CN101248158B - 疏水粘合剂中的液晶液滴 - Google Patents

疏水粘合剂中的液晶液滴 Download PDF

Info

Publication number
CN101248158B
CN101248158B CN200680022241XA CN200680022241A CN101248158B CN 101248158 B CN101248158 B CN 101248158B CN 200680022241X A CN200680022241X A CN 200680022241XA CN 200680022241 A CN200680022241 A CN 200680022241A CN 101248158 B CN101248158 B CN 101248158B
Authority
CN
China
Prior art keywords
layer
liquid crystal
conductive layer
display according
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200680022241XA
Other languages
English (en)
Other versions
CN101248158A (zh
Inventor
K·查理
D·玛裘达
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iris Optronics Co Ltd
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Publication of CN101248158A publication Critical patent/CN101248158A/zh
Application granted granted Critical
Publication of CN101248158B publication Critical patent/CN101248158B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • C09K19/544Macromolecular compounds as dispersing or encapsulating medium around the liquid crystal
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/02Alignment layer characterised by chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/03Viewing layer characterised by chemical composition
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • G02F1/13345Network or three-dimensional gels

Abstract

本发明涉及一种显示器,该显示器包括至少一个底物和至少一个电调制成像层以及至少一个导电层,其中所述的电调制成像层包括在不溶于水的疏水聚合物基体中的电调制材料的自组装密堆积的有序单层域,及该至少一个导电层包括导电聚合物和电导率增强剂。

