CN100503114C - 以机电方式和/或机电化学方式从微电子基板清除导电材料的方法和设备 - Google Patents

以机电方式和/或机电化学方式从微电子基板清除导电材料的方法和设备 Download PDF

Info

Publication number
CN100503114C
CN100503114C CNB038242826A CN03824282A CN100503114C CN 100503114 C CN100503114 C CN 100503114C CN B038242826 A CNB038242826 A CN B038242826A CN 03824282 A CN03824282 A CN 03824282A CN 100503114 C CN100503114 C CN 100503114C
Authority
CN
China
Prior art keywords
electrode
microelectronic substrate
equipment
substrate
polished surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB038242826A
Other languages
English (en)
Other versions
CN1688411A (zh
Inventor
沃恩奇·李
斯科特·G·米克尔
斯科特·E·穆尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Publication of CN1688411A publication Critical patent/CN1688411A/zh
Application granted granted Critical
Publication of CN100503114C publication Critical patent/CN100503114C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H5/00Combined machining
    • B23H5/06Electrochemical machining combined with mechanical working, e.g. grinding or honing
    • B23H5/08Electrolytic grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F7/00Constructional parts, or assemblies thereof, of cells for electrolytic removal of material from objects; Servicing or operating

Abstract

以机电方式和/或机电化学方式从微电子基板清除材料的方法和设备。所述设备包括被配置成可拆地携带微电子基板的支撑部件以及彼此隔开并与微电子基板隔开的第一和第二电极。抛光介质定位在电极和支撑部件之间,该抛光介质具有抛光表面,定位所述抛光表面,以与微电子基板接触。第一和第二电极的至少一部分从抛光表面向下凹入。通过在电极和/或抛光介质中的流动通路,在所述凹陷中提供液体,如电解液体。从至少一个电极经电解质向微电子基板传送可变电信号,以便从微电子基板上清除材料。

