CN101252989A - 催化惰性热发生器和改进的脱氢方法 - Google Patents

催化惰性热发生器和改进的脱氢方法 Download PDF

Info

Publication number
CN101252989A
CN101252989A CNA2006800319966A CN200680031996A CN101252989A CN 101252989 A CN101252989 A CN 101252989A CN A2006800319966 A CNA2006800319966 A CN A2006800319966A CN 200680031996 A CN200680031996 A CN 200680031996A CN 101252989 A CN101252989 A CN 101252989A
Authority
CN
China
Prior art keywords
secondary component
alumina
inert material
dehydrogenation
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006800319966A
Other languages
English (en)
Other versions
CN101252989B (zh
Inventor
V·弗里德曼
J·S·梅里亚姆
M·A·乌尔班契奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clariant International Ltd
Original Assignee
ConocoPhillips Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ConocoPhillips Co filed Critical ConocoPhillips Co
Publication of CN101252989A publication Critical patent/CN101252989A/zh
Application granted granted Critical
Publication of CN101252989B publication Critical patent/CN101252989B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • B01J35/19
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/321Catalytic processes
    • C07C5/322Catalytic processes with metal oxides or metal sulfides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • C07C2521/08Silica
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/10Magnesium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/12Silica and alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • C07C2523/04Alkali metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/26Chromium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/32Manganese, technetium or rhenium
    • C07C2523/34Manganese
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/72Copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/889Manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Abstract

公开了改进的脱氢催化剂床层体系,该催化剂床层体系用于使用经典的生产技术生产烯烃。所述催化剂床层体系包括包含活性组分的脱氢催化剂和与第一惰性材料混合的载体,所述活性组选自4族、5族和6族金属的氧化物和它们的组合,所述载体选自氧化铝、矾土、一水合氧化铝、三水合氧化铝、氧化铝-二氧化硅、过渡氧化铝、α-氧化铝、二氧化硅、硅酸盐、铝酸盐、煅烧水滑石、沸石和它们的组合,所述第一惰性材料选自当经受能实现烯烃脱氢反应的条件时呈催化惰性、密度高和热容高以及在脱氢工艺的任何阶段中不产生热量的任何材料;然后将脱氢催化剂和第一惰性材料与次级组分物理混合,所述次级组分包含发热惰性材料和能担载所述发热惰性材料的载体,其中所述次级组分对于脱氢反应、裂化和焦化反应呈催化惰性,且暴露于还原和/或氧化反应条件后产生热量。