Description

疏水粘合剂中的液晶液滴
技术领域
本发明涉及疏水粘合剂在电子显示器中的应用。
背景技术
低成本柔性电子显示器存在显著的利益。典型地,所述显示器包括嵌在粘合剂(最常用聚合物)基体中的光调制组件,其中基体涂覆在导电塑料架上。从广义上讲,光调制组件是一种改变其光学性质(例如其相应于电场的反射光或传光能力)的材料。光调制组件可以是液晶材料,例如向列型液晶、手性向列型液晶或胆甾型液晶或铁电性液晶。光调制材料也可以是不溶于水的液体,该液体包含经历过电泳或运动(例如相应于电场的旋转或平移)的颗粒。聚合物基体中含液晶材料的显示器被称作聚合物分散型液晶(PDLC)显示器。
有两种制作聚合物分散型液晶器件的主要方法:乳液法和相分离法。美国专利Nos.4,435,047和5,363,482描述了乳液法。将液晶与含聚合物的水溶液混合。液晶在连续相中不溶,当组合物通过合适的剪切装置(例如均化器)时,形成水包油乳液。将乳液涂覆在一个导电表面上,并蒸发掉水。然后通过层压、真空沉积或筛网印花,可以将第二个导电层置于乳液或成像层上面以制成器件。在直接使用乳液法时,液滴大小分布宽,其造成性能损失。对于胆甾型液晶器件,在这里也被称作CLC器件,其通常意味着降低的反衬度和亮度。努力引入相分离法来克服该难题。
在美国专利No.4,688,900和Drzaic的著作Liquid CrystalDispersions(30-51页,World Scientific出版,Singapore(1995))中概述了相分离法。将液晶和聚合物或聚合物母体溶解在常用的有机溶剂中。然后将组合物涂覆在导电表面上,并通过紫外线(UV)照射或加热或溶剂蒸发引入相分离,其导致在固体聚合物基体中形成液晶液滴。然后可利用该组合物制成器件。尽管相分离法产生具有更均匀大小分布的分散液滴,但是该方法仍有许多问题。例如,由于生产活性自由基的光引发剂的存在,光聚合体系的长期耐光性是一个问题。未被聚合反应消耗掉的光引发剂能继续生成自由基,该自由基能随时间降解聚合物和液晶。而且,紫外线照射对液晶有害也是知道的。尤其是受到紫外照射可导致胆甾型液晶混合物中手性掺杂剂的分解,其导致反射色的变化。在某些制作环境中,使用有机溶剂也可能是有异议的。
美国专利No.6,423,368和美国专利No.6,704,073建议通过使用由有限聚结方法(limited coalescence method)制备的液晶材料液滴,结合现有技术方法来克服这些问题。在该方法中,利用微粒种(例如胶态二氧化硅)来稳定液滴-水界面。尤其优选利用如胶态二氧化硅微粒种获得的表面稳定性,因为其能形成窄尺寸分布,而且液滴的大小可以通过所用微粒种的浓度来控制。由该方法制备的材料还被称作Pickering乳液,Whitesides和Ross对其进行了更全面的描述(J.ColloidInterface Sci.169,48(1995))。该均匀的液滴可以与合适的粘合剂结合,并涂覆在导电表面上来制备器件。相对于现有技术方法,该方法改善了亮度和反衬度。还克服了一些与光引发剂和紫外线照射有关的问题。然而,仍有很大的提升空间,特别是开启电压或用于改变液晶从一个状态到另一个状态转变取向的电压。后者对显示器的总价格具有显著的影响。低开启电压对于低成本显示器极其需要。
由于涂层结构的原因,美国专利No.6,423,368和美国专利No.6,704,073描述的器件存在缺陷。遗憾的是,在两个电极之间有多层液滴。此外,将明胶粘合剂(gelatin binder)中加热的液晶乳液涂覆在具有导电层的底物上,接下来降低涂层的温度以改变涂层的状态,在干燥该涂层前使其从自由流动的液体变成凝胶态(称作溶胶-凝胶转变),该方法导致极其不均匀的液晶液滴分布。在电极之间微观上存在含重叠液滴的涂层区域,而且还存在根本不含液滴的其它区域。液滴的不均匀分布导致反衬度的降低和开启电压的增大。
美国专利No.6,271,898和美国专利No.5,835,174还描述了适用于柔性显示器应用的组合物,其利用了聚合物粘合剂中大小非常均匀的液晶液滴。然而,由于没有试图控制涂层中液滴厚度或分布,导致较差的性质。
美国专利申请系列No.10/718,900表明,当将均匀的液晶域或液滴在导电载体上基本涂成单层时,在有限聚结方法制备的双稳态手性向列型液晶显示器中可获得最大的反衬度。在这些手性向列型液晶显示器中的双稳态为平面反射态(planar reflecting state)和弱散射焦点圆锥曲线态(scattering focal conic state)。当在导电表面之间存在多层液滴时,来自弱散射焦点圆锥曲线态的光反散射急剧增加。该方法提供了亮度和反衬度改进的显示器,但在性质上仍有不足,因为在干燥涂层之前,对明胶粘合剂进行溶胶-凝胶转变导致不均匀的结构。
Rudhardt等人(Applied Physics Letters vol.82,p2610,2003)描述了一种制备光调制器件的方法,其中将含有聚合物粘合剂水溶液中非常均匀的液晶液滴的组合物涂覆在氧化铟锡(ITO)涂布的玻璃表面上,并将水蒸发掉。液晶液滴自发自组装成六方密堆积(HCP)单层。将第二个氧化铟锡涂布的玻璃表面作为上电极置于液滴涂层上以完成器件的制作。该涂层获得了均一的单层厚度,且还非常好地定义了液滴的密堆积分布。两种特征导致低的开启电压。然而,该方法还有许多问题。首先,通过挤出法来制备均匀的液晶液滴,其是通过一个细毛细管形成流动液体。当毛细管端的液滴长到临界尺寸时,粘性阻力超过表面张力并出现破裂,形成高度单分散的乳液。很明显,这种一次只生成一个液滴的方法不适合大批生产。第二,通过该方法应用第二个(上)电极可能适用于在硬底物如玻璃上制作小型显示器,但不适于在柔性底物上制作大面积低成本显示器。单底物方法,其中简单涂覆第二个电极,或对双底物方法优选筛网印花,其中单独制作第二个电极,然后通过层压使其接触。
美国专利申请Nos.2003/0137717A1和美国专利申请Nos.2004/0217929A1表明,为了在聚合物分散电泳显示器中获得高亮度和反衬度,光调制组件的液滴的密堆积单层可能是所需的。然而,在这些专利申请中描述的制备液滴的方法是标准的乳液方法,该方法不能形成具有窄尺寸分布的乳液,而这种窄尺寸分布的乳液是通过自发自组装获得密堆积单层所需要的。在美国专利申请Nos.2003/0137717A1和美国专利申请Nos.2004/0217929A1中,优选的制备液滴方法还涉及包覆(encapsulation),其导致形成20-200微米大小和0.2-10微米壁厚的液滴或胶囊。该相对较大的液滴尺寸和壁厚导致高的开启电压。后者对双稳态胆甾型液晶器件尤其是个问题。包覆明显是所不需要的,但是这些专利申请并没有告诉在包覆不存在时如何将第二个导电层应用于液滴涂层上。在不存在包覆时,光调制组件的液滴可能会直接与筛网印花导电墨中的有机溶剂接触,其导致光调制组件的污染或中毒(poisoning)。当光调制组件是液晶材料时,这尤其是个问题。
为了克服美国专利申请Nos.2003/0137717A1和美国专利申请Nos.2004/0217929A1中的难题,美国专利申请Nos.2004/0226820A1指出,利用电沉积,接下来在使用刮涂刀具或涂布机(例如槽凸模涂布机)将液滴涂覆在合适的表面上后进行清洗,可获得液滴的密堆积单层。然而,电沉积和清洗的其它步骤繁琐,不适合大批生产。甚至使用这些其它步骤,无法获得厚度均匀的密堆积单层。因为不均匀的液滴或胶囊,均方根(RMS)表面粗糙度约为6微米。如果使用紫外线可固化的筛网印花导电油墨作为第二个电极,这种非常高的表面粗糙度值会导致不规则或不完全固化。不规则固化会导致开启电压增大。此外,由于开启电压直接与涂层的厚度有关,这种数量级的表面粗糙度还会导致显示器上开启电压的不均一。
美国专利申请系列No.11/017181描述了一种制作聚合物分散液晶的新方法,该方法克服了现有技术的问题。利用有限聚结方法制备液晶液滴的均匀分散体。将液滴与合适的粘合剂混合,并涂覆在柔性导电载体上,及在高于粘合剂的溶胶-凝胶转变的温度下进行干燥。均匀的液晶液滴自发自组装形成密堆积单层。然后通过使粘合剂交联来固定或保存所需的密堆积结构。接下来,将含明胶的第二个含水层涂覆在液晶层上,并在低于粘合剂的溶胶-凝胶转变的温度下进行干燥。该第二层保护液晶材料免受导电油墨中溶剂的影响。将导电油墨筛网印花在此层上以完成器件的制作。可以使用低成本的方法制造器件。此外,该器件还显示了低的开启电压及好的反衬度和亮度。然而,仍有改进的空间。特别地,在应用液晶层努力减少加工时间(process time)后,将优选不再使交联粘合剂。此外,由于开启电压直接与电极间的厚度成比例,还需要除去液晶层间的保护层和第二个电极。
美国专利No.4,806,922描述了一种制作聚合物分散液晶的方法,该方法使用聚合物胶乳作为含液晶层中的粘合剂材料。但是,这种制作液晶液滴的方法也是标准的乳液方法,其不能形成具有窄尺寸分布的乳液,而窄尺寸分布的乳液对通过自发自组装获得密堆积单层是必须的。
美国专利申请系列No.11/017181还描述了一种制作聚合物分散液晶的方法,该方法使用聚合物胶乳作为粘合剂材料。在此情况中,使用有限聚结方法制备非常均匀的液晶液滴。然而,尽管是这样,显示器还是显示了所不希望出现的高的开启电压。
总而言之,现有技术描述了水溶性液晶层。如果在未固定或交联的情况下将含水层涂覆在其上面,该层的密堆积结构就被破坏。溶剂形成的(solvent borne)导电层也不能直接涂覆在液晶层顶上,因为液晶与溶剂间的接触可能对液晶造成不可逆的损坏。该问题的一个解决建议是在水溶的液晶层与溶剂生成的电层之间涂覆保护屏障。不幸的是,此添加层致使需增大电压。很明显,需要基于不溶于水的疏水粘合剂材料的低成本显示器,该显示器应显示低的开启电压及好的反衬度和亮度。还需要具有减小的电极间厚度的低成本显示器。
发明内容
要解决的问题
需要具有优异亮度、高反衬度和低开启电压的低成本显示器。
发明概述
本发明设计一种显示器,该显示器包括至少一个底物和至少一个电调制成像层,以及至少一个导电层,其中电调制成像层包括电调制材料域的自组装的密堆积有序的单层,该电调制材料在不溶于水的疏水聚合物基体中,且至少一个导电层包括导电聚合物和电导率增强剂。
发明有益效果
本发明包括几个优点,不是所有优点都并在单个实施方案中。本发明的显示器成本低,并且要求低开启电压。在胆甾型或手性向列型液晶显示器的情况中,结果获得的显示器期望具有更接近于50%的理论极限的反射度和更高的反衬度。疏水粘合剂的应用产生了一个电光材料的液滴自组装单层,在与第二个含水层接触时,该单层不受干扰。导电聚合物的应用提供了能直接涂覆在液晶层上的导体。含导电层的涂层组合物中电导率增强剂(CEA)的加入导致增大的电导率。
附图简述
图1说明了基于本发明实施例的显示器,其是应用含导电聚合物PEDOT的第二层后密堆积结构的显微成像实体保存。
图2说明了基于现有技术的显示器,其是具有均匀液晶液滴和聚合物胶乳粘合剂的密堆积单层的显微照片。
发明详细描述
本发明涉及一种高反衬度反射式的显示器,其包括至少一个底物、至少一个导电层和至少一个在不溶于水的疏水聚合物基体中的密堆积有序的电调制材料域单层,以及涉及其制备方法。在优选的实施方案中,电调制材料是加在聚合物基体中的手性向列型液晶。优选的不溶于水的疏水聚合物是聚合物胶乳。不溶于水意味着聚合物分散在水介质中,但不溶解在水或液晶材料中。
可以使用手性向列型液晶材料生产在环境光照条件下具有双稳态和可视化的电子显示器。此外,可以将液晶材料以微米级液滴分散在水介质中,与合适的粘合剂材料混合并涂覆在柔性导电载体上来生产潜在低成本显示器。这些显示器的操作依赖于平面反射态和弱散射焦点圆锥曲线态之间的反衬度。为了由这些显示器获得最大的反衬度,需要将手性向列型液晶域或液滴以密堆积有序的单层涂覆在导电载体上。
首先在存在合适粘合剂的情况下,将手性向列型液晶域的水分散体应用于底物上,使这些液晶域或液滴自组装成密堆积有序的单层,优选自组装成六方密堆积(HCP)的单层,然后使粘合剂材料固化或使其固定以保留密堆积有序的单层结构,致使其它层可以涂覆在成像层上而不影响密堆积结构,通过上述操作可制备所述的有序单层。
一般来说,光调制成像层包括分散在粘合剂中的电调制材料域(domains)。为了本发明的目的,定义域与胶束和/或液滴同义。电调制材料可以是电致变色材料、可旋转的微胶囊微球、液晶材料、胆甾/手性向列型液晶材料、聚合物分散型液晶(PDLC)、聚合物稳定型液晶、表面稳定型液晶、近晶型液晶、铁电性液晶、电致发光材料或任何本技术领域已知的其它大量光调制成像材料。电调制成像层的域包括具有均匀域尺寸(domain size)的液滴,即使有寄生的域,也非常少,其是如前述专利技术中所述的干燥涂层中随机产生或不可控尺寸的域,具有所不希望的电光性质。
该显示器包括配置在合适载体结构上(例如在一个或多个电极上或电极之间)的合适电调制材料。此处使用的术语“电调制材料”是指任何合适的非挥发性材料。在美国专利申请系列No.09/393,553和美国临时专利申请系列No.60/009,888中描述了适用于电调制材料的材料,该两个专利文献并入此处作为参考。
电调制材料也可以是颗粒或微容器或微胶囊的形式。每个微胶囊包含电泳液体组合物(例如介电或乳液液体)和有色或带电粒子或胶体材料的悬浮液。根据一个实施例,粒子在视觉上与介电液体形成对比。根据另一个实施例,电调制材料可包括可旋转的球,该球可以旋转以暴露不同的彩色表面,并可以在前观察位置和/或后非观察位置之间移动,例如双色球(gyricon)。更具体地讲,双色球是由包含在液体填充球腔中的扭转回转单元(twisting rotating elements)构成的材料,并嵌在高弹体介质中。通过施加的外电场,可以使旋转单元显示光学性质的变化。通过应用给定极性的电场,旋转单元的一部分旋转,其能被显示器的观察者看到。应用相反极性的电场,导致单元旋转并将另一个不同部分暴露给观察者。双色球显示器保持给定的结构直至电场被主动应于显示组件。美国专利No.6,147,791、美国专利No.4,126,854和美国专利No.6,055,091公开了双色球材料,其内容并入此处作为参考。
根据一个实施例,用黑色或彩色染料中的带电白色颗粒填充该微胶囊。在国际专利申请公开号WO98/41899、国际专利申请公开号WO98/19208、国际专利申请公开号WO98/03896和国际专利申请公开号WO98/41898中给出了适用于本发明的电调制材料的例子,这些专利文献的内容并入此处作为参考。