Description

以机电方式和/或机电化学方式从微电子基板清除导电材料的方法和设备
本申请是以下待审美国专利申请的部分继续:2000年8月30日提交的09/651,779(代理人登记号10829.8515US);2001年6月21日提交的09/888,084(代理人登记号10829.8515US01);2001年6月21日提交的09/887,767(代理人登记号10829.8515US02)和2001年6月21日提交的09/888,002(代理人登记号10829.8515US03);本文将所有这些申请引为参考文献。本申请还涉及下述与以上申请同时提交并为本文引为参考文献的的美国专利申请:10/230,972(代理人登记号10829.8515US07)、10/230,973(代理人登记号10829.8515US08)、10/230,463(代理人登记号10829.8672US)和10/230,628(代理人登记号10829.8673US)。
技术领域
本发明涉及以机电方式和/或机电化学方式从微电子基板清除导电材料的方法和设备。
背景技术
一般情况下,微电子基板和基板组件包括具有与导电线路连接的部件,比如存储单元的导电材料。导电线路的形成方法是,首先在半导体材料中形成沟道或其它凹槽,然后,在凹槽中叠置导电材料(如金属)。随后,再选择地除去所述导电材料,以在半导体材料中留下从一个部件向另一个部件延伸的导电线路。
电解技术已经用于淀积金属层和从半导体基板去除金属层。比如,经过中间电解质向导电层施加交流电流以除去金属层的一些部分。在如图1所示的一种设备中,一个常规的设备60包括与电流源21耦合的第一电极20a和第二电极20b。第一电极20a直接固定到半导体基板10的金属层11上,并通过向下移动第二电极,直到第二电极接触电解质31为止,使第二电极20b至少部分地浸没在置于金属层11的表面上的液体电解质31中。阻挡层22保护第一电极20a不与电解质31直接接触。电流源21经过电极20a和20b以及电解质31向基板10施加交流电流,从而可以从导电层11除去导电材料。交流电流信号可以有各种各样的波形,如Frankenthal等人在题为“在硅集成电路上钛-铂-金金属化中铂的电蚀刻”(Bell Laboratories)的出版物中公开的那些波形,本文引用该出版物全文作为参考文献。
图1所示设备的一个缺点是,这种设备不可能从固定第一电极20a区域的导电层11上除去这种材料,因为,在这个区域内,阻挡层22阻止电解质31与基板10接触。此外,如果第一电极20a在这个区域接触电解质,这个电解过程可能使第一电极20a性能变坏。还有另一个缺点是,这种电解过程不可能均匀地从基板10上除去所述材料。例如,在导电层11内可能产生一些剩余导电材料的“孤岛”,这些地方没有与第一电极20a直接电连接。剩余的导电材料可能干扰导电线路的形成和/或操作,利用电解过程除去它们可能是很困难的,或者说是不可能的,除非第一电极20a重新定位以便与这样一些“孤岛”耦合。
一种解决上述一些缺点的处理方法是,在基板10的周边附近固定多个第一电极20a,以增强清除导电材料的均匀性。然而,不管有多少附加的第一电极20a,依然存在导电材料形成的这些“孤岛”。另一种处理方法是用惰性材料,如碳,形成电极20a、20b,并取消阻挡层22,以增加导电层11与电解质31接触的区域。然而,在清除导电材料的过程中,这样一种惰性电极不可能像反应性更强的电极那样有效,惰性电极在基板10上依然可能会留下导电材料。
图2表示另一种解决上述一些缺点的处理方法,其中,将两个其板10部分地浸入一个含有电解质31的容器30中。把第一电极20a固定到基板10上,而将第二电极20b固定到另一个基板10上。这种处理方法的一个优点是,电极20a、20b都不接触电解质。然而,完成这种电解过程以后,依然存在所述的导电材料“孤岛”,并且从电极20a、20b与基板10的固定点处清除导电材料可能会是很困难的。
发明内容
本发明涉及以机电方式和/或机电化学方式从微电子基板清除导电材料的方法和设备。本发明一个方面的一种设备,它包括一个支撑部件,所述支撑部件的结构适于携带微电子基板。第一和第二电极的位置相互分隔开,并且当由支撑部件携带微电子基板时,所述第一和第二电极与微电子基板分开。至少一个电极能与可改变电信号的源耦合。至少一部分抛光介质定位在电极与支撑部件之间,所述抛光介质包括一个抛光表面;确定抛光表面的位置,使其可以在微电子基板由支撑部件携带时与微电子基板接触。使第一和第二电极的至少一部分从抛光表面向下凹入。
按照本发明的另一方面,所述设备包括用于提供液体,如电解液的多个流动通路,所述流动通路至少靠近抛光表面与微电子基板之间的界面。譬如,可将所述流动通路定位在抛光介质中和/或在第一和第二电极中的至少一个电极中。按照本发明的又一方面,所述流动通路可以包括从抛光介质的抛光表面向下凹入的孔。
按照本发明的再一方面,一种从微电子基板除去材料的方法包括:定位微电子基板,使其靠近第一和第二电极,并与第一和第二电极分隔开,第一和第二电极分别沿第一和第二轴延长。所述方法还包括以下步骤:沿垂直于第一和第二轴中至少一个轴的方向相对于第一和第二电极移动微电子基板,同时传送一个可变电信号,使其通过第一和第二电极以及微电子基板。
按照本发明又一方面的方法包括:使微电子基板与抛光介质的抛光表面接触,将微电子基板定位在第一和第二电极的附近,并与第一和第二电极隔开,所述第一和第二电极还被彼此隔开,并从抛光表面向下凹入。所述方法还包括以下步骤:相对所述第一和第二电极移动微电子基板,同时传送一个可变电信号,使其通过第一和第二电极以及微电子基板。按照本发明的又一方面,借助第一电极、第二电极和/或抛光介质,将比如电解质液体类的液体,引入一个至少靠近抛光表面与微电子基板之间界面的区域。
附图说明
图1是现有技术从半导体基板清除导电材料设备的局部示意侧视图;
图2是现有技术从两个半导体基板清除导电材料设备的局部示意侧视图;
图3是本发明一种实施例从微电子基板清除导电材料、并具有支撑部件和一对电极的设备的局部示意侧视图;
图4是本发明另一实施例用于清除导电材料和用于检测清除导电材料的微电子基板特征的设备的局部示意侧视图;
图5是本发明又一实施例包括两种电解质设备的局部示意侧视图;
图6是本发明再一实施例的靠近多个电极的基板的局部示意平面图;
图7是本发明再一实施例的一个电极和一个基板的剖面侧视图;
图8A是本发明再一实施例用于包围电极对的部分支撑的局部示意立体图;
图8B-8C是本发明再一实施例电极的立体图;
图9是本发明再一实施例用于平整化和电解处理微电子基板设备的局部示意侧视图;
图10是本发明再一实施例的平整垫和多个电极的局部示意图的分解立体图;
图11是本发明再一实施例用于平整化和电解处理微电子基板设备的局部示意侧视图;
图12A-B示意地表示本发明再一实施例电解处理微电子基板所用的电路和波形;
图13是本发明一种实施例的具有电极和抛光介质的部分设备的局部示意剖面立体图;
图14是本发明另一实施例的具有电极和抛光介质的设备的局部示意剖面立体图;
图15是本发明又一实施例的具有电极和抛光介质的设备的局部示意剖面立体图;
图16是本发明再一实施例具有带椭圆表孔的抛光介质的设备的局部示意剖面立体图;
图17是本发明再一实施例支撑基板以便沿一条路径移动的设备的立体图;
图18是本发明再一实施例具有一定取向的电极的设备的立体图。
具体实施方式
本发明描述用于从制造微电子器件中使用的微电子基板和基板组件上清除导电材料的方法和设备。以下的描述以及图3-18中给出本发明一些实施例的许多特定细节,以便彻底理解本发明。然而,本领域的普通技术人员应该理解,本发明可能还有附加的实施例,或者可以在缺少以下描述的几个细节的情况下实现本发明。
图3是本发明一种实施例从微电子基板或基板组件110清除导电材料的设备160的局部示意侧视图。按照本实施例的一方面,所述设备160包括容器130,其中具有电解质131,电解质131可为液体或凝胶状态。支撑部件140相对容器130支撑所述微电子基板110,因此,基板110的导电层111与电解质131接触。所述导电层111可以包括金属,如铂、钨、钽、金、铜,或者其它导电材料。按照本实施例的另一方面,所述支撑部件140与基板驱动单元141耦合,基板驱动单元141相对容器130移动支撑部件140和基板110。譬如,基板驱动单元141可以平移支撑部件140(如箭头“A”所示)和/或转动支撑部件140(如箭头“B”所示)。
所述设备160还可以包括由支撑部件124相对微电子基板110支撑的第一电极120a和第二电极120b(统称电极120)。按照本实施例的一方面,支撑臂124与电极驱动单元123耦合,以便相对微电子基板110移动电极120。譬如,电极驱动单元123可在实际上与导电层111平行的平面内沿朝向微电子基板110的导电层111或者离开所述导电层111的方向移动电极(如箭头“C”所示),和/或沿垂直于导电层111的方向移动电极(如箭头“D”所示)。作为选择,所述电极驱动单元123可按照另外的可供选择方式移动电极,或者在基板驱动单元141能在基板110与电极120之间提供充分的相对运动时,可以省去电极驱动单元123。
在上述参照图3的实施例中,利用引线128将电极120耦合到电流源121,以便向电解质131和导电层111提供电流。在操作过程中,电流源121向电极120提供交流电流(单相或多相)。电流通过电解质131并与导电层111发生电化学反应,以便从导电层111去除所述材料(比如原子或原子团)。电极120和/或基板110可以彼此相对移动,以便从导电层111的被选择部分或从整个导电层111上去除所述材料。
按照图3所示设备160一种实施例的一个方面,将电极120与导电层111之间的距离D1设置成小于第一电极120a和第二电极120b之间的距离D2。进而,电解质131的电阻一般比导电层111的电阻大。于是,交流电流遵循电阻最小的路径:从第一电极120a开始,穿过电解质131到导电层111,再通过电解质131返回第二电极120b。作为选择,可在第一电极120a与第二电极120b之间定位一种低介电的材料(未示出),以便在电极120之间断开最初并未通过导电层111的直接电联系。
图3所示设备160一种实施例的特征之一是,电极120不接触基板110的导电层111。这种布置的一个优点在于,它可以消除对照图1和2描述的来自电极120与导电层111之间的直接电连接的剩余导电材料。例如,设备160可以消除靠近电极与导电层之间接触区的剩余导电材料,因为电极120不接触导电层111。
上述对照附图3所述设备160的另一特征是,基板110和/或电极120可以彼此相对地移动,以将电极120定位在靠近导电层111的任何一点。这种布置的一个优点在于,可以在靠近导电层每一部分的位置依次定位电极120,以便从整个导电层111除去所述材料。作为另一种可供选择的方式,当希望只清除导电层111的被选择部分的导电材料时,可以将电极120移动到那些被选择的部分,而使导电层111的其余部分原封不动。
图4是本发明另一实施例包括支撑部件240的设备260的局部示意侧视图,所述支撑部件240的位置适于支撑基板110。按照本实施例的一个方面,所述支撑部件240支撑基板110,导电层111的面向上。基板驱动单元241有如上面对照图3所述那样,可以移动所述支撑部件240和基板110。第一和第二电极220a、220b定位在导电层111的上方,并与电流源221耦合。支撑部件224相对于基板110支撑电极220,并耦合到电极驱动单元223,以便在支撑导电层111的表面上,按基本上与上述对照图3描述的类似方式移动电极220。
按照图4所示实施例的一个方面,设备260还包括电解容器230,该电解容器230具有供料导管237,供料导管237有孔238,所述孔238的位置靠近电极220。于是,可将电解质231就近设置在电极220与导电层111之间的界面区239内,而不必覆盖整个导电层111。电解质231和从导电层111清除的导电材料一起在基板110上边流动,并被收集在电解质容器232内。电解质231和导电材料的混合物可流到一个回收设备233,回收设备233可从电解质231中除去大部分导电材料。定位在回收设备233下游方向的过滤器234可对电解质231实行附加的过滤。泵235使被回收的电解质231经返回管路236回到电解质容器230。
按照图4所示实施例的另一方面,设备260可包括传感器组件250,传感器组件250具有定位在导电层111附近的传感器251以及与传感器251耦合用以处理传感器251产生的信号的传感器控制单元252。控制单元252也可以相对基板110移动传感器251。按照本实施例的另一方面,可以经过反馈路径253耦合到电极驱动单元223和/或基板驱动单元241。因此,传感器251能确定导电层111的哪些区域需要附加的材料清除,传感器251可以彼此相对地移动电极220和/或基板110,以将电极220定位在这些区域上。作为另一种可供选择的方式,比如清除过程完全为可重复的情况下,可使电极220和/或基板110按预先确定的移动规划彼此相对移动。
传感器251和传感器控制单元252可以是一系列适宜结构中的任何一种结构。例如,按照一种实施例,传感器251可为光学传感器,清除导电材料时,所述光学传感器通过检测从基板110反射光的强度、波长或相移来检测导电层111被清除的情况。作为另一种可供选择的方式,传感器251可以发射并检测具有其它波长辐射的反射,如x射线。按照又一实施例,传感器251可以测量导电层111在两个选择点之间的电阻或电容变化。按照本实施例的另一方面,一个或两个电极220可以完成传感器251的功能,以及如上所述的材料清除功能,因此,无需单独的传感器251。按照又一实施例,传感器251可以检测当清除导电层111时从电流源221抽取的电压和/或电流的变化。
在参照附图4如上描述的任一实施例中,可使传感器251的位置与电解质231分开,因为电解质231集中在电极220与导电层111之间的界面区239。从而,可以改善传感器251确定电解过程进展情况的准确性,因为电解质231不太可能干扰传感器251的工作。例如,当传感器251为光学传感器时,电解质231不太可能使从基板110表面反射的辐射发生畸变,因为传感器251的位置远离界面区239。
上述参照附图4描述的设备260一种实施例的另一特征是,或者利用再生的电解质,或者利用新的电解质,连续地提供加到界面区239的电解质231。这个特征的一个优点在于,能将电极220与导电层111之间的电化学反应维持在很高的水平并且是相同的水平。
图5是设备360的局部示意侧视图。设备360可通过第一电解质331a和第二电解质331b向基板110引导交流电流。按照本实施例的一个方面,将第一电解质331a设置在两个第一电解质容器330a中,而将第二电解质331b设置在—个第二电解质容器330b中。所述设备360还包括电极320,电极320在图中被表示为第一电极320a和第二电极320b,每个电极都耦合到一个电流源321上,并且每个电极都被容纳在两个第一电解质容器330a当中的一个内。作为另一种可供选择的方式,可将电极320之一耦合接地。电极320可以包括材料银、铂、铜和/或其它材料,第一电解质331a可以包括氯化钠、氯化钾、硫酸铜和/或其它能够与形成电极320的材料相容的电解质。
