纤维,例如玻璃纤维(例如参见美国专利No.5,501,275)。示例性 的支撑剂回流抑制剂包括诺沃洛伊德(novoloid)纤维或小片,或诺沃洛伊德型聚合物(美国专利No.5,782,300)。因此FPV体系可包括第二纤维,例如不可降解的或仅在较高的温度可降解的第二纤维,其存在主要是帮助防止支撑剂回流。FPV体系也可包含另一纤维,例如聚对苯二甲酸乙二醇酯纤维,其也是对帮助运送、悬浮和布置支撑剂优化的,但是如果没有采取预防措施,将具有较高的降解温度并将析出钙和镁盐。正如已经提到的,可使用其它纤维采取适当的预防措施,例如但不限于,泵送前置液和/或泵送酸或螯合溶解剂,吸附或吸收适当的螯合剂到纤维上或纤维内,或加入防止沉淀的流体沉淀抑制剂或金属清除剂离子。 
尽管本发明已经描述了使用金属交联聚合物流体这一点,基于携带液的粘弹性表面活性剂也可以与设计用于运送、悬浮和布置支撑剂的纤维一起使用。至于与聚合物一起,优势是较低粘度,因此使用更少的化学物质,纤维降解产物是分解剂。基于粘弹性表面活性剂的流体体系本身不具有损害。 
可包括任何通常在这样处理中使用的添加剂,条件还是它们与其它组分和期望的处理结果相容。这样的添加剂可包括,但不限于抗氧化剂、交联剂、缓蚀剂、延迟剂、生物杀灭剂、缓冲剂、降滤失剂(fluid loss additive)等。处理的井筒可以是垂直的、倾斜的或水平的。它们可以用套管和射孔完井,或为裸眼。 
有时用作携带液或压裂流体的其它流体形式也可以与FPV体系一起使用。例如,携带液可以是乳状液,或者可为起泡的或者增能的。 
可以根据下面的实施例进一步理解本发明。 
实施例1:
附图1显示了本发明的合适的纤维的分解速度,聚乳酸包含约87wt%的聚丙交酯,约12wt%的水和约1wt%的填料。材料是NatureWorksTMPLA6201D或NatureWorksTMPLA 6202D,制成平均长度约5.7-6.3mm和约1.35-1.45旦尼尔的纤维。已经发现6201D和6202D的降解速度大约相同。可以看到纤维在约121℃(约250
Figure 2006800220683_7
)的温度历时约1天分解而在约79.4℃(约175
Figure 2006800220683_8
)的温度历时约2个月分解。 
实施例2:
在各种温度在Fann 50粘度计中确定许多基于聚合物的流体在该温度的粘度与时间的函数关系。每种流体包含3.60g/L(30ppt)的与在例1中使用的相同的纤维。流体在韦林氏搅切器中制成;在每种情况下,通过向水中添加浆液状的聚合物,使聚合物水化,然后加入其它添加剂,然后在交联步骤之前向线性凝胶增加纤维,然后加入交联剂,这样制成流体。本领域技术人员知道如何在实验室和现场中制备金属交联聚合物流体,他们知道可以对下面的通常程序进行变化(例如预混合特定组分,或者使用分批混合或连续混合方法)。应该在使用前以与此类似的方式测定具体的流体。流体1-7的试验在93℃(200
Figure 2006800220683_9
)进行;流体8与流体7是相同的流体,所不同的是在107℃(225
Figure 2006800220683_10
)进行;流体9与流体7是相同的流体,所不同的是在121℃(250
Figure 2006800220683_11
)进行。显示的时间是流体到达预期温度之后的时间。流体如下: 
流体1:(本发明优选的2.16g/L(18ppt)的硼酸盐交联瓜尔胶。)该流体包含2.16g/L的瓜尔胶;2L/1000L的50%四甲基氯化铵水溶液;1L/1000L的上述防乳化剂;2L/1000L的表面活性剂,其包括约15%的乙氧基化的C11-C15 直链的和支化的醇的水溶液、异丙醇和乙二醇一丁醚的混合物;1.13g/L(9.4ppt)的山梨糖醇;1.6L/1000L的30%氢氧化钠水溶液;和0.55g/L(4.6ppt)的硼酸。 
流体2:(不合适的2.16g/L(18ppt)的硼酸盐交联瓜尔胶流体。)该流体包含2.16g/L(18ppt)的瓜尔胶聚合物;2wt%的KCl或2L/1000L的四甲基氯化铵;2L/1000L的表面活性剂,其包括约15%的乙氧基化的C11-C15直链或支化的醇的水溶液、异丙醇和乙二醇一丁醚的混合物;1.3L/1000L的在碳氢化合物浆液中的四硼酸钠(硼酸盐交联剂);4L/1000L的硫代硫酸钠;4L/1000L的85%的三乙醇胺水溶液;2L/1000L的30wt%的氢氧化钠水溶液;和2L/1000L的0.06kg/L的硼酸水溶液。 
流体3:(不合适的3.6g/L(30ppt)的硼酸盐交联瓜尔胶流体。)该流体包含3.6g/L(30ppt)的瓜尔胶聚合物;2wt%的KCl或2L/1000L的四甲基氯化铵;2L/1000L的表面活性剂,其包括约15%的乙氧基C11-C15直链或支化的醇的水溶液、异丙醇和乙二醇一丁醚的混合物;和3.5L/1000L的交联剂,其包括在甘油和水的混合物中的约10至20%的焦硼酸钠。 
流体4:(本发明的合适的2.64g/L(22ppt)的硼酸盐交联瓜尔胶。)该流体包含2.64g/L(22ppt)的瓜尔胶聚合物;2wt%的KCl或2L/1000L的四甲基 氯化铵;2L/1000L的表面活性剂,其包括约15%的乙氧基化的C11-C15直链或支化的醇的水溶液、异丙醇和乙二醇一丁醚的混合物;2.1L/1000L(2.1gpt)的交联剂,其包括在甘油和水的混合物中的约10至20%的焦硼酸钠;和0.4L/1000L(0.4gpt)的30wt%的氢氧化钠溶液。 
流体5:(本发明优选的2.16g/L(18ppt)的锆酸盐交联的CMHPG流体。)该流体包含2.16g/L的CMHPG;20g/L的氯化钾;0.1L/1000L(0.1gpt)的75%乙酸和14%异丙醇水溶液;2L/1000L(2gpt)的30%的硫代硫酸钠水溶液;和0.52L/1000L(0.52gpt)的23%的乳酸锆的甲醇(14%)-水溶液。 
流体6:(本发明优选的2.4g/L(20ppt)的锆酸盐交联的CMHPG流体。)该流体包含2.4g/L的CMHPG;20g/L的氯化钾;0.1L/1000L(0.1gpt)的75%乙酸和14%异丙醇水溶液;2L/1000L(2gpt)的30%的硫代硫酸钠水溶液;和0.52L/1000L(0.52gpt)的23%的乳酸锆的甲醇(14%)-水溶液。 
流体7-9:(本发明优选的2.64g/L(22ppt)的锆酸盐交联的CMHPG流体。)该流体包含2.64g/L的CMHPG;20g/L的氯化钾;0.1L/1000L(0.1gpt)的75%乙酸和14%异丙醇水溶液;2L/1000L(2gpt)的30%的硫代硫酸钠水溶液;和0.52L/1000L(0.52gpt)的23%的乳酸锆的甲醇(14%)-水溶液。 
该数据显示了不合适的、合适的和优选流体之间的差别。不合适的流体不能实现或不能保持足够的粘度。合适的流体通过以高粘度开始在有用的时间内实现有用的粘度。优选的流体仅非常慢地失去粘性因此不需要高的初始粘度;实际上分解剂可能对这样的流体有利。本领域技术人员知道合适的分解剂(例如但不限于酶或氧化分解剂)并知道如何使用它们。 
尽管已经主要根据烃生产井的增产描述了本发明的方法和组合物,但是应该理解,本发明可以应用到生产其它材料(例如水、氦和二氧化碳)的井中,本发明也可以应用到其它类型井的增产上,例如注入井、清除井(disposalwell)和储存井(storage well)中。 
本发明可以应用到任何类型的井中,例如套管井或裸眼井中;利用油基泥浆或水基泥浆钻井;垂直、倾斜或水平井;具有或不具有防砂措施的井,例如具有防砂筛管的井。其它处理可以在本发明的处理之前或之后进行,例如抑制结垢、基岩处理(matrix treatment)、压井、控制井漏(lostcirculation control)、注入隔离液(injection of spacer)、推动器(pusher)、预冲洗(pre-flush)、后冲洗(post-flush)等。本发明的处理可以通过连续油管(coiled tubing)进行。换句话说,在本发明应用之前或之后在钻井和完井和其它处理中所使用的化学、结构、工具等不是关键的,只要使用或遇到的的任何流体不干扰本发明使用的流体和材料即可;这可以通过简单的实验室或增产试验容易地检测,在所述的检测中在预期的条件下测试可能的相互作用以确保没有有害作用。 