Description

催化惰性热发生器和改进的脱氢方法
                        背景
本开发涉及用于烯烃生产的改进的脱氢催化剂床层体系,其中烯烃使用经典的加工技术来生产。具体地,所述催化剂体系包括氧化铬/氧化铝脱氢催化剂,其进一步包括将该催化剂与至少一种其它组分进行物理混合,所述其它组分对于脱氢反应或副反应(例如裂化和焦化反应)是催化惰性的,但是暴露于还原和/或氧化反应条件后产生热量。
脂族烃脱氢以生产其互补的烯烃是众所周知的方法。在典型的Houdry CATOFIN方法中,脂族烃,例如丙烷,经过脱氢催化剂床层,在那里烃脱氢生成互补的烯烃,例如丙烯,所述烯烃从床层中流出,催化剂被再生和还原,重复该循环(参见,例如:美国专利2419997,在此引入作为参考)。
CATOFIN脱氢方法是绝热的循环工艺。每一个循环包括催化剂还原步骤、脱氢步骤、清除反应器中残留的烃的步骤和最终用空气再生的步骤。随后,循环再次从还原步骤开始。
脱氢反应是高度吸热的。因此,在脱氢步骤中,催化剂床层顶部的温度下降多达100℃。这种温度的下降引起链烷烃转化率的下降。
为了再次加热催化剂床层和除去脱氢步骤过程中沉积在催化剂上的焦炭,清除反应器中的烃,然后用加热到高达700℃的空气进行再生步骤。通过穿过床层的热空气并通过沉积在催化剂上的焦炭的燃烧来给床层提供热量。在脱氢步骤之前,用还原性气体例如氢气还原催化剂也提供一些额外的热量。
再生过程中,热空气从催化剂床层顶部流至底部,且再生循环相对短暂,因此有床层顶部比床层底部更热的趋势。床层底部的低温不能使催化剂得以充分利用,因此产率低于如果不这样的话所预期的产率。还有,焦炭在催化剂床层的分布不容易控制,影响到在每个位置上所加入的热量并影响所得到的催化剂床层温度分布。这些因素使得很难控制床层的温度分布。
在常规的HOUDRY CATOFIN方法中,反应器含有氧化铬/氧化铝催化剂和“惰性”材料的物理混合物。“惰性”材料和催化剂的体积比取决于包括脱氢工艺中使用的烃原料的类型在内的许多因素。例如,对于丙烷原料,“惰性”材料等于全部催化剂体积的约50%,而对于异丁烷原料,“惰性”材料体积可低至占全部催化剂床层体积的约30%。
“惰性”材料一般为与所述催化剂具有相近颗粒尺寸的粒状α-氧化铝材料,它对于脱氢或副反应例如裂化或焦化呈催化惰性,但是密度高且热容高,因此它可用于在床层中存储额外的热量。然后这些额外的热量可以在脱氢步骤中使用。然而在该方法的任何阶段中,“惰性”材料不能产生热量。
由于脱氢反应是高度吸热的反应,与HOUDRY方法和类似的绝热的非氧化脱氢方法有关的持续的挑战,已经被确定为:提供工业上可行的方法,用以改善对装置的供热而不使用产生大量不需要的副产品的催化活性材料。因此,确定其热容和密度与当前使用的氧化铝“惰性,,材料相当的催化剂添加剂是有利的,该催化剂添加剂不参与任何程度的脱氢反应或副反应,如裂化或焦化反应,且可在装填之前与催化剂进行物理混合,但操作过程中产生所需的热量。
                        发明概述
