CN101068945A - 制造具有增强特性的钛合金线材的方法 - Google Patents

制造具有增强特性的钛合金线材的方法 Download PDF

Info

Publication number
CN101068945A
CN101068945A CNA2005800243125A CN200580024312A CN101068945A CN 101068945 A CN101068945 A CN 101068945A CN A2005800243125 A CNA2005800243125 A CN A2005800243125A CN 200580024312 A CN200580024312 A CN 200580024312A CN 101068945 A CN101068945 A CN 101068945A
Authority
CN
China
Prior art keywords
titanium alloy
crystal grain
tib
size
strongthener
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005800243125A
Other languages
English (en)
Other versions
CN101068945B (zh
Inventor
威廉·M·哈努斯科
杰瑞·L·菲尔德斯
维森特·哈罗德·哈曼德
罗伯特·刘易斯·格拉博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FMW Composite Systems Inc
Original Assignee
FMW Composite Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FMW Composite Systems Inc filed Critical FMW Composite Systems Inc
Publication of CN101068945A publication Critical patent/CN101068945A/zh
Application granted granted Critical
Publication of CN101068945B publication Critical patent/CN101068945B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/17Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by forging
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1042Alloys containing non-metals starting from a melt by atomising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/12Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Abstract

一种制造增强型钛合金线材的方法,包括形成含有沉淀型非连续增强材料例如TiB和/或TiC晶粒的钛合金坯料。所述坯料可以通过热固化由气体雾化形成的钛合金粉末而形成。所述坯料随后被热成形以收缩成条材状或卷材状。然后所述条材或卷材经受连续的冷拉操作,以形成直径缩减了的增强型钛合金线材。所述冷拉操作包括在低氧条件下的周期性退火操作,用以减轻加工硬化及对所述增强材料晶粒进行再结晶,以便减小其尺寸。