Claims (26)

1.一种处理井筒和井筒穿透的地层的方法,包括注入纤维和支撑剂在粘性携带液中的浆液的步骤,其中在没有纤维时携带液的粘度不足以防止支撑剂在运送过程中沉降,并且其中在处理后纤维降解成在钙或镁离子存在的情况下不沉淀的产品,并且
其中所述纤维选自:取代和非取代的丙交酯、乙交酯、聚乳酸、聚乙醇酸、聚乳酸和聚乙醇酸的共聚物,乙醇酸与其它包含羟基、羧酸基或羟基羧酸基部分的共聚物,乳酸与其它包含羟基、羧酸基或羟基羧酸基部分的共聚物,及其混合物。
2.权利要求1所述的方法,其中所述注入步骤在地层破裂压力以上进行。
3.权利要求2所述的方法,其中在没有纤维情况下携带液的粘度在注入停止后不足以防止支撑剂在裂缝闭合之前在裂缝中沉降。
4.权利要求1所述的方法,其中所述纤维的长度为2mm至25mm。
5.权利要求1所述的方法,其中所述纤维具有0.1旦尼尔至20旦尼尔。
6.权利要求1所述的方法,其中所述纤维在地层温度在4小时至100天的时间内降解。
7.权利要求1所述的方法,其中所述携带液包括硼酸盐交联的聚合物。
8.权利要求7所述的方法,其中聚合物浓度为1.92g/L至3.6g/L。
9.权利要求7所述的方法,其中所述携带液包括pH值控制剂,其存在的量足以中和在注入之前存在于纤维中的任何酸并足以中和裂缝闭合之前由纤维产生的任何酸。
10.权利要求9所述的方法,其中酸被中和到足以在地层温度在剪切率为100sec-1时保持存在纤维的流体的粘度在75cP以上的程度。
11.权利要求9所述的方法,其中pH值控制剂选自胺,和碱土金属、铵和碱金属的倍半碳酸盐、碳酸盐、氢氧化物、氧化物、碳酸氢盐和有机羧酸盐。
12.权利要求11的方法,其中所述pH值控制剂选自倍半碳酸钠、三乙醇胺和四亚乙基五胺。
13.权利要求7的方法,其中用于获得所述硼酸盐交联的聚合物的硼酸盐交联剂选自硼酸或焦硼酸钠。
14.权利要求7的方法,其中所述携带液还包括交联延迟剂。
15.权利要求14的方法,其中所述交联延迟剂包括山梨糖醇。
16.权利要求1的方法,其中所述携带液包括用锆酸盐交联的聚合物。
17.权利要求16的方法,其中所述聚合物包括羧甲基羟基丙基瓜尔胶。
18.权利要求16的方法,其中所述聚合物浓度为2.64g/L至3.6g/L。
19.权利要求16的方法,其中用于获得所述锆酸盐交联的聚合物的锆酸盐交联剂包括乳酸锆。
20.权利要求16的方法,其中所述携带液还包括凝胶稳定剂。
21.权利要求20的方法,其中所述凝胶稳定剂包括硫代硫酸钠。
22.权利要求1的方法,其中所述携带液还包括破乳剂。
23.权利要求1的方法,其中所述携带液是乳状液。
24.权利要求1的方法,其中所述携带液是起泡的或增能的液体。
25.权利要求1的方法,其中所述携带液使用粘弹性表面活性剂增稠。
26.权利要求11的方法,其中所述有机羧酸盐是草酸盐。
CN200680022068.3A 2005-06-20 2006-06-19 用于增产的可降解纤维体系 Active CN101273183B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/156,966 2005-06-20
US11/156,966 US7275596B2 (en) 2005-06-20 2005-06-20 Method of using degradable fiber systems for stimulation
PCT/IB2006/051966 WO2006137002A1 (en) 2005-06-20 2006-06-19 Degradable fiber systems for stimulation

Publications (2)

Publication Number Publication Date
CN101273183A CN101273183A (zh) 2008-09-24
CN101273183B true CN101273183B (zh) 2012-06-20

Family

ID=37185708

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200680022068.3A Active CN101273183B (zh) 2005-06-20 2006-06-19 用于增产的可降解纤维体系

Country Status (7)

Country Link
US (5) US7275596B2 (zh)
CN (1) CN101273183B (zh)
AR (1) AR055338A1 (zh)
CA (1) CA2611769C (zh)
EA (1) EA009171B1 (zh)
MX (2) MX344738B (zh)
WO (1) WO2006137002A1 (zh)