本开发是脱氢催化剂床层体系,该体系包含常规的氧化铬/氧化铝脱氢催化剂,该催化剂还包括至少一种组分,所述组分对脱氢反应或副反应(如裂化或焦化反应)呈催化惰性,但是暴露于还原和/或氧化反应条件后会产生热量。在示例性的实施方案中,该发热惰性组分的密度和热容与α-氧化铝相近。在另一个示例性的实施方案中,该催化剂体系包括与发热惰性组分物理混合的氧化铬/氧化铝催化剂,所述发热惰性材料包含负载在氧化铝上的氧化铜,其中氧化铜至少占所述惰性发热组分的约8wt%。
                    优选实施方案的详述
本发明的催化剂床层体系拟用于脂族烃脱氢反应工艺以及类似的绝热的非氧化脱氢工艺中,特别用于生产烯烃。该工艺中使用的催化剂床层体系为氧化铬/氧化铝脱氢催化剂,该氧化铬/氧化铝脱氢催化剂还包含对于脱氢反应或副反应(如裂化和焦化反应)呈惰性的发热组分。
脱氢工艺使用的设备包括定义了顶部和底部的反应器床层。工业实践中,催化剂与惰性材料,如粒状α-氧化铝,进行物理混合,然后将催化剂加惰性材料装填到反应器床层中。脂族烃作为气体原料以预定的流速(flow rate)进料到催化剂床层中,使原料先与床层顶部接触,并在与底部接触后离开。为了本文的实施例的目的,脂族烃为丙烷,目标产品为丙烯。
仅出于示例性的目的,该方法通常遵循美国专利2,419,997中描述的典型的“Houdry”方法。Houdry方法包括一系列阶段:排空催化剂床层,用氢气还原并排空,然后引入脂族烃并进行脱氢,然后用蒸汽吹洗催化剂床层并再生,和从还原阶段开始重复该循环。
正如本领域已知的,催化剂通常含有一种或多种分散或混合于载体或担体中的活性组分。担体提供了提高催化剂表面积的手段。现有技术中讲述了几种脱氢催化剂组合物,例如美国专利3,488,402中讲述的催化剂(授予Michaels等,在此引入作为参考)。该′402催化剂包含“氧化铝、氧化镁或它们的混合物,用高达约40%的4族、5族或6族金属的氧化物进行助催化”。(术语“4族”、“5族”和“6族”是指元素周期表的新的IUPAC格式。本领域中已知的可供选择的术语包括:在旧的IUPAC表中分别称为“IV A族”、“V A族”、“VI-A族”,和在现用版本化学文摘中分别编号为“IV B族”、“V B族”、“VI-B族”)。推荐的脱氢催化剂的载体包括氧化铝、矾土、一水合氧化铝、三水合氧化铝、氧化铝-二氧化硅、过渡氧化铝、α-氧化铝、二氧化硅、硅酸盐、铝酸盐、煅烧水滑石、沸石和它们的组合物。对于本申请,所述催化剂可通过本领域已知的任何标准方法进行制备,例如美国专利申请20040092391中讲述的方法,在此引入其全部作为参考。
然后将活性脱氢催化剂与第一惰性材料进行物理混合。该第一惰性材料可以是对于脱氢反应或副反应(如裂化和焦化反应)呈催化惰性的任何材料,且该材料的密度高和热容高,但在该方法的任何阶段中不产生热量。对于本申请,示例性的第一惰性材料为与催化剂颗粒尺寸相近的粒状α-氧化铝材料。正如本领域中已知的,第一惰性材料与催化剂的体积比取决于包括脱氢工艺中所使用的烃原料的类型在内的许多因素。本申请中,没有特别规定体积比,而是可由用户根据其预期用途调整为合适的比例。
本发明中,然后所述将催化剂和所述第一惰性材料进一步与至少一种次级组分进行物理混合。所述次级组分对于脱氢反应或副反应(如裂化和焦化反应)必须为催化惰性,但是暴露于还原和/或氧化反应条件后必须放热。
