CN101241860A - 制造金属氧化物半导体场效应晶体管的方法 - Google Patents

制造金属氧化物半导体场效应晶体管的方法 Download PDF

Info

Publication number
CN101241860A
CN101241860A CNA2007101700557A CN200710170055A CN101241860A CN 101241860 A CN101241860 A CN 101241860A CN A2007101700557 A CNA2007101700557 A CN A2007101700557A CN 200710170055 A CN200710170055 A CN 200710170055A CN 101241860 A CN101241860 A CN 101241860A
Authority
CN
China
Prior art keywords
transistor
plasma
power level
stressor layers
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007101700557A
Other languages
English (en)
Inventor
德利普·R.·纳尔
陈向东
金田中
梁大源
克里斯托弗·V.·拜奥考
朴哉彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
International Business Machines Corp
Original Assignee
Samsung Electronics Co Ltd
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd, International Business Machines Corp filed Critical Samsung Electronics Co Ltd
Publication of CN101241860A publication Critical patent/CN101241860A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7843Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being an applied insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76832Multiple layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate

Abstract

一种制造金属氧化物半导体场效应晶体管(MOSFET)的方法,通过以下步骤形成晶体管:在衬底上方将栅结构图案化;在栅结构的侧面上形成间隔件;在栅叠层的交替的侧面,在衬底内形成导体区域。栅结构和导体区域形成晶体管。为了减少大功率等离子引入的损伤,本方法最初对晶体管施加第一功率水平的等离子以在晶体管上方形成第一应力层。在施加第一低功率等离子之后,本方法对晶体管施加具有第二功率水平的第二等离子以在第一应力层上方形成第二应力层。第二功率水平比第一功率水平高(例如,至少高5倍)。