Description

制造具有增强特性的钛合金线材的方法
技术领域
本发明涉及一种制造钛合金线材的方法,更特别地,涉及这样一种方法,在该方法中,增强材料如TiB和/或TiC的沉淀型非连续微粒(precipitateddiscontinuous particulates)被加入到合金中,并且该合金由一种新颖、改进的方法加工,从而使得由微粒引起的合金强度变大。
背景技术
文献中关于通过添加TiB和/或TiC微粒而使普通钛合金,即Ti-6Al-4V得以加固和增强的方法早有报道。Ti-6Al-4V合金广泛应用于航空领域并且是最廉价的合金之一。航空设计界对那种不需要花费大量成本就可使此种合金的有益应用范围得以扩大的增强(enhancement)特性有极大的兴趣。在上述报道的方法中,TiB和/或TiC添加物在铸造之前被添加到熔融物中,然后形成Ti-6Al-4V铸件。这些添加物在所述熔融物中溶解并在冷却过程中再结晶,从而形成具有各种不同尺寸的非连续性增强体(discontinuous reinforcement)。由热等静压(hotisostatic pressing,HIP)和挤压成型的物品已经展示了这种改良的抗张强度和拉伸模量,它们取决于TiB和/或TiC添加物的浓度。
上述结果表明:性能的提高与产生的非连续增强体的数量以及生成的增强体晶体的尺寸有关。也就是说,人们期望增强体的体积含量高达40%并且增强体的尺寸在超细尺寸范围内。但是,在已知的方法中,含量高出少许百分点的增强体主要在最大尺寸的区段中,并且增强体的尺寸变化范围广泛,而且随着增强体的体积含量向着最理想的20%-40%的水平增加,增强体向较大尺寸的转变增加了。这是在铸造或制造过程中大晶粒清除较小晶粒的结果,并且这种结果显然是在这些过程中固有的。这种局限性严重地抑制了非连续增强型钛的潜在性能。
本发明的改良的新方法不具有上述缺点,并具有已用或已知方法不可能拥有的优点。
发明内容
本发明方法主要涉及制造适合电缆/光纤复合材料应用的钛合金线材,其主要包括:通过铸造坯料或气体雾化形成所需合金的步骤;热锻造以便产生均匀的化学性质和显微组织的步骤;形成例如直径约为0.2英寸的条材或卷材的步骤;冷拉成例如直径约为0.005英寸的线材的步骤。
更明确地,一种优选方法包括:从富含硼元素的熔融物中通过气体雾化形成钛合金粉;在约5000-45000psi例如15000psi的压力下,在约1650-1750的温度下,使用热等静压将所述粉末金属固化成棒材状,直到完全固化,但保持在β转变所需条件之下,以避免晶粒生长和晶界分离;在温度大约为1500-2100时,例如1750,热轧以将所述棒材缩减成条材状或卷材状,并完成较大TiB晶粒的初始分解;以大约每道次10%-20%的缩减率冷拉和退火,以避免裂化。根据本发明的方法,增加在极低氧条件下退火步骤的频度是用来减轻加工硬化,也用来再结晶TiB晶粒至精确尺寸,且TiB晶粒与线轴对齐。这个新型、改良的方法能够制造精细钛合金线材,同时能够实现TiB增强体含量的提高及增强体晶粒尺寸的减小。其他增强材料如TiC可以单独使用,或与TiB联合使用。
具体实施方式
通过将增强体的沉淀与一种新的改良的线材制造方法结合起来,从而使本发明方法发展成即使在增强体含量很高时,精细晶粒状的增强体仍然能够占大多数。典型的适用于电缆/光纤复合物应用的,如美国专利第5,763,079号所述的细线材加工方法,包括四种主要的操作,即,通过铸造坯料形成所需的合金,通过热锻造产生均匀的化学性质和显微组织,通过热成形工艺形成直径约为0.2英寸的棒材(或卷材),并冷拉成直径约为0.005英寸的线材。在冷拉期间需要进行中间退火操作,以便消除残余应力并恢复延展性,从而进行更多的拉伸操作。这个基本线材形成工艺用于以最少的操作工序、最少的影响长度连续性的断裂、并通过热成形、热挤压及最终的冷拉操作来实现断面的收缩。
根据本发明可以发现:线材拉伸加工过程可被设计或修改,从而不仅可以实现断面收缩的基本目的,而且还可控制显微组织的进化。本发明线材拉伸方法可以在难熔合金(difficult alloys)中实现改良的显微组织,而这用其他任何方法都不能实现,并且,这种方法被发展为用于生产非连续增强型Ti-6Al-4V合金,同时实现TiB含量增加和增强体晶粒尺寸变小的目的。
本发明线材形成方法以从富含硼元素的熔融物中得到的Ti-6Al-4V合金铸件作为开始。所述TiB在冷却时将会沉淀,但冷却速率(cooling rate)将导致不合需要的较大TiB晶粒生长。为了从最好的显微组织开始,最好使用由富含硼元素的熔融物通过气体雾化(gas atomization)而形成的粉末金属,而不使用铸件。所述粉末形成工艺使用比铸造工艺更快的冷却处理,且其产生较大TiB晶粒的可能性更小。在这种方法中,使用粉末冶金技术来制备组分均匀的坯料(compositionally uniform billet),以避免铸造工艺中固有的晶粒生长和潜在的化学相分离(chemical segregation)。上述从富含硼元素的Ti-6Al-4V合金中制造形成的金属合金粉末首先被热成形为其尺寸与现有工业线材形成设备相匹配的棒材。所述棒材被热轧成直径约为0.2英寸的条材或卷材,然后此条材或卷材被转移到冷拉操作中。