更具体地,所述次级组分包含发热惰性材料和能担载该发热惰性材料的载体。对于所述次级组分,示例性的载体包括,但不限于:氧化铝、矾土、一水合氧化铝、薄水铝石、拟薄水铝石、三水合氧化铝、三水铝矿、三羟铝石、氧化铝-二氧化硅、过渡氧化铝、α-氧化铝、二氧化硅、硅酸盐、铝酸盐、煅烧水滑石、沸石、氧化锌、氧化铬、氧化锰和它们的组合。
所述发热惰性材料可选自铜、铬、钼、钒、铈、钇、钪、钨、锰、铁、钴、镍、银、铋和它们的组合。发热惰性材料占次级组分总重量的1-40wt%。在更优选的实施方案中,发热惰性材料占次级组分总重量的4-20wt%;和在最优选的实施方案中,发热惰性材料的量占次级组分总重量的6-10wt%。次级组分还可任选的包含促进剂,例如碱金属、碱土金属、锂、钠、钾、铷、铯、铍、镁、钙、锶、钡和它们的组合。
可通过与本领域中已知的制备负载型催化剂基本相同的方法来制备所述次级组分。例如,但不限于此,可通过用发热惰性材料沉积次级组分载体或通过用发热惰性材料浸渍次级组分载体来制备所述次级组分。促进剂中还可添加发热惰性材料,或可通过本领域中已知的添加促进剂的方法将促进剂加到次级组分中。代表性的制备方法,但不限于此,是将三水合氧化铝(三水铝矿)制成大约3/16”的小球,然后该三水铝矿在550℃下煅烧4小时,然后用饱和硝酸铜溶液浸渍煅烧过的材料,且浸渍的材料在250℃下干燥4小时,然后在500-1400℃下煅烧。
然后,通过物理混合或合并所述催化剂、所述第一惰性材料和所述次级组分来制备所述催化剂床层体系。更具体地,规定了预期的催化剂量,然后与预定量的第一惰性材料和预定量的次级组分混合。第一惰性材料的量基本上等于将与催化剂正常混合的惰性材料的量减待加入的次级组分的量。即,次级组分应以全部或部分替代第一惰性材料的这种方式加入。次级组分既不影响催化剂的加入量,也不影响所得到的催化剂床层中催化剂与惰性材料的相对比例。在示例性的实施方案中,但不限于此,所使用的催化剂的体积等于第一惰性材料和次级组分体积之和的25-75%,或者
催化剂体积/(第一惰性材料体积+次级组分体积)=0.25-0.75。
所使用的次级组分的体积应该等于第一惰性材料与次级组分体积之和的20-100%,或者
次级组分体积/(第一惰性材料体积+次级组分体积)=0.20-1.0。
然后按照与传统的脱氢催化剂装填方式相同的方式将混合物装填到反应器中。
在改进的Houdry方法中,将排空催化剂床层并用氢气还原。在这一阶段,反应器床层中的次级组分产生额外的热量,这些热量传递到反应器床层的氧化铝负载的氧化铬催化剂部分中。然后将脂族烃进料到催化剂床层中并经过与反应器床层的氧化铝负载的氧化铬催化剂部分接触而脱氢。因为床层的氧化铝负载的氧化铬催化剂部分已经基本上被次级组分预热了,与不包括所述次级组分的反应器床层相比,所述氧化铝负载的氧化铬催化剂显示出提高了的转化率。催化剂床层用蒸汽吹洗并再生,然后从还原阶段开始重复该循环。在再生步骤中,次级组分也可产生额外的热量。在优选的实施方案中,选择次级组分以使得观察不到对于选择性的显著的负面影响。
本发明的催化剂床层体系旨在用于绝热的非氧化的循环脱氢工艺。该催化剂床层体系与现有技术中的催化剂床层体系的不同之处在于需要该催化剂中包含发热组分,该发热组分对于脱氢反应或副反应(如裂化和焦化反应)呈惰性。可以理解的是,催化剂的组成和具体的加工条件可在不超过本开发的范围下进行变化。