电调制材料还包括美国专利No.6,025,896中公开的材料,其内容并入此处作为参考。该材料包括带电颗粒,该颗粒存在于包覆在大量微胶囊中的液体分散体介质中。带电颗粒可以具有不同的颜色和电荷极性。例如,白色带正电颗粒可以与黑色带负电颗粒一起使用。所述的微胶囊置于一对电极之间,以致形成所需要的像,并通过改变带电颗粒的分散状态由材料显示出来。通过应用于电调制材料上的控制电场来改变带电颗粒的分散状态。
电调制材料可包括热致变色材料。通过热应用,热致变色材料能够在透明和不透明之间交替改变其状态。在此种方式中,通过在特定像素位置应用热,热致变色成像材料发展图像以形成图像。热致变色成像材料保留特定的图像直至再次对材料应用热。由于可擦写材料是透明的,可看见下面的紫外荧光印刷、设计和模式。
电调制材料还可包括表面稳定的铁电性液晶(SSFLC)。表面稳定的铁电性液晶将铁电性液晶材料限定在紧挨的玻璃板之间以抑制晶体的天然螺旋结构。简单通过交替改变应用电场的信号,该元件(cell)在两个光学不同稳态之间变换。
悬浮在乳液中的磁性颗粒包括适用于本发明的其它成像材料。应用磁场力改变磁性颗粒形成的像素以生成、更新或改变人和/或机器可读的记号。本领域的技术人员能认识到可以获得多种双稳态非挥发性成像材料,并可以在本发明中使用。
电调制材料还可以设计成单色,例如黑色、白色或透明的,以及可以是荧光的、彩虹色的、生物发光的、白炽的、紫外的、红外的,或可以包括吸收或发射特定波长辐射的材料。可以有多层电调制材料。电调制材料的不同层或不同域可具有不同的性质或颜色。而且,多层的特性彼此可以不同。例如,一层用于在可见光范围内视图或显示信息,而另一层对应于或发射紫外线。不可见层可选择由具有前面所列的吸收或发射辐射特性的非电调制材料类材料构建而成。在本发明中使用的电调制材料优选具有不需要功即可显示记号的特性。
最优选的电调制材料是光调制材料,例如液晶材料。液晶材料可以是许多不同液晶相中的一种,例如:向列型(N)、手性向列型(N*)或近晶型,其依赖于分子在中间相(mesophase)中的排列。手性向列型液晶(N*CL)显示器优选为反射型,也就是说,不需要背光源,不使用偏光膜或滤色镜即可工作。
手性向列型液晶是指具有更细螺距(finer pitch)的液晶类型,其螺距比在常用液晶器件中使用的扭曲型向列型液晶和超扭曲型向列型液晶的螺距更细。之所以称为手性向列型液晶是因为通常通过向主体向列型液晶添加手性试剂获得该液晶配方。手性向列型液晶可以用来生产双稳态或多稳态显示器。由于其非易失性(nonvolatile)“记忆”特性,这些器件显著降低了功耗。由于该显示器不需要连续的驱动电路来维持图像,其消耗的功显著降低。在场不存在时,手性向列型显示器是双稳态的,两种稳态是反射平面态和弱散射焦点圆锥曲线态。在平面态结构中,手性向列型液晶分子的螺旋轴基本上垂直于液晶所在的底物。在焦点圆锥曲线态中,液晶分子的螺旋轴一般随意取向。调节手性向列型材料中手性掺杂剂的浓度来调节中间相的螺距长,及由此调节反射的辐射波长。使用反射红外线辐射和紫外线的手性向列型材料以用于科学研究的目的。商品显示器最经常由反射可见光的手性向列型材料制作。一些已知的液晶器件(LCDs)包括如美国专利No.5,667,853中所述的覆盖在玻璃底物上的化学刻蚀的透明导电层,该专利文献并入此处作为参考。合适的手性向列型液晶组合物优选具有正介电各向异性及包括有效量的手性材料以形成焦点圆锥曲线态和扭曲平面态。由于其优异的反射特性、双稳态和灰度记忆,优选手性向列型液晶材料。
现代手性向列型液晶材料通常包括至少一个结合有手性掺杂剂的向列型主体。向列型液晶相通常由一种或多种联合的内消旋组分(mesogenic components)构成以提供综合性能。手性向列型液晶混合物的向列型组分可以由具有适当液晶特性的任何合适的向列型液晶混合物或组合物组成。适用于本发明的向列型液晶优选由选自向列型或线性物质(nematogenic substance)的低分子量化合物组成,例如已知种类的氧化偶氮苯、N-亚苄基苯胺、联苯、三联苯、苯甲酸苯酯或苯甲酸环己酯、环己烷羧酸的苯酯或环己酯、环己基苯甲酸的苯酯或环己酯、环己基环己烷羧酸的苯酯或环己酯、苯甲酸的环己基苯酯、环己烷羧酸的环己基苯酯、环己基环己烷羧酸的环己基苯酯、苯基环己烷、环己烷基联苯、苯基环己基环己烷、环己基环己烷、环己基环己烯、环己基环己基环己烯、1,4-二环己基苯、4,4-二环己基联苯、苯基或环己基嘧啶、苯基或环己基吡啶、苯基或环己基哒嗪、苯基或环己基二噁烷、苯基或环己基-1,3-二噻烷、1,2-二苯基乙烷、1,2-二环己基乙烷、1-苯基-2-环己基乙烷、1-环己基-2-(4-苯基环己基)乙烷、1-环己基-2’,2-二苯基乙烷、1-苯基-2-环己基苯基乙烷、任选卤代的二苯乙烯、苄基苯基醚、二苯乙炔、取代的肉桂酸或酯、以及其它种类的向列型或线性物质。这些化合物中的1,4-亚苯基也可以侧向由单氟取代或双氟取代。该优选实施方案的液晶材料基于该类型的非手性化合物。可能作为这些液晶材料的组分的最重要化合物可以由通式R′-X-Y-Z-R″表示,其中X和Z在每种情况中可以相同或不同,彼此独立,选自-Phe-、-Cyc-、-Phe-Phe-、-Phe-Cyc-、-Cyc-Cyc-、-Pyr-、-Dio-、-B-Phe和-B-Cyc-的二价基团,Phe是未取代或氟取代的1,4-亚苯基,Cyc是反式1,4-环己烯或1,4-亚环己烯基,Pyr是嘧啶-2,5-二基或吡啶-2,5-二基,Dio是1,3-二噁烷-2,5-二基,和B是2-(反式-1,4-环己基)乙基、嘧啶-2,5-二基、吡啶-2,5-二基或1,3-二噁烷-2,5-二基。这些化合物中的Y选自下述二价基团:-CH=CH-、-C≡C-、-N=N(O)-、-CH=CY′-、-CH=N(O)-、-CH2-CH2-、-CO-O-、-CH2-O-、-CO-S-、-CH2-S-、-COO-Phe-COO-或单键,Y′为卤素,优选为氯,或为-CN,R′和R″在每种情况中彼此独立地为具有1至18个,优选1至12个碳原子的烷基、链烯基、烷氧基、链烯氧基、烷酰氧基、烷氧羰基或烷氧羰基氧基,或可选择地R′和R″之一为-F、-CF3、-OF3、-Cl、-NCS或-CN。在大多数这些化合物中,R′和R′在每种情况中彼此独立地为具有不同链长的烷基、链烯基或烷氧基,其中在向列型介质中的碳原子总数一般在2至9之间,优选的在2至7之间。向列型液晶相通常包括2至20,优选包括2至15种组分。上述所列的材料不意味着是穷尽性的或有限制性的列举。所列的这些材料公开了多种适用于混合物的代表性材料,其包括光调制液晶组合物中的活性组分。手性向列型液晶材料和电池以及聚合物稳定的手性向列型液晶和电池在本技术领域是已知的,其例如在美国专利申请系列No.07/969,093中,美国专利申请系列No.08/057,662中,Yang等人在Appl.Phys.Lett.60(25)pp3102-04(1992)中,Yang等人在J.Appl.Phys.76(2)pp 1331(1994)中,公开的国际专利申请No.PCT/US92/09367和国际专利申请No.PCT/US92/03504中被描述,所有这些文献并入此处作为参考。
合适的商品向列型液晶包括例如E.Merck(Darmstadt,Germany)制造的E7、E44、E48、E31、E80、BL087、BL101、ZLI-3308、ZLI-3273、ZLI-5048-000、ZLI-5049-100、ZLI-5100-100、ZLI-5800-000、MLC-6041-100。TL202、TL203、TL204和TL205。尽管优选具有正介电各向异性向列型液晶,特别是氰基联苯,实际上本领域已知的任何向列型液晶,包括那些具有负介电各向异性向列型液晶应适用于本发明的应用。其它向列型材料也可以适用于本发明,如本领域的技术人员所能够理解的。
添加到向列型混合物中而引起中间相螺旋扭曲,进而允许可见光反射的手性掺杂剂可以是任何有用的结构类型。掺杂剂的选择依赖于几个特性,其中包括与向列型主体的化学相容性、螺旋扭曲力、温度敏感性和耐光性。许多手性掺杂剂类型在本领域中是已知的:例如,G.Gottarelli和G.Spada的Mol.Cryst.Liq.Crys.,123,377(1985)和G.Spada和G.Proni的Enantiomer,3,301(1998)并入此处作为参考。典型的已知掺杂剂类包括1,1-联萘酚衍生物、异山梨醇和如美国专利No.6,217,792中公开的类似二缩异甘露醇酯、如美国专利No.6,099,751中所公开的TADDOL衍生物,以及如T.Welter等人在2003年8月29日申请的美国专利申请系列号10/651,692(题目是“Chiral CompoundsAnd Compositions Containing The Same”)中所公开的未决的螺茚酯(spiroindanes esters),并入此处作为参考。
可根据下面的公式(1)调整液晶材料的螺距长:
λmax=navP0
其中λmax为峰反射波长,即反射率最大时的波长,nav为液晶材料折射的平均指数,及p0为手性向列型螺旋线的天然螺距长。手性向列型螺旋线和螺距长度的定义及其测试方法是本领域技术人员所已知的,例如可以在书Blinov,L.M.,Electro-optical and Magneto-OpticalProperties of Liquid Crystals,John Wiley&Sons Ltd.1983中找到。通过调节液晶材料中手性材料的浓度来调节螺距。对于大多数手性掺杂剂浓度,由掺杂剂引入的螺距长度与掺杂剂的浓度成反比。比例常数由下述公式(2)给出:
P0=1/(HTP.c)
其中c是手性掺杂剂的浓度,HTP是比例常数。
对于一些应用,希望获得显示强螺旋扭转和因此而获得的短螺距长度的液晶混合物。例如在选择性反射手性向列型显示器中使用的液晶混合物中,必须选择螺距,以使手性向列型螺旋线反射的波长最大值在可见光的范围内。其它可能的应用是用于光学元件的具有手性液晶相的聚合物薄膜,例如手性向列型宽带极化器、滤波片阵列或手性液晶型延迟膜(retardation films)。其中这些是活性和钝性光学单元或滤色器和液晶显示器,例如STN、TN、AMD-TN、温度补偿、不含聚合物或聚合物稳定的手性向列型结构(PFCT,PSCT)显示器。可能的显示器工业应用包括用于笔记本电脑和台式电脑的紫外线的、柔性的、和便宜的显示器、仪表盘、电视游戏机、可视电话、移动电话、掌上电脑、个人数字助理(PDAs)、电子书、可携式摄像机、卫星导航系统、仓库和超市计价系统、道路标志、信息显示器、智能卡、玩具和其它电子设备。
液晶液滴或域典型地分散在连续的粘合剂中。在一个实施方案中,手性向列型液晶组合物可分散在连续的聚合物基体中。该材料被称作“聚合物分散型液晶”材料或“PDLC”材料。
聚合物胶乳颗粒的水悬浮液也适于做粘合剂。胶乳颗粒可以基于任何合适的单体,例如氨基甲酸酯、苯乙烯、乙烯基甲苯、p-氯苯乙烯、乙烯基萘、烯键式不饱和单烯烃,例如乙烯、丙烯、丁烯和异丁烯;乙烯基卤化物例如氯乙烯、溴乙烯、氟乙烯、乙酸乙烯酯、丙酸乙烯酯、苯甲酸乙烯酯和丁酸乙烯酯;α-亚甲基脂肪族单羧酸酯,例如丙烯酸甲酯、丙烯酸乙酯、丙烯酸正丁酯、丙烯酸异丁酯、丙烯酸十二烷基酯、丙烯酸正辛酯、丙烯酸2-氯乙酯、丙烯酸苯酯、α-氯丙烯酸甲酯、甲基丙烯酸甲酯、甲基丙烯酸乙酯和甲基丙烯酸丁酯;丙烯腈、甲基丙烯腈、丙烯酰胺、乙烯基醚,例如乙烯基甲醚、乙烯基异丁醚和乙烯乙基醚;乙烯基酮,例如乙烯基甲基酮、乙烯基己基酮和甲基异丙基酮;亚乙烯基卤化物,例如偏二氯乙烯和偏氟氯乙烯;和N-乙烯基化合物,例如N-乙烯基吡咯、N-乙烯基咔唑、N-乙烯基吲哚和N-乙烯基吡咯烷酮二乙烯基苯、及其二甲基丙烯酸乙二醇酯混合物;以及类似物。还优选聚酯和聚烯烃的水悬浮液。优选使用聚合物胶乳颗粒的水悬浮液作为粘合剂。最优选的聚合物胶乳为聚氨酯胶乳。
希望粘合剂具有低的离子含量。在该粘合剂中存在离子会阻止电场穿过分散液晶材料发展。此外,粘合剂中的离子在电场存在时能够迁移,其化学破坏了光调制层。设计涂层厚度、液晶域的大小和液晶材料域的浓度以获得最好的光学性质。因此,使用剪切磨或其它的机械分离方法来进行液晶的分散以在光调制层内形成液晶域。
可以在乳液中添加传统的表面活性剂以改进层的涂覆。表面活性剂可以是传统的设计,并以对应于溶液的临界胶束浓度(CMC)的浓度提供表面活性剂。优选的表面活性剂是Aerosol OT,其购自CytecIndustries,Inc.。
合适的现有技术粘合剂是水溶性聚合物,其包括天然物质,例如蛋白质、蛋白质衍生物、纤维素衍生物(例如纤维素酯)、明胶和明胶衍生物、多糖、酪蛋白及类似物,以及合成的水凝胶(water permeablecolloids),例如聚(乙烯基内酰胺)、丙烯酰胺聚合物、聚(乙烯醇)及其衍生物、水解的聚乙酸乙烯酯、丙烯酸和甲基丙烯酸的烷基酯和磺基烷基酯的聚合物、聚酰胺、聚乙烯吡啶、丙烯酸聚合物、顺丁烯二酸酐共聚物、聚醚、甲基丙烯酰胺共聚物、聚乙烯噁唑烷酮、顺丁烯二酸共聚物、乙烯胺共聚物、甲基丙烯酸共聚物、丙烯酸丙烯酰氧基烷基酯和甲基丙烯酸丙烯酰氧基烷基酯、乙烯基咪唑共聚物、乙烯基硫化物共聚物、及含苯乙烯磺酸的均聚物或共聚物。现有技术的粘合剂可以是本发明体系的组分,条件是其使用量和位置不影响本发明粘合剂的疏水特性。
在一个优选的实施方案中,涂覆液晶并干燥以使光调制层的光学性质最佳化。在一个的实施方案中,涂覆该层以提供含手性向列型液晶域的基本单层的最终涂层。申请人定义术语“基本单层”为,在垂直于显示器板的方向上,在超过90%的显示器面积(或成像层)上电极之间不存在多于单层的域。
根据各个域尺寸,通过计算确定单层所需的材料量。此外,根据涂层液滴的几何形状和Bragg反射条件,通过不同参杂域的适当选择可以获得改进的视角和带宽特性。
在涂覆并干燥胶乳颗粒后,聚结形成含液晶液滴的连续膜。如果将第二个水层涂覆在其上面以免除交联的需要,该膜不受影响。如果使用水溶性聚合物作为粘合剂,在结构通过自组装形成后,可以使用交联剂或硬化剂来保存涂覆液滴的密堆积单层的结构。