这种事实已被发现:即选择合理的冷拉加工条件可导致形成易延展的小直径精细线材,且可导致所需线材显微组织的成功形成,即,较高的浓度及较细的晶粒。这个改良方法的执行需要考虑每个操作中的关键加工条件。冷拉断面收缩(area reduction)必须充分,从而在每个道次中将小直径的条材冷加工到中心部位(core),进而维持显微组织在整个截面的一致性。但是,断面收缩不能过量,以避免当条材或卷材的直径减小时,在条材或卷材中形成断裂(fracture)、微裂纹(microcracking)或空洞(void)。在冷拉的初始阶段,由于存在较大的TiB晶粒,因此材料在具有较大TiB晶粒的区域易形成微裂纹和空洞。当最大的TiB晶粒存在时,在缩减工序的初始阶段,要在断面收缩与避免微裂纹和空洞的形成之间维持平衡是更困难的,并且当TiB晶粒尺寸缩减时,工艺窗口(processingwindow)扩大了。
本发明的冷拉加工工艺用来分解大TiB晶粒且不形成有害的微裂纹或空洞。我们发现:为减轻加工硬化(work hardening)而增加的频繁的退火步骤也将会把TiB晶粒再结晶化至一个精确的尺寸,且TiB晶粒与线轴对齐。退火步骤已被应用于已知线材拉伸工序中,但其退火步骤的使用频度低且持续的时间短。根据本发明,退火步骤使用频度的增加,提高了对极低氧条件下退火的需求,以避免由氧气污染和被线材冶金获取的间隙氧气(oxygen interstitial)造成的表面材料过度损失,从而可能妨碍TiB增强体加工。因此,本发明方法能够实现精细钛合金线材的制造,同时能够获得含量较高的增强体及尺寸较小的增强体晶粒。
根据本发明方法的一个优选实施例,一种可接受的合金粉末是包含Ti-6Al-4V-1.7B组分、尺寸范围为-35目(mesh)到+270目的气体雾化球状粉末。一种可接受的间隙组分(interstitial content)为含量小于1500ppm的氧。这种性质的粉末已被用于制造合成面板,且已被发现可产生均匀的化学性质和显微组织。将粉末金属固化成棒状是基于对合成面板有效的方法进行的。例如,已经确定:未污染固化模具(non-contaminating consolidation tooling)是必需的,如真空脱气低碳钢(vacuum degassed mild steel)或常规的钛合金。固化成棒材是通过在约5000-45000psi例如15000psi的压力和约1650-1750的温度条件下,使用热等静压实现的。这些条件用以实现完全的固化,并安全地维持在β转变所需的条件之下,以防止晶粒生长和晶界分离。在约1500-2100温度范围内,例如1750温度时的热轧(hot reduction),用以使所述棒材缩减成条材状或卷材状,并完成较大TiB晶粒的初始分解。已经确定:约50∶1的截面热轧率(hotreduction in section area)对初始的大TiB晶粒分解是有效的。后续的冷拉工艺必须在条材或卷材的整个厚度方向上进行足够的冷加工,且退火必须减轻加工硬化且没有晶粒的生长。已经确定:每个道次必须具有大约10%的缩减率,以保证冷加工的充分一致性,并避免从标称直径(nominal diameter)为0.2英寸的条件开始的初始冷拉步骤期间形成的微裂纹和空洞。断面收缩率可增至每个道次约为15%直到截面缩减工序的中点,并且到截面缩减工序结束时可能有约20%的断面收缩率。在惰性气体中以约1200-2000的温度,例如,1750的温度,用加压的惰性气体冷却(forced inert gas cooling)退火约1小时,就可充分消除加工硬化,再结晶TiB和避免晶粒生长。退火是间断进行的,每次退火的时点对应累积截面收缩率大约为50%。
本发明的上述方法生产出具有体积浓度为1%-50%的微细晶粒状TiB增强体的Ti-6Al-4V合金,且所述增强体与线材的轴心对齐。这种方法对多种钛合金有效,例如Ti-6Al-2Sn-4Zr-2Mo合金、Ti-6Al-4Sn-4Zr-1Nb-1Mo-0.2Si合金、Ti-3Al-2.5V合金、Ti-10V-2Fe-3Al合金、Ti-5Al-2.5Sn合金和Ti-8Al-1Mo-1V合金。而且,该方法同样对其他沉淀型非连续增强体如TiC,或TiB与TiC的混合物有效。该方法可以使用从富含硼元素的熔融物中铸造形成的坯料,但由缓慢冷却的铸造工序(slow cooled casting)所导致的较大TiB晶粒生长度将引起形成微裂纹和空洞的固有风险的增加。线材形成工艺中固有的极高断面收缩率结合本发明提供的适当控制的收缩和退火条件后,可生产出其他任何已知冶金方法都不能生产出的高性能钛合金线材。
以上结合最佳实施例对本发明进行了描述,但本发明并不局限于以上揭示的实施例,而应当涵盖各种根据本发明的本质进行的修改、等效组合。