Claims (10)

1.绝热的非氧化脱氢工艺中使用的催化剂床层体系,所述催化剂床层体系包含与粒状α-氧化铝材料混合的氧化铝上的氧化铬脱氢催化剂,所述α-氧化铝材料具有与所述催化剂相近的颗粒尺寸,改进包括所述脱氢催化剂和所述α-氧化铝材料与包含发热惰性材料和载体的次级组分物理混合,其中所述发热惰性材料选自铜、锰和它们的组合,其中所述次级组分对于脱氢反应或裂化反应或焦化反应呈催化惰性,且暴露于还原反应和/或氧化反应条件后产生热量。
2.权利要求1的催化剂床层体系,其中所述次级组分载体选自氧化铝、矾土、一水合氧化铝、薄水铝石、拟薄水铝石、三水合氧化铝、三水铝矿、三羟铝石、氧化铝-二氧化硅、过渡氧化铝、α-氧化铝、二氧化硅、硅酸盐、铝酸盐、煅烧水滑石、沸石、氧化锌、氧化铬、氧化镁和它们的组合。
3.权利要求1或2的催化剂床层体系,其中所述发热惰性材料占次级组分总重量的1-40wt%,优选4-20wt%,最优选占次级组分总重量的6-10wt%。
4.权利要求1-3的任何一项的催化剂床层体系,其中所述次级组分还包括促进剂,所述促进剂选自碱金属、碱土金属、锂、钠、钾、铷、铯、铍、镁、钙、锶、钡和它们的组合。
5.权利要求1-4的任何一项的催化剂床层体系,其中所述催化剂、所述α-氧化铝材料和所述次级组分间的体积关系用下式定义:(催化剂体积)/(α-氧化铝材料体积+次级组分体积)=0.25-0.75其中所述α-氧化铝材料和所述次级组分间具有以如下公式所定义的体积关系:
(次级组分体积)/(α-氧化铝材料体积+次级组分体积)=0.20-1.0。
6.用于绝热的、非氧化脱氢工艺中的催化剂床层体系,所述催化剂床层体系包含具有活性组分的脱氢催化剂和与第一惰性材料混合的载体,所述活性组分选自4族、5族、6族金属的氧化物和它们的组合,所述载体选自氧化铝、矾土、一水合氧化铝、三水合氧化铝、氧化铝-二氧化硅、过渡氧化铝、α-氧化铝、二氧化硅、硅酸盐、铝酸盐、煅烧水滑石、沸石和它们的组合,所述第一惰性材料选自当经受能实现烯烃脱氢的反应条件时呈催化惰性、且密度高和热容高以及在脱氢工艺的任何阶段中不产生热量的任何材料;改进包括将所述脱氢催化剂和所述第一惰性材料与次级组分物理混合,所述次级组分包含发热惰性材料和能担载所述发热惰性材料的载体,其中所述次级组分对于脱氢反应、裂化或焦化反应呈催化惰性,且暴露于还原和/或氧化反应条件后产生热量。
7.权利要求6的催化剂床层体系,其中所述发热惰性材料选自铜、铬、钼、钒、铈、钇、钪、钨、锰、铁、钴、镍、银、铋和它们的组合。
8.权利要求6或7中的催化剂床层体系,其中所述发热惰性材料占次级组分总重量的1-40wt%。
9.权利要求6-8的任何一项的催化剂床层体系,其中所述催化剂、所述第一惰性材料和所述次级组分间具有以如下公式所定义的体积关系:
(催化剂体积)/(第一惰性材料体积+次级组分体积)=0.25-0.75和其中所述第一惰性材料和所述次级组分间具有以如下公式所定义的体积关系:
(次级组分体积)/(第一惰性材料体积+次级组分体积)=0.20-1.0。
10.权利要求1-9的任何一项的催化剂床层体系,其中通过用所述发热惰性材料沉积所述次级组分载体或通过用所述发热惰性材料浸渍次级组分载体来制备所述次级组分。
CN2006800319966A 2005-09-02 2006-08-21 催化惰性热发生器和改进的脱氢方法 Active CN101252989B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/218,949 2005-09-02
US11/218,949 US7622623B2 (en) 2005-09-02 2005-09-02 Catalytically inactive heat generator and improved dehydrogenation process
PCT/US2006/032441 WO2007030298A1 (en) 2005-09-02 2006-08-21 Catalytically inactive heat generator and improved dehydrogenation process