Families Citing this family (218)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7380600B2 (en) * 2004-09-01 2008-06-03 Schlumberger Technology Corporation Degradable material assisted diversion or isolation
US7775278B2 (en) * 2004-09-01 2010-08-17 Schlumberger Technology Corporation Degradable material assisted diversion or isolation
US7275596B2 (en) * 2005-06-20 2007-10-02 Schlumberger Technology Corporation Method of using degradable fiber systems for stimulation
US9714371B2 (en) * 2005-05-02 2017-07-25 Trican Well Service Ltd. Method for making particulate slurries and particulate slurry compositions
US7445044B2 (en) * 2005-09-16 2008-11-04 Halliburton Energy Services, Inc. Polymer mixtures for crosslinked fluids
US8088719B2 (en) * 2005-09-16 2012-01-03 Halliburton Energy Services, Inc. Polymer mixtures for crosslinked fluids
US9034806B2 (en) * 2005-12-05 2015-05-19 Schlumberger Technology Corporation Viscoelastic surfactant rheology modification
CN101371005B (zh) 2006-01-27 2013-07-17 普拉德研究及开发股份有限公司 用于地层的水力压裂的方法
US7934556B2 (en) * 2006-06-28 2011-05-03 Schlumberger Technology Corporation Method and system for treating a subterranean formation using diversion
US9034802B2 (en) * 2006-08-17 2015-05-19 Schlumberger Technology Corporation Friction reduction fluids
US7565929B2 (en) * 2006-10-24 2009-07-28 Schlumberger Technology Corporation Degradable material assisted diversion
US7507693B2 (en) * 2006-12-07 2009-03-24 Schlumberger Technology Corporation Viscoelastic surfactant fluid systems comprising an aromatic sulfonate and methods of using same
US8757259B2 (en) 2006-12-08 2014-06-24 Schlumberger Technology Corporation Heterogeneous proppant placement in a fracture with removable channelant fill
US8636065B2 (en) 2006-12-08 2014-01-28 Schlumberger Technology Corporation Heterogeneous proppant placement in a fracture with removable channelant fill
US9085727B2 (en) 2006-12-08 2015-07-21 Schlumberger Technology Corporation Heterogeneous proppant placement in a fracture with removable extrametrical material fill
US8763699B2 (en) 2006-12-08 2014-07-01 Schlumberger Technology Corporation Heterogeneous proppant placement in a fracture with removable channelant fill
US7581590B2 (en) * 2006-12-08 2009-09-01 Schlumberger Technology Corporation Heterogeneous proppant placement in a fracture with removable channelant fill
US20080194428A1 (en) * 2007-02-08 2008-08-14 Welton Thomas D Treatment fluids comprising diutan and associated methods
US8726991B2 (en) 2007-03-02 2014-05-20 Schlumberger Technology Corporation Circulated degradable material assisted diversion
US8695708B2 (en) * 2007-03-26 2014-04-15 Schlumberger Technology Corporation Method for treating subterranean formation with degradable material
US9080440B2 (en) 2007-07-25 2015-07-14 Schlumberger Technology Corporation Proppant pillar placement in a fracture with high solid content fluid
US8936082B2 (en) 2007-07-25 2015-01-20 Schlumberger Technology Corporation High solids content slurry systems and methods
US9040468B2 (en) 2007-07-25 2015-05-26 Schlumberger Technology Corporation Hydrolyzable particle compositions, treatment fluids and methods
US8119574B2 (en) * 2007-07-25 2012-02-21 Schlumberger Technology Corporation High solids content slurries and methods
US10011763B2 (en) 2007-07-25 2018-07-03 Schlumberger Technology Corporation Methods to deliver fluids on a well site with variable solids concentration from solid slurries
US8490699B2 (en) * 2007-07-25 2013-07-23 Schlumberger Technology Corporation High solids content slurry methods
US8490698B2 (en) 2007-07-25 2013-07-23 Schlumberger Technology Corporation High solids content methods and slurries
US20090149354A1 (en) * 2007-12-07 2009-06-11 Bj Services Company Well Treatment Compositions Containing Hydratable Polyvinyl Alcohol and Methods of Using Same
EP2085447A1 (en) * 2007-12-26 2009-08-05 Services Pétroliers Schlumberger Method and composition for curing lost circulation
JP5101324B2 (ja) * 2008-02-07 2012-12-19 日立建機株式会社 建設機械のNOx低減装置の配設構造
US20090247430A1 (en) * 2008-03-28 2009-10-01 Diankui Fu Elongated particle breakers in low pH fracturing fluids
US9212535B2 (en) * 2008-04-15 2015-12-15 Schlumberger Technology Corporation Diversion by combining dissolvable and degradable particles and fibers
US8936085B2 (en) 2008-04-15 2015-01-20 Schlumberger Technology Corporation Sealing by ball sealers
US20090272545A1 (en) * 2008-04-30 2009-11-05 Altarock Energy, Inc. System and method for use of pressure actuated collapsing capsules suspended in a thermally expanding fluid in a subterranean containment space
US8109094B2 (en) 2008-04-30 2012-02-07 Altarock Energy Inc. System and method for aquifer geo-cooling
US9874077B2 (en) * 2008-04-30 2018-01-23 Altarock Energy Inc. Method and cooling system for electric submersible pumps/motors for use in geothermal wells
EP2206761A1 (en) 2009-01-09 2010-07-14 Services Pétroliers Schlumberger Electrically and/or magnetically active coated fibres for wellbore operations
US8372787B2 (en) * 2008-06-20 2013-02-12 Schlumberger Technology Corporation Electrically and/or magnetically active coated fibres for wellbore operations
EP2135913A1 (en) 2008-06-20 2009-12-23 Schlumberger Holdings Limited Electrically and/or magnetically active coated fibres for wellbore operations
EP2310767B1 (en) 2008-07-07 2016-04-13 Altarock Energy, Inc. Enhanced geothermal systems and reservoir optimization
US7644761B1 (en) 2008-07-14 2010-01-12 Schlumberger Technology Corporation Fracturing method for subterranean reservoirs
US8091639B2 (en) 2008-08-20 2012-01-10 University Of Utah Research Foundation Geothermal well diversion agent formed from in situ decomposition of carbonyls at high temperature
EP2175003A1 (en) * 2008-10-13 2010-04-14 Services Pétroliers Schlumberger Particle-loaded wash for well cleanup
CA2741084A1 (en) 2008-10-24 2010-04-29 Schlumberger Canada Limited Fracture clean-up by electro-osmosis
US8561696B2 (en) 2008-11-18 2013-10-22 Schlumberger Technology Corporation Method of placing ball sealers for fluid diversion
US8079413B2 (en) 2008-12-23 2011-12-20 W. Lynn Frazier Bottom set downhole plug
US8899317B2 (en) 2008-12-23 2014-12-02 W. Lynn Frazier Decomposable pumpdown ball for downhole plugs
US8372789B2 (en) * 2009-01-16 2013-02-12 Halliburton Energy Services, Inc. Methods of designing treatment fluids based on solid-fluid interactions
WO2010087732A1 (en) 2009-01-30 2010-08-05 Services Petroliers Schlumberger Method of preparing polymer-water emulsion and further settling a sticky polymer material in downhole environment
US9163477B2 (en) 2009-04-21 2015-10-20 W. Lynn Frazier Configurable downhole tools and methods for using same
US9062522B2 (en) 2009-04-21 2015-06-23 W. Lynn Frazier Configurable inserts for downhole plugs
US9562415B2 (en) 2009-04-21 2017-02-07 Magnum Oil Tools International, Ltd. Configurable inserts for downhole plugs
US9181772B2 (en) 2009-04-21 2015-11-10 W. Lynn Frazier Decomposable impediments for downhole plugs
US9127527B2 (en) 2009-04-21 2015-09-08 W. Lynn Frazier Decomposable impediments for downhole tools and methods for using same