按照本实施例的一个方面,所述第一电解质容器330a包括流动限制器322,比如是一种可渗透的隔离膜,可由特氟隆(TeflonTM)、烧结材料(如烧结玻璃、石英或蓝宝石),或者其它适宜的多孔材料形成这种可渗透的隔离膜,它们使得离子能在第一电解质容器330a与第二电解质容器330b之间来回通过,但不允许第二电解质330b向内朝向电极320通过(比如按与盐桥(salt bridge)大体类似的方式)。作为另一种可供选择的方式,可以从第一电解质源339向电极容器330a提供第一电解质331a,提供的压力和速率要足够大,以便可以向外引导第一电解质331a通过流动限制器322,而不允许第一电解质331a或第二电解质331b通过流动限制器322返回。在任何一种实施例中,第二电解质330b借助于所述第一电解质331a穿过所述流动限制器322的流动,保持与电极320的电耦合。
按照本实施例的一个方面,所述设备360还可以包括支撑部件340,该支撑部件340利用面向电极320的导电层111支撑所述基板110。譬如,可将支撑部件340定位在第二电解质容器330b内。按照本实施例的另一方面,通过一个或多个驱动单元(未示出)可使支撑部件340和/或电极320彼此相对地移动。
上述参照附图5描述的设备360的一种实施例的特点之一是,可以选择第一电解质331a,使其能与电极320相容。这个特征的一个优点在于,与常规电解质相比,第一电解质331a不太可能使电极320性能下降。相反,在选择第二电解质331b时,并未考虑它的这种效应对电极320的影响,因为第二电解质331b通过流动限制器322与电极320是化学隔离的。因此,第二电解质331b可以包括盐酸或者其它能够与基板110的导电层111发生严重反应的试剂。
图6是微电子基板110的俯视平面图,微电子基板110位于具有本发明几种实施例形状和结构的多个电极的下面。为了说明的目的,在同一个微电子基板110附近表示出几种不同类型的电极。然而,在实践中,可相对于单个微电子基板110定位同一种类型的电极。
按照一种实施例,可对电极720a和720b进行分组,形成电极对770a,其中每个电极720a、720b耦合到一个电流源121的相对的终端(图3)。电极770a、770b可以具有细长的或条形的形状,并且可以布置成沿基板110的直径方向彼此平行地延伸。如以上参照附图3所述的那样,选择电极对370a的各相邻电极之间的间隔,以便可以引导电流进入基板110。
按照一种可供选择的实施例,可对电极720c和720d进行分组,形成电极对770b,其中的每个电极720c、720d可以具有楔形或者“饼”形的形状,朝着微电子基板110的中心向内逐渐变细。在又一实施例中,可对狭窄的条形电极720e和720f进行分组,形成电极对770c,其中的每个电极720e、720f从微电子基板110的中心113开始向外朝向微电子基板110的周边112沿径向延伸。
按照再一个实施例,单独一个电极720g可在微电子基板110大约一半的面积上延伸,并且可以具有半圆形的平台形状。这个电极720g可以与另一电极(未示出)分为一组,所述另一个电极的形状对应于电极720g的镜像图像,这两个电极可以耦合到电流源121,以便按参照附图3-5描述的任何方式向微电子基板110提供交流电流。
图7是部分基板110的局部示意剖面侧视图,所述基板110定位于上面参照图6描述的电极720e的下面。按照本实施例的一个方面,电极720c具有上表面771和与上表面771相对并且面向基板110的导电层111的下表面772。按照本实施例的一个方面,所述下表面772从基板110的中心113开始,向下朝向基板110的周边逐渐变细,使电极720c具有楔形断面。按照另一种方式,电极720c可以具有板形结构,如图7所示那样定位它的下表面772,它的上表面平行于下表面772。任何一种实施例的一个特征是,电极720c与基板110之间的电耦合在朝向基板110的周边112的方向比起朝向基板110的中心113的方向来会更强些。在基板110的周边112向电极720c移动的速率比基板110的中心113的这个速率更快时,比如当基板110围绕它的中心转动时,这一特征可能会是有益。因此,可将电极720c成形为用以考虑电极和基板110之间的相对运动。
按照另一实施例,电极720c可能具有其它形状。比如,下表面772可以具有弯曲的断面,而不再是平直的断面。按照另一种方式,上面参照图6描述的任何电极(或者具有除图6所示形状以外形状的其它电极)都可以具有倾斜的或者弯曲的下表面。按照又一实施例,可将电极成形为其它形状,其中考虑了电极与基板110之间的相对运动。
图8A是本发明另一实施例用于支撑多个电极的电极支撑473的局部示意图。按照本实施例的一个方面,电极支撑473可以包括多个电极孔474,每个电极孔或者容纳第一电极420a,或者第二电极420b。第一电极420a通过孔474耦合到第一引线428a,第二电极420b耦合到第二引线428b。引线428a和428b二者都耦合到一个电流源421。因此,第一电极420a和第二电极420b的每一对470都确定由上面参照图3-5描述的基板110和电解质(一种或多种)完成的电路的一部分。
按照本实施例的一个方面,可使第一引线428a偏离第二引线428b,以减小引线之间发生短路和/或电容耦合的可能性。按照本实施例的另一方面,所述电极支撑473的结构大体上类似于上面参照附图1-7描述的结构当中的任何一种。例如,上面参照图6描述的各个电极中的任何一种(如320a、320c、320e、320g),都可以用电极支撑473代替,该电极支撑473具有相同的整体形状,并且包括多个孔474,而且每个孔容纳第一电极420a或第二电极420b当中之一。按照本实施例的另一方面,电极支撑473的结构适于以机械的方式从微电子基板清除材料,例如,以大体上类似于下面参照图9-11和13-18描述的方法进行这种清除。
按照本实施例的再一方面,对于图8A所示电极对的布置的方式与在电极420a、420b与微电子基板110之间的附近位置布置电极对的方式(图7)相应,和/或可将电极对470布置成使得与在电极420a、420b与微电子基板110之间的相对移动速率相应。例如,可将电极对470的重心提高到基板110的周边112,或者使之位于电极对470与基板110之间的相对速度相对较高的其它区域(见图7)。相应地,提高电极对470的重心,可以被增大的电解电流,用以补偿较大的相对速度。进而,在电极靠近导电层111的区域(比如基板110的周边112)内,每个电极对470的第一电极420a和第二电极420b都可能会靠得相当近,因为近距离地靠近导电层111会使第一电极420a和第二电极420b之间直接电耦合的概率减小。按照本实施例的再一方面,对于提供给不同电极对470的幅度、频率和/或波形,都可能根据不同的因素,比如电极对470和微电子基板110之间的间隔、电极对470和微电子基板110之间的相对速度而有所变化。
图8B-8C表示本发明的再一实施例同心布置的电极820(图中示出第一电极820a和第二电极820b)。按照图8B所示的一种实施例,可以围绕第二电极820b同心地定位第一电极820a,在第一电极820a和第二电极820b之间可设置一种介电材料829。第一电极820a可以围绕第二电极820b限定一个完整的360°的弧,如图8B所示者;或者按照另一种方式,第一电极820a可以限定一个小于360°的弧。
按照另一种实施例,如图8C所示,可将第一电极820a同心地设置在两个第二电极820b之间,在相邻电极820之间设置介电材料829。按照本实施例的一个方面,可将电流以不发生任何相移的方式提供给每个第二电极820b。按照另一种方式,可使提供给一个第二电极820b的电流相对于另一个第二电极820b具有相移。在本实施例的又一个方面,提供给每个第二电极820b的电流具有除相位以外的其它不同的特征,比如幅度特征。
上面参照图8B-8C描述的电极820的一个特征是,第一电极820a可屏蔽(一个或多个)第二电极820b,而不受其它电流源的干扰。例如,可使第一电极820a可耦合接地,用以便屏蔽第二电极820b。这种布置的优点之一在于,可以更加准确地控制经电极820加给基板110(图7)的电流。
图9示意地表示本发明一种实施例的用于平整化和电解处理微电子基板110的设备560。按照本实施例的一个方面,所述设备560具有支架平台580,该平台的上表面581位于定位平整垫片582的工作部分“W”的工作部分。所述上表面581通常为一刚性板,可提供平直的坚实表面,在平整化期间,使平整垫片582的特定部分被固定到这个表面上。
所述设备560还可以具有多个滚轮,用于引导、定位和保持平整垫片582在所述上表面581上。这些滚轮可以包括供料滚轮583、第一和第二惰轮584a、584b、第一和第二导向滚轮585a、585b,以及卷曲滚轮586。供料滚轮583携带平整垫片582未用过的或者操作前的部分,卷曲滚轮586携带平整垫片582已用过的或者操作后的部分。此外,第一惰轮584a和第一导向滚轮585a可以在所述上表面581上拉长平整垫片582,以保持平整垫片582在操作期间静止不动。电机(未示出)驱动供料滚轮583和卷曲滚轮586之一,以使平整垫片582能够穿过所述上表面581依序前进。因此,已用过的部分能够迅速地被干净的平整垫片582的操作前部分代替,以提供一个坚固一致的表面,用以平整化和/或清洁所述基板110。
所述设备560还可以具有托架组件590,用于在平整化期间控制和保护基板110。托架组件590可以包括基板夹持器592,用于在平整化过程的适当阶段拾取、夹持和释放所述基板110。托架组件590还可以具有支架594,用于携带可沿支架594平移的传动组件595。传动组件595可以具有:执行机构596、耦合到执行机构596的传动轴597,以及从传动轴597突出的一个臂598。臂598经过终端轴599携带基板夹持器592,使传动组件595能够围绕轴E-E(箭头“R1”所示)移动基板夹持器592。终端轴599还可以围绕它的中心轴F-F(箭头“R2”所示)转动基板夹持器592。
平整垫片582和平整化溶液587确定一种平整化介质,这种平整化介质以机械方式和/或化学—机械方式从基板110表面除去材料。设备560中所用的平整垫片582可以是一种固定摩擦式平整垫,其中将摩擦颗粒固定地粘结到一种悬浮介质中。于是,平整化溶液587可以是一种没有摩擦颗粒的“干净”的溶液,因为摩擦颗粒固定地分布在平整垫片582的平整化表面588上。在其它应用中,平整垫片582可以是没有摩擦颗粒的非摩擦式的平整垫片,而平整化溶液587可以是具有摩擦颗粒和化学试剂,以便从基板110除去材料的稀浆。
为用设备560平整化基板110,在存在平整化溶液587的情况下,托架组件590使基板110压紧平整垫片582的平整化表面588。然后,驱动组件595围绕轴E-E移动基板夹持器592,并以任选的方式围绕轴F-F转动基板夹持器592,以平移基板110穿过平整化表面588。结果,在平整化介质中的摩擦颗粒和/或化学试剂就以化学方式和/或化学-机械平整化(CMP)方式从基板110的表面除去所述的材料。相应地,平整垫片582通过除去从基板110的导电层111突出的粗糙部分,可以平滑基板110。
按照本实施例的另一方面,设备560可以包括电解质供料容器530,这个电解质供料容器530利用导管537将电解质传送至平整垫片582的平整化表面,有如下面参照图10所述的那样。设备560还可以包括电流源521,电流源521耦合到支架平台580和/或上表面581上,以便向定位在支架平台580和/或所述上表面581的电极提供电流。因而,设备560可以以电解的方式从导电层111上除去材料,去除的方式与上面参照图1-8C描述的方式类似。
在上面参照图9描述的一种实施例的设备560的一个方面,首先,通过电解方式而后通过化学-机械平整化方式,从基板110的导电层111依次去除所述材料。例如,从导电层111去除材料的电解方式使导电层111变得粗糙。在所选的电解处理时间周期已经过去之后,可以中止电解处理操作,并且通过化学-机械平整化加工方式去除额外的材料。按照另一种方式,可以同时进行电解方式和化学-机械平整化方式。对于这些处理安排当中的任何一种而言,上面参照图9描述的一种实施例的设备560的一个特点是,同一个设备560可通过化学-机械平整化方式来平整化基板110,而且还可以经过电解方式从基板110上清除材料。这种安排的一个优点是,不需要将基板110从一个设备移动到另一个设备就能经受化学-机械平整化和电解这两种处理方式。
在上面参照图9描述的一种实施例的设备560的另一个优点是,与一些常规方法相比,可以期望在彼此结合使用这些方法时,可以更迅速和更准确地从基板110上清除材料。例如,有如上述,电解方式清除材料的数量相对较大,但会使微电子基板110变得粗糙,而平整化方法清除的材料较少,但可以平滑和/或平整微电子基板110。
图10是上面参照图9描述的部分设备560的局部分解立体示意图。按照图10所示一种实施例的一个方面,上表面581容纳多个电极对570,每个电极对都包括第一电极520a和第二电极520b。第一电极520a耦合到第一引线528a,第二电极520b耦合到第二引线528b。第一引线528a和第二引线528b都耦合到电流源521(图9)。按照本实施例的一个方面,通过包括TeflonTM或其它适宜介电材料的一个电极介电层529a,可使第一电极520a和第二电极520b隔开。电极介电层529a因此而可以控制第一电极520a与第二电极520b之间区域的体积和介电常数,从而可以控制电极之间的电耦合。
可以通过平整垫片582使电极520a和520b电耦合到微电子基板110(图9)。按照本实施例的一个方面,平整垫片582中的电解质531是饱和的,所述电解质531是通过孔538由供料导管537提供的,所述孔538位于平整垫片582正下方的上表面581内。因此,要选择电极520a和520b,使它们与电解质531是相容的。在另一种布置中,可以从上边向平整垫片582提供电解质531(比如将电解质531放在平整化溶液587中),而不是通过上表面581向平整垫片582提供。因此,平整垫片582可以包括平整垫介电层529b,平整垫介电层520b定位在平整垫片582和电极520a、520b之间。当平整垫介电层520b就位时,电极520a、520b是隔离的,不与电解质531发生物理接触,因此电极520a、520b所选的材料并非一定要与电解质531相容。
按照上面参照图10描述的任何一种实施例,与一些常规电解设备相比,平整垫片582有几个优点。比如,平整垫片582可以均匀地隔开电极520a、520b与微电子基板110(图9),这就能够提高以电解方式从导电层111(图9)清除材料的均匀性。平整垫片582还可以具有摩擦颗粒589,用于按照上面参照图9描述的方式平整化微电子基板110。进而,平整垫片582还可以过滤从电极520a、520b上腐蚀掉的碳或其它材料,防止电极材料接触微电子基板110。还有,平整垫片582还可以用作泡沫材料,用于维持电解质531与微电子基板110的紧密靠近。