Publications (2)

Publication Number Publication Date
CN101252989A true CN101252989A (zh) 2008-08-27
CN101252989B CN101252989B (zh) 2012-07-18

Family

ID=37651044

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800319966A Active CN101252989B (zh) 2005-09-02 2006-08-21 催化惰性热发生器和改进的脱氢方法

Country Status (6)

Country Link
US (1) US7622623B2 (zh)
EP (1) EP1933978B1 (zh)
CN (1) CN101252989B (zh)
PL (1) PL1933978T3 (zh)
RU (1) RU2428250C2 (zh)
WO (1) WO2007030298A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108300430A (zh) * 2018-02-06 2018-07-20 四川润和催化新材料股份有限公司 一种烷烃脱氢放热助剂及其制备方法与使用方法
CN113264807A (zh) * 2014-03-14 2021-08-17 科莱恩公司 利用发热材料的改进的脱氢工艺
CN113710356A (zh) * 2019-03-13 2021-11-26 沙特基础工业全球技术公司 用于胡得利团块减少的脱氢方法的可编程逻辑控制器

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7973207B2 (en) * 2005-09-02 2011-07-05 Sud-Chemie Inc. Endothermic hydrocarbon conversion process
US7622623B2 (en) * 2005-09-02 2009-11-24 Sud-Chemie Inc. Catalytically inactive heat generator and improved dehydrogenation process
DE102008023042A1 (de) 2008-05-09 2009-11-12 Süd-Chemie AG Verfahren zur semi-adiabatischen, semi-isothermen Durchführung einer endothermen Reaktion unter Einsatz eines katalytischen Reaktors und Ausbildung dieses Reaktors
US8895468B2 (en) 2011-09-20 2014-11-25 Basf Corporation Chromia alumina catalysts for alkane dehydrogenation
EP2586524A1 (en) 2011-10-24 2013-05-01 Borealis AG A catalyst bed system for an endothermic catalytic dehydrogenation process and an endothermic dehydrogenation process
CN105246863A (zh) * 2013-05-31 2016-01-13 沙特基础工业公司 用于烷烃脱氢的方法
CN105473690B (zh) 2013-07-02 2018-01-09 沙特基础工业公司 用于将原油转化成具有改进的碳效率的石化品的方法和设施
CN105452423B (zh) 2013-07-02 2019-04-23 沙特基础工业公司 从烃原料生产芳烃和轻质烯烃的方法
KR102309254B1 (ko) 2013-07-02 2021-10-07 사우디 베이식 인더스트리즈 코포레이션 고-비점 탄화수소 공급원료를 경-비점 탄화수소 산물로 변환하는 방법
CN105555925A (zh) 2013-07-02 2016-05-04 沙特基础工业公司 在蒸汽裂解器单元中裂解烃原料的方法
EA030883B1 (ru) 2013-07-02 2018-10-31 Сауди Бейсик Индастриз Корпорейшн Способ получения легких олефинов и ароматических соединений из углеводородного сырья
KR102432492B1 (ko) 2013-07-02 2022-08-12 사우디 베이식 인더스트리즈 코포레이션 정제소 중질 잔사유를 석유화학물질로 업그레이드하는 방법
JP6360553B2 (ja) 2013-07-02 2018-07-18 サウディ ベーシック インダストリーズ コーポレイション 炭化水素原料から軽質オレフィンおよび芳香族化合物を製造する方法
SG11201508917XA (en) 2013-07-02 2016-01-28 Saudi Basic Ind Corp Method for cracking a hydrocarbon feedstock in a steam cracker unit
CN105358661A (zh) 2013-07-02 2016-02-24 沙特基础工业公司 用于将原油转化成具有改进的丙烯产率的石化品的方法和设施
US9592496B2 (en) * 2013-11-18 2017-03-14 Lg Chem, Ltd. Catalyst composition and method for preparing same
JP6506312B2 (ja) 2014-02-25 2019-04-24 サウジ ベーシック インダストリーズ コーポレイションSaudi Basic Industries Corporaiton 統合水素化分解処理
CN106103664B (zh) 2014-02-25 2019-02-22 沙特基础工业公司 集成加氢裂化方法
KR102370265B1 (ko) 2014-02-25 2022-03-04 사빅 글로벌 테크놀러지스 비.브이. 통합된 수소화분해 공정
WO2015128037A1 (en) 2014-02-25 2015-09-03 Saudi Basic Industries Corporation Process for converting hydrocarbons into olefins
US10407629B2 (en) 2014-02-25 2019-09-10 Saudi Basic Industries Corporation Process and installation for the conversion of crude oil to petrochemicals having an improved ethylene and BTX yield
WO2015128042A1 (en) 2014-02-25 2015-09-03 Saudi Basic Industries Corporation A method of controlling the supply and allocation of hydrogen gas in a hydrogen system of a refinery integrated with olefins and aromatics plants
JP2017512233A (ja) 2014-02-25 2017-05-18 サウジ ベーシック インダストリーズ コーポレイションSaudi Basic Industries Corporaiton 原油の加熱方法
EP2960223B1 (en) 2014-06-25 2019-12-18 Borealis AG An endothermic gas phase catalytic dehydrogenation process
EP3000800A1 (en) 2014-09-23 2016-03-30 Borealis AG An endothermic gas phase catalytic dehydrogenation process
CN107249733A (zh) 2015-02-23 2017-10-13 沙特基础工业全球技术有限公司 催化复合材料及改善的用于烃脱氢的方法
WO2016170450A1 (en) 2015-04-20 2016-10-27 Sabic Global Technologies B.V. Method of improving dehydrogenation of hydrocarbons
WO2016178129A1 (en) 2015-05-04 2016-11-10 Sabic Global Technologies B.V. A process for the dehydrogenation of aliphatic hydrocarbons
US9873647B2 (en) 2015-11-04 2018-01-23 Exxonmobil Chemical Patents Inc. Processes and systems for converting hydrocarbons to cyclopentadiene
US10105689B2 (en) 2016-05-12 2018-10-23 Saudi Arabian Oil Company Heat generating catalyst for hydrocarbons cracking
US10662130B2 (en) 2017-08-15 2020-05-26 Exxonmobil Research And Engineering Company Process for generation of olefins
US11154850B2 (en) 2017-12-14 2021-10-26 Clariant Corporation Cr6 reduction in fluidized bed
US10836690B1 (en) 2019-07-26 2020-11-17 Tpc Group Llc Dehydrogenation process and system with reactor re-sequencing
CN110903155B (zh) 2019-12-18 2020-09-08 四川润和催化新材料股份有限公司 一种低碳烷烃脱氢工艺的方法、装置和反应系统
CN114425296A (zh) * 2020-09-28 2022-05-03 中国石油化工股份有限公司 脱除烯烃中极性化合物的吸附剂及其制备方法和应用