可以通过本领域技术人员已知的可控制域尺寸的任何方法来形成液晶液滴或域。例如,Doane等人(Applied Physics Letters,48,269(1986))公开了一种聚合物分散型液晶,该液晶在聚合物粘合剂中包括约0.4微米的向列型液晶5CB的液滴。使用相分离方法来制备该聚合物分散型液晶。将含单体和液晶的溶液填充在显示器池中,然后使这些材料聚合。经过聚合,液晶变得不混溶,并成核形成液滴。West等人(Applied Physics Letters 63,1471(1993))公开了在聚合物粘合剂中含手性向列型混合物的聚合物分散型液晶。这次还是使用相分离方法来制备聚合物分散型液晶。将液晶材料和聚合物(羟基官能化的聚甲基丙烯酸甲酯)与聚合物交联剂一起溶解在常用的有机溶剂甲苯中,并涂覆在氧化铟锡(ITO)底物上。通过高温蒸掉甲苯,形成液晶材料在聚合物粘合剂中的分散体。Doane等人和West等人的相分离方法需要使用有机溶剂,这在某些生产环境中可能是有异议的。
在一个优选的实施方案中,使用被称为“有限聚结”的方法来形成液晶材料的均匀大小的乳液。例如,在细分散二氧化硅,例如一种来自DuPont Corporation的LUDOX
Figure 200680022241X_0
聚结有限材料存在时,可以均化该液晶材料。可以在水浴中添加促进剂材料以驱使胶体颗粒至液液界面上。在一个优选的实施方案中,可以使用己二酸与2-(甲氨基)乙醇的共聚物作为水浴中的促进剂。利用超声分散液晶材料以形成粒径小于1微米的液晶域。当移去超声能后,液晶材料聚结成大小均匀的域。Whitesides和Ross(J.Colloid Interface Sci.169,48(1995)),以及Giermanska-Kahn、Schmitt、Binks和Leal-Calderon(Langmuir,18,2515(2002))对有限聚结方法和美国专利No.6,556,262中对有限聚结方法进行了更全面的描述,其并入此处作为参考。
液滴粒径的分布是使得定义为标准分布偏差除以算数平均值的偏差系数(cv),小于0.25,优选的小于0.2,及最优选的小于0.15。利用感光乳液镀层机,将有限聚结材料涂覆在具有氧化铟锡涂层的聚酯板上,该聚酯层具有300Ω/平方的电导率。可以干燥涂层以得到聚合物分散的胆甾型涂层。使用有限聚结方法,在干燥涂层中即使有寄生的更小域(具有所不希望的电光性质),其数量也很少。
干燥涂层中域的粒度范围随混合物干燥和域变平而变化。在一个实施方案中,通过干燥方法使得到的域变平,并具有基本上小于其长度的平均厚度。利用合适的配方和涂层的足够快的干燥,可以使域变平。
优选地,晶域为扁球形,具有基本上小于其长度的平均厚度,优选小于其长度的至少50%。更优选地,域平均具有1∶2至1∶6的厚度(深度)对长度的比。利用合适的配方和涂层的足够快的干燥,可以使域变平。域优选具有2至30微米的平均粒径。当刚涂覆后,成像层优选具有10至150微米的厚度,干燥后具有2至20微米的厚度。最优选地,成像层或光调制层具有2至6微米的厚度,特别是当光调制材料是手性向列型液晶时。
液晶材料的变平域可被定义为具有一个主轴和一个副轴。在显示器或显示板的一个优选的实施方案中,主轴在尺寸上比大多数域的池(或成像层)厚大。在美国专利No.6,061,107中表明了这种尺寸关系,该专利文献全文并入此处作为参考。
在美国专利Nos.3,600,060中(并入此处作为参考),干燥的光调制材料的域具有在粒径上以10∶1比例变化的粒度。这产生大的域和较小的寄生域。相对于最佳的较大域,寄生域具有减小的特性。该减小的特性包括降低的亮度,如果该寄生域足够小,还包括消失的胆甾型液晶的双稳态。
分散的域具有2至30微米,优选的为5至15微米的平均粒径。域分散在水悬浮液中。干燥涂层的尺寸范围随混合物的干燥和域变平而变化。
通过改变二氧化硅和共聚物相对于液晶材料的量,可以制备所需平均粒径(通过显微镜法)的均匀域粒度的乳液。该方法生成选定的平均粒径的域。
通过干燥方法,使得到的域变平,并具有基本上小于其长度的平均厚度,优选小于其长度的至少50%。更优选地,域平均具有1∶2至1∶10的厚度(深度)对长度的比。
为了最优的性能,具有均匀厚度密堆积结构的单层涂覆液滴是所需要的。Yang和Mi(J.Phys.D:Appl.Phys.Vol.33,672页,2000)的计算表明,对于给定手型性的手性向列型液晶材料,如果电极间的手性向列型液晶材料厚度大约是手性向列型螺旋线螺距的10倍时,可获得最大的反射度。对于λmax为550纳米和nav为1.6的反射绿光的手性向列型液晶材料,螺距为344纳米。因此,对于3.4微米厚的该材料层,获得最大的反射度。如果折光指数接近1.6,对于反射红光和近红外波谱的手性向列型液晶材料,最大反射度所需的螺距及因此的涂层厚度会更高些,但即使在这种情况中,约5微米的厚度是足够的。换句话说,在这之外再增加层厚度不会提供增加的反射度。
还有文献报道,开启电压随厚度线性增加。由于希望具有最低可能的开启电压,对于液滴涂层,最优选为约5微米的均匀厚度,条件是液滴具有密堆积结构。在某些条件下,例如干燥,光调制材料的单分散液滴会自发在表面上自组装成六方密堆积(HCP)结构。Denkov等人(Nature,vol.361,26页,1993)详细描述了该方法。当液滴的水悬浮液铺展在表面上时,最初假定液滴为随机无序或不相关的分布。然而,随着干燥的进行,当水平面到达液滴的顶部时,形成强的吸引力,其为驱动液滴形成密堆积有序或相关结构的所熟知的毛细管力。毛细管力的吸附能比热能大的多。然而,对表面的强的吸引或其所悬浮的介质的粘度增加不会强迫液滴的侧向移动是重要的。如果粘合剂是明胶且液滴涂层在干燥前被冷却固定,后者就会发生。
开始于液滴随机分布的密堆积二维结构的形成有时被称作二维结晶,应具有许多单分散的液滴或具有许多低多分散性的液滴(Kumacheva等.Physical Review Letters vol.91,页1283010-1,2003)。通过有限聚结方法,可以获得具有足够低的多分散性以形成密堆积结构的许多光调制材料液滴。在光学显微镜下,该密堆积结构是已经能看到的。此外,密堆积结构具有重复模式或周期性,其中重复距离是可见光波长的指数(order)。当放置在可见光源(例如可见光激光器)前时,具有该模式的涂层显示了Fraunhofer衍射。Lisensky等人更全面地描述了Fraunhofer衍射现象(Journal of Chemical Education,vol.68,February 1991)。
对于完美的单分散液滴(cv小于0.1),获得六方密堆积(HCP)结构。该结构的衍射模式是点的形式。如果具有更小水平的多分散性(cv在0.1至0.2之间),密堆积结构的衍射模式为单环的形式或一组同心环。
均匀厚度的密堆积单层可以提供增加的表面粗糙度性能。在含不均匀液滴或胶囊的传统液晶涂层中,均方根(RMS)表面粗糙度测得约为6微米。如果使用紫外线可固化的筛网印花的导电油墨使电极(导电层)与液晶涂层接触,这将是一个非常高的表面粗糙度值,其会导致不规则或不完全的固化。不规则的固化会导致增加的开启电压(switching voltage)。此外,这种数量级的表面粗糙度还会导致在整个显示器面积上非常不统一的开启电压,因为开启电压直接与涂层的厚度相关。本密堆积单层中的自组装液滴或域显示了小于1.5微米的均方根表面粗糙度,更优选的小于1.0微米,及最优选的小于0.5微米。
在一个最优选的实施方案中,涂层干燥后,涂覆液滴的密堆积单层结构被保留,并且含粘合剂的聚合物胶乳颗粒聚结形成膜。这使得允许将第二个水层涂覆在含光调制材料的层的上面,而不影响密堆积组织。在一个优选的实施方案中,第二个水层用作上电极,也就是,对于光调制材料,为相对于底物的光调制层面上的电极(导电层)。
图1中显示的显示器件的优选实施方案包括具有透明导电层102的透明柔性载体101。成像层或光调制层(层1)包含与聚结的胶乳颗粒103在一起的光调制材料104的密堆积单层液滴。将包括导电聚合物105的电极(导电层)直接涂覆在含光调制材料的层上。在该实施方案中,包括导电聚合物的导电层和电导率增强剂位于相对于底物的电调制成像层的侧上和其它导电层上,优选地,不含导电聚合物的传统导电层和电导率增强剂位于电调制成像层和底物之间。
图2显示了现有技术的显示器件。其包括具有透明导电层102的透明柔性载体101。成像层或光调制层(层1)包含与聚结的胶乳颗粒103在一起的光调制材料104的密堆积单层液滴。其进一步包括螺旋结构105中的聚合物阻挡层,及由筛网印花的碳导电油墨组成的另一个电极106。相比于图1的器件,由于增加的电极间的厚度和非水胶乳层和水性保护层间界面上的空穴,该器件需要更高的开启电压。
除了粘合剂和硬化剂,液晶层还可以包括少量的吸光色料,优选吸收剂染料。优选使用吸收染料来选择性吸收来自焦点圆锥曲线态以波谱可见光部分最低波长的散射光。而且,色料选择吸收来自平面态的类似散射光,而只吸收最少的主体反射光。色料可包括染料和颜料。色料可以吸收光组分,其导致由液晶的选择性反射制作的彩色显示器中颜色混浊,或可能导致液晶透明态中透明度的下降,因此可以改进显示器质量。液晶显示器中的两种或多种组分可包含着色剂。例如,聚合物和液晶都可包含着色剂。优选地,选择色料,使其吸收比液晶选择性反射波长更短波长范围内的光线。
可以使用任意量的色料,条件是色料的添加不显著破坏显示器液晶材料的开启特性。另外,如果通过聚合反应来形成聚合物粘合剂,则其添加不抑制聚合反应。色料的示范量为液晶材料的至少0.1重量%至5重量%。
在一个优选的实施方案中,将色料,优选吸收剂染料,直接加入手性向列型液晶材料中。任何与胆甾型液晶材料易相混的色料对于该目的是有用的。最优选的色料是易溶于甲苯的色料。易溶是指大于1克/升的溶解度,更优选的大于10克/升,及最优选的大于100克/升。与胆甾型液晶材料最相容的溶于甲苯的染料是蒽醌染料,例如来自Clariant Corporation的Sandoplast Blue2B,酞菁染料,例如来自ClariantCorporation的Savinyl Blue GLS或来自BASF Corporation的NeozaponBlue 807,次甲基染料,例如来自Clariant Corporation的SandoplastYellow 3G或金属配合物染料,例如来自BASF Corporation的NeozaponYellow 157、Neozapon Orange 251、Neozapon Green 975、Neozapon Blue807或Neozapon Red 365。其它色料是来自BASF Corporation的NeopenBlue 808、Neopen Yellow075、Sudan Orange 220或Sudan Blue 670。其它类型色料可以包括多种染料,例如用于树脂着色的染料和用于液晶显示器的二色染料。用于树脂着色的染料可以是SPR RED1(MitsuiToatsu Senryo Co.,Ltd制造)。液晶的二色染料特别是SI-424或M-483(两者均由Mitsui Toatsu Senryo Co.,Ltd制造)。
本发明的另一方面涉及包括底物的显示器板、在底物上形成的导电层和含成像层的液晶,该成像层包括由上述方法形成的位于导电层上的手性向列型材料。
此处所用的短语“液晶显示器(LCD)”是一类在多种电子设备中使用的平板显示器。在最低程度上,液晶器件包括底物、至少一个导电层和液晶层。液晶器件还可以包括两层在偏光板之间具有液晶溶液的偏光材料。偏光材料板可以包括玻璃或透明塑料底物。液晶器件还可以包括功能层。在一个液晶器件的实施方案中,在透明多层柔性载体上涂覆导电层,其可以是模式化的,将光调制液晶层涂覆在导电层上。应用另一个导电层,并用介电层涂覆,将介电导电行接触(dielectricconductive row contact)连接在介电层上,其包括允许导电层与介电导电行接触相连的孔。任选可以在液晶层和其它(第二个)导电层之间应用纳米颜料的功能层。
液晶(LC)用作光学开关。底物通常制成透明的导电电极,其中电“驱动”信号是耦合的。驱动信号诱发导致液晶材料中相变或状态转变的电场,因此根据其相和/或状态,显示出不同的光反射特性。
胆甾型液晶在零场下是双稳态的,可根据其对电压脉冲的响应来设计驱动方案。
显示器可以使用任何合适的驱动方案和本领域技术人员已知的电子器件,包括如下,所用这些文献均全文并入此处作为参考:Doane,J.W.,Yang,D.K.,Front-lit Flat Panel Display from Polymer StabilizedCholesteric Textures,Japan Display 92,Hiroshima October 1992;Yang,D.K.和Doane,J.W.,Cholesteric Liquid Crystal/Polymer Gel Dispersion:Reflective Display Application,SID Technical Paper Digest,Vol XXIII,May 1992,759页;1995年2月17日申请的美国专利申请系列No.08/390,068,题目是“Dynamic Drive Method and Apparatus for aBistable Liquid Crystal Display”和美国专利No.5,453,863。
最简单形式的典型显示器包括一个支持传统聚合物分散的电调制材料的板材。该板包括底物。底物可以由聚合物材料组成,例如聚酯塑料形成的Kodak Estar膜基底,并具有20至200微米的厚度。例如,底物可以是80微米厚的透明聚酯板。也可以使用其它的聚合物,例如透明的聚碳酸酯。可选择地,底物可以是薄的透明玻璃。
在一个本发明优选的实施方案中,显示器装置或显示器板具有简单的液晶材料成像层,该成像层在垂直于显示器面的线上,优选的为涂覆在柔性底物上的单层。相对于在相对底物间的垂直堆栈成像层(stacked imaging layer),所述结构对于单色货架标签(monochromeshelf labels)和类似情况尤其有利。然而在一些情况中,为了提供其它的优点,具有堆栈成像层的结构是任选的。
柔性塑料底物可以是能支撑薄导电金属薄膜的任何柔性自支撑塑料薄膜。“塑料”是指高聚合物,通常由聚合的合成树脂制成,其可以与其它成分结合,例如固化剂、填料、增强剂、色料和增塑剂。塑料包括热塑性材料和热固性材料。
柔性塑料膜必须具有足够的厚度和机械完整性以能够自支撑,然而不应太厚而变硬。典型地,柔性塑料底物在厚度上是复合膜中最厚的层。因此,底物在很大程度上决定着整个结构复合膜的机械和热稳定性。