图11是本发明另一实施例的用于平整化和/或电解处理微电子基板110的旋转设备660的局部示意剖面侧视图。按照本实施例的一个方面,设备660具有大体上为圆形的平台680、托架690、定位在平台680上的平整垫片682、和在平整垫片682上的平整化溶液687。平整垫片682可以是一种固定摩擦式的平整垫片682,或者按照另一种方式,平整化溶液687可以是具有摩擦元件的的悬浮物的稀浆。驱动组件695转动(沿箭头“G”)和/或往复移动(沿箭头“H”)平台680,从而可以在平整化期间移动平整垫片682。
在平整化期间,托架组件690用于控制和保护微电子基板110。一般地说,托架组件690具有基板夹持器692,基板夹持器692具有垫片694,用于利用吸附作用夹持微电子基板110。驱动组件690一般要转动和/或平移基板夹持器692(分别用箭头“I”和“J”表示)。按照另一种方式,基板夹持器692可以包括一个有一定重量的自由漂浮圆盘,这个圆盘能在平整垫片682上滑移(未示出)。
为了利用设备660平整化微电子基板110,所述托架组件690将微电子基板110压在平整垫片682的表面688上。平台680和/或基板夹持器692彼此相对移动,然后平移微电子基板110,使其穿过平整化表面688。结果,在平整垫片682中的摩擦颗粒和/或在平整化溶液687中的化学试剂就将所述材料从微电子基板110的表面上清除掉。
所述设备660还可以包括电流源621,该电流源621利用引线628a和628b耦合到一个或多个电极对670(图11示出其中之一)。电极对670可与平台680整体式地形成在一起,它的形成方式与电极520a、520b(图10)与上表面581(图10)整体式地形成的方式大体上相同。按照另一种方式,电极对670可以与平整垫片682整体式地形成在一起。按照任何一种实施例,电极对670所包括的电极的形状和结构大体上类似于上面参照图3-10描述的以电解方式从微电子基板110上清除导电材料的任何一个电极的形状和结构。可以在上面参照图9描述的化学-机械平整化方式之前、当中、或者之后实行电解方法。
图12A是上面参照图10所述一些部件的示意电路图。可将有关这个电路的分析应用于上面参照图3-11描述的任何设备。如图12A所示,分别用引线528a、528b将电流源521耦合到第一电极520a和第二电极520b。电极520a和520b利用在一个设备中的电解质531耦合到微电子基板110,所述设备用两组并联的电容器和电阻器示意地表示。第三电容器和电阻器表示:微电子基板110相对于地,或者相对另外的电位“浮动”。
按照图12A所示实施例的一个方面,电流源521可以耦合到幅度调制器522,幅度检测器522调制由电流源521产生的信号,如图12B所示者。因此,电流源521可以产生高频波804,幅度调制器522可以监视该高频波804上的低频波802。例如,高频波804可以包括一系列正的或负的电压尖峰,这些尖峰包含在由低频波802确定的方波包络内。高频波804的每个尖峰都具有相当陡峭的上升时间斜率,以便可以穿过介电层向电解质传送电荷,高频波804的每个尖峰还有比较缓慢的下降时间斜率。所述下降时间斜率可限定一条直线,比如由高频波804表示的那样;所述下降时间斜率或者限定一条曲线,比如由高频波804a表示的那样。按照另一实施例,高频波804和低频波802可能具有其它形状,这比如取决于靠近电极420的介电层和电解质的特定特征、基板110的特征和/或从基板110清除材料的额定速率。
这种布置的一个优点是,高频信号能够传送从电极520a、520b到微电子基板110所需的电能,而低频监视信号可以更加有效地促进电解质531与微电子基板110的导电层111之间的电化学反应。因此,上面参照附图3-11描述的任一实施例和/或下面参照图13-18描述的任一实施例除了要包括一个电流源外,还要包括一个幅度调制器。
图13是本发明另一实施例的配置成用机电方式和/或机电化学方式从微电子基板110清除导电材料的设备1360的一部分的局部示意剖面立体图。按照本实施例的一个方面,设备1360包括抛光介质1382和多个电极对1370。每个电极对1370都可包括第一电极1320a和第二电极1320b,它们沿着平行的轴1390被拉长。每个电极1320a和1320b都有一个与轴1390垂直的宽度W1,电极1320a和1320b可由抛光垫部分1383分开。每个抛光垫部分1383可具有与轴1390垂直的宽度W2,并且可有一个细长的抛光表面1386。按照本实施例的一个方面,抛光垫部分1383的抛光表面1386突出,超过电极1320a和1320b。因此,电极1320a和1320b可以从抛光表面1386向下凹入距离RD,而抛光表面1386接触微电子基板110,以便以机械方式、机电方式和/或机电化学方式从微电子基板110清除导电材料。按照一种实施例,向下凹入距离RD的值可从约0.1mm到约10mm。按照另外的实施例,向下凹入距离RD可有其它数值,这比如取决于电极1320a和1320b和抛光垫部分1383的特定几何状态。
按照本实施例的另一方面,抛光垫部分1383可包括流动通路1384,每个流动通路1384都有孔1385,所述孔1385靠近对应的抛光表面1386。流动通路1384耦合到供料导管1337,供料导管1337又耦合到电解流体容器(图13中未示出)。按照一种实施例,流动通路1384可为在导管1337和抛光表面1386之间的分立的直线通路,如图13所示那样。按照另一实施例,抛光垫部分1383可以是多孔的,流动通路1384可以包括相互连接的回旋状路径组成的网络。按照这些实施例中的任何一个,流动通路1384至少在微电子基板110和抛光表面1386之间的界面附近提供电解质1331(例如电解液体)。
按照一种实施例,抛光垫部分1383可以包括聚氨酯材料,或者其它合适的材料,比如可从Rodel公司(Phoenix,Arizona)得到的被结合在抛光垫中的那些材料。按照本实施例的一个方面,抛光垫部分1383的宽度W1可以小于填隙式电极1320a、1320b的宽度W2,以使电极1320a、1320b和微电子基板110之间能够有足够大的电气关联。按照另外的实施例,电极1320a、1320b和抛光垫部分1383可以有另外的相对尺寸,这取决于这些部件的特定几何状态。
图13所示一种实施例设备1360的特征之一是,电极1320a、1320b从抛光表面1386向下凹入。因此,电极1320a、1320b可以经过电解质1331与微电子基板110电接触,而不是与微电子基板110实现直接物理接触。按照本实施例的一个方面,露出电极1320a、1320b面向微电子基板110的表面,以便与电解质1331直接电接触。按照另外的实施例,可以利用保护膜或者可以保护电极1320a、1320b的其它结构封闭或者部分封闭电极1320a、1320b,同时还须允许经过电解质1331在电极1320a、1320b和微电子基板110之间实现电的交换。
图13所示一种实施例设备1360的另一特征是,至少在抛光表面1386和微电子基板110之间的界面附近(有些实施例中直接在这个界面上)提供电解质1331。因此,电解质1331可以润滑微电子基板110和抛光表面1336之间的界面,促进以化学方式从微电子基板110清除所述材料和/或传送清除的颗粒,使之离开所述界面。同时,还可将电解质1331填充在相邻抛光垫部分1383之间的凹陷中,以便在电极1320a、1320b和微电子基板110之间实现电气关联,相应地,便于用电的方法从微电子基板110清除材料。
图14是本发明另一个实施例配置的设备1460的一部分的局部剖面立体示意图。按照本实施例的一个方面,设备1460包括具有第一电极1420a和第二电极1420b的电极对1470。电极1420a、1420b包括具有孔1485的流动通路1484,用于向微电子基板110的表面附近提供电解质1331。相应地,流动通路1484连接到供料导管1447,供料导管1447又耦合到电解流体源。
按照本实施例的一个方面,通过一个介电层1429使每个电极1420a、1420b与它的相邻电极分隔开。介电层1429可以终止在与电极1420a、1420b和上表面对齐的平面上。可根据电极1420a、1420b和介电层1429的面向上的边缘定位抛光介质1482。按照本实施例的一个方面,抛光介质1482可以包括子垫片1487,用于支撑抛光垫部分1483。每个抛光垫部分1483可以包括抛光表面1486,抛光表面1486与微电子基板110接触的方式大体上类似于上面描述的方式。按照本实施例的另一方面,子垫片1487包括与流动通路的孔1485对齐的多个孔,以便允许来自流动通路1484的电解质1331的未被禁止的流动。按照另一实施例,子垫片1487可以具有多孔的组分,以便有助于在相邻的抛光垫部分1483之间的界面中分配电解质1331。按照又一种实施例,可以省去子垫片1487,可将抛光垫部分1483可以与介电层1429集成在大体与上面参照图13描述的类似设备中。
图14所示一种实施例设备1460的一个特征是,流动通路1484的孔1485从微电子基板110和抛光表面1486之间的界面向下凹入。因此,电解质1331可从流动通路1484自由流出,而不管是否存在微电子基板110。
图15是本发明再一个实施例布置的具有电极1520a、1520b以及抛光介质1582的设备1560的局部立体图。按照本实施例的一个方面,抛光介质1582包括从电极1520a、1520b上突出出来的抛光垫部分1583。每个抛光垫部分1583都包括一个抛光表面1586和多个流动通路1584。每个流动通路1584都具有一个孔1585,所述孔1585在抛光表面1586附近,用于向微电子基板110和抛光表面1586之间的界面附近提供电解质1331。按照本实施例的一个方面,抛光垫部分1583可以包括围绕每个孔1585的凹陷1587。相应地,电解质1331可以从流动通路1584向外流动,同时微电子基板110可以定位在正上方。
图16是本发明再一实施例配置的具有抛光介质1682的设备1660的局部立体图。按照本实施例的一个方面,抛光介质1682包括靠紧第一电极1620a和第二电极1620b定位的抛光垫片1683和子垫片1687。电极1620a、1620b通过介电层1629被分隔开。介电层1629包括具有孔1685的流动通路1684,用于向抛光介质1682与微电子基板110之间的界面(图15)附近传送电解质1331。
按照本实施例的一个方面,抛光介质1682包括具有多个凹陷1689的抛光表面1686。凹陷1689可以整个穿过抛光垫片1683和子垫片1687,露出孔1685和电极1620a、1620b的向上表面。相应地,凹陷1689可提供来自孔1685的电解质1331的未经禁止的流动,并且可以(经过电解质1331)在电极1620a、1620b与微电子基板110之间进行电的交换。抛光介质1682还可以包括横向通道1688,横向通道1688可以连接相邻的凹陷1689,并使电解质能够从一个凹陷1689流到另一个凹陷1689,而不受微电子基板110的阻挡。
按照上面参照图16描述的实施例的一个方面,所述凹陷1689可以具有大体上呈椭圆的平台形状。按照另外的实施例,所述凹陷1689还可以具有允许电解质1331从孔1685流动并且允许在电极1620a、1620b与微电子基板110之间经过电解质1331进行电气关联的其它形状(比如圆形)。相应地,凹陷1689可以整个地穿过抛光垫片1683和子垫片1687(有如上述那样)延伸,或者在另一实施例中,所述凹陷1689可以穿过抛光垫片1683延伸,但不穿过子垫片1687。子垫片1687因此而具有多孔的组分,允许电解质1331从孔1685穿过子垫1687扩散进入凹陷1689中。
图17是本发明再一实施例配置的设备1760的俯视立体图。按照本实施例的一个方面,所述设备1760包括电极对1770,每个电极对1770都具有相互隔开的第一电极1720a和第二电极1720b。所述设备1760可以进一步还包括抛光介质1782,抛光介质1782具有从电极1720a、1720b的向上表面上突出的抛光垫部分1783。因此,电极1720a、1720b和抛光介质1782可以按照与上面所述方式大体类似的方式从微电子基板110清除导电材料。
微电子基板110的直径为D,设备1760的长度为L,宽度为W,这两者均大于微电子基板直径D。因此,微电子基板110可以在抛光介质1782上移动,这种移动的所有时间内,都处在与一些电极1720a、1720b实现电气关联状态中。当微电子基板110移动时,不同的电极1720a、1720b电极对与微电子基板110进行电气关联。
按照本实施例的另一方面,电极1720a、1720b和抛光垫部分1783沿平行于轴1790的方向被拉长。微电子基板110可沿箭头A所示方向相对抛光介质1782来回移动。按照本实施例的另一方面,在箭头A和轴1790之间的角度Θ约为90°或者更小些。按照一种特定的实施例,角度Θ的值可为约45°。因此,在处理期间,微电子基板110可以穿过由对应的多个电极对1770产生的多个电场。这种布置的一个优点是,就微电子基板110的中心相对于抛光介质1782不移动的设备而言,可以提高从微电子基板110清除导电材料的均匀性。
图18是本发明再一实施例配置的设备1860的俯视立体图。按照本实施例的一个方面,所述设备1860具有电极对1870,每个电极对1870都包括第一电极1820a和第二电极1820b。相邻的电极1820a和1820b由介电层1829隔开。所述设备1860进一步还可包括抛光介质1782,抛光介质1782大体上类似于上面讨论的抛光介质当中的任何一种,不过,为简洁计,图18中未予示出。
按照本实施例的另一方面,电极1820a和1820b可以具有人字形形状,并且可沿周边进行布置,以确定长方形的场。例如,每个电极1820a和1820b都可包括一个顶部或者成角度的部分1821,以及从所述顶部或者成角度的部分821伸出的第一和第二部分1822、1823。第一和第二部分1822、1823可以确定值为180°或以下的内角。按照一种特定的实施例,α角的值可为约90°;按照另外的实施例,α可有其它值。按照这些实施例当中的任何一种,当微电子基板110(图17)相对于电极1820a和1820b移动时,微电子基板110暴露到由多个电极对1870产生的多个电场中。有如上面参照图17所讨论的那样,这种布置的一个优点是,可以改善从微电子基板110清除导电材料的均匀性。
从上述可以理解,虽然这里为了进行说明已经描述本发明的一些特定的实施例,但在不偏离本发明构思和范围的条件下,可以进行各种改型。比如,图13-18所示的抛光介质是面向上的,它与微电子基板的面向下的表面相接触,而其它实施例的抛光介质可以是面向下的,以便接触微电子基板的面向上的表面。以上所述设备的其它实施例包括:在个分开附图中所示特征的组合。例如,本发明一种实施例的设备包括在抛光介质和电极这二者中的液体流动通路。液体流动通路可与相同的或不同的液体源耦合。因此,除受所附权利要求书限制以外,本发明不受限制。