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2423835A (en) 1942-04-17 1947-07-15 Houdry Process Corp Inert heat material in contact mass catalysis
US2423029A (en) 1942-07-18 1947-06-24 Houdry Process Corp Process for producing diolefins
US2419997A (en) 1943-03-05 1947-05-06 Houdry Process Corp Catalytic dehydrogenation of aliphatic hydrocarbons
US2399678A (en) 1943-07-27 1946-05-07 Houdry Process Corp Catalysis
US3488402A (en) 1967-05-18 1970-01-06 Sinclair Research Inc Dehydrogenation of hydrocarbons using dehydrogenation-oxidation catalyst system
US3665049A (en) * 1970-05-28 1972-05-23 Air Prod & Chem Dehydrogenating propane over chromia-alumina catalyst
JPS4914721B1 (zh) 1970-08-11 1974-04-10
US3798178A (en) * 1972-02-17 1974-03-19 Dow Chemical Co Self-regenerative dehydrogenation catalyst
US3780129A (en) * 1972-04-10 1973-12-18 Petro Tex Chem Corp Dehydrogenation process
US3905917A (en) 1973-06-15 1975-09-16 Matsushita Electric Ind Co Ltd Catalyst for purifying exhaust gas
US3960975A (en) 1974-06-03 1976-06-01 Petro-Tex Chemical Corporation Magnesium chromite dehydrogenation catalyst
JPS5430398B2 (zh) 1975-01-29 1979-09-29
US4418237A (en) 1981-03-30 1983-11-29 Uop Inc. Dehydrogenation of dehydrogenatable hydrocarbons
US4435607A (en) 1981-04-28 1984-03-06 Uop Inc. Dehydrogenation of dehydrogenatable hydrocarbons
IT1201421B (it) 1985-06-17 1989-02-02 Snam Progetti Metodo per la preparazione di un catalizzatore per la deidrogenazione delle paraffine c3-c5
JPS6486944A (en) 1987-09-30 1989-03-31 Yokogawa Medical Syst Ultrasonic doppler diagnostic apparatus
US4788371A (en) 1987-12-30 1988-11-29 Uop Inc. Catalytic oxidative steam dehydrogenation process
US5108973A (en) 1991-05-28 1992-04-28 Amoco Corporation Crystalline copper chromium aluminum borate
DE69206961T3 (de) 1991-11-21 1999-04-08 Bp Chem Int Ltd Verfahren zur Dehydrierung von Kohlenwasserstoffen und von sauerstoffenthaltenden Kohlenwasserstoffen
US5827496A (en) 1992-12-11 1998-10-27 Energy And Environmental Research Corp. Methods and systems for heat transfer by unmixed combustion
US5510557A (en) 1994-02-28 1996-04-23 Abb Lummus Crest Inc. Endothermic catalytic dehydrogenation process
US6891138B2 (en) 1997-04-04 2005-05-10 Robert C. Dalton Electromagnetic susceptors with coatings for artificial dielectric systems and devices
CN1088622C (zh) * 1998-11-26 2002-08-07 北京大学 一种氧化钛-氧化铝复合物为载体的钯催化剂及其制法和用途
DK199900477A (da) 1999-04-12 2000-10-13 Haldor Topsoe As Fremgangsmåde til dehydrogenering af carbonhydrid
RU2157279C1 (ru) 1999-12-17 2000-10-10 Довганюк Владимир Федорович Способ получения катализатора конверсии оксида углерода водяным паром
US20020183571A1 (en) 2000-11-30 2002-12-05 Sud-Chemie Inc. Radial reactor loading of a dehydrogenation catalyst
DE10108842A1 (de) 2001-02-23 2002-10-02 Degussa Geformter Kupfer-Katalysator
US20040092391A1 (en) 2002-11-08 2004-05-13 Andrzej Rokicki Fluid bed catalyst for dehydrogenation of hydrocarbons
RU2254162C1 (ru) 2003-09-25 2005-06-20 Закрытое акционерное общество "Всероссийский научно-исследовательский институт органического синтеза в г. Новокуйбышевске" (ЗАО "ВНИИОС НК") Способ очистки газовых выбросов промышленных производств от углеводородов
US7199276B2 (en) 2003-11-19 2007-04-03 Exxonmobil Chemical Patents Inc. Controlling the ratio of ethylene to propylene produced in an oxygenate to olefin conversion process
US7196239B2 (en) 2003-11-19 2007-03-27 Exxonmobil Chemical Patents Inc. Methanol and ethanol production for an oxygenate to olefin reaction system
US7067455B2 (en) * 2003-11-21 2006-06-27 Conocophillips Company Copper modified catalysts for oxidative dehydrogenation
US7074977B2 (en) * 2003-12-09 2006-07-11 Conocophillips Company Reactor and process for converting alkanes to alkenes
US7192987B2 (en) 2004-03-05 2007-03-20 Exxonmobil Chemical Patents Inc. Processes for making methanol streams and uses for the streams
US7622623B2 (en) * 2005-09-02 2009-11-24 Sud-Chemie Inc. Catalytically inactive heat generator and improved dehydrogenation process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113264807A (zh) * 2014-03-14 2021-08-17 科莱恩公司 利用发热材料的改进的脱氢工艺
CN108300430A (zh) * 2018-02-06 2018-07-20 四川润和催化新材料股份有限公司 一种烷烃脱氢放热助剂及其制备方法与使用方法
CN113710356A (zh) * 2019-03-13 2021-11-26 沙特基础工业全球技术公司 用于胡得利团块减少的脱氢方法的可编程逻辑控制器