US9109428B2 (en) 2009-04-21 2015-08-18 W. Lynn Frazier Configurable bridge plugs and methods for using same
WO2010138974A1 (en) * 2009-05-29 2010-12-02 Altarock Energy, Inc. System and method for determining the most favorable locations for enhanced geothermal system applications
US8393395B2 (en) * 2009-06-03 2013-03-12 Schlumberger Technology Corporation Use of encapsulated chemical during fracturing
US9290689B2 (en) * 2009-06-03 2016-03-22 Schlumberger Technology Corporation Use of encapsulated tracers
US9062238B2 (en) * 2009-06-04 2015-06-23 Rhodia Operations Methods and compositions for viscosifying heavy aqueous brines
AU2010259936A1 (en) * 2009-06-12 2012-02-02 Altarock Energy, Inc. An injection-backflow technique for measuring fracture surface area adjacent to a wellbore
US20100323932A1 (en) 2009-06-17 2010-12-23 Oscar Bustos Methods for treating a well or the like
US9151125B2 (en) * 2009-07-16 2015-10-06 Altarock Energy, Inc. Temporary fluid diversion agents for use in geothermal well applications
US8186438B2 (en) * 2009-07-24 2012-05-29 Schlumberger Technology Corporation Wellbore debris cleanout with coiled tubing using degradable fibers
US9023770B2 (en) * 2009-07-30 2015-05-05 Halliburton Energy Services, Inc. Increasing fracture complexity in ultra-low permeable subterranean formation using degradable particulate
US8697612B2 (en) 2009-07-30 2014-04-15 Halliburton Energy Services, Inc. Increasing fracture complexity in ultra-low permeable subterranean formation using degradable particulate
US8853137B2 (en) 2009-07-30 2014-10-07 Halliburton Energy Services, Inc. Increasing fracture complexity in ultra-low permeable subterranean formation using degradable particulate
US20110029293A1 (en) * 2009-08-03 2011-02-03 Susan Petty Method For Modeling Fracture Network, And Fracture Network Growth During Stimulation In Subsurface Formations
US8141637B2 (en) 2009-08-11 2012-03-27 Schlumberger Technology Corporation Manipulation of flow underground
US8881820B2 (en) * 2009-08-31 2014-11-11 Halliburton Energy Services, Inc. Treatment fluids comprising entangled equilibrium polymer networks
US8813845B2 (en) * 2009-08-31 2014-08-26 Halliburton Energy Services, Inc. Polymeric additives for enhancement of treatment fluids comprising viscoelastic surfactants and methods of use
US8887809B2 (en) * 2009-08-31 2014-11-18 Halliburton Energy Services, Inc. Treatment fluids comprising transient polymer networks
EP2305450A1 (en) 2009-10-02 2011-04-06 Services Pétroliers Schlumberger Apparatus and methods for preparing curved fibers
EP2305767A1 (en) 2009-10-02 2011-04-06 Services Pétroliers Schlumberger Method and compositon to prevent fluid mixing in pipe
RU2009137265A (ru) * 2009-10-09 2011-04-20 Шлюмберже Текнолоджи Б.В. (NL) Способ формирования изолирующей пробки
US8522872B2 (en) * 2009-10-14 2013-09-03 University Of Utah Research Foundation In situ decomposition of carbonyls at high temperature for fixing incomplete and failed well seals
US8286705B2 (en) 2009-11-30 2012-10-16 Schlumberger Technology Corporation Apparatus and method for treating a subterranean formation using diversion
US9140109B2 (en) 2009-12-09 2015-09-22 Schlumberger Technology Corporation Method for increasing fracture area
US8207096B2 (en) * 2009-12-30 2012-06-26 Halliburton Energy Services Inc. Compressible packer fluids and methods of making and using same
WO2011081546A1 (en) 2009-12-30 2011-07-07 Schlumberger Canada Limited A method of fluid slug consolidation within a fluid system in downhole applications
US20110186293A1 (en) * 2010-02-01 2011-08-04 Gurmen M Nihat Use of reactive solids and fibers in wellbore clean-out and stimulation applications
US8662172B2 (en) 2010-04-12 2014-03-04 Schlumberger Technology Corporation Methods to gravel pack a well using expanding materials
US20110315385A1 (en) * 2010-06-25 2011-12-29 Lijun Lin Calcium carbonate to increase viscosity of polyacrylamide fluids
US8148303B2 (en) 2010-06-30 2012-04-03 Halliburton Energy Services Inc. Surfactant additives used to retain producibility while drilling
US8511381B2 (en) 2010-06-30 2013-08-20 Schlumberger Technology Corporation High solids content slurry methods and systems
US8592350B2 (en) 2010-06-30 2013-11-26 Halliburton Energy Services, Inc. Surfactant additives used to retain producibility while drilling
US8505628B2 (en) 2010-06-30 2013-08-13 Schlumberger Technology Corporation High solids content slurries, systems and methods
US8418761B2 (en) * 2010-07-29 2013-04-16 Halliburton Energy Services, Inc. Stimuli-responsive high viscosity pill
US8459353B2 (en) 2010-08-25 2013-06-11 Schlumberger Technology Corporation Delivery of particulate material below ground
US8448706B2 (en) 2010-08-25 2013-05-28 Schlumberger Technology Corporation Delivery of particulate material below ground
US8714248B2 (en) 2010-08-25 2014-05-06 Schlumberger Technology Corporation Method of gravel packing
US9234415B2 (en) 2010-08-25 2016-01-12 Schlumberger Technology Corporation Delivery of particulate material below ground
US20160257872A9 (en) 2010-09-17 2016-09-08 Schlumberger Technology Corporation Solid state dispersion
US8453741B2 (en) 2010-09-23 2013-06-04 Halliburton Energy Services, Inc. Tethered polymers used to enhance the stability of microemulsion fluids
EP2450416B1 (en) 2010-10-13 2013-08-21 Services Pétroliers Schlumberger Methods and compositions for suspending fluids in a wellbore
MX336479B (es) * 2010-11-12 2016-01-21 Schlumberger Technology Bv Metodos para dar mantenimiento a pozos subterraneos.
US8607870B2 (en) 2010-11-19 2013-12-17 Schlumberger Technology Corporation Methods to create high conductivity fractures that connect hydraulic fracture networks in a well
BR112013013883A2 (pt) 2010-12-15 2016-09-13 3M Innovative Properties Co fibras de degradação controlada
US9133387B2 (en) 2011-06-06 2015-09-15 Schlumberger Technology Corporation Methods to improve stability of high solid content fluid
US20120329683A1 (en) * 2011-06-23 2012-12-27 Nicolas Droger Degradable fiber systems for well treatments and their use
US20130005617A1 (en) * 2011-06-30 2013-01-03 Diankui Fu Self-diverting emulsified acid systems for high temperature well treatments and their use
US9920610B2 (en) 2012-06-26 2018-03-20 Baker Hughes, A Ge Company, Llc Method of using diverter and proppant mixture
CN104136668B (zh) * 2011-12-16 2017-03-08 自然工作有限责任公司 聚丙交酯纤维
CN104136011A (zh) 2011-12-28 2014-11-05 普拉德研究及开发股份有限公司 可降解复合材料及其用途
US9803457B2 (en) 2012-03-08 2017-10-31 Schlumberger Technology Corporation System and method for delivering treatment fluid
US9863228B2 (en) 2012-03-08 2018-01-09 Schlumberger Technology Corporation System and method for delivering treatment fluid
RU2500714C1 (ru) * 2012-04-26 2013-12-10 Общество с ограниченной ответственностью "ФОРЭС-Химия" Способ приготовления жидкости для обработки подземных формаций при гидроразрыве пласта
JPWO2013161754A1 (ja) * 2012-04-27 2015-12-24 株式会社クレハ 坑井処理流体用ポリグリコール酸樹脂短繊維
WO2013183363A1 (ja) 2012-06-07 2013-12-12 株式会社クレハ 炭化水素資源回収ダウンホールツール用部材
US11111766B2 (en) 2012-06-26 2021-09-07 Baker Hughes Holdings Llc Methods of improving hydraulic fracture network