柔性塑料底物材料的另一个显著特性是其玻璃化转变温度(Tg)。Tg定义为塑料材料由玻璃态转变成橡胶态的玻璃化转变温度。其可以包括材料可能实际上流动前的范围。用作柔性塑料底物的合适材料包括具有相对低玻璃化转变温度的热塑性材料,例如玻璃化转变温度最高至150℃,及具有较高玻璃化转变温度的材料,例如玻璃化转变温度在150℃以上。柔性塑料底物的材料选择依赖于例如生产加工条件、沉积温度、淬火温度以及显示器生产厂的流水线上的后生产条件等因素。下面讨论的某些塑料底物可以耐受高达至少约200℃的较高的加工温度,有些高达300-350℃,而不会产生损坏。
典型地,柔性塑料底物是聚对苯二甲酸乙二酯(PET)、聚萘二甲酸乙二醇酯(PEN)、聚醚砜(PES)、聚碳酸酯(PC)、聚砜、酚醛树脂、环氧树脂、聚酯、聚酰亚胺、聚醚酯、聚醚酰胺、醋酸纤维素酯、脂肪族聚氨酯、聚丙烯腈、聚四氟乙烯、聚偏氟乙烯、聚(x-甲基丙烯酸甲酯)、脂肪族或环聚烯烃、多芳基化合物(PAR)、聚醚酰亚胺(PEI)、聚醚砜(PES)、聚酰亚胺(PI)、Teflon聚(全氟-烷氧)含氟聚合物(PFA)、聚(醚醚酮)(PEEK)、聚醚酮(PEK)、聚(乙烯四氟乙烯)含氟聚合物(PETFE)和聚(甲基丙烯酸甲酯)以及多种丙烯酸酯/甲基丙烯酸酯共聚物(PMMA)。脂肪族聚烯烃可包括高密度聚乙烯(HDPE)、低密度聚乙烯(LDPE)和聚丙烯,包括取向的聚丙烯(OPP)。环聚烯烃可包括聚(双(环戊二烯))。优选的柔性塑料底物是环聚烯烃或聚酯。多种环聚烯烃适用于柔性塑料底物。例子包括Arton
Figure 200680022241X_1
(JapanSynthetic Rubber Co.制造,Tokyo,Japan)、Zeanor T(Zeon Chemicals L.P.制造,Tokyo,Japan)和Topas
Figure 200680022241X_2
(Celanese A.G.制造,Kronberg Germany)。Arton是聚(双(环戊二烯))缩聚物,其是一种聚合物膜。可选择地,柔性塑料底物可以是聚酯。优选的聚酯是芳香聚酯,例如Arylite。尽管上面举了多个塑料底物的例子,应理解底物也可以由其它的材料形成,例如玻璃和石英。
可以使用硬质涂料增强柔性塑料底物。典型地,硬质涂料是丙烯酸涂料。该硬质涂料通常具有1至15微米的厚度,优选的具有2至4微米的厚度,其可以通过热或紫外线照射引发,由合适的可聚合材料的自由基聚合反应获得。根据底物,可以使用不同的硬质涂料。当底物是聚酯或Arton时,特别优选的硬质涂料是被称作“Lintec”的涂料。Lintec包含紫外线固化的聚酯丙烯酸酯和胶体二氧化硅。当沉积在Arton上时,其具有35原子%碳、45原子%氧和20原子%硅组成的表面组合物,不含氢原子。另一种特别优选的硬质涂料是TekraCorporation(New Berlin,Wisconsin)销售的商品名为“Terrapin”的丙烯酸涂料。所用底物也可以是可拆装的底物。
显示器包括一个导电层。优选地,其还包括至少一个其它的导电层。导电层可以放置成直接与光调制层接触。可选择地,可以放置任意数目的其它层介入光调制层和导电层。然而,应小心保证介入层的放置不要显著破坏器件的电学性质,例如需要更高的电场来开启液晶器件。
在一个优选实施方案中,导电层包括导电聚合物,并优选涂覆在含光调制材料的层上,在相对底物的光调制材料的面上或应用于远离其它导电层的光调制层的面上,优选远离含水涂层组合物。合适的导电聚合物是那些具有共轭主链的聚合物,例如美国专利Nos.6,025,119、6,060,229、6,077,655、6,096,491、6,124,083、6,162,596、6,187,522和6,190,846公开的那些聚合物,这些专利文献并入此处作为参考。这些导电聚合物包括美国专利Nos.5,716,550、5,093,439和4,070,189中公开的取代或未取代的含苯胺的聚合物,美国专利Nos.5,300,575、5,312,681、5,354,613、5,370,981、5,372,924、5,391,472、5,403,467、5,443,944、5,575,898、4,987,042和4,731,408中公开的取代或未取代的含噻吩的聚合物,这些专利文献并入此处作为参考,美国专利Nos.5,665,498和5,674,654中公开的取代或未取代的含吡咯的聚合物,这些专利文献并入此处作为参考,及聚(异硫茚)及其衍生物。这些导电聚合物可以溶解或分散在有机溶剂或水或其混合物中。本发明优选的导电聚合物包括含吡咯的聚合物、含苯胺的聚合物和含噻吩的聚合物。其中更优选的是导电聚噻吩,优选聚噻吩以具有聚阴离子的阳离子形式存在。典型地,由于聚阴离子的存在,这些聚合物分散在水介质中,因此在环境保护上是可取的。
通过聚阴离子存在条件下的3,4-二烷氧基噻吩或3,4-亚烃基二氧噻吩的氧化聚合来制备优选的导电聚噻吩。最优选的导电聚合物包括聚(3,4-亚乙基二氧噻吩苯乙烯磺酸盐),其包括与聚苯乙烯磺酸以阳离子形式存在的聚(3,4-亚乙基二氧噻吩)。选择该聚合物的好处源于下述因素,其主要是水基的、对光和热稳定的聚合物结构和稳定的分散体,及对贮存、卫生、环境和处理的影响最小。
在L.B.Groenendaal,F.Jonas,D.Freitag,H.Pielartzik和J.R.Reynolds的文章“Poly(3,4-ethylenedioxythiophene)and its derivatives:past,presentand future”(Advanced Materials,(2000),12,No.7,pp.481-494)详细讨论了聚噻吩类聚合物的制备,该文并入此处作为参考。
在一个优选的实施方案中,导电聚合物包括
a)通式I的阳离子形式的聚噻吩
其中R1和R2每次独立地代表氢原子或C1-C4的烷基或一起代表任选取代的C1-C4亚烷基或环亚烷基,优选为亚乙基、任选烷基取代的亚甲基、任选C1-12烷基-或苯基-取代的1,2-亚乙基、1,3-亚丙基或1,2-环亚己基;及n为3至1000;
b)聚阴离子化合物;
这些导电聚合物所用的聚阴离子包括聚羧酸阴离子,包括聚丙烯酸、聚(甲基丙烯酸)和聚(顺丁烯二酸),及聚磺酸,例如聚苯乙烯磺酸和聚乙烯基磺酸,由于其稳定性和可大批量获得,在本发明中优选使用聚磺酸。这些聚磺酸也可以是由乙烯基磺酸单体与其它可聚合的单体(例如丙烯酸酯和苯乙烯)共聚形成的共聚物。提供聚阴离子的多酸的分子量优选为1,000至2,000,000,及更优选的为2,000至500,000。通常可以得到多酸或其碱金属盐,例如聚苯乙烯磺酸和聚丙烯酸,或可以通过已知方法生产。除了使用形成导电聚合物和聚阴离子所需的游离酸,还可以使用多酸的碱金属盐和合适量的一元酸的混合物。聚噻吩与聚阴离子的重量比可以在1∶99至99∶1的较宽范围间变化,然而,在85∶15至15∶85之间,更优选在50∶50至15∶85之间能获得最优的性质,例如高电导率和分散稳定性及涂覆性(coatability)。最优选的导电聚合物包括聚(3,4-亚乙基二氧噻吩苯乙烯磺酸盐),其包括阳离子形式存在的聚(3,4-亚乙基二氧噻吩)和聚苯乙烯磺酸。
特别合适的导电聚合物层是包括品质因数(figure of merit,FOM)小于150,优选小于100及更优选小于50的聚噻吩的聚合物层,如美国专利系列No.10/944,570和10/969,889所述。在导电层中可以优选使用的另一类型的导电材料包括碳纳米管,例如单壁或多壁碳纳米管。
所需的结果(例如聚噻吩层增大的电导率)可以通过添加电导率增强剂(CEA)来实现。优选的电导率增强剂是含二羟基、多羟基、羧基、酰胺或内酰胺基团的有机化合物,例如
(1)下述通式II所代表的那些化合物:
其中m和n独立地为1至20的整数,R为具有2至20个碳原子的亚烷基、在亚芳基链上具有6至14碳原子的亚芳基、吡喃基团或呋喃基团,及X是-OH或-NYZ,其中Y和Z独立地为氢原子或烷基;或
(2)糖、糖衍生物、聚(亚烷基)二醇或丙三醇化合物;或
(3)选自N-甲基吡咯烷酮、吡咯烷酮、己内酰胺、N-甲基己内酰胺、二甲亚砜或N-辛基吡咯烷酮的那些化合物;或
(4)上述化合物的结合物。
特别优选的电导率增强剂是:糖及糖衍生物,例如蔗糖、葡萄糖、果糖和乳糖;糖醇,例如山梨醇和甘露糖醇;呋喃衍生物,例如2-呋喃羧酸、3-呋喃羧酸以及醇。最优选乙二醇、丙三醇、二或三亚乙基二醇,因为其提供了最大的电导率增高。
可以任何合适的方法添加电导率增强剂。优选地将电导率增强剂添加至含有聚噻吩的涂料组合物中。可选择地,可以通过任何合适的方法将含有聚噻吩的涂层暴露于电导率增强剂,该方法例如涂后清洗(post-coating wash)。
根据所使用的特定有机物和电导率的需要,涂料组合物中的电导率增强剂的浓度可以在较宽范围内变化。然而,在本发明的实践中可以有效使用的方便浓度是约0.5重量%至约25重量%;更方便的浓度为0.5至10重量%,及当其为最小有效量时,更希望为0.5至5重量%。
除了含导电聚合物的导电层外,液晶器件还优选包括至少另一个导电层。该另外的层或这些层也可包括导电聚合物,但是也可以由传统的导电层材料组成。该其它的导电层或这些层希望具有足够的电导率以使场穿过光调制层。
在本发明中典型地可以使用的一个传统导电层由初级金属氧化物构成,且优选是透明的。该导电层可包括其它金属氧化物,例如氧化铟、二氧化钛、氧化镉、氧化镓铟、五氧化铌和二氧化锡。参见PolaroidCorporation的Int.Publ.No.WO99/36261。除了初级氧化物,例如氧化铟锡,该至少一个导电层还可以包括次级金属氧化物,例如铈、钛、锆、铪和/或钽的氧化物。请参见Fukuyoshi等人的美国专利5,667,853(Toppan Printing Co.)。其它的透明导电氧化物包括,但不限于ZnO2、Zn2SnO4、Cd2SnO4、Zn2In2O5、MgIn2O4、Ga2O3-In2O3或TaO3。例如通过低温溅射技术或通过直流电溅射技术(例如DC溅射或RF-DC溅射),可以形成导电层,其依赖于底层材料。导电层可以是透明的氧化锡或氧化铟锡(ITO)或聚噻吩(PEDOT)导电层。典型地,将导电层溅射在底物上以形成小于250欧姆/平方的电阻。可选择地,导电层可以是由金属(例如铜、铝或镍)形成的导电体。如果导电层是不透明金属,该金属可以是金属氧化物以形成吸光导电层。
氧化铟锡(ITO)为优选的导电材料,因为其是具有好环境稳定性、至多90%传递及至少20欧姆/平方的电阻率的经济有效的导体。示范性的优选氧化铟锡层在可见光区(即大于400nm至700nm)具有大于或等于80%的%T,因此该膜可用于显示器应用。在一个优选的实施方案中,导电层包括一层低温的多晶氧化铟锡。该氧化铟锡层优选厚度为10至120nm或50至100nm以在塑料上获得20至60欧姆/平方的电阻率。示范性的优选氧化铟锡层的厚度为60至80nm。将光调制材料涂覆在模式化的氧化铟锡导体(patterned indium tin oxide)上以提供聚合物分散的胆甾涂层,该涂层具有小于50微米的干燥厚度,优选小于25微米,更优选小于15微米,最优选小于约10微米。
导电层优选被模式化(be patterned)。优选将导电层模式化成多个电极。模式化的电极可以用来形成液晶器件。在另一个实施方案中,两个导电底物面对面放置,胆甾型液晶位于两者之间以形成器件。模式化的氧化铟锡导电层可以具有多种尺寸。示范性的尺寸可包括10微米的线宽,即线间距离,200微米的电极宽度,100纳米的切削深度,即氧化铟锡导体的厚度。60、70和大于100纳米数量级的氧化铟锡厚度也是可能的。
在典型的矩阵寻址(matrix-addressable)光发射显示器中,在单个底物上形成多个光发射器件,并成组地排列在规则栅格模板(gridpattern)中。活化(Activation)可以是行和列,或在具有各个阳极和阴极路径的活性矩阵中。通常通过首先将透明电极沉积在底物上,然后将其在电极部分上模式化来制造OLED。然后将有机层沉积在透明电极上。可以在电极层上形成金属电极。例如,在Forrest等人的美国专利No.5,703,436中(此专利文献并入此处作为参考),使用透明的氧化铟锡(ITO)作为空穴注入电极,而Mg-Ag-ITO电极层用于电子注入。
例如在美国专利申请Nos.20010008582 A1、20030227441 A1、20010006389 A1和美国专利Nos.6,424,387、6,269,225和6,104,448中所述(所述专利文献并入此处作为参考),除了第二个导电层,可以使用其它方法来生产能够开启液晶层状态的场。
为了更高的电导率,其它导电层可以包括基于银的层,该基于银的层可只含银或含包括不同元素的银,这些元素包括铝(Al)、铜(Cu)、镍(Ni)、镉(Cd)、金(Au)、锌(Zn)、镁(Mg)、锡(Sn)、铟(In)、钽(Ta)、钛(Ti)、锆(Zr)、铈(Ce)、硅(Si)、铅(Pb)或钯(Pd)。在一个优选的实施方案中,其它导电层包括至少一个金、银和金/银合金层,例如,在一侧或两侧涂覆较薄金层的一个银层。请参见PolaroidCorporation的Int.Publ.No.WO99/36261。在另一个实施方案中,其它导电层可包括一层银合金,例如涂覆在一层氧化铟铈(InCeO)的一侧或两侧上的一层银。请参见美国专利No.5,667,853,该专利文献并入此处作为参考。
可以利用紫外线辐射将这些其它导电层辐射模式化成多层的导体/底物结构,以致导电层部分可以由此烧蚀。还知道利用红外(IR)光纤激光器覆盖在塑料薄膜上来模式化金属导电层,通过扫描导体/模结构上的模式直接烧蚀导电层。请参见:Int.Publ.No.WO99/36261和“42.2:A New Conductor Structure for Plastic LCD Applications Utilizing‘All Dry’Digital Laser Patterning,”1998 SID International SymposiumDigest of Technical Papers,Anaheim,Calif.,May 17-22,1998,no.Vol.29,May 17,1998,1099-1101页,两者并入此处作为参考。