Claims (20)

1.一种从微电子基板上清除材料的设备,所述设备包括:
支撑部件,所述支撑部件配置成可拆地携带微电子基板;
第一电极,它在微电子基板被支撑部件携带时与微电子基板分隔开;
第二电极,它在微电子基板被支撑部件携带时与微电子基板分隔开,第二电极与第一电极分隔开,该二电极中的至少一个与可变电信号源耦合;
抛光介质,该抛光介质的至少一部分定位在电极与支撑部件之间,并且该抛光介质具有一个抛光表面,定位所述抛光表面,以在微电子基板被支撑部件携带时使抛光表面与微电子基板接触,其中,第一和第二电极的至少一部分从抛光表面向下凹入;并且
所述抛光介质具有多个流动通路,这些流动通路与液体源耦合,并且每个流动通路至少在抛光表面附近有一孔,而且抛光介质在每个孔附近都有一凹陷,所述凹陷偏离抛光表面。
2.如权利要求1所述的设备,其中,所述抛光介质包括抛光垫部分。
3.如权利要求1所述的设备,其中,所述各孔被定位成至少在抛光表面的附近分配液体。
4.如权利要求1所述的设备,其中,所述第一和第二电极面向所述支撑部件。
5.如权利要求1所述的设备,其中,所述第一电极沿第一轴被拉长,所述第二电极沿第二轴被拉长,一部分抛光介质在第一和第二电极之间,并沿第三轴被拉长,并且所述第一、第二和第三轴是彼此平行的。
6.如权利要求1所述的设备,其中,所述第一电极沿第一轴被拉长,所述第二电极沿第二轴被拉长,一部分抛光介质在第一和第二电极之间,并沿第三轴被拉长,并且所述第一、第二和第三轴为直线且彼此平行。
7.如权利要求1所述的设备,其中,所述抛光介质包括聚氨酯材料。
8.如权利要求1所述的设备,其中,所述第一和第二电极从抛光表面向下凹入,向下凹入的距离从0.1毫米到10毫米。
9.如权利要求1所述的设备,其中,所述微电子基板有一直径并且第一和第二电极中的每一个的长度大于该直径。
10.如权利要求1所述的设备,其中,所述第一电极具有长度和第一宽度,该第一宽度小于所述长度,并且通常垂直于该长度;所述抛光介质具有第二宽度,该第二宽度小于所述第一宽度。
11.如权利要求1所述的设备,其中,所述第一电极具有多个流动通路,这些流动通路与液体源耦合,并且每个流动通路至少在抛光表面附近有一孔,该孔的位置至少适于在抛光表面附近分配液体。
12.如权利要求1所述的设备,其中,所述抛光表面与第一和第二电极分隔开,并且至少一些凹陷向电极附近一个区域开放。
13.如权利要求1所述的设备,其中,至少一个凹陷的直径大于该凹陷附近的相应孔的直径。
14.如权利要求1所述的设备,其中,所述多个流动通路是多个第一流动通路,而所述凹陷是第一凹陷;所述抛光介质具有第一凹陷、第二凹陷以及与第一和第二凹陷耦接的通道;多个第二流动通路与所述液体源耦合,并具有定位在第二凹陷中的孔。
15.一种从微电子基板上清除材料的方法,包括如下步骤:
使微电子基板与抛光介质的抛光表面接触;
在第一电极附近并与第一电极隔开地定位微电子基板,第一电极从抛光表面向下凹入;
在第二电极附近并与第二电极隔开地定位微电子基板,第二电极与第一电极是隔开的,第二电极从抛光表面向下凹入;
引导电解质液体穿过抛光介质中的至少一个流动通路,并离开所述流动通路,并且最终到达抛光介质的从抛光表面向下凹入的区域;
相对于第一和第二电极移动微电子基板,同时通过第一和第二电极以及微电子基板传送可变电信号。
16.如权利要求15所述的方法,其中,还包括在微电子基板和抛光表面之间的界面上从微电子基板上清除材料的步骤。
17.如权利要求15所述的方法,其中,所述第一电极沿第一轴被拉长,和第二电极沿第二轴被拉长,并且所述移动微电子基板的步骤包括:沿与所述第一轴和第二轴中的至少一个交叉的方向移动微电子基板。
18.如权利要求15所述的方法,其中,所述第一和第二电极中的至少一个包括与抛光液体源耦合的流动通路。
19.如权利要求15所述的方法,其中,还包括引导电解质液体穿过向下凹入区域中的开口,并与至少一个电极实现电气关联。
20.如权利要求15所述的方法,其中,所述引导电解质液体穿过至少一个流动通路的步骤还包括:
引导所述电解质液体的第一部分通过多个第一孔,并进入与所述多个第一流动通路连通的抛光介质的第一凹陷内,在所述电解质液体的第一部分处于第一凹陷中时与微电子基板及第一、第二电极连通;
引导所述电解质液体的第二部分通过多个第二孔,并进入与所述多个第二流动通路连通的抛光介质的第二凹陷内,在所述电解质液体的第二部分处于第二凹陷中时与微电子基板及第一、第二电极连通;以及
引导所述电解质液体的至少一些第一部分经过连接第一和第二凹陷的通路进入第二凹陷。
CNB038242826A 2002-08-29 2003-08-27 以机电方式和/或机电化学方式从微电子基板清除导电材料的方法和设备 Expired - Fee Related CN100503114C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/230,970 2002-08-29
US10/230,970 US7220166B2 (en) 2000-08-30 2002-08-29 Methods and apparatus for electromechanically and/or electrochemically-mechanically removing conductive material from a microelectronic substrate

Publications (2)

Publication Number Publication Date
CN1688411A CN1688411A (zh) 2005-10-26
CN100503114C true CN100503114C (zh) 2009-06-24

Family

ID=31976643

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038242826A Expired - Fee Related CN100503114C (zh) 2002-08-29 2003-08-27 以机电方式和/或机电化学方式从微电子基板清除导电材料的方法和设备

Country Status (9)

Country Link
US (3) US7220166B2 (zh)
EP (2) EP1875987B1 (zh)
JP (1) JP4340233B2 (zh)
KR (1) KR100730908B1 (zh)
CN (1) CN100503114C (zh)
AT (2) ATE446822T1 (zh)
AU (1) AU2003262996A1 (zh)
DE (2) DE60317080T2 (zh)
WO (1) WO2004020148A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110257895A (zh) * 2019-06-24 2019-09-20 江苏守航实业有限公司 一种半导体材料的电解抛光方法及装置