Claims (26)

1.一种制造增强型钛合金线材的方法,包括:
形成含有沉淀型非连续增强材料晶粒的钛合金坯料;
热成形所述坯料,以将其缩减成条材状或卷材状;及
在后续操作中将所述条材或卷材冷拉成直径变小的线材,所述冷拉操作包括在低氧条件下对所述线材进行周期性退火,以减轻加工硬化及对所述增强材料晶粒进行再结晶,以便减小其尺寸。
2.如权利要求1所述的方法,其特征在于,所述坯料在热成形之前被热锻造,以产生均匀的化学性质和显微组织。
3.如权利要求1所述的方法,其特征在于,所述增强材料为TiB。
4.如权利要求3所述的方法,其特征在于,所述坯料是从富含硼元素的熔融物中铸造而成的。
5.如权利要求3所述的方法,其特征在于,所述坯料是通过固化钛合金粉末形成的,所述钛合金粉末从富含硼元素的熔融物中由气体雾化形成的。
6.如权利要求5所述的方法,其特征在于,所述粉末是含有Ti-6Al-4V-1.7B合成物、尺寸范围为-35目到+270目、间隙氧含量小于1500ppm的气体雾化粉末。
7.如权利要求1所述的方法,其特征在于,所述增强材料为TiC。
8.如权利要求1所述的方法,其特征在于,所述增强材料为TiB和TiC。
9.如权利要求5所述的方法,其特征在于,所述固化是通过压力为15000psi、温度为1650-1750的热等静压进行的。
10.如权利要求1所述的方法,其特征在于,所述钛合金为Ti-6Al-4V。
11.如权利要求1所述的方法,其特征在于,所述钛合金为Ti-6Al-2Sn-4Zr-2Mo。
12.如权利要求1所述的方法,其特征在于,所述热成形是在1750的温度中进行的。
13.如权利要求12所述的方法,其特征在于,所述热成形导致50∶1的截面热轧率,以便分解增强材料晶粒和缩减增强材料晶粒的尺寸。
14.如权利要求1所述的方法,其特征在于,所述冷拉操作是周期性进行的,以便缩减所述线材的尺寸,且该冷拉操作在所需直径缩减的前半阶段以每次拉伸操作时缩减率为10%的速度进行。
15.如权利要求14所述的方法,其特征在于,所述缩减率在直径缩减的中点时增至15%,并且在接近直径缩减终点时增至20%。
16.如权利要求1所述的方法,其特征在于,所述退火是指在惰性气体中用加压惰性气体冷却1小时,所述退火是间断进行的,每次退火的时点对应的线材直径累积截面收缩率为50%。
17.一种制造增强型钛合金线材的方法,包括:
从富含硼元素的熔融物中通过气体雾化形成钛合金粉末;
在一定的热量和压力下将所述钛合金粉末固化成含有沉淀型非连续TiB增强体晶粒的坯料;
热成形所述坯料,以将其缩减成条材状或卷材状,并分解TiB晶粒和缩减TiB晶粒的尺寸;
在后续操作中将所述条材或卷材冷拉成直径变小的线材,所述冷拉操作包括在低氧条件下对所述线材进行周期性退火,以减轻加工硬化及对所述TiB晶粒进行再结晶,以便减小其尺寸。
18.如权利要求17所述的方法,其特征在于,所述粉末是含有Ti-6Al-4V-1.7B合成物、尺寸范围为-35目到+270目、间隙氧含量小于1500ppm的气体雾化粉末。
19.如权利要求17所述的方法,其特征在于,所述钛合金为Ti-6Al-4V。
20.如权利要求17所述的方法,其特征在于,所述钛合金为Ti-6Al-2Sn-4Zr-2Mo。
21.如权利要求17所述的方法,其特征在于,所述固化是通过压力为15000psi、温度为1650-1750的热等静压进行的。
22.如权利要求17所述的方法,其特征在于,所述热成形是在1750的温度中进行的。
23.如权利要求22所述的方法,其特征在于,所述热成形导致50∶1的截面热轧率以分解增强材料晶粒并缩减增强材料晶粒的尺寸。
24.如权利要求17所述的方法,其特征在于,所述冷拉操作是周期性进行的,以便缩减所述线材的尺寸,且该冷拉操作在所需直径缩减的前半阶段以每次拉伸操作时缩减率为10%的速度进行。
25.如权利要求24所述的方法,其特征在于,所述缩减率在直径缩减的中点时增至15%,并且在接近直径缩减终点时增至20%。
26.如权利要求17所述的方法,其特征在于,所述退火是指在惰性气体中用加压惰性气体冷却1小时,所述退火是间断进行的,每次退火的时点对应的线材直径累积截面收缩率为50%。
CN2005800243125A 2004-07-22 2005-05-25 制造具有增强特性的钛合金线材的方法 Expired - Fee Related CN101068945B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/895,885 US20060016521A1 (en) 2004-07-22 2004-07-22 Method for manufacturing titanium alloy wire with enhanced properties
US10/895,885 2004-07-22
PCT/US2005/018492 WO2006022951A2 (en) 2004-07-22 2005-05-25 Method for manufacturing titanium alloy wire with enhanced properties