在一个实施方案中,其它导体是印刷的导电油墨,例如来自Acheson Corporation的ELECTRODAG 423SS可筛网印刷的导电材料。所述印刷材料是在热塑性树脂中细分散的石墨颗粒。使用印刷油墨形成这些导体以减少显示器成本。柔性载体用于底物层、激光刻蚀导电层、机器涂覆聚合物分散的胆甾层和印刷其它导体使得能够制作非常低成本的记忆显示器。利用这些方法形成的小显示器可以用作便宜的有限可读写应用的电可改写交易卡。
可以将吸光导体放置在与入射光相对的一面。在完全演变的焦点圆锥曲线态中,胆甾型液晶是透明的,透过入射光,光被吸收导体吸收而形成黑色像。向焦点圆锥曲线态的渐变演变导致观察者看见最初亮的反射光,当胆甾型材料由平面态转变成完全演变的焦点圆锥曲线态时,其逐渐变黑。向光传输状态的转变是渐进的,且改变低压时间允许不同水平的反射。绘出这些不同水平以对应灰度,当移去场后,光调制层不确定地保持给定的光学状态不变。在美国专利5,437,811中更全面讨论了该状态。
在最优选的实施方案中,导电聚合物层在相对于底物的液晶层侧上形成。在该实施方案中,另一个导体位于底物与液晶层之间及在相对于导电聚合物层的一侧上。在现有技术的器件中,可以认为导电聚合物层为第二个导体或导电层。
液晶器件还可以包括至少一个位于导电层与底物之间的“功能层”。该功能层可包括保护层或阻挡层。可以以任何多种所熟知的技术来应用在本发明的实践中有用的保护层,例如浸涂法、棒涂法、刮刀涂布、气刀涂覆、照相凹版式涂覆和逆转辊涂覆、挤出涂覆、滑动涂覆、帘式涂覆及类似方法。优选在液体介质中一起混合液晶颗粒和粘合剂来形成涂料组合物。该液体介质可以是例如水或其它水溶液的介质,可以使用或不使用表面活性剂将亲水胶体分散在这些介质中。优选的阻挡层可以用作防气层或防潮层,其可以包括SiOx、AlOx或ITO。保护层,例如丙烯酸硬质涂层,用作阻止激光穿透保护层和底物之间的功能层,因此保护了阻挡层和底物。功能层还可以用作底物导电层的粘合增进剂。
在另一个实施方案中,聚合物载体可进一步包括抗静电层以管理在辊传输或板整饰过程中堆积在板或网上的不需要的电荷。在本发明的另一个实施方案中,抗静电层具有105至1012欧姆/平方的表面电阻率。在1012欧姆/平方以上,抗静电层通常不提供足够的电荷传导以防止电荷向照相系统防雾点的聚集或防止液晶显示器中不需要的点开关。而大于105欧姆/平方的层将会防止电荷增长,最抗静电的材料内在是不导电的并且那些导电超过105欧姆/平方的那些材料中,通常有些颜色,其降低了显示器的总传输特性。抗静电层是与氧化铟锡高导电层分开的,当抗静电层在来自氧化铟锡层的抗静电层的网络底物对面上时,提供最好的静电控制。这可包括网络底物自身。
另一类功能层可以是色彩对比层。色彩对比层可以是辐射反射层或辐射吸收层。在一些情况中,每个显示器的最后的底物可以优选涂成黑色。色彩对比层也可以是其它的颜色。在另一个实施方案中,该深色层包括研磨的不导电颜料。将材料研磨成小于1微米以形成“纳米颜料”。在一个优选的实施方案中,深色层吸收可见光波谱范围内所有波长的光,即400纳米至700纳米波长。深色层还可以含有一套或多重颜料分散体。在色彩对比层中所用的合适颜料可以是任何有色材料,它们实际上不溶于合并它们的介质中。合适的颜料包括IndustrialOrganic Pigments:Production,Properties,Application(W.Herbst和K.Hunger,1993,Wiley Publishers)所描述的那些颜料。这些颜料包括,但不限于,偶氮颜料,例如单偶氮黄和橙、重氮、萘酚、萘酚红、偶氮色淀、苯并咪唑酮、重氮缩合物、金属配合物、异吲哚啉酮及异吲哚啉、多环颜料,例如酞菁、喹吖啶酮、苝、紫环酮(perinone)、二酮基吡咯并吡咯和硫靛染料,以及环戊烷并醌(anthriquinone),例如蒽素嘧啶。
功能层还可以包括介电材料。用于本发明目的的介电层是一个不导电层或阻挡电子流动的层。该介电材料可以包括可紫外固化的热塑性的可筛网印刷材料,例如来自Acheson Corporation的Electrodag25208介电涂料。介电材料形成介电层。该层可包括定义图像面积的孔,该定义图像面积与该孔相符。由于通过透明底物看图像,所以记号是镜像。介电材料可形成粘结层,因而将导电层粘结在光调制层上。
可以利用多种已知技术中的任意一种来应用含有本发明组合物的液晶,例如浸涂法、棒涂法、刮刀涂布、气刀涂布、滑动(或珠)涂覆、帘式涂布及类似方法。
涂层后,通常通过简单的蒸发来干燥涂层,可以通过已知技术来加速蒸发,例如对流加热。在Research Disclosure No.308119(1989年12月出版,1007-1008页)中对已知涂层和干燥方法进行了更详细的描述,并入此处作为参考。
通过经济有效的涂层方法可以形成涂布板。可以涂覆单个大体积的板材,并制成多种型号的小板以用于显示器器件中,例如交易卡、货架标签、大版式告示牌及类似物。本发明中的板式显示器是经济简单的,且使用低成本方法制备。
在优选的实施方案中,首先应用成像层或光调制层,并在聚结胶乳颗粒的膜中干燥形成光调制材料的液滴的自组装密堆积单层。然后应用含导电聚合物的水层。在一个优选的商业化实施方案中,要涂覆的底物是移动网络形式(moving web)。在完成间隔电极(导电层)间的涂覆液晶板材的制造后,可将板材切割成多个更小的不同面积以用于多种显示器中或其它应用。
具体实施方式
给出下述实施例来说明本发明方案。
实施例1(本发明)
通过在向列型的主体混合物BL087(由Merck,Darmstadt,Germany获得)中添加适当量的高扭转手性掺杂剂来制备反射中心波长(centerwavelength of reflection,CWR)为590纳米的手性向列型组合物。
CWR为590纳米的胆甾型液晶组合物分散体的制备如下。往502克蒸馏水中添加7.5克Ludox TM胶体二氧化硅悬浮液和15.5克甲基氨基乙醇和己二酸共聚物的10%w/w的水溶液。再向其中加入225克胆甾型液晶组合物。使用Silverson混合机以5000转/分钟(rpm)的速度搅拌该混合物。然后以3000磅/平方英寸(psi)通过微型流化床装置。最后,将得到的分散体通过23微米的过滤器。利用Coulter Counter来测试分散体中的液滴粒度分布。发现平均粒度为9.5微米,及偏差系数(cv)为0.14。
将上述分散体与聚氨酯聚合物胶乳NeoRez R-9249(来自NeoResins,Wilmington MA,USA)的水悬浮液及Olin 10G水溶液混合,以得到含15%w/w胆甾型液晶材料、5.0%聚合物胶乳和0.1%Olin 10G的涂料组合物。将该组合物铺展在具有氧化铟锡(ITO)薄层的塑料载体上以得到约5400毫克/平方米胆甾型液晶材料的均匀覆盖。具有溅射涂层氧化铟锡导电层(300欧姆/平方电阻率)的塑料载体(DuPontST504)由Bekaert获得。氧化铟锡层的厚度约为240埃(Angstroms)。在操作过程中,将塑料载体放置在涂层块(coating block)上,其保持在室温(23℃),也在同样的温度下输送或应用涂料组合物。然后在环境条件下(23℃)干燥得到的涂层。
然后在上述涂层上应用含4%二乙二醇、1%聚(3,4-亚乙基二氧噻吩苯乙烯磺酸盐)(作为Baytron P HC由H.C.Starck获得)和95%水的组合物。然后在60℃培烘得到的涂布结构1小时。光学显微镜对最终涂布结构的检测显示了液晶液滴非常均匀的密堆积结构。当在其上应用含聚(3,4-亚乙基二氧噻吩苯乙烯磺酸盐)的层时,不会影响密堆积结构。
然后获得器件的电光响应。寻址脉冲是频率为250Hz及持续时间为100毫秒的矩形波。发现需要高于66伏的电压脉冲开启显示器进入反射态及需要32至46伏之间的电压脉冲开启显示器进入弱散射或暗态。小于8伏的电压不影响显示器的状态。
实施例2(对照)
通过在向列型的主体混合物BL087(由Merck,Darmstadt,Germany获得)中添加适当量的高扭转手性掺杂剂来制备反射中心波长(CWR)为590纳米的手性向列型组合物。
CWR为590纳米的胆甾型液晶组合物分散体的制备如下。往502克蒸馏水中添加7.5克Ludox TM胶体二氧化硅悬浮液和15.5克甲基氨基乙醇和己二酸共聚物的10%w/w的水溶液。再向其中加入225克胆甾型液晶组合物。使用Silverson混合机以5000转/分钟(rpm)的速度搅拌该混合物。然后以3000磅/平方英寸(psi)通过微型流化床装置。最后,将得到的分散体通过23微米的过滤器。利用Coulter Counter来测试分散体中的液滴粒度分布。发现平均粒度为9.5微米,及偏差系数(cv)为0.14。
将上述分散体与聚氨酯聚合物胶乳NeoRez R-9249(来自NeoResins,Wilmington MA,USA)的水悬浮液及Olin 10G水溶液混合,以得到含15%w/w胆甾型液晶材料、5.0%聚合物胶乳和0.1%Olin 10G的涂料组合物。将该组合物铺展在具有氧化铟锡(ITO)薄层的塑料载体上以得到约5400毫克/平方米胆甾型液晶材料的均匀覆盖。具有溅射涂层氧化铟锡导电层(300欧姆/平方电阻率)的塑料载体(DuPontST504)由Bekaert获得。氧化铟锡层的厚度约为240埃(Angstroms)。在操作过程中,将塑料载体放置在涂层块(coating block)上,其保持在室温(23℃),也在同样的温度下输送或应用涂料组合物。然后在环境条件下(23℃)干燥得到的涂层。
然后在上述涂层上应用含1%聚(3,4-亚乙基二氧乙烯噻吩苯乙烯磺酸盐)(作为Baytron P HC由H.C.Starck获得)和95%水的组合物。然后在60℃烘烤所得到的涂布结构1小时。光学显微镜对最终涂布结构的检测显示了液晶液滴非常均匀的密堆积结构。当在其上应用含聚(3,4-亚乙基二氧噻吩苯乙烯磺酸盐)的层时,不会影响密堆积结构。然而,在液晶层的疏水聚合物基体与水基导电层的界面上显示有气泡和其它干扰,使得涂层结构无法被接受。
发现需要开启显示器的电压非常高。
实施例3(对照)
实施例3显示了当将导电层涂覆或印刷在液晶层上时获得的结果,液晶层具有阻挡层,其导致厚度增加,保护液晶层免受导电层的载体溶剂。
通过在向列型的主体混合物BL087(由Merck,Darmstadt,Germany获得)中添加适当量的高扭转手性掺杂剂来制备反射中心波长(CWR)为590纳米的手性向列型组合物。
CWR为590纳米的胆甾型液晶组合物分散体的制备如下。往502克蒸馏水中添加7.5克Ludox TM胶体二氧化硅悬浮液和15.5克甲基氨基乙醇和己二酸共聚物的10%w/w的水溶液。再向其中加入225克胆甾型液晶组合物。使用Silverson混合机以5000转/分钟(rpm)的速度搅拌该混合物。然后以3000磅/平方英寸(psi)通过微型流化床装置。最后,将得到的分散体通过23微米的过滤器。利用Coulter Counter来测试分散体中的液滴粒度分布。发现平均粒度为9.5微米,及偏差系数(cv)为0.14。
将上述分散体与聚氨酯聚合物胶乳NeoRez R-967(来自NeoResins,Wilmington MA,USA)的水悬浮液及Olin 10G水溶液混合,以得到含15%w/w胆甾型液晶材料、5.0%聚合物胶乳和0.1%Olin 10G的涂料组合物。用具有0.008cm间隙的刮涂刀将该组合物铺展在具有氧化铟锡(ITO)薄层的塑料载体上。具有溅射涂布的氧化铟锡导电层(300欧姆/平方电阻率)的塑料载体(DuPont ST504)由Bekaert获得。氧化铟锡层的厚度约为240埃(Angstroms)。在操作过程中,将塑料载体放置在涂层块(coating block)上,其保持在室温(23℃),也在同样的温度下输送或应用涂料组合物。然后在环境条件(23℃)下干燥得到的涂层。
然后将该涂层放置在温度保持为23℃的涂层块上。然后用具有0.008cm间隙的刮涂刀将含4%IV型牛明胶和0.1%Aerosol OT蒸馏水溶液的组合物铺展在其上,以构成保护性/阻挡罩面层。在23℃下干燥该涂层。对于这个顶层或保护性罩面层,涂层块的温度和干燥温度都低于粘合剂的溶胶-凝胶转变温度。
然后将碳基导电油墨(来自Acheson Corporation的Electrodag423SS)筛网印刷在保护性罩面层上以完成显示器器件的构造。然后获得器件的电光响应。寻址脉冲是频率为250Hz及持续时间为100毫秒的矩形波。
发现需要高于138伏的电压脉冲开启显示器进入反射态及需要64至86之间的电压脉冲开启显示器进入弱散射或暗态。小于12伏的电压不影响显示器的状态。很明显需要开启显示器进入反射态的电压显著大于本发明器件需要的电压。
实施例4(对照)
实施例4显示了当将导电层涂覆或印刷在液晶层上时获得的结果。
通过在向列型的主体混合物BL087(由Merck,Darmstadt,Germany获得)中添加适当量的高扭转手性掺杂剂来制备反射中心波长(CWR)为590纳米的手性向列型组合物。
CWR为590纳米的胆甾型液晶组合物分散体的制备如下。往502克蒸馏水中添加7.5克Ludox TM胶体二氧化硅悬浮液和15.5克甲基氨基乙醇和己二酸共聚物的10%w/w的水溶液。向其中加入225克胆甾型液晶组合物。使用Silverson混合机以5000转/分钟(rpm)的速度搅拌该混合物。然后以3000磅/平方英寸(psi)通过微型流化床装置。最后,将得到的分散体通过23微米的过滤器。利用Coulter Counter来测试分散体中的液滴粒度分布。发现平均粒度为9.5微米,及偏差系数(cv)为0.14。
将上述分散体与聚氨酯聚合物胶乳NeoRez R-9249(来自NeoResins,Wilmington MA,USA)的水悬浮液及Olin 10G水溶液混合,以得到含15%w/w胆甾型液晶材料、5.0%聚合物胶乳和0.1%Olin 10G的涂料组合物。将该组合物铺展在具有氧化铟锡(ITO)薄层的塑料载体上以得到约5400毫克/平方米胆甾型液晶材料的均匀覆盖。具有溅射涂布的氧化铟锡导电层(300欧姆/平方电阻率)的塑料载体(DuPontST504)由Bekaert获得。氧化铟锡层的厚度约为240埃(Angstroms)。在操作过程中,将塑料载体放置在涂层块(coating block)上,其保持在室温(23℃),也在同样的温度下输送或应用涂料组合物。然后在环境条件下(23℃)干燥得到的涂层。
然后将碳基导电油墨(来自Acheson Corporation的Electrodag423SS)筛网印刷在液晶层上以完成显示器器件的构造。
由于Electrodag 423SS涂层破坏了液晶层,所以没有获得器件的电光响应。