Description

制造金属氧化物半导体场效应晶体管的方法
技术领域
本发明的实施方式涉及金属氧化物半导体场效应晶体管(MOSFETS),更为具体的,涉及在不损坏下方的晶体管并不牺牲其性能的前提下形成应力层(stressing layer)的改进方法。
背景技术
现有的逻辑晶体管在加工的很多阶段中受到等离子损伤。这种等离子损伤由于更多的等离子加工工艺的使用而加重,例如,随着通过增强的空穴载流子迁移率来提高逻辑性能的等离子生成的应力衬垫(stress liner)的导入。基于大功率高密度的等离子的膜(HDP)优于常规的等离子增强化学气相淀积(PECVD)膜,原因是减少了被隔离的和内嵌的器件之间的性能偏差。但是,晶体管暴露于高能等离子工艺有时会影响晶体管的整体可靠性。事实上,有时在可靠性以及性能上会有明显降低,如厚栅氧化物击穿、增强的偏置温度不稳定性(NBTI),以及因这样的基于大功率等离子的膜造成的其他问题。
发明内容
鉴于前述问题,本发明的实施方式提供了一种制造金属氧化物半导体场效应晶体管(MOSFET)的方法。该方法通过以下步骤形成晶体管:在衬底上方对栅结构进行图案化;在栅结构的侧面形成隔离件;在栅叠层的交替的侧面,在衬底内形成导体区域。栅结构和导体区域构成晶体管。为了减少大功率等离子引入的损伤,本方法最初对晶体管施加具有第一功率水平的等离子以在晶体管上方形成第一应力层。在施加第一较低功率等离子之后,本方法对晶体管施加具有第二功率水平的第二等离子以在第一应力层上方形成第二应力层。第二功率水平比第一功率水平高(例如,至少高5倍)。
本发明的特征之一为,第一等离子和第二等离子具有相同的化学结构(但以不同的功率水平施加)。这样,第一应力层和第二应力层包含相似的材料。等离子工艺都包含高密度等离子(HDP)工艺。
本发明实施方式的这些以及其他方面,在结合下述说明以及附图的基础上,将得到更好的理解。但是应该明白,以下说明尽管指出了本发明的优选实施方式以及其许多细节,但仅是说明性的,而本发明并不限于此。在本发明的实施方式范畴内在不偏离本发明主旨的前提下,可以对本发明做出各种改动和修正,本发明的实施方式包括所有类似修正。
附图说明:
本发明的实施方式根据以下详细说明参照附图将得到更好的理解,其中:
图1为说明本发明实施方法的流程图。
图2给出了根据本发明的具有两个应力层的晶体管的示意图。
具体实施方式
本发明的实施方式和各种特征及其优点详细在参考附图所示和后述详细说明的非限制性实施方式的基础上得到充分解释。应注意附图中给出的本特征并非按比例画出。为了避免不必要地妨碍本发明的实施方式,省略了对公知的部件和加工工艺的说明。此处所用的例子仅用于帮助理解,其中本发明的实施方式可实现,并进而允许本领域技术人员实施本发明的实施方式。因此,示例不应被解释为对本发明的实施方式的范围的限定。
如上所述,晶体管在许多工艺阶段暴露于潜在的等离子损伤。该等离子损伤由于更多的等离子加工工艺的使用而加重,例如,伴随着等离子生成的应力衬垫的导入。基于大功率高密度的等离子的膜(HDP)优于传统的等离子增强化学气相淀积(PECVD),原因是减少了被隔离的和内嵌的器件之间的性能偏差。但是,晶体管暴露于大功率等离子工艺有时会影响晶体管的整体可靠性。
为了克服这样的问题,本发明使用了双层方法,而不采用淀积单层应力产生膜。在第一步骤,在低功率工艺下淀积应力衬垫薄层。此后,在大功率工艺下淀积相对较厚的应力衬垫。该方法提高了晶体管的整体可靠性而不影响其性能。
更为具体的,整体可靠性得到了提高,这是因为,当形成了较低功率初始应力衬垫时,它对于晶体管的脆弱区域的损伤的可能性较低。较低的功率水平比较高的功率水平产生更少的损伤。晶体管然后通过第一较低功率应力衬垫的保护,防止被第二大功率等离子膜所损伤。这样,本发明享有与第二大功率应力衬垫相关的性能提高的所有好处,而不受等离子导致的损伤。第一低功率应力衬垫被制造得足够厚以保护晶体管的脆弱部分,但又被保持得足够薄以使得来自第二应力衬垫的应力可以在晶体管内产生应力。这样,低功率膜通过防止暴露于后续大功率等离子工艺以保护晶体管,从而提高晶体管的可靠性。
如图1中的流程图所示,本发明的实施方式提供了一种制造MOSFET或者其他具有这种有利特征的类似晶体管结构的方法。本方法通过在衬底100上方来图案化栅结构而产生晶体管。本领域一般技术人员公知,这样的栅结构可包括栅氧化物、栅导体、栅盖(getecap)等。接着,在栅结构的侧面上形成间隔件(例如氧化物或者氮化物等)(102),并在栅叠层的交替的侧面(alternate sides)的衬底内形成导体区域(例如源、漏等)(104)。此外,形成该结构的必要工艺在本领域是公知的。形成场效应晶体管和应力产生层的细节是本领域公知的,为了简洁省略了该结构和相关加工工艺的细节。例如,参见美国专利申请公开2006/0160317和2006/0214225(通过引用包含于此),其中讨论了详细讨论了晶体管和应力层的细节。栅结构和导体区域构成晶体管。
为了减少大功率等离子引入的损伤,本方法最初对晶体管施加了具有第一功率水平的第一等离子以在晶体管上形成第一应力层(106)。在施加第一较低功率等离子之后,本方法对晶体管施加具有第二功率水平的第二等离子以在第一应力层上方形成第二应力层(108)。
第一低功率应力衬垫被制造得足够厚以保护晶体管的脆弱部分,但又被保持得足够薄以使得来自第二应力衬垫的应力可以在晶体管内产生应力。本发明不限于第一或者第二层的任何具体厚度尺寸。而是,每个不同类型的晶体管会受益于可通过例行实验发现的第一和第二层的具体厚度,并可根据设计者对应力和损伤最小化的要求而改变。
类似地,所用具体功率水平将视晶体管尺寸及其设计、所需特性以及其他事项变化,且本发明不限于任何特定的功率水平。但是,第一和第二功率水平之间的差异不是微小的差异,而是本质上的。例如第二功率水平至少为第一功率水平的5倍。因此,例如,如果第一功率水平为5W,第二功率水平至少为25W并可以实质地更高。然后在步骤110中,可以形成各种接触、隔离区域等以完成晶体管结构。
本发明的特征之一为,第一等离子和第二等离子具有相同的化学结构(但以不同的功率水平实施)。这样,第一应力层和第二应力层包含类似的材料(例如二者均提供压缩力或者二者均提供伸张力)。等离子工艺均包含高密度工艺(HDP)。
形成的结构示于图2。更具体地,200表示衬底,202、204代表栅结构。204包含栅导体而202包含栅氧化物。如上所述,栅结构的形成对应于流程图中地步骤100。206代表在流程图的步骤102中形成的间隔件。导体区域表示为280并对应于流程图的步骤104。210代表第一低功率应力引入层并形成于步骤106。212代表形成于步骤108的第二大功率应力引入层。
这样,如上所示,此类晶体管的整体可靠性得到提高,这是因为,当形成了较低功率初始应力衬垫时,它对于晶体管的脆弱区域的损伤的可能性较低。较低的功率水平比较高的功率水平产生更少的损伤。晶体管然后通过第一低功率应力衬垫的保护,防止被第二大功率离子膜损伤。这样,本发明享有与第二大功率应力衬垫相关的性能提高的所有好处,而不受等离子导致的损伤。
以上所述具体实施方式将充分展示本发明的一般性质,在不偏离一般概念的前提下,其他人可以通过运用当前技术很容易地修正和/或将该具体实施方式适用于不同的应用,因此这些适应性改动和修正应该被理解为在公开的实施方式的等价的含义和范畴之内。要理解,此处所采用的措辞或术语为用于说明之目的而非限定性的。因此,尽管本发明的实施方式就优选实施方式而言已经得到说明,本领域技术容易认识到,在不偏离本发明的主旨和所附的权利要求的范围的前提下,本发明的实施方式可以通过修正得到实现。