US10988678B2 (en) 2012-06-26 2021-04-27 Baker Hughes, A Ge Company, Llc Well treatment operations using diverting system
WO2014010267A1 (ja) 2012-07-10 2014-01-16 株式会社クレハ 炭化水素資源回収ダウンホールツール用部材
US9260650B2 (en) 2012-08-29 2016-02-16 Halliburton Energy Services, Inc. Methods for hindering settling of proppant aggregates in subterranean operations
US20150284879A1 (en) * 2012-09-14 2015-10-08 Kureha Corporation Water-disintegrable composite fiber and method for producing the same
US9410076B2 (en) 2012-10-25 2016-08-09 Halliburton Energy Services, Inc. Wellbore servicing methods and compositions comprising degradable polymers
US9803130B2 (en) * 2012-10-25 2017-10-31 Schlumberger Technology Corporation Methods of activating enzyme breakers
US9702238B2 (en) 2012-10-25 2017-07-11 Halliburton Energy Services, Inc. Wellbore servicing methods and compositions comprising degradable polymers
US9951266B2 (en) 2012-10-26 2018-04-24 Halliburton Energy Services, Inc. Expanded wellbore servicing materials and methods of making and using same
US20140116698A1 (en) 2012-10-26 2014-05-01 Halliburton Energy Services, Inc. Wellbore Servicing Fluids Comprising Foamed Materials and Methods of Making and Using Same
US20140116702A1 (en) 2012-10-26 2014-05-01 Halliburton Energy Services, Inc. Expanded Wellbore Servicing Materials and Methods of Making and Using Same
US8714249B1 (en) 2012-10-26 2014-05-06 Halliburton Energy Services, Inc. Wellbore servicing materials and methods of making and using same
US9528354B2 (en) 2012-11-14 2016-12-27 Schlumberger Technology Corporation Downhole tool positioning system and method
US20140151043A1 (en) 2012-12-03 2014-06-05 Schlumberger Technology Corporation Stabilized fluids in well treatment
US9140119B2 (en) 2012-12-10 2015-09-22 Halliburton Energy Services, Inc. Wellbore servicing fluids and methods of making and using same
JP6221475B2 (ja) * 2012-12-12 2017-11-01 東洋製罐株式会社 掘削用分散液、及び、それを用いた掘削方法
US10040983B2 (en) 2012-12-12 2018-08-07 Toyo Seikan Group Holdings, Ltd. Dispersion solution for drilling and method of extracting underground resources using the dispersion solution
JP6183039B2 (ja) * 2012-12-12 2017-08-23 東洋製罐株式会社 掘削用分散液及びこれを用いた採掘方法
US20140174737A1 (en) 2012-12-21 2014-06-26 Halliburton Energy Services, Inc. Wellbore Servicing Materials and Methods of Making and Using Same
JP6249965B2 (ja) * 2013-01-18 2017-12-20 株式会社クレハ 坑井処理流体材料およびそれを含有する坑井処理流体
US20140209390A1 (en) * 2013-01-29 2014-07-31 Halliburton Energy Services, Inc. Wellbore Fluids Comprising Mineral Particles and Methods Relating Thereto
US10407988B2 (en) * 2013-01-29 2019-09-10 Halliburton Energy Services, Inc. Wellbore fluids comprising mineral particles and methods relating thereto
US10526531B2 (en) * 2013-03-15 2020-01-07 Schlumberger Technology Corporation Compositions and methods for increasing fracture conductivity
US10202833B2 (en) 2013-03-15 2019-02-12 Schlumberger Technology Corporation Hydraulic fracturing with exothermic reaction
CA2902145A1 (en) 2013-03-25 2014-10-02 Teijin Limited Resin composition
US9809742B2 (en) 2013-05-07 2017-11-07 Baker Hughes, A Ge Company, Llc Hydraulic fracturing composition, method for making and use of same
US9828844B2 (en) 2013-05-07 2017-11-28 BAKER HUGHTES, a GE company, LLC Hydraulic fracturing composition, method for making and use of same
US9796914B2 (en) 2013-05-07 2017-10-24 Baker Hughes Incorporated Hydraulic fracturing composition, method for making and use of same
RU2522366C1 (ru) * 2013-05-21 2014-07-10 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Способ гидравлического разрыва пласта в скважине
EP3006537B1 (en) * 2013-06-03 2019-08-14 Kureha Corporation Degradable fiber for use in wellbore treatment fluid, process for manufacturing same, and wellbore treatment method
US20140367099A1 (en) * 2013-06-17 2014-12-18 Halliburton Energy Services, Inc. Degradation of Polylactide in a Well Treatment
US9702239B2 (en) 2013-06-27 2017-07-11 Halliburton Energy Services, Inc. Methods for improved proppant suspension in high salinity, low viscosity subterranean treatment fluids
WO2015001016A2 (de) * 2013-07-04 2015-01-08 Wintershall Holding GmbH Verfahren zur förderung von erdöl aus einer unterirdischen erdöllagerstätte unter verwendung einer zusammensetzung (z)
US10961832B2 (en) 2013-07-23 2021-03-30 Schlumberger Technology Corporation Methods of treatment of a subterranean formation with polymeric structures formed in situ
US9388335B2 (en) 2013-07-25 2016-07-12 Schlumberger Technology Corporation Pickering emulsion treatment fluid
US9714375B2 (en) 2013-08-22 2017-07-25 Baker Hughes Incorporated Delayed viscosity well treatment methods and fluids
US9523268B2 (en) 2013-08-23 2016-12-20 Schlumberger Technology Corporation In situ channelization method and system for increasing fracture conductivity
US9587477B2 (en) 2013-09-03 2017-03-07 Schlumberger Technology Corporation Well treatment with untethered and/or autonomous device
US9631468B2 (en) 2013-09-03 2017-04-25 Schlumberger Technology Corporation Well treatment
US9790777B2 (en) 2013-09-04 2017-10-17 Halliburton Energy Services, Inc. Fracturing fluids comprising fibers treated with crosslinkable, hydratable polymers and related methods
US10472559B2 (en) 2013-09-19 2019-11-12 Halliburton Energy Services, Inc. Method for reusing produced water for hydraulic fracturing
JP2015059376A (ja) * 2013-09-20 2015-03-30 東レ株式会社 地下からの気体状炭化水素及び/または液体状炭化水素の採取方法
WO2015072875A1 (en) 2013-11-13 2015-05-21 Schlumberger Canada Limited Methods of treating a subterranean formations with fluids comprising proppant
CN103694976B (zh) * 2013-12-18 2016-04-13 四川省博仁达石油科技有限公司 一种酸化压裂用纤维暂堵剂
JP6359888B2 (ja) 2013-12-27 2018-07-18 株式会社クレハ ダウンホールツール用の拡径可能な環状の分解性シール部材、及び坑井掘削用プラグ、並びに坑井掘削方法
US10557335B2 (en) 2014-01-24 2020-02-11 Schlumberger Technology Corporation Gas fracturing method and system
AR099425A1 (es) 2014-02-19 2016-07-20 Shell Int Research Método para proveer fracturas múltiples en una formación
US9394476B2 (en) 2014-02-24 2016-07-19 Baker Hughes Incorporated Well treatment methods and fluids
CN110294876B (zh) 2014-03-07 2021-09-21 株式会社吴羽 钻井工具用分解性橡胶构件及分解性密封构件
JP6363362B2 (ja) 2014-03-11 2018-07-25 株式会社クレハ 炭化水素資源回収用ダウンホールツール部材
JP6451061B2 (ja) * 2014-03-11 2019-01-16 東洋製罐グループホールディングス株式会社 水中投下用樹脂成型体
JP6264960B2 (ja) * 2014-03-11 2018-01-24 東洋製罐グループホールディングス株式会社 ポリ乳酸組成物
US9797212B2 (en) 2014-03-31 2017-10-24 Schlumberger Technology Corporation Method of treating subterranean formation using shrinkable fibers
WO2015160275A1 (en) * 2014-04-15 2015-10-22 Schlumberger Canada Limited Treatment fluid
US9567841B2 (en) * 2014-07-01 2017-02-14 Research Triangle Institute Cementitious fracture fluid and methods of use thereof
AU2015301423B2 (en) * 2014-08-15 2019-01-17 Baker Hughes, A Ge Company, Llc Diverting systems for use in well treatment operations
JP6451160B2 (ja) 2014-09-09 2019-01-16 東洋製罐グループホールディングス株式会社 加水分解性樹脂粒子からなる粉体
US20160102243A1 (en) * 2014-10-14 2016-04-14 Schlumberger Technology Corporation Expandable proppant
US20160108713A1 (en) * 2014-10-20 2016-04-21 Schlumberger Technology Corporation System and method of treating a subterranean formation