Claims (14)

1.一种显示器,该显示器包括一个底物和一个电调制成像层以及至少一个导电层,其中
所述的电调制成像层位于所述的底物上方,
所述的电调制成像层包括在不溶于水的疏水聚合物基体中的电调制材料的自组装密堆积的有序单层域,及
所述至少一个导电层其中之一层包括导电聚合物和电导率增强剂,所述至少一个导电层其中之一层位于所述的电调制成像层上方,
其中,该不溶于水的疏水聚合物基体包括聚氨酯胶乳,该电调制材料包括胆甾型液晶组合物,该导电聚合物包括含噻吩的聚合物,该电导率增强剂包括二甘醇。
2.根据权利要求1所述的显示器,其中,所述的电调制成像层包括手性向列型液晶材料。
3.根据权利要求1所述的显示器,其中,所述的在不溶于水的疏水聚合物基体中的电调制材料的自组装密堆积的有序单层域是六方最密堆积的有序单层域。
4.根据权利要求1所述的显示器,其中,所述的在不溶于水的疏水聚合物基体中的电调制材料的自组装密堆积的有序单层域具有4至6微米的厚度。
5.根据权利要求1所述的显示器,其中,所述电调制材料的自组装密堆积的有序单层域显示小于1.5微米的均方根表面粗糙度。
6.根据权利要求1所述的显示器,其中,所述不溶于水的疏水聚合物基体包括至少一种选自氨基甲酸酯、苯乙烯、α-亚甲基脂肪族一元羧酸的酯或亚乙烯基卤化物的胶乳。
7.根据权利要求1所述的显示器,其中,所述不溶于水的疏水聚合物基体包括聚酯、聚烯烃或其结合物的水悬浮液。
8.根据权利要求1所述的显示器,其中,所述不溶于水的疏水聚合物基体进一步包括表面活性剂。
9.根据权利要求1所述的显示器,其中,所述导电聚合物是未取代的含苯胺的聚合物、未取代的含噻吩的聚合物、或未取代的含吡咯的聚合物。
10.根据权利要求1所述的显示器,其中,所述导电层可以是不透明层。
11.根据权利要求1所述的显示器,其中,所述导电层可以是吸光导电层。
12.根据权利要求1所述的显示器,其中,所述底物可移去。
13.根据权利要求1所述的显示器,其中,所述至少一个导电层进一步包括位于电调制成像层与底物之间的另一个导电层。
14.根据权利要求13所述的显示器,其中,所述另一个导电层包括氧化铟锡ITO。
CN200680022241XA 2005-06-20 2006-06-16 疏水粘合剂中的液晶液滴 Active CN101248158B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/156,866 2005-06-20
US11/156,866 US7387856B2 (en) 2005-06-20 2005-06-20 Display comprising liquid crystal droplets in a hydrophobic binder
PCT/US2006/023314 WO2007001879A1 (en) 2005-06-20 2006-06-16 Liquid crystal droplets in a hydrophobic binder