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6497800B1 (en) 2000-03-17 2002-12-24 Nutool Inc. Device providing electrical contact to the surface of a semiconductor workpiece during metal plating
US6902659B2 (en) * 1998-12-01 2005-06-07 Asm Nutool, Inc. Method and apparatus for electro-chemical mechanical deposition
US6251235B1 (en) 1999-03-30 2001-06-26 Nutool, Inc. Apparatus for forming an electrical contact with a semiconductor substrate
US6413388B1 (en) * 2000-02-23 2002-07-02 Nutool Inc. Pad designs and structures for a versatile materials processing apparatus
US6534116B2 (en) * 2000-08-10 2003-03-18 Nutool, Inc. Plating method and apparatus that creates a differential between additive disposed on a top surface and a cavity surface of a workpiece using an external influence
US6610190B2 (en) * 2000-11-03 2003-08-26 Nutool, Inc. Method and apparatus for electrodeposition of uniform film with minimal edge exclusion on substrate
US6355153B1 (en) * 1999-09-17 2002-03-12 Nutool, Inc. Chip interconnect and packaging deposition methods and structures
US6852208B2 (en) 2000-03-17 2005-02-08 Nutool, Inc. Method and apparatus for full surface electrotreating of a wafer
US6921551B2 (en) * 2000-08-10 2005-07-26 Asm Nutool, Inc. Plating method and apparatus for controlling deposition on predetermined portions of a workpiece
US7754061B2 (en) * 2000-08-10 2010-07-13 Novellus Systems, Inc. Method for controlling conductor deposition on predetermined portions of a wafer
US7074113B1 (en) * 2000-08-30 2006-07-11 Micron Technology, Inc. Methods and apparatus for removing conductive material from a microelectronic substrate
US7129160B2 (en) * 2002-08-29 2006-10-31 Micron Technology, Inc. Method for simultaneously removing multiple conductive materials from microelectronic substrates
US7134934B2 (en) * 2000-08-30 2006-11-14 Micron Technology, Inc. Methods and apparatus for electrically detecting characteristics of a microelectronic substrate and/or polishing medium
US7220166B2 (en) * 2000-08-30 2007-05-22 Micron Technology, Inc. Methods and apparatus for electromechanically and/or electrochemically-mechanically removing conductive material from a microelectronic substrate
US7153195B2 (en) 2000-08-30 2006-12-26 Micron Technology, Inc. Methods and apparatus for selectively removing conductive material from a microelectronic substrate
US7094131B2 (en) * 2000-08-30 2006-08-22 Micron Technology, Inc. Microelectronic substrate having conductive material with blunt cornered apertures, and associated methods for removing conductive material
US7078308B2 (en) 2002-08-29 2006-07-18 Micron Technology, Inc. Method and apparatus for removing adjacent conductive and nonconductive materials of a microelectronic substrate
US7112121B2 (en) * 2000-08-30 2006-09-26 Micron Technology, Inc. Methods and apparatus for electrical, mechanical and/or chemical removal of conductive material from a microelectronic substrate
US7160176B2 (en) * 2000-08-30 2007-01-09 Micron Technology, Inc. Methods and apparatus for electrically and/or chemically-mechanically removing conductive material from a microelectronic substrate
US6867448B1 (en) 2000-08-31 2005-03-15 Micron Technology, Inc. Electro-mechanically polished structure
US20040170753A1 (en) * 2000-12-18 2004-09-02 Basol Bulent M. Electrochemical mechanical processing using low temperature process environment
US7172497B2 (en) * 2001-01-05 2007-02-06 Asm Nutool, Inc. Fabrication of semiconductor interconnect structures
DE602004018631D1 (de) * 2003-04-24 2009-02-05 Afshin Ahmadian En
US6848977B1 (en) * 2003-08-29 2005-02-01 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Polishing pad for electrochemical mechanical polishing
US7112122B2 (en) * 2003-09-17 2006-09-26 Micron Technology, Inc. Methods and apparatus for removing conductive material from a microelectronic substrate
US7064057B2 (en) * 2003-11-21 2006-06-20 Asm Nutool, Inc. Method and apparatus for localized material removal by electrochemical polishing
US7153777B2 (en) * 2004-02-20 2006-12-26 Micron Technology, Inc. Methods and apparatuses for electrochemical-mechanical polishing
US20060043534A1 (en) * 2004-08-26 2006-03-02 Kirby Kyle K Microfeature dies with porous regions, and associated methods and systems
US7566391B2 (en) * 2004-09-01 2009-07-28 Micron Technology, Inc. Methods and systems for removing materials from microfeature workpieces with organic and/or non-aqueous electrolytic media
US20060183321A1 (en) * 2004-09-27 2006-08-17 Basol Bulent M Method for reduction of gap fill defects
US7550070B2 (en) * 2006-02-03 2009-06-23 Novellus Systems, Inc. Electrode and pad assembly for processing conductive layers
EP1839695A1 (en) * 2006-03-31 2007-10-03 Debiotech S.A. Medical liquid injection device
US8500985B2 (en) * 2006-07-21 2013-08-06 Novellus Systems, Inc. Photoresist-free metal deposition
US7732329B2 (en) * 2006-08-30 2010-06-08 Ipgrip, Llc Method and apparatus for workpiece surface modification for selective material deposition
US20080237048A1 (en) * 2007-03-30 2008-10-02 Ismail Emesh Method and apparatus for selective electrofilling of through-wafer vias
US8974655B2 (en) * 2008-03-24 2015-03-10 Micron Technology, Inc. Methods of planarization and electro-chemical mechanical polishing processes
US20120055805A1 (en) * 2008-07-02 2012-03-08 Kirchoff James A Cavitation assisted sonochemical hydrogen production system
US20130233702A1 (en) * 2012-03-09 2013-09-12 Chung-Shan Institute of Science and Technology, Armaments, Bureau, Ministry of National Defense Multi-Stationed Continuous Electro-Polishing System
WO2013167903A1 (en) 2012-05-10 2013-11-14 Renishaw Plc Method of manufacturing an article
GB201210120D0 (en) * 2012-05-10 2012-07-25 Renishaw Plc Laser sintered part and method of manufacture
EP2849672B1 (en) 2012-05-10 2019-10-16 Renishaw Plc. Method of manufacturing an article
US8998677B2 (en) * 2012-10-29 2015-04-07 Wayne O. Duescher Bellows driven floatation-type abrading workholder
US9011207B2 (en) * 2012-10-29 2015-04-21 Wayne O. Duescher Flexible diaphragm combination floating and rigid abrading workholder
US8998678B2 (en) * 2012-10-29 2015-04-07 Wayne O. Duescher Spider arm driven flexible chamber abrading workholder
US9039488B2 (en) * 2012-10-29 2015-05-26 Wayne O. Duescher Pin driven flexible chamber abrading workholder
US8845394B2 (en) * 2012-10-29 2014-09-30 Wayne O. Duescher Bellows driven air floatation abrading workholder
CN104625263B (zh) * 2015-01-19 2017-02-22 同济大学 一种基于凝胶电化学加工的肋化内冷却结构冷却管的制备方法
US10478937B2 (en) * 2015-03-05 2019-11-19 Applied Materials, Inc. Acoustic emission monitoring and endpoint for chemical mechanical polishing
US11389923B2 (en) * 2020-03-12 2022-07-19 Bruker Nano, Inc. Chemical-mechanical polishing system with a potentiostat and pulsed-force applied to a workpiece