WO2016072877A1 (en) 2014-11-06 2016-05-12 Schlumberger Canada Limited Fractures treatment
JP6451250B2 (ja) * 2014-11-19 2019-01-16 東洋製罐グループホールディングス株式会社 水圧破砕法を利用しての地下資源の採掘方法及び水圧破砕に用いる流体に添加される加水分解性ブロッキング剤
WO2016097789A1 (en) * 2014-12-18 2016-06-23 Schlumberger Canada Limited Heterogeneous proppant placement
WO2016129501A1 (ja) 2015-02-12 2016-08-18 東洋製罐グループホールディングス株式会社 加水分解性粒子を用いた地下資源の採掘方法
RU2584193C1 (ru) * 2015-03-23 2016-05-20 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Способ изоляции водопритока в скважине
WO2016172011A1 (en) 2015-04-24 2016-10-27 Natureworks Llc Process for making pla stereocomplex
CA2980131A1 (en) 2015-05-20 2016-11-24 Halliburton Energy Services, Inc. Alkylpolyglucoside derivative fluid loss control additives for wellbore treatment fluids
WO2016195525A1 (en) * 2015-06-02 2016-12-08 Schlumberger Technology Corporation Methods for treating a subterranean well
US20170088698A1 (en) * 2015-09-28 2017-03-30 Eastman Chemical Company Cellulose ester materials with tunable degradation characteristics
US10323176B2 (en) 2015-10-22 2019-06-18 Halliburton Energy Services, Inc. Methods for enhancing suspension and transport of proppant particulates and subterranean formation conductivity
US9932519B2 (en) 2015-11-19 2018-04-03 Schlumberger Technology Corporation Method of making particles having a ridge portion for use as proppant
US10369724B2 (en) * 2015-11-19 2019-08-06 Schlumberger Technology Corporation Method of making spheroidal particles
US9896618B2 (en) 2015-11-19 2018-02-20 Schlumberger Technology Corporation Method of making rod-shaped particles for use as proppant and anti-flowback additive
CN105478748B (zh) * 2015-12-15 2018-08-28 青海柴达木青元泛镁科技有限公司 一种高强、高速溶性的轻质暂堵球的制备方法
US20170174980A1 (en) * 2015-12-17 2017-06-22 Schlumberger Technology Corporation Bio-fiber treatment fluid
MX2018008296A (es) * 2016-03-02 2018-11-09 Halliburton Energy Services Inc Control de contraflujo de apuntalante con quimica de resina para fracturamiento acido.
WO2017209768A1 (en) 2016-06-03 2017-12-07 Halliburton Energy Services, Inc. Treatments in subterranean formations using degradable polymers in organic solvents
WO2017222536A1 (en) 2016-06-23 2017-12-28 Halliburton Energy Services, Inc. Enhanced propped fracture conductivity in subterranean wells
WO2017222527A1 (en) 2016-06-23 2017-12-28 Halliburton Energy Services, Inc. Proppant-free channels in a propped fractured using ultra-low density, degradable particulates
MX2018013214A (es) 2016-06-27 2019-02-21 Halliburton Energy Services Inc Metodos y composiciones para tratar una formacion subterranea con compuesto aditivo polimerico.
US10557079B2 (en) 2016-07-22 2020-02-11 Schlumberger Technology Corporation Method of making rod-shaped particles for use as proppant and anti-flowback additive
US10391679B2 (en) 2016-07-22 2019-08-27 Schlumberger Technology Corporation Perforated membranes and methods of making the same
CA3026086C (en) 2016-07-27 2021-03-23 Halliburton Energy Services, Inc. Methods for dispersing proppant
WO2018022693A1 (en) * 2016-07-27 2018-02-01 Baker Hughes, A Ge Company, Llc Method for fracturing using a buoyant additive for proppant transport and suspension
US11345847B2 (en) 2016-08-01 2022-05-31 Schlumberger Technology Corporation Treatment fluid, method for formation treatment, method for reducing the proppant settling rate in the formation treatment fluid
CA3035531A1 (en) 2016-10-10 2018-04-19 Hallliburton Energy Services, Inc. Distributing an amorphic degradable polymer in wellbore operations
CN109804040A (zh) 2016-10-11 2019-05-24 伊士曼化工公司 用于井筒处理成分的纤维构造
US20180127639A1 (en) * 2016-11-04 2018-05-10 Schlumberger Technology Corporation Compositions and methods of using degradable and nondegradable particulates for effective proppant placement
CN106753312B (zh) * 2016-11-25 2020-02-21 成都劳恩普斯科技有限公司 一种纤维滑溜水压裂液的制备方法
CN106753313B (zh) * 2016-11-25 2020-02-21 成都劳恩普斯科技有限公司 一种纤维滑溜水压裂液
CN106833598A (zh) * 2016-12-01 2017-06-13 中国石油天然气股份有限公司 一种可降解压裂支撑剂及其制备方法
US20180291260A1 (en) * 2017-04-11 2018-10-11 Baker Hughes, A Ge Company, Llc Crosslinker modified filament and fabric for placement of proppant anti-settling agents in hydraulic fractures
CN107090285A (zh) * 2017-05-17 2017-08-25 广西品位生物科技有限公司 一种水平井生物增产液
US20190040305A1 (en) * 2017-08-01 2019-02-07 Weatherford Technology Holdings, Llc Fracturing method using a low-viscosity fluid with low proppant settling rate
WO2019034472A1 (de) 2017-08-17 2019-02-21 Basf Se Verfahren zum transport und lagern von fasern
WO2019034476A1 (de) 2017-08-17 2019-02-21 Basf Se Verfahren zur herstellung von flüssigen formulierungen enthaltend fasern
US10544347B2 (en) * 2017-10-16 2020-01-28 Saudi Arabian Oil Company Fracturing fluids comprising alkanolamine borates as crosslinkers for polysaccharides
CN107989587A (zh) * 2017-10-27 2018-05-04 中国石油化工股份有限公司 一种利用微生物降低纤维素压裂液伤害的方法
US10954771B2 (en) 2017-11-20 2021-03-23 Schlumberger Technology Corporation Systems and methods of initiating energetic reactions for reservoir stimulation
US11225598B2 (en) 2018-01-29 2022-01-18 Halliburton Energy Services, Inc. Treatment fluids containing degradable fibers grafted with a crosslinker
WO2019156676A1 (en) 2018-02-09 2019-08-15 Halliburton Energy Services, Inc. Methods of ensuring and enhancing conductivity in microfractures
CN108841370B (zh) * 2018-05-07 2021-01-01 中国石油天然气股份有限公司 一种纤维压裂液及其制备方法和应用
US11274243B2 (en) 2018-06-08 2022-03-15 Sunita Hydrocolloids Inc. Friction reducers, fracturing fluid compositions and uses thereof
US11746282B2 (en) 2018-06-08 2023-09-05 Sunita Hydrocolloids Inc. Friction reducers, fracturing fluid compositions and uses thereof
JP6844591B2 (ja) 2018-07-10 2021-03-17 東洋製罐グループホールディングス株式会社 ポリ乳酸共重合体及びその製造方法
US20200048532A1 (en) 2018-08-10 2020-02-13 Bj Services, Llc Frac Fluids for Far Field Diversion
US11566504B2 (en) 2019-07-17 2023-01-31 Weatherford Technology Holdings, Llc Application of elastic fluids in hydraulic fracturing implementing a physics-based analytical tool
JP7446413B2 (ja) 2019-09-26 2024-03-08 エコラボ ユーエスエー インコーポレイティド 主要な増粘系としてジウタンガムを使用した高アルカリ溶剤ベースの脱脂剤およびクリーナー
WO2021076438A1 (en) * 2019-10-18 2021-04-22 Schlumberger Technology Corporation In-situ composite polymeric structures for far-field diversion during hydraulic fracturing
GB202019039D0 (en) 2020-12-02 2021-01-13 Burns John Granville Improvements relating to treatment fluids in fluid carrying apparatus
CN115875004B (zh) * 2023-02-23 2023-05-09 陕西中立合创能源科技有限责任公司 一种油气井提高抗盐耐温性能的压裂方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5782300A (en) * 1996-11-13 1998-07-21 Schlumberger Technology Corporation Suspension and porous pack for reduction of particles in subterranean well fluids, and method for treating an underground formation
US6599863B1 (en) * 1999-02-18 2003-07-29 Schlumberger Technology Corporation Fracturing process and composition
US6837309B2 (en) * 2001-09-11 2005-01-04 Schlumberger Technology Corporation Methods and fluid compositions designed to cause tip screenouts
CN1594827A (zh) * 2004-06-23 2005-03-16 杨双虎 一种稠油井堵水工艺方法