Publications (2)

Publication Number Publication Date
CN101248158A CN101248158A (zh) 2008-08-20
CN101248158B true CN101248158B (zh) 2011-09-14

Family

ID=37053770

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200680022241XA Active CN101248158B (zh) 2005-06-20 2006-06-16 疏水粘合剂中的液晶液滴

Country Status (5)

Country Link
US (1) US7387856B2 (zh)
JP (1) JP4898802B2 (zh)
CN (1) CN101248158B (zh)
DE (1) DE112006001664T5 (zh)
WO (1) WO2007001879A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060134564A1 (en) * 2004-12-20 2006-06-22 Eastman Kodak Company Reflective display based on liquid crystal materials
US20070246689A1 (en) * 2006-04-11 2007-10-25 Jiaxin Ge Transparent thin polythiophene films having improved conduction through use of nanomaterials
US7492504B2 (en) * 2006-05-19 2009-02-17 Xerox Corporation Electrophoretic display medium and device
US7507449B2 (en) * 2006-05-30 2009-03-24 Industrial Technology Research Institute Displays with low driving voltage and anisotropic particles
US8020475B2 (en) * 2006-06-02 2011-09-20 Kent Displays Incorporated Method of simultaneous singulation and edge sealing of plastic displays
JP5076527B2 (ja) * 2007-02-05 2012-11-21 富士ゼロックス株式会社 液晶含有組成物、液晶含有組成物の製造方法、及び液晶表示素子
JP4503030B2 (ja) * 2007-02-13 2010-07-14 セイコーエプソン株式会社 電気泳動表示装置用マイクロカプセルの保存方法
CN101770106B (zh) * 2008-12-30 2012-12-12 比亚迪股份有限公司 一种聚合物分散液晶层及制备方法、聚合物分散液晶膜及制备方法
US8168084B2 (en) 2009-12-18 2012-05-01 Vanderbilt University Polar nematic compounds
DE102010010448A1 (de) * 2010-03-01 2011-09-01 LÜTH & DÜMCHEN Automatisierungsprojekt GmbH Materialien, die in ihrer optischen Ansicht auf elektrischem oder elektronischem Wege veränderbar sind, und Verfahren und Einrichtung zum Aufbringen von Grafiken auf diese Materialien
US8760760B2 (en) * 2010-09-30 2014-06-24 Reald Inc. Cleanable coating for projection screen
CN102558833B (zh) * 2011-12-14 2013-11-13 东华大学 一种单分散聚氨酯/聚吡咯复合纳米弹性球的制备方法
KR102394407B1 (ko) * 2014-12-23 2022-05-04 엘지디스플레이 주식회사 나노캡슐 액정층을 포함하는 액정표시장치
WO2018226052A1 (ko) * 2017-06-09 2018-12-13 애경산업(주) 액정 조성물, 이를 이용한 필름 및 액정 표시장치
CN109031738A (zh) * 2017-06-12 2018-12-18 江苏和成显示科技有限公司 一种液晶显示器件及其应用
CN110997316A (zh) * 2018-06-11 2020-04-10 法国圣戈班玻璃厂 具有可电控光学性质的功能元件
KR102513131B1 (ko) 2018-09-18 2023-03-23 후지필름 가부시키가이샤 조성물, 막, 광학 필터, 고체 촬상 소자, 적외선 센서, 광학 필터의 제조 방법, 카메라 모듈, 화합물, 및 분산 조성물
US20240117251A1 (en) * 2022-08-22 2024-04-11 Orbotech Ltd. Cationic gettering in liquid crystal ncap and pdlc films

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1271108A (zh) * 1999-04-21 2000-10-25 株式会社日本触媒 液晶显示器的间隔体及其生产方法和液晶显示器
US6271898B1 (en) * 1996-09-19 2001-08-07 Rohm And Haas Company Particles and droplets containing liquid domains and method for forming in an aqueous medium
WO2005052676A1 (en) * 2003-11-21 2005-06-09 Eastman Kodak Company Liquid crystal display with broadband reflection

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4435047A (en) * 1981-09-16 1984-03-06 Manchester R & D Partnership Encapsulated liquid crystal and method
JP2721497B2 (ja) * 1984-03-19 1998-03-04 ケント・ステート・ユニバーシティ 光変調性物質の製造方法
US4806922A (en) * 1987-09-23 1989-02-21 Taliq Corporation Display device utilizing a plurality of NCAP liquid crystal modules
WO1993015455A1 (en) * 1992-01-24 1993-08-05 Interactive Media Corporation System for performing function on second portal upon activation of related first portal
JP3146945B2 (ja) * 1995-09-20 2001-03-19 株式会社日立製作所 液晶表示装置及びその製造方法
US5835174A (en) * 1995-10-12 1998-11-10 Rohm And Haas Company Droplets and particles containing liquid crystal and films and apparatus containing the same
US7242513B2 (en) * 1997-08-28 2007-07-10 E Ink Corporation Encapsulated electrophoretic displays having a monolayer of capsules and materials and methods for making the same
US6839158B2 (en) * 1997-08-28 2005-01-04 E Ink Corporation Encapsulated electrophoretic displays having a monolayer of capsules and materials and methods for making the same
JP2000147476A (ja) * 1998-11-17 2000-05-26 Fuji Xerox Co Ltd 高分子分散型液晶素子及びその製造方法
DE69919661T2 (de) * 1998-11-17 2005-09-22 Agfa-Gevaert Verfahren zur Herstellung einer Schicht aus leitfähigen Polythiophen bei niedriger Temperatur
EP1013413B1 (en) * 1998-12-21 2004-11-17 Chi Mei Optoelectronics Corporation Electroconductive glass laminate
JP3783760B2 (ja) * 1999-09-08 2006-06-07 富士ゼロックス株式会社 反射型液晶表示装置およびその製造方法
JP3736605B2 (ja) * 1999-09-08 2006-01-18 富士ゼロックス株式会社 液晶光学素子
US6423368B1 (en) * 2000-01-06 2002-07-23 Eastman Kodak Company Method for making materials having uniform limited coalescence domains
JP2002040403A (ja) * 2000-07-31 2002-02-06 Canon Inc 光学素子およびその製造方法
JP4013469B2 (ja) * 2000-09-19 2007-11-28 富士ゼロックス株式会社 液晶マイクロカプセル及び製造方法、並びにそれを用いた液晶表示素子
US6692662B2 (en) * 2001-02-16 2004-02-17 Elecon, Inc. Compositions produced by solvent exchange methods and uses thereof
SG105534A1 (en) * 2001-03-07 2004-08-27 Bayer Ag Multilayered arrangement for electro-optical devices
CN100392890C (zh) * 2001-03-29 2008-06-04 爱克发-格法特公司 稳定的电发光器件
EP1401909B1 (en) * 2001-06-22 2010-08-18 Agfa-Gevaert N.V. Flexographic ink containing a polymer or copolymer of a 3,4-dialkoxythiophene
US6704073B2 (en) * 2002-03-12 2004-03-09 Eastman Kodak Company Method of coating a polymer-dispersed electro-optical fluid and sheets formed thereby
JP4300396B2 (ja) * 2002-09-20 2009-07-22 富士ゼロックス株式会社 表示素子の製造方法及び表示素子
JP2004258228A (ja) * 2003-02-25 2004-09-16 Ricoh Co Ltd 反射型液晶素子とその製造方法及び表示装置
US7339715B2 (en) * 2003-03-25 2008-03-04 E Ink Corporation Processes for the production of electrophoretic displays
JP4639614B2 (ja) * 2004-03-15 2011-02-23 富士ゼロックス株式会社 液晶表示素子及びその製造方法
US7427441B2 (en) * 2004-09-17 2008-09-23 Eastman Kodak Co Transparent polymeric coated conductor
US20060134564A1 (en) * 2004-12-20 2006-06-22 Eastman Kodak Company Reflective display based on liquid crystal materials
US7557875B2 (en) * 2005-03-22 2009-07-07 Industrial Technology Research Institute High performance flexible display with improved mechanical properties having electrically modulated material mixed with binder material in a ratio between 6:1 and 0.5:1
JP2006330511A (ja) * 2005-05-27 2006-12-07 Nissan Motor Co Ltd 光の散乱透過、および反射の切り替えが可能な調光構造体
JP2006343592A (ja) * 2005-06-09 2006-12-21 Nissan Motor Co Ltd 屈曲構造を有する液晶分子を含む液晶材料を利用した調光構造体。

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6271898B1 (en) * 1996-09-19 2001-08-07 Rohm And Haas Company Particles and droplets containing liquid domains and method for forming in an aqueous medium
CN1271108A (zh) * 1999-04-21 2000-10-25 株式会社日本触媒 液晶显示器的间隔体及其生产方法和液晶显示器
WO2005052676A1 (en) * 2003-11-21 2005-06-09 Eastman Kodak Company Liquid crystal display with broadband reflection

Also Published As

Publication number Publication date
JP4898802B2 (ja) 2012-03-21
JP2008544330A (ja) 2008-12-04
DE112006001664T5 (de) 2008-05-08
US20060286309A1 (en) 2006-12-21
CN101248158A (zh) 2008-08-20
US7387856B2 (en) 2008-06-17
WO2007001879A1 (en) 2007-01-04

Similar Documents

Publication Publication Date Title
CN101248158B (zh) 疏水粘合剂中的液晶液滴
US7387858B2 (en) Reflective display based on liquid crystal materials
US7372530B2 (en) UV curable conductive layers in LC displays
US8134581B2 (en) Controlled gap states for liquid crystal displays
US7507449B2 (en) Displays with low driving voltage and anisotropic particles
CN101371187B (zh) 单基板宾-主聚合物液晶显示器
US8085363B2 (en) Coatable conductive layer
US7564528B2 (en) Conductive layer to reduce drive voltage in displays
JP2013011893A (ja) 改善された特性を有する高性能可撓性ディスプレイ
US20060153997A1 (en) Method of varying wavelengths of liquid crystals
US7333166B2 (en) Matrix display through thermal treatment
US20050253987A1 (en) Reflectance-matching layer for cholesteric display having dye layer and reflective conductors
EP1629323A1 (en) Uv curable conductive materials in displays
US7416684B2 (en) Method of varying wavelengths of liquid crystals
US7148937B2 (en) Display comprising blended mixture of different uniform domain sizes with the ratio of smallest to largest domain size no more than 1:2

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20190116

Address after: 3, 11th floor, 85 Zhongxiao East Road, Zhongzheng District, Taipei City, Taiwan, China

Patentee after: Group Creative Knowledge Technology Co.,Ltd.

Address before: Taiwan, China

Patentee before: Industrial Technology Research Institute

Effective date of registration: 20190116

Address after: No. 5 Ditanggang Road, New Town, Tainan City, Taiwan, China

Patentee after: IRIS OPTRONICS CO.,LTD.

Address before: 3, 11th floor, 85 Zhongxiao East Road, Zhongzheng District, Taipei City, Taiwan, China

Patentee before: Group Creative Knowledge Technology Co.,Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20190917

Address after: 1501 Capital Centre, 151 Gloucester Road, Wanchai District, Hong Kong, China

Patentee after: Ruiyin Investment Co.,Ltd.

Address before: 173 Houxing Road Section, Zhongyu District, Taoyuan City, Taiwan, China

Patentee before: Taiwan Yiwu Co.,Ltd.

Effective date of registration: 20190917

Address after: 173 Houxing Road Section, Zhongyu District, Taoyuan City, Taiwan, China

Patentee after: Taiwan Yiwu Co.,Ltd.

Address before: No. 5 Ditanggang Road, New Town, Tainan City, Taiwan, China

Patentee before: IRIS OPTRONICS CO.,LTD.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20191226

Address after: Room 333, 3 / F, Part 4, building 1, No. 2001, Yanggao North Road, China (Shanghai) pilot Free Trade Zone

Patentee after: Shanghai Hongxia Photoelectric Technology Co.,Ltd.

Address before: 1501 Capital Centre, 151 Gloucester Road, Wanchai District, Hong Kong, China

Patentee before: Ruiyin Investment Co.,Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230802

Address after: No. 160, No. thirteen GUI Ren Road, Guen Ren District, Tainan, Taiwan, China 3F-3

Patentee after: IRIS OPTRONICS CO.,LTD.

Address before: Room 333, 3rd Floor, Part 4, Building 1, No. 2001 Yanggao North Road, China (Shanghai) Pilot Free Trade Zone, 200120

Patentee before: Shanghai Hongxia Photoelectric Technology Co.,Ltd.