Publications (2)

Publication Number Publication Date
CN101068945A true CN101068945A (zh) 2007-11-07
CN101068945B CN101068945B (zh) 2010-07-14

Family

ID=35655874

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005800243125A Expired - Fee Related CN101068945B (zh) 2004-07-22 2005-05-25 制造具有增强特性的钛合金线材的方法

Country Status (7)

Country Link
US (1) US20060016521A1 (zh)
EP (1) EP1784269B1 (zh)
JP (1) JP5037340B2 (zh)
KR (1) KR101184464B1 (zh)
CN (1) CN101068945B (zh)
ES (1) ES2385086T3 (zh)
WO (1) WO2006022951A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102634746A (zh) * 2012-05-07 2012-08-15 东莞市闻誉实业有限公司 增强型铝钛碳合金线材的制造方法
CN102851541A (zh) * 2012-09-27 2013-01-02 苏州东海玻璃模具有限公司 原位合成TiC颗粒增强钛-铝-钼-硅合金材料及其制备方法
CN102851537A (zh) * 2012-09-27 2013-01-02 苏州东海玻璃模具有限公司 原位合成TiC颗粒增强钛-铝-钼-钯合金材料及其制备方法

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050211475A1 (en) * 2004-04-28 2005-09-29 Mirchandani Prakash K Earth-boring bits
US20080101977A1 (en) * 2005-04-28 2008-05-01 Eason Jimmy W Sintered bodies for earth-boring rotary drill bits and methods of forming the same
US9428822B2 (en) 2004-04-28 2016-08-30 Baker Hughes Incorporated Earth-boring tools and components thereof including material having hard phase in a metallic binder, and metallic binder compositions for use in forming such tools and components
US20060024140A1 (en) * 2004-07-30 2006-02-02 Wolff Edward C Removable tap chasers and tap systems including the same
US7513320B2 (en) * 2004-12-16 2009-04-07 Tdy Industries, Inc. Cemented carbide inserts for earth-boring bits
US8637127B2 (en) 2005-06-27 2014-01-28 Kennametal Inc. Composite article with coolant channels and tool fabrication method
US7687156B2 (en) 2005-08-18 2010-03-30 Tdy Industries, Inc. Composite cutting inserts and methods of making the same
US7597159B2 (en) * 2005-09-09 2009-10-06 Baker Hughes Incorporated Drill bits and drilling tools including abrasive wear-resistant materials
US8002052B2 (en) 2005-09-09 2011-08-23 Baker Hughes Incorporated Particle-matrix composite drill bits with hardfacing
US7776256B2 (en) 2005-11-10 2010-08-17 Baker Huges Incorporated Earth-boring rotary drill bits and methods of manufacturing earth-boring rotary drill bits having particle-matrix composite bit bodies
US7997359B2 (en) 2005-09-09 2011-08-16 Baker Hughes Incorporated Abrasive wear-resistant hardfacing materials, drill bits and drilling tools including abrasive wear-resistant hardfacing materials
US7703555B2 (en) 2005-09-09 2010-04-27 Baker Hughes Incorporated Drilling tools having hardfacing with nickel-based matrix materials and hard particles
US7802495B2 (en) * 2005-11-10 2010-09-28 Baker Hughes Incorporated Methods of forming earth-boring rotary drill bits
US7913779B2 (en) * 2005-11-10 2011-03-29 Baker Hughes Incorporated Earth-boring rotary drill bits including bit bodies having boron carbide particles in aluminum or aluminum-based alloy matrix materials, and methods for forming such bits
US7784567B2 (en) * 2005-11-10 2010-08-31 Baker Hughes Incorporated Earth-boring rotary drill bits including bit bodies comprising reinforced titanium or titanium-based alloy matrix materials, and methods for forming such bits
US7807099B2 (en) 2005-11-10 2010-10-05 Baker Hughes Incorporated Method for forming earth-boring tools comprising silicon carbide composite materials
US8770324B2 (en) * 2008-06-10 2014-07-08 Baker Hughes Incorporated Earth-boring tools including sinterbonded components and partially formed tools configured to be sinterbonded
WO2007127680A1 (en) * 2006-04-27 2007-11-08 Tdy Industries, Inc. Modular fixed cutter earth-boring bits, modular fixed cutter earth-boring bit bodies, and related methods