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3974077A (en) 1974-09-19 1976-08-10 The Dow Chemical Company Fracturing subterranean formation
US4716964A (en) 1981-08-10 1988-01-05 Exxon Production Research Company Use of degradable ball sealers to seal casing perforations in well treatment fluid diversion
US4387769A (en) 1981-08-10 1983-06-14 Exxon Production Research Co. Method for reducing the permeability of subterranean formations
US4715967A (en) 1985-12-27 1987-12-29 E. I. Du Pont De Nemours And Company Composition and method for temporarily reducing permeability of subterranean formations
US4836940A (en) 1987-09-14 1989-06-06 American Colloid Company Composition and method of controlling lost circulation from wellbores
US4848467A (en) 1988-02-16 1989-07-18 Conoco Inc. Formation fracturing process
US4957165A (en) 1988-02-16 1990-09-18 Conoco Inc. Well treatment process
US4986355A (en) 1989-05-18 1991-01-22 Conoco Inc. Process for the preparation of fluid loss additive and gel breaker
US5330005A (en) 1993-04-05 1994-07-19 Dowell Schlumberger Incorporated Control of particulate flowback in subterranean wells
CA2119316C (en) 1993-04-05 2006-01-03 Roger J. Card Control of particulate flowback in subterranean wells
US5551514A (en) 1995-01-06 1996-09-03 Dowell, A Division Of Schlumberger Technology Corp. Sand control without requiring a gravel pack screen
US5551516A (en) 1995-02-17 1996-09-03 Dowell, A Division Of Schlumberger Technology Corporation Hydraulic fracturing process and compositions
US5667012A (en) 1995-10-11 1997-09-16 Schlumberger Technology Corporation Method and apparatus for the addition of low-bulk-density fibers to a fluid
US5964295A (en) 1996-10-09 1999-10-12 Schlumberger Technology Corporation, Dowell Division Methods and compositions for testing subterranean formations
US6169058B1 (en) 1997-06-05 2001-01-02 Bj Services Company Compositions and methods for hydraulic fracturing
US6258859B1 (en) 1997-06-10 2001-07-10 Rhodia, Inc. Viscoelastic surfactant fluids and related methods of use
US5979555A (en) 1997-12-02 1999-11-09 Akzo Nobel Nv Surfactants for hydraulic fractoring compositions
US5990051A (en) 1998-04-06 1999-11-23 Fairmount Minerals, Inc. Injection molded degradable casing perforation ball sealers
US6419019B1 (en) 1998-11-19 2002-07-16 Schlumberger Technology Corporation Method to remove particulate matter from a wellbore using translocating fibers and/or platelets
US6085844A (en) 1998-11-19 2000-07-11 Schlumberger Technology Corporation Method for removal of undesired fluids from a wellbore
US6140277A (en) 1998-12-31 2000-10-31 Schlumberger Technology Corporation Fluids and techniques for hydrocarbon well completion
US6380138B1 (en) 1999-04-06 2002-04-30 Fairmount Minerals Ltd. Injection molded degradable casing perforation ball sealers fluid loss additive and method of use
US6509301B1 (en) 1999-08-26 2003-01-21 Daniel Patrick Vollmer Well treatment fluids and methods for the use thereof
AU2001229444A1 (en) 2000-01-14 2001-07-24 Schlumberger Technology Corporation Addition of solids to generate viscosity downhole
US7084095B2 (en) 2001-04-04 2006-08-01 Schlumberger Technology Corporation Methods for controlling the rheological properties of viscoelastic surfactants based fluids
ITTO20010519A1 (it) 2001-05-31 2002-12-01 St Microelectronics Srl Dispositivo orientabile, in particolare dispositivo attuatore di dischi rigidi, con controllo dell'angolo di rollio e di beccheggio.
US6938693B2 (en) 2001-10-31 2005-09-06 Schlumberger Technology Corporation Methods for controlling screenouts
WO2003027431A2 (en) 2001-09-26 2003-04-03 Cooke Claude E Jr Method and materials for hydraulic fracturing of wells
US6691780B2 (en) 2002-04-18 2004-02-17 Halliburton Energy Services, Inc. Tracking of particulate flowback in subterranean wells
US6820694B2 (en) * 2002-04-23 2004-11-23 Schlumberger Technology Corporation Method for preparing improved high temperature fracturing fluids
US7066260B2 (en) * 2002-08-26 2006-06-27 Schlumberger Technology Corporation Dissolving filter cake
US7398826B2 (en) * 2003-11-14 2008-07-15 Schlumberger Technology Corporation Well treatment with dissolvable polymer
US20040162356A1 (en) 2002-09-20 2004-08-19 Schlumberger Technology Corporation Fiber Assisted Emulsion System
US7265079B2 (en) 2002-10-28 2007-09-04 Schlumberger Technology Corporation Self-destructing filter cake
US7004255B2 (en) 2003-06-04 2006-02-28 Schlumberger Technology Corporation Fracture plugging
US7032663B2 (en) 2003-06-27 2006-04-25 Halliburton Energy Services, Inc. Permeable cement and sand control methods utilizing permeable cement in subterranean well bores
US7172022B2 (en) 2004-03-17 2007-02-06 Halliburton Energy Services, Inc. Cement compositions containing degradable materials and methods of cementing in subterranean formations
US7503404B2 (en) 2004-04-14 2009-03-17 Halliburton Energy Services, Inc, Methods of well stimulation during drilling operations
US7273104B2 (en) 2004-07-30 2007-09-25 Key Energy Services, Inc. Method of pumping an “in-the-formation” diverting agent in a lateral section of an oil and gas well
US20060032633A1 (en) 2004-08-10 2006-02-16 Nguyen Philip D Methods and compositions for carrier fluids comprising water-absorbent fibers
US7380600B2 (en) 2004-09-01 2008-06-03 Schlumberger Technology Corporation Degradable material assisted diversion or isolation
US7350572B2 (en) * 2004-09-01 2008-04-01 Schlumberger Technology Corporation Methods for controlling fluid loss
US7275596B2 (en) * 2005-06-20 2007-10-02 Schlumberger Technology Corporation Method of using degradable fiber systems for stimulation
US7665522B2 (en) * 2004-09-13 2010-02-23 Schlumberger Technology Corporation Fiber laden energized fluids and methods of use
US7413017B2 (en) * 2004-09-24 2008-08-19 Halliburton Energy Services, Inc. Methods and compositions for inducing tip screenouts in frac-packing operations
US7273099B2 (en) 2004-12-03 2007-09-25 Halliburton Energy Services, Inc. Methods of stimulating a subterranean formation comprising multiple production intervals
US7494957B2 (en) * 2005-01-24 2009-02-24 Schlumberger Technology Corporation Energized fluids and methods of use thereof
US7267170B2 (en) 2005-01-31 2007-09-11 Halliburton Energy Services, Inc. Self-degrading fibers and associated methods of use and manufacture
US7353876B2 (en) 2005-02-01 2008-04-08 Halliburton Energy Services, Inc. Self-degrading cement compositions and methods of using self-degrading cement compositions in subterranean formations
US7632787B2 (en) * 2005-04-13 2009-12-15 Schlumberger Technology Corporation Low damage treatment fluids and methods of using the same
US7677312B2 (en) 2007-07-30 2010-03-16 Schlumberger Technology Corporation Degradable cement compositions containing degrading materials and methods of cementing in wellbores