Family Cites Families (160)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2315695A (en) * 1938-11-23 1943-04-06 Battelle Memorial Institute Method of polishing metals
US2516105A (en) * 1945-06-20 1950-07-25 Mateosian Edward Der Electrolytic polishing of metals
US3334210A (en) * 1964-05-22 1967-08-01 Cincinnati Milling Machine Co Electro-discharge machining fluid and method
US3239439A (en) * 1962-07-09 1966-03-08 Bell Telephone Labor Inc Electrodeposition of metals
US4613417A (en) 1984-12-28 1986-09-23 At&T Bell Laboratories Semiconductor etching process
JPS63288620A (ja) * 1987-05-22 1988-11-25 Kobe Steel Ltd アルミニウムの電解複合超鏡面加工方法
KR960006714B1 (ko) 1990-05-28 1996-05-22 가부시끼가이샤 도시바 반도체 장치의 제조 방법
US5098533A (en) * 1991-02-06 1992-03-24 International Business Machines Corp. Electrolytic method for the etch back of encapsulated copper-Invar-copper core structures
US5618381A (en) * 1992-01-24 1997-04-08 Micron Technology, Inc. Multiple step method of chemical-mechanical polishing which minimizes dishing
US5244534A (en) * 1992-01-24 1993-09-14 Micron Technology, Inc. Two-step chemical mechanical polishing process for producing flush and protruding tungsten plugs
US5162248A (en) 1992-03-13 1992-11-10 Micron Technology, Inc. Optimized container stacked capacitor DRAM cell utilizing sacrificial oxide deposition and chemical mechanical polishing
JP2952539B2 (ja) * 1992-03-30 1999-09-27 セイコーインスツルメンツ株式会社 微細加工装置
US5562529A (en) * 1992-10-08 1996-10-08 Fujitsu Limited Apparatus and method for uniformly polishing a wafer
US5300155A (en) * 1992-12-23 1994-04-05 Micron Semiconductor, Inc. IC chemical mechanical planarization process incorporating slurry temperature control
US5340370A (en) * 1993-11-03 1994-08-23 Intel Corporation Slurries for chemical mechanical polishing
US5575885A (en) 1993-12-14 1996-11-19 Kabushiki Kaisha Toshiba Copper-based metal polishing solution and method for manufacturing semiconductor device
US5567300A (en) * 1994-09-02 1996-10-22 Ibm Corporation Electrochemical metal removal technique for planarization of surfaces
US5691219A (en) * 1994-09-17 1997-11-25 Kabushiki Kaisha Toshiba Method of manufacturing a semiconductor memory device
KR0170308B1 (ko) 1995-12-05 1999-02-01 김광호 강유전체 캐패시터의 제조방법
US5676587A (en) * 1995-12-06 1997-10-14 International Business Machines Corporation Selective polish process for titanium, titanium nitride, tantalum and tantalum nitride
US5840629A (en) 1995-12-14 1998-11-24 Sematech, Inc. Copper chemical mechanical polishing slurry utilizing a chromate oxidant
US5994220A (en) * 1996-02-02 1999-11-30 Micron Technology, Inc. Method for forming a semiconductor connection with a top surface having an enlarged recess
US5780358A (en) * 1996-04-08 1998-07-14 Chartered Semiconductor Manufacturing Ltd. Method for chemical-mechanical polish (CMP) planarizing of cooper containing conductor layers
US5800248A (en) 1996-04-26 1998-09-01 Ontrak Systems Inc. Control of chemical-mechanical polishing rate across a substrate surface
US5681423A (en) * 1996-06-06 1997-10-28 Micron Technology, Inc. Semiconductor wafer for improved chemical-mechanical polishing over large area features
US6115233A (en) * 1996-06-28 2000-09-05 Lsi Logic Corporation Integrated circuit device having a capacitor with the dielectric peripheral region being greater than the dielectric central region
US5827781A (en) * 1996-07-17 1998-10-27 Micron Technology, Inc. Planarization slurry including a dispersant and method of using same
US5846398A (en) 1996-08-23 1998-12-08 Sematech, Inc. CMP slurry measurement and control technique
US5972792A (en) * 1996-10-18 1999-10-26 Micron Technology, Inc. Method for chemical-mechanical planarization of a substrate on a fixed-abrasive polishing pad
US5930699A (en) * 1996-11-12 1999-07-27 Ericsson Inc. Address retrieval system
US6068787A (en) * 1996-11-26 2000-05-30 Cabot Corporation Composition and slurry useful for metal CMP
JP3809237B2 (ja) 1996-12-06 2006-08-16 キヤノン株式会社 電解パターンエッチング方法
US5954997A (en) * 1996-12-09 1999-09-21 Cabot Corporation Chemical mechanical polishing slurry useful for copper substrates
JPH10189909A (ja) * 1996-12-27 1998-07-21 Texas Instr Japan Ltd 誘電体キャパシタ及び誘電体メモリ装置と、これらの製造方法
US5911619A (en) * 1997-03-26 1999-06-15 International Business Machines Corporation Apparatus for electrochemical mechanical planarization
US5807165A (en) * 1997-03-26 1998-09-15 International Business Machines Corporation Method of electrochemical mechanical planarization
US6174425B1 (en) * 1997-05-14 2001-01-16 Motorola, Inc. Process for depositing a layer of material over a substrate
US5934980A (en) * 1997-06-09 1999-08-10 Micron Technology, Inc. Method of chemical mechanical polishing
US6103636A (en) * 1997-08-20 2000-08-15 Micron Technology, Inc. Method and apparatus for selective removal of material from wafer alignment marks
US6010964A (en) * 1997-08-20 2000-01-04 Micron Technology, Inc. Wafer surface treatment methods and systems using electrocapillarity
US6060386A (en) * 1997-08-21 2000-05-09 Micron Technology, Inc. Method and apparatus for forming features in holes, trenches and other voids in the manufacturing of microelectronic devices
US6017437A (en) 1997-08-22 2000-01-25 Cutek Research, Inc. Process chamber and method for depositing and/or removing material on a substrate
US6007695A (en) 1997-09-30 1999-12-28 Candescent Technologies Corporation Selective removal of material using self-initiated galvanic activity in electrolytic bath
US6024856A (en) * 1997-10-10 2000-02-15 Enthone-Omi, Inc. Copper metallization of silicon wafers using insoluble anodes
US6001730A (en) 1997-10-20 1999-12-14 Motorola, Inc. Chemical mechanical polishing (CMP) slurry for polishing copper interconnects which use tantalum-based barrier layers
US5897375A (en) * 1997-10-20 1999-04-27 Motorola, Inc. Chemical mechanical polishing (CMP) slurry for copper and method of use in integrated circuit manufacture
JPH11145273A (ja) 1997-11-07 1999-05-28 Fujitsu Ltd 半導体装置の製造方法
US6103096A (en) * 1997-11-12 2000-08-15 International Business Machines Corporation Apparatus and method for the electrochemical etching of a wafer
WO1999026758A1 (en) * 1997-11-25 1999-06-03 John Hopkins University Electrochemical-control of abrasive polishing and machining rates
US6162681A (en) 1998-01-26 2000-12-19 Texas Instruments - Acer Incorporated DRAM cell with a fork-shaped capacitor
US6432828B2 (en) * 1998-03-18 2002-08-13 Cabot Microelectronics Corporation Chemical mechanical polishing slurry useful for copper substrates
TW377514B (en) * 1998-04-18 1999-12-21 United Microelectronics Corp Method of manufacturing memory capacitors of DRAM
US6416647B1 (en) * 1998-04-21 2002-07-09 Applied Materials, Inc. Electro-chemical deposition cell for face-up processing of single semiconductor substrates
KR100280107B1 (ko) * 1998-05-07 2001-03-02 윤종용 트렌치 격리 형성 방법
US6143155A (en) 1998-06-11 2000-11-07 Speedfam Ipec Corp. Method for simultaneous non-contact electrochemical plating and planarizing of semiconductor wafers using a bipiolar electrode assembly
US6132586A (en) * 1998-06-11 2000-10-17 Integrated Process Equipment Corporation Method and apparatus for non-contact metal plating of semiconductor wafers using a bipolar electrode assembly
US6121152A (en) * 1998-06-11 2000-09-19 Integrated Process Equipment Corporation Method and apparatus for planarization of metallized semiconductor wafers using a bipolar electrode assembly
US6063306A (en) * 1998-06-26 2000-05-16 Cabot Corporation Chemical mechanical polishing slurry useful for copper/tantalum substrate
US6395152B1 (en) 1998-07-09 2002-05-28 Acm Research, Inc. Methods and apparatus for electropolishing metal interconnections on semiconductor devices
US6190494B1 (en) * 1998-07-29 2001-02-20 Micron Technology, Inc. Method and apparatus for electrically endpointing a chemical-mechanical planarization process
US6180947B1 (en) * 1998-08-07 2001-01-30 Nikon Corporation Multi-element deflection aberration correction for electron beam lithography
US6051496A (en) * 1998-09-17 2000-04-18 Taiwan Semiconductor Manufacturing Company Use of stop layer for chemical mechanical polishing of CU damascene
US6039633A (en) * 1998-10-01 2000-03-21 Micron Technology, Inc. Method and apparatus for mechanical and chemical-mechanical planarization of microelectronic-device substrate assemblies
US6250994B1 (en) * 1998-10-01 2001-06-26 Micron Technology, Inc. Methods and apparatuses for mechanical and chemical-mechanical planarization of microelectronic-device substrate assemblies on planarizing pads
JP3144635B2 (ja) * 1998-10-13 2001-03-12 日本電気株式会社 半導体装置の製造方法
KR100272172B1 (ko) * 1998-10-16 2000-11-15 윤종용 반도체장치의 커패시터 및 그 제조방법
US6176992B1 (en) 1998-11-03 2001-01-23 Nutool, Inc. Method and apparatus for electro-chemical mechanical deposition
US6206756B1 (en) * 1998-11-10 2001-03-27 Micron Technology, Inc. Tungsten chemical-mechanical polishing process using a fixed abrasive polishing pad and a tungsten layer chemical-mechanical polishing solution specifically adapted for chemical-mechanical polishing with a fixed abrasive pad
US6276996B1 (en) * 1998-11-10 2001-08-21 Micron Technology, Inc. Copper chemical-mechanical polishing process using a fixed abrasive polishing pad and a copper layer chemical-mechanical polishing solution specifically adapted for chemical-mechanical polishing with a fixed abrasive pad
US6083840A (en) * 1998-11-25 2000-07-04 Arch Specialty Chemicals, Inc. Slurry compositions and method for the chemical-mechanical polishing of copper and copper alloys
US6726823B1 (en) * 1998-11-28 2004-04-27 Acm Research, Inc. Methods and apparatus for holding and positioning semiconductor workpieces during electropolishing and/or electroplating of the workpieces
US6328872B1 (en) 1999-04-03 2001-12-11 Nutool, Inc. Method and apparatus for plating and polishing a semiconductor substrate
US7427337B2 (en) * 1998-12-01 2008-09-23 Novellus Systems, Inc. System for electropolishing and electrochemical mechanical polishing
US6103628A (en) 1998-12-01 2000-08-15 Nutool, Inc. Reverse linear polisher with loadable housing
US6251235B1 (en) 1999-03-30 2001-06-26 Nutool, Inc. Apparatus for forming an electrical contact with a semiconductor substrate
US6280581B1 (en) * 1998-12-29 2001-08-28 David Cheng Method and apparatus for electroplating films on semiconductor wafers
US6322422B1 (en) 1999-01-19 2001-11-27 Nec Corporation Apparatus for accurately measuring local thickness of insulating layer on semiconductor wafer during polishing and polishing system using the same
US6303956B1 (en) 1999-02-26 2001-10-16 Micron Technology, Inc. Conductive container structures having a dielectric cap
US6066030A (en) * 1999-03-04 2000-05-23 International Business Machines Corporation Electroetch and chemical mechanical polishing equipment
JP2000269318A (ja) 1999-03-12 2000-09-29 Toshiba Corp 半導体装置及びその製造方法
US6117781A (en) * 1999-04-22 2000-09-12 Advanced Micro Devices, Inc. Optimized trench/via profile for damascene processing
US6259128B1 (en) * 1999-04-23 2001-07-10 International Business Machines Corporation Metal-insulator-metal capacitor for copper damascene process and method of forming the same
US6395607B1 (en) * 1999-06-09 2002-05-28 Alliedsignal Inc. Integrated circuit fabrication method for self-aligned copper diffusion barrier
US6196899B1 (en) * 1999-06-21 2001-03-06 Micron Technology, Inc. Polishing apparatus
US6287974B1 (en) * 1999-06-30 2001-09-11 Lam Research Corporation Method of achieving top rounding and uniform etch depths while etching shallow trench isolation features
US6218309B1 (en) * 1999-06-30 2001-04-17 Lam Research Corporation Method of achieving top rounding and uniform etch depths while etching shallow trench isolation features
US6197182B1 (en) * 1999-07-07 2001-03-06 Technic Inc. Apparatus and method for plating wafers, substrates and other articles
US6328632B1 (en) 1999-08-31 2001-12-11 Micron Technology, Inc. Polishing pads and planarizing machines for mechanical and/or chemical-mechanical planarization of microelectronic substrate assemblies
JP4513145B2 (ja) * 1999-09-07 2010-07-28 ソニー株式会社 半導体装置の製造方法および研磨方法
US6299741B1 (en) * 1999-11-29 2001-10-09 Applied Materials, Inc. Advanced electrolytic polish (AEP) assisted metal wafer planarization method and apparatus
US6379223B1 (en) * 1999-11-29 2002-04-30 Applied Materials, Inc. Method and apparatus for electrochemical-mechanical planarization
US6632335B2 (en) 1999-12-24 2003-10-14 Ebara Corporation Plating apparatus
JP3676958B2 (ja) 1999-12-28 2005-07-27 株式会社日立製作所 半導体集積回路装置の製造方法
US6368184B1 (en) * 2000-01-06 2002-04-09 Advanced Micro Devices, Inc. Apparatus for determining metal CMP endpoint using integrated polishing pad electrodes
US6368190B1 (en) * 2000-01-26 2002-04-09 Agere Systems Guardian Corp. Electrochemical mechanical planarization apparatus and method
TWI296006B (zh) 2000-02-09 2008-04-21 Jsr Corp
US6848970B2 (en) * 2002-09-16 2005-02-01 Applied Materials, Inc. Process control in electrochemically assisted planarization
US6537144B1 (en) 2000-02-17 2003-03-25 Applied Materials, Inc. Method and apparatus for enhanced CMP using metals having reductive properties
US6797623B2 (en) 2000-03-09 2004-09-28 Sony Corporation Methods of producing and polishing semiconductor device and polishing apparatus
US6482307B2 (en) 2000-05-12 2002-11-19 Nutool, Inc. Method of and apparatus for making electrical contact to wafer surface for full-face electroplating or electropolishing
US6515493B1 (en) 2000-04-12 2003-02-04 Speedfam-Ipec Corporation Method and apparatus for in-situ endpoint detection using electrical sensors
US6313038B1 (en) 2000-04-26 2001-11-06 Micron Technology, Inc. Method and apparatus for controlling chemical interactions during planarization of microelectronic substrates
KR100331568B1 (ko) 2000-05-26 2002-04-06 윤종용 반도체 메모리 소자 및 그 제조방법
US6433929B1 (en) 2000-06-12 2002-08-13 Olympus Optical Co., Ltd. Scanning optical microscope and method of acquiring image
US6421232B2 (en) * 2000-08-02 2002-07-16 Xybernaut Corporation Dual FPD and thin client
US6455370B1 (en) * 2000-08-16 2002-09-24 Micron Technology, Inc. Method of patterning noble metals for semiconductor devices by electropolishing
US7074113B1 (en) * 2000-08-30 2006-07-11 Micron Technology, Inc. Methods and apparatus for removing conductive material from a microelectronic substrate
US7134934B2 (en) * 2000-08-30 2006-11-14 Micron Technology, Inc. Methods and apparatus for electrically detecting characteristics of a microelectronic substrate and/or polishing medium
US7192335B2 (en) * 2002-08-29 2007-03-20 Micron Technology, Inc. Method and apparatus for chemically, mechanically, and/or electrolytically removing material from microelectronic substrates
US7220166B2 (en) * 2000-08-30 2007-05-22 Micron Technology, Inc. Methods and apparatus for electromechanically and/or electrochemically-mechanically removing conductive material from a microelectronic substrate
US7160176B2 (en) * 2000-08-30 2007-01-09 Micron Technology, Inc. Methods and apparatus for electrically and/or chemically-mechanically removing conductive material from a microelectronic substrate
US7112121B2 (en) 2000-08-30 2006-09-26 Micron Technology, Inc. Methods and apparatus for electrical, mechanical and/or chemical removal of conductive material from a microelectronic substrate
US7153410B2 (en) 2000-08-30 2006-12-26 Micron Technology, Inc. Methods and apparatus for electrochemical-mechanical processing of microelectronic workpieces
US7153195B2 (en) * 2000-08-30 2006-12-26 Micron Technology, Inc. Methods and apparatus for selectively removing conductive material from a microelectronic substrate
US7129160B2 (en) 2002-08-29 2006-10-31 Micron Technology, Inc. Method for simultaneously removing multiple conductive materials from microelectronic substrates
US7078308B2 (en) 2002-08-29 2006-07-18 Micron Technology, Inc. Method and apparatus for removing adjacent conductive and nonconductive materials of a microelectronic substrate
US7094131B2 (en) * 2000-08-30 2006-08-22 Micron Technology, Inc. Microelectronic substrate having conductive material with blunt cornered apertures, and associated methods for removing conductive material
US6551935B1 (en) 2000-08-31 2003-04-22 Micron Technology, Inc. Slurry for use in polishing semiconductor device conductive structures that include copper and tungsten and polishing methods
US6867448B1 (en) * 2000-08-31 2005-03-15 Micron Technology, Inc. Electro-mechanically polished structure
JP2002093761A (ja) * 2000-09-19 2002-03-29 Sony Corp 研磨方法、研磨装置、メッキ方法およびメッキ装置
TW516471U (en) 2000-09-29 2003-01-01 Shuo-Ren Li Electro-chemistry mechanical polishing mechanism for exterior surface of workpiece
US6464855B1 (en) 2000-10-04 2002-10-15 Speedfam-Ipec Corporation Method and apparatus for electrochemical planarization of a workpiece
JP4644926B2 (ja) * 2000-10-13 2011-03-09 ソニー株式会社 半導体製造装置および半導体装置の製造方法
US6722950B1 (en) * 2000-11-07 2004-04-20 Planar Labs Corporation Method and apparatus for electrodialytic chemical mechanical polishing and deposition
US20020104764A1 (en) * 2000-11-20 2002-08-08 Gautam Banerjee Electropolishing and chemical mechanical planarization
US6977224B2 (en) 2000-12-28 2005-12-20 Intel Corporation Method of electroless introduction of interconnect structures
US6696358B2 (en) * 2001-01-23 2004-02-24 Honeywell International Inc. Viscous protective overlayers for planarization of integrated circuits
US6736952B2 (en) * 2001-02-12 2004-05-18 Speedfam-Ipec Corporation Method and apparatus for electrochemical planarization of a workpiece
US20020115283A1 (en) 2001-02-20 2002-08-22 Chartered Semiconductor Manufacturing Ltd. Planarization by selective electro-dissolution
JP2002254248A (ja) * 2001-02-28 2002-09-10 Sony Corp 電解加工装置
US6811680B2 (en) 2001-03-14 2004-11-02 Applied Materials Inc. Planarization of substrates using electrochemical mechanical polishing
US7128825B2 (en) 2001-03-14 2006-10-31 Applied Materials, Inc. Method and composition for polishing a substrate
US7232514B2 (en) 2001-03-14 2007-06-19 Applied Materials, Inc. Method and composition for polishing a substrate
US6899804B2 (en) * 2001-12-21 2005-05-31 Applied Materials, Inc. Electrolyte composition and treatment for electrolytic chemical mechanical polishing
US6572755B2 (en) * 2001-04-11 2003-06-03 Speedfam-Ipec Corporation Method and apparatus for electrochemically depositing a material onto a workpiece surface
US6852630B2 (en) * 2001-04-23 2005-02-08 Asm Nutool, Inc. Electroetching process and system
ATE432145T1 (de) 2001-04-24 2009-06-15 Applied Materials Inc Leitender polierkörper zum elektrochemisch- mechanischen polieren
US6722942B1 (en) 2001-05-21 2004-04-20 Advanced Micro Devices, Inc. Chemical mechanical polishing with electrochemical control
WO2003003407A1 (en) 2001-06-28 2003-01-09 Greene, Tweed Of Delaware, Inc. Self contained sensing apparatus and system
TW584899B (en) * 2001-07-20 2004-04-21 Nutool Inc Planar metal electroprocessing
US6881664B2 (en) * 2001-08-28 2005-04-19 Lsi Logic Corporation Process for planarizing upper surface of damascene wiring structure for integrated circuit structures
US7238092B2 (en) * 2001-09-28 2007-07-03 Novellus Systems, Inc. Low-force electrochemical mechanical processing method and apparatus
US6705926B2 (en) 2001-10-24 2004-03-16 Cabot Microelectronics Corporation Boron-containing polishing system and method
US6776693B2 (en) * 2001-12-19 2004-08-17 Applied Materials Inc. Method and apparatus for face-up substrate polishing
US6780772B2 (en) * 2001-12-21 2004-08-24 Nutool, Inc. Method and system to provide electroplanarization of a workpiece with a conducting material layer
US6951599B2 (en) 2002-01-22 2005-10-04 Applied Materials, Inc. Electropolishing of metallic interconnects
JP2005518670A (ja) 2002-02-26 2005-06-23 アプライド マテリアルズ インコーポレイテッド 基板を研磨するための方法及び組成物
US6689258B1 (en) * 2002-04-30 2004-02-10 Advanced Micro Devices, Inc. Electrochemically generated reactants for chemical mechanical planarization
US6753250B1 (en) * 2002-06-12 2004-06-22 Novellus Systems, Inc. Method of fabricating low dielectric constant dielectric films
US6858124B2 (en) * 2002-12-16 2005-02-22 3M Innovative Properties Company Methods for polishing and/or cleaning copper interconnects and/or film and compositions therefor
US6884338B2 (en) * 2002-12-16 2005-04-26 3M Innovative Properties Company Methods for polishing and/or cleaning copper interconnects and/or film and compositions therefor
US20040154931A1 (en) 2003-02-12 2004-08-12 Akihisa Hongo Polishing liquid, polishing method and polishing apparatus
US20050173260A1 (en) * 2003-03-18 2005-08-11 Basol Bulent M. System for electrochemical mechanical polishing
US6893328B2 (en) * 2003-04-23 2005-05-17 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Conductive polishing pad with anode and cathode
US20040259479A1 (en) 2003-06-23 2004-12-23 Cabot Microelectronics Corporation Polishing pad for electrochemical-mechanical polishing
US20050016861A1 (en) * 2003-07-24 2005-01-27 Thomas Laursen Method for planarizing a work piece
US7112122B2 (en) * 2003-09-17 2006-09-26 Micron Technology, Inc. Methods and apparatus for removing conductive material from a microelectronic substrate
US7153777B2 (en) 2004-02-20 2006-12-26 Micron Technology, Inc. Methods and apparatuses for electrochemical-mechanical polishing
US7566391B2 (en) * 2004-09-01 2009-07-28 Micron Technology, Inc. Methods and systems for removing materials from microfeature workpieces with organic and/or non-aqueous electrolytic media
US20060163083A1 (en) * 2005-01-21 2006-07-27 International Business Machines Corporation Method and composition for electro-chemical-mechanical polishing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110257895A (zh) * 2019-06-24 2019-09-20 江苏守航实业有限公司 一种半导体材料的电解抛光方法及装置