EP2066864A1 (en) 2006-08-30 2009-06-10 Baker Hughes Incorporated Methods for applying wear-resistant material to exterior surfaces of earth-boring tools and resulting structures
CA2663519A1 (en) 2006-10-25 2008-05-02 Tdy Industries, Inc. Articles having improved resistance to thermal cracking
US7775287B2 (en) * 2006-12-12 2010-08-17 Baker Hughes Incorporated Methods of attaching a shank to a body of an earth-boring drilling tool, and tools formed by such methods
US7841259B2 (en) * 2006-12-27 2010-11-30 Baker Hughes Incorporated Methods of forming bit bodies
US7846551B2 (en) 2007-03-16 2010-12-07 Tdy Industries, Inc. Composite articles
WO2009149071A2 (en) * 2008-06-02 2009-12-10 Tdy Industries, Inc. Cemented carbide-metallic alloy composites
US8790439B2 (en) 2008-06-02 2014-07-29 Kennametal Inc. Composite sintered powder metal articles
US7703556B2 (en) 2008-06-04 2010-04-27 Baker Hughes Incorporated Methods of attaching a shank to a body of an earth-boring tool including a load-bearing joint and tools formed by such methods
US8261632B2 (en) 2008-07-09 2012-09-11 Baker Hughes Incorporated Methods of forming earth-boring drill bits
US8322465B2 (en) 2008-08-22 2012-12-04 TDY Industries, LLC Earth-boring bit parts including hybrid cemented carbides and methods of making the same
US8025112B2 (en) 2008-08-22 2011-09-27 Tdy Industries, Inc. Earth-boring bits and other parts including cemented carbide
US8272816B2 (en) 2009-05-12 2012-09-25 TDY Industries, LLC Composite cemented carbide rotary cutting tools and rotary cutting tool blanks
US8201610B2 (en) 2009-06-05 2012-06-19 Baker Hughes Incorporated Methods for manufacturing downhole tools and downhole tool parts
US8308096B2 (en) 2009-07-14 2012-11-13 TDY Industries, LLC Reinforced roll and method of making same
US9643236B2 (en) * 2009-11-11 2017-05-09 Landis Solutions Llc Thread rolling die and method of making same
MX340467B (es) 2010-05-20 2016-07-08 Baker Hughes Incorporated * Métodos para formar al menos una porción de herramientas para perforar la tierra y artículos formados por tales métodos.
US8490674B2 (en) 2010-05-20 2013-07-23 Baker Hughes Incorporated Methods of forming at least a portion of earth-boring tools
RU2012155100A (ru) 2010-05-20 2014-06-27 Бейкер Хьюз Инкорпорейтед Способ формирования по меньшей мере части бурильного инструмента и сформированное посредством него изделие
US20120118433A1 (en) * 2010-11-12 2012-05-17 Fmw Composite Systems, Inc. Method of modifying thermal and electrical properties of multi-component titanium alloys
US8800848B2 (en) 2011-08-31 2014-08-12 Kennametal Inc. Methods of forming wear resistant layers on metallic surfaces
US9016406B2 (en) 2011-09-22 2015-04-28 Kennametal Inc. Cutting inserts for earth-boring bits
CN102649222B (zh) * 2012-05-31 2014-01-29 浙江振兴石化机械有限公司 一种利用17-4ph不锈钢加工细长轴的方法
CN107214474B (zh) * 2017-05-22 2019-08-20 西部超导材料科技股份有限公司 一种高强Ti6Al7Nb钛合金丝材的制备方法
CN108950302B (zh) * 2018-08-03 2019-08-02 中鼎特金秦皇岛科技股份有限公司 一种高强耐腐蚀钛合金及其制备方法
CN111849600B (zh) * 2020-08-05 2022-06-07 陕西高精尖新材料科技有限责任公司 钛合金丝材高温拉拔干式润滑剂及其制备方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3343998A (en) * 1964-01-06 1967-09-26 Whittaker Corp High strength wrought weldable titanium alloy mill product manufacture
US3698863A (en) * 1970-01-29 1972-10-17 Brunswick Corp Fibrous metal filaments
US4639281A (en) * 1982-02-19 1987-01-27 Mcdonnell Douglas Corporation Advanced titanium composite
US4499156A (en) * 1983-03-22 1985-02-12 The United States Of America As Represented By The Secretary Of The Air Force Titanium metal-matrix composites