Also Published As

Publication number Publication date
EP1933978B1 (en) 2020-04-01
CN101252989B (zh) 2012-07-18
PL1933978T3 (pl) 2020-11-02
RU2008112677A (ru) 2009-10-10
RU2428250C2 (ru) 2011-09-10
WO2007030298A1 (en) 2007-03-15
US7622623B2 (en) 2009-11-24
US20070054801A1 (en) 2007-03-08
EP1933978A1 (en) 2008-06-25

Similar Documents

Publication Publication Date Title
CN101252989B (zh) 催化惰性热发生器和改进的脱氢方法
EP2212404B1 (en) Improved endothermic hydrocarbon conversion process
JP6877148B2 (ja) 発熱材による改良された脱水素プロセス
JP4933397B2 (ja) アルカンをアルケンに変換するための一体化された触媒方法およびその方法に有用な触媒
US5439859A (en) Process and catalyst for dehydrogenation of organic compounds
CN101624324B (zh) 将烷烃转化为烯烃的混合自热催化工艺及其催化剂
EP0568303A2 (en) Process and catalyst for dehydrogenation of organic compounds
JP5236139B2 (ja) エチルベンゼンのスチレンへの脱水素化法
EP2152408A2 (en) Catalyst and method for converting natural gas to higher carbon compounds
US5733518A (en) Process and catalyst for dehydrogenation of organic compounds
CN107249733A (zh) 催化复合材料及改善的用于烃脱氢的方法
CN103889567B (zh) 用于吸热催化脱氢工艺的催化剂床体系和吸热脱氢工艺
US11439982B2 (en) Method of producing olefin using circulating fluidized bed process
US20220111363A1 (en) Catalyst
CN106687429A (zh) 嵌入式烷烃脱氢系统及方法
CN117603000A (zh) 一种丙烷脱氢制备丙烯的方法及系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210831

Address after: Swiss Mu Tengci

Patentee after: CLARIANT INTERNATIONAL Ltd.

Address before: North Carolina, USA

Patentee before: CLARIANT Corp.

Effective date of registration: 20210831

Address after: North Carolina, USA

Patentee after: CLARIANT Corp.

Address before: Kentucky, USA

Patentee before: SUD-CHEMIE Inc.