Claims (6)

1.一种制造金属氧化物半导体场效应晶体管(MOSFET)的方法,所述方法包括以下步骤:
在衬底上方将栅结构图案化;
在所述栅结构的侧面上形成间隔件;
在所述栅叠层的交替的侧面,在所述衬底内形成导体区域,其中所述栅结构和所述导体区域包含晶体管;
对所述晶体管施加具有第一功率水平的第一等离子以在所述晶体管上方形成第一应力层;
对所述晶体管施加具有第二功率水平的第二等离子以在所述第一应力层上方形成第二应力层,
其中所述第二功率水平比所述第一功率水平高。
2.权利要求1中记载的方法,其中,
所述第一等离子和所述第二等离子具有相同的化学结构和不同的功率水平,以使所述第一应力层和所述第二应力层包含相似的材料。
3.权利要求1中记载的方法,其中,
所述施加所述第一等离子的步骤和所述施加第二等离子的步骤包括高密度等离子(HDP)工艺。
4.一种制造金属氧化物半导体场效应晶体管(MOSFET)的方法,所述方法包括以下步骤:
在衬底上方将栅结构图案化;
在所述栅结构的侧面上形成间隔件;
在所述栅叠层的交替的侧面,在所述衬底内形成导体区域,其中所述栅结构和所述导体区域包含晶体管;
对所述晶体管施加具有第一功率水平的第一等离子以在所述晶体管上方形成第一应力层;
对所述晶体管施加具有第二功率水平的第二等离子以在所述第一应力层上方形成第二应力层,
其中所述第二功率水平至少为所述第一功率水平的5倍。
5.权利要求4中记载的方法,其中,
所述第一等离子和所述第二等离子具有相同的化学结构和不同的功率水平,以使所述第一应力层和所述第二应力层包含相似的材料。
6.权利要求4中记载的方法,其中,
所述施加第一等离子的步骤和所述施加第二等离子的步骤包括高密度等离子(HDP)工艺。
CNA2007101700557A 2006-12-26 2007-11-09 制造金属氧化物半导体场效应晶体管的方法 Pending CN101241860A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/616,147 US7521308B2 (en) 2006-12-26 2006-12-26 Dual layer stress liner for MOSFETS
US11/616,147 2006-12-26