US4631092A (en) * 1984-10-18 1986-12-23 The Garrett Corporation Method for heat treating cast titanium articles to improve their mechanical properties
JPS61159540A (ja) * 1985-01-07 1986-07-19 Nippon Gakki Seizo Kk 繊維強化金属材の製法
US4731115A (en) * 1985-02-22 1988-03-15 Dynamet Technology Inc. Titanium carbide/titanium alloy composite and process for powder metal cladding
US4714587A (en) * 1987-02-11 1987-12-22 The United States Of America As Represented By The Secretary Of The Air Force Method for producing very fine microstructures in titanium alloy powder compacts
US4968348A (en) * 1988-07-29 1990-11-06 Dynamet Technology, Inc. Titanium diboride/titanium alloy metal matrix microcomposite material and process for powder metal cladding
US4906430A (en) * 1988-07-29 1990-03-06 Dynamet Technology Inc. Titanium diboride/titanium alloy metal matrix microcomposite material and process for powder metal cladding
US5068003A (en) * 1988-11-10 1991-11-26 Sumitomo Metal Industries, Ltd. Wear-resistant titanium alloy and articles made thereof
US4931253A (en) * 1989-08-07 1990-06-05 United States Of America As Represented By The Secretary Of The Air Force Method for producing alpha titanium alloy pm articles
JPH0670263B2 (ja) * 1990-01-30 1994-09-07 鈴木金属工業株式会社 高強度チタン線
JPH0436445A (ja) * 1990-05-31 1992-02-06 Sumitomo Metal Ind Ltd 耐食性チタン合金継目無管の製造方法
EP0484931B1 (en) * 1990-11-09 1998-01-14 Kabushiki Kaisha Toyota Chuo Kenkyusho Sintered powdered titanium alloy and method for producing the same
US5030277A (en) * 1990-12-17 1991-07-09 The United States Of America As Represented By The Secretary Of The Air Force Method and titanium aluminide matrix composite
JPH04279212A (ja) * 1991-03-07 1992-10-05 Shinko Kosen Kogyo Kk チタン又はチタン合金の細線の製造方法
US5372775A (en) * 1991-08-22 1994-12-13 Sumitomo Electric Industries, Ltd. Method of preparing particle composite alloy having an aluminum matrix
US5366570A (en) * 1993-03-02 1994-11-22 Cermics Venture International Titanium matrix composites
JPH06306508A (ja) * 1993-04-22 1994-11-01 Nippon Steel Corp 低異方性、高疲労強度チタン基複合材の製造方法
US5799238A (en) * 1995-06-14 1998-08-25 The United States Of America As Represented By The United States Department Of Energy Method of making multilayered titanium ceramic composites
JPH09256080A (ja) * 1996-03-21 1997-09-30 Honda Motor Co Ltd チタン又は/及びチタン合金焼結摩擦材
US5722037A (en) * 1996-05-09 1998-02-24 Korea Institute Of Machinery & Materials Process for producing Ti/TiC composite by hydrocarbon gas and Ti powder reaction
JP2852414B2 (ja) * 1996-06-13 1999-02-03 科学技術庁金属材料技術研究所長 粒子強化型チタン基複合材料とその製造方法
US5897830A (en) * 1996-12-06 1999-04-27 Dynamet Technology P/M titanium composite casting
US5903813A (en) * 1998-07-24 1999-05-11 Advanced Materials Products, Inc. Method of forming thin dense metal sections from reactive alloy powders
US6042780A (en) * 1998-12-15 2000-03-28 Huang; Xiaodi Method for manufacturing high performance components
US6190473B1 (en) * 1999-08-12 2001-02-20 The Boenig Company Titanium alloy having enhanced notch toughness and method of producing same
US6402859B1 (en) * 1999-09-10 2002-06-11 Terumo Corporation β-titanium alloy wire, method for its production and medical instruments made by said β-titanium alloy wire
JP4123937B2 (ja) * 2001-03-26 2008-07-23 株式会社豊田中央研究所 高強度チタン合金およびその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102634746A (zh) * 2012-05-07 2012-08-15 东莞市闻誉实业有限公司 增强型铝钛碳合金线材的制造方法
CN102634746B (zh) * 2012-05-07 2013-12-11 东莞市闻誉实业有限公司 增强型铝钛碳合金线材的制造方法
CN102851541A (zh) * 2012-09-27 2013-01-02 苏州东海玻璃模具有限公司 原位合成TiC颗粒增强钛-铝-钼-硅合金材料及其制备方法
CN102851537A (zh) * 2012-09-27 2013-01-02 苏州东海玻璃模具有限公司 原位合成TiC颗粒增强钛-铝-钼-钯合金材料及其制备方法
CN102851537B (zh) * 2012-09-27 2014-04-02 南京航空航天大学 原位合成TiC颗粒增强钛-铝-钼-钯合金材料及其制备方法