Also Published As

Publication number Publication date
KR20050057082A (ko) 2005-06-16
DE60317080D1 (de) 2007-12-06
WO2004020148A1 (en) 2004-03-11
EP1875987A2 (en) 2008-01-09
US20070111641A1 (en) 2007-05-17
EP1536919A1 (en) 2005-06-08
US20100006428A1 (en) 2010-01-14
EP1536919B1 (en) 2007-10-24
US20030054729A1 (en) 2003-03-20
ATE376477T1 (de) 2007-11-15
JP2005537647A (ja) 2005-12-08
US7618528B2 (en) 2009-11-17
US7972485B2 (en) 2011-07-05
DE60329872D1 (de) 2009-12-10
AU2003262996A1 (en) 2004-03-19
EP1875987A3 (en) 2008-08-06
KR100730908B1 (ko) 2007-06-22
CN1688411A (zh) 2005-10-26
US7220166B2 (en) 2007-05-22
EP1875987B1 (en) 2009-10-28
ATE446822T1 (de) 2009-11-15
JP4340233B2 (ja) 2009-10-07
DE60317080T2 (de) 2008-08-14

Similar Documents

Publication Publication Date Title
CN100503114C (zh) 以机电方式和/或机电化学方式从微电子基板清除导电材料的方法和设备
US8048287B2 (en) Method for selectively removing conductive material from a microelectronic substrate
US7560017B2 (en) Methods and apparatus for electrically detecting characteristics of a microelectronic substrate and/or polishing medium
US7588677B2 (en) Methods and apparatus for electrical, mechanical and/or chemical removal of conductive material from a microelectronic substrate
US7160176B2 (en) Methods and apparatus for electrically and/or chemically-mechanically removing conductive material from a microelectronic substrate
US20080099344A9 (en) Electropolishing system and process
US7524410B2 (en) Methods and apparatus for removing conductive material from a microelectronic substrate
US20050133379A1 (en) System for electropolishing and electrochemical mechanical polishing
JP4446271B2 (ja) ミクロ電子基板から導電物質を電気的、機械的および/または化学的に除去する方法および装置
CN100413037C (zh) 从微电子基底中电、机械和/或化学除去导电材料的方法和装置
TWI278370B (en) Methods and apparatus for electrochemical-mechanical processing of microelectronic workpieces
JP2003175422A (ja) 電解加工装置及び方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090624

Termination date: 20100827