Publications (1)

Publication Number Publication Date
CN101241860A true CN101241860A (zh) 2008-08-13

Family

ID=39543432

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007101700557A Pending CN101241860A (zh) 2006-12-26 2007-11-09 制造金属氧化物半导体场效应晶体管的方法

Country Status (3)

Country Link
US (1) US7521308B2 (zh)
KR (1) KR101286269B1 (zh)
CN (1) CN101241860A (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8106462B2 (en) * 2010-01-14 2012-01-31 International Business Machines Corporation Balancing NFET and PFET performance using straining layers
US9023696B2 (en) 2011-05-26 2015-05-05 Globalfoundries Inc. Method of forming contacts for devices with multiple stress liners

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7115954B2 (en) * 2000-11-22 2006-10-03 Renesas Technology Corp. Semiconductor device including stress inducing films formed over n-channel and p-channel field effect transistors and a method of manufacturing the same
US7022561B2 (en) * 2002-12-02 2006-04-04 Taiwan Semiconductor Manufacturing Company, Ltd. CMOS device
US8008724B2 (en) * 2003-10-30 2011-08-30 International Business Machines Corporation Structure and method to enhance both nFET and pFET performance using different kinds of stressed layers
DE102004057762B4 (de) * 2004-11-30 2010-11-11 Advanced Micro Devices Inc., Sunnyvale Verfahren zur Herstellung einer Halbleiterstruktur mit Ausbilden eines Feldeffekttransistors mit einem verspannten Kanalgebiet
US20060160371A1 (en) 2005-01-18 2006-07-20 Metz Matthew V Inhibiting growth under high dielectric constant films
US7388278B2 (en) 2005-03-24 2008-06-17 International Business Machines Corporation High performance field effect transistors on SOI substrate with stress-inducing material as buried insulator and methods

Also Published As

Publication number Publication date
US7521308B2 (en) 2009-04-21
KR20080060142A (ko) 2008-07-01
KR101286269B1 (ko) 2013-07-15
US20080153217A1 (en) 2008-06-26

Similar Documents

Publication Publication Date Title
TW200618117A (en) Thin film transistor and fabrication method thereof
SG152141A1 (en) Soi substrates with a fine buried insulating layer
TW200742141A (en) Organic transistor and method for manufacturing the same
Kao et al. 71‐1: Invited paper: the challenges of flexible OLED display development
CN101241860A (zh) 制造金属氧化物半导体场效应晶体管的方法
US20170338309A1 (en) Power mosfet
TW200745710A (en) Organic transistor and method for manufacturing the same
US20090311855A1 (en) Method of fabricating a gate structure
US20090090974A1 (en) Dual stress liner structure having substantially planar interface between liners and related method
WO2009037896A1 (ja) 半導体装置の製造方法及び半導体装置
CN100594598C (zh) 半导体器件及其制造方法
US7923785B2 (en) Field effect transistor having increased carrier mobility
US20100230758A1 (en) Semiconductor device with improved stressor shape
CN102664150A (zh) 提高接触刻蚀阻挡层工艺中pmos性能的方法
US8435841B2 (en) Enhancement of ultraviolet curing of tensile stress liner using reflective materials
CN105931965A (zh) 一种半导体器件及其制造方法
CN102437094B (zh) 改进双重通孔刻蚀停止层交叠区通孔刻蚀的方法
CN102623329B (zh) 一种形成前金属介电质层的方法
CN219017656U (zh) 一种双mos管
CN102637603A (zh) 通过可移除侧墙集成工艺增强应力记忆效应的方法
CN102610512B (zh) 一种形成前金属介电质层的方法
CN102222645B (zh) 制作快闪存储器元件的方法
CN102956557B (zh) 半导体器件的制作方法
CN102623330B (zh) 一种形成前金属介电质层的方法
CN102610569B (zh) 一种形成前金属介电质层的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20080813