Also Published As

Publication number Publication date
JP5037340B2 (ja) 2012-09-26
KR20070035042A (ko) 2007-03-29
WO2006022951A3 (en) 2007-08-02
JP2008507624A (ja) 2008-03-13
EP1784269A4 (en) 2008-03-05
EP1784269A2 (en) 2007-05-16
WO2006022951A2 (en) 2006-03-02
KR101184464B1 (ko) 2012-09-21
CN101068945B (zh) 2010-07-14
ES2385086T3 (es) 2012-07-18
US20060016521A1 (en) 2006-01-26
EP1784269B1 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
CN101068945B (zh) 制造具有增强特性的钛合金线材的方法
JP5089945B2 (ja) 高耐食性を有する高強度マグネシウム合金
CN102639743B (zh) α+β型钛合金制部件及其制造方法
US20100003536A1 (en) Metal matrix composite material
JP5971821B2 (ja) 合金チタン溶接ワイヤの製造方法
WO2018198534A1 (ja) 高強度アルミニウム合金積層成形体及びその製造方法
EP1287173B1 (de) Bauteil auf basis von gamma-tial-legierungen mit bereichen mit gradiertem gefüge
EP0464366B1 (de) Verfahren zur Herstellung eines Werkstücks aus einer dotierstoffhaltigen Legierung auf der Basis Titanaluminid
JP5618276B2 (ja) 高耐食性を有する高強度マグネシウム合金及びその製造方法
JP2008150704A (ja) マグネシウム合金材およびその製造方法
DE112005000511T5 (de) Magnesiumknetlegierung mit verbesserter Extrudierbarkeit und Formbarkeit
US11421303B2 (en) Titanium alloy products and methods of making the same
EP2799165B1 (en) Method for molding aluminum alloy powder, and aluminum alloy member
CN110004342B (zh) 一种高强高弹性模量变形镁合金及其制备方法
JP2000225412A (ja) アルミニウム合金の塑性加工方法及びそれによる高強度高延性アルミニウム合金材
JPH05117800A (ja) 酸化物分散強化鉄基合金の製造法
KR101400140B1 (ko) 마그네슘 합금 압출재의 제조방법 및 이에 따라 제조되는 마그네슘 합금 압출재
JP2002294388A (ja) 鉄基粉末成形用素材、その製造方法および高強度高密度鉄基焼結体の製造方法
CN1246105C (zh) 原位自生钛基复合材料的超塑性加工方法
Lumley et al. Nanoengineering of metallic materials
JP2003512524A (ja) 線状製品、その製造方法、及びその製品から製造された摩耗部品
JPH02147148A (ja) 肌焼鋼製品の製造方法
JPH032335A (ja) チタン粉末又はチタン合金粉末燒結品の製造方法
CN108340098A (zh) 一种5183铝合金半成品焊丝的加工工艺
JPH11269592A (ja) 焼入れ感受性の低いAl−過共晶Si合金およびその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100714

Termination date: 20130525