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5782300A (en) * 1996-11-13 1998-07-21 Schlumberger Technology Corporation Suspension and porous pack for reduction of particles in subterranean well fluids, and method for treating an underground formation
US6599863B1 (en) * 1999-02-18 2003-07-29 Schlumberger Technology Corporation Fracturing process and composition
US6837309B2 (en) * 2001-09-11 2005-01-04 Schlumberger Technology Corporation Methods and fluid compositions designed to cause tip screenouts
CN1594827A (zh) * 2004-06-23 2005-03-16 杨双虎 一种稠油井堵水工艺方法

Also Published As

Publication number Publication date
EA200501597A1 (ru) 2006-12-29
MX344738B (es) 2017-01-05
US20120267103A1 (en) 2012-10-25
CA2611769C (en) 2011-07-19
US8657002B2 (en) 2014-02-25
US20080236823A1 (en) 2008-10-02
US7380601B2 (en) 2008-06-03
EA009171B1 (ru) 2007-12-28
US7275596B2 (en) 2007-10-02
WO2006137002A1 (en) 2006-12-28
US20110056684A1 (en) 2011-03-10
CA2611769A1 (en) 2006-12-28
US20070289743A1 (en) 2007-12-20
CN101273183A (zh) 2008-09-24
US20060283591A1 (en) 2006-12-21
AR055338A1 (es) 2007-08-22
WO2006137002B1 (en) 2007-03-22
MX2007015539A (es) 2008-02-21
US7833950B2 (en) 2010-11-16
US8230925B2 (en) 2012-07-31

Similar Documents

Publication Publication Date Title
CN101273183B (zh) 用于增产的可降解纤维体系
US9322260B2 (en) Methods of zonal isolation and treatment diversion
US9328285B2 (en) Methods using low concentrations of gas bubbles to hinder proppant settling
US10066148B2 (en) Viscosified fluid loss control agent utilizing chelates
CA2964380A1 (en) System and method of treating a subterranean formation
US20220251440A1 (en) Cross-linked acrylamide polymer or copolymer gel and breaker compositions and methods of use
US10066145B2 (en) Polymer brushes in diverting agents for use in subterranean formations
US10030471B2 (en) Well treatment
US8813843B2 (en) Hydrophobically modified polymer for thermally stabilizing fracturing fluids
WO2016077354A1 (en) Well treatment
WO2018094123A1 (en) Methods of zonal isolation and treatment diversion
WO2016115344A1 (en) Internal breaker for water-based fluid and fluid loss control pill
US9062243B2 (en) Alkaline persulfate for low-temperature breaking of multi-chain polymer viscosified fluid
US11932807B2 (en) Methods and compositions using dissolvable gelled materials for diversion
CA2967936C (en) Well treatments for diversion or zonal isolation
US20140367099A1 (en) Degradation of Polylactide in a Well Treatment

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant