CN100432905C - 光学导引方法和设备 - Google Patents

光学导引方法和设备 Download PDF

Info

Publication number
CN100432905C
CN100432905C CNB2004100295451A CN200410029545A CN100432905C CN 100432905 C CN100432905 C CN 100432905C CN B2004100295451 A CNB2004100295451 A CN B2004100295451A CN 200410029545 A CN200410029545 A CN 200410029545A CN 100432905 C CN100432905 C CN 100432905C
Authority
CN
China
Prior art keywords
light
equipment
narrow bandwidth
light source
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB2004100295451A
Other languages
English (en)
Other versions
CN1577387A (zh
Inventor
谢彤
马歇尔·T·德皮尤
道格拉斯·M·巴内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pixart Imaging Inc
Original Assignee
Avago Technologies ECBU IP Singapore Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avago Technologies ECBU IP Singapore Pte Ltd filed Critical Avago Technologies ECBU IP Singapore Pte Ltd
Publication of CN1577387A publication Critical patent/CN1577387A/zh
Application granted granted Critical
Publication of CN100432905C publication Critical patent/CN100432905C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/0304Detection arrangements using opto-electronic means
    • G06F3/0317Detection arrangements using opto-electronic means in co-operation with a patterned surface, e.g. absolute position or relative movement detection for an optical mouse or pen positioned with respect to a coded surface

Abstract

本发明介绍了适合用于在各种表面上进行导引的方法和设备。使用镜面反射来确定在一般表面上的相对运动。一种特殊的应用就是计算机鼠标。

Description

光学导引方法和设备
技术领域
本申请涉及运动传感设备,更具体而言,涉及使用镜面反射图像来确定相对运动的设备、系统和方法。
背景技术
光学相对运动检测设备一般通过当导引设备经过一个表面或者当该表面移动经过该导引设备的时候捕获该表面的图像来使用图像相关技术确定导引设备与该表面的相对运动。导引设备相对于表面的相对运动的位移和方向都通过将一幅图像与接下来的一幅图像进行比较而确定。一般,检测投射到表面上的阴影引起的光强变化,而该项技术的灵敏度和适用性取决于所捕获的图像的光强对比度。相对运动导引设备被用于,例如,计算机屏幕指示器(例如,鼠标)控制。
美国专利No.5,786,804、5,578,813、5,644,139、6,442,725、6,281,882以及6,433,780公开了光学鼠标、其它手持导引设备和手持扫描仪的例子。这些专利通过引用而被包含于此。
一般的现有光学导引设备使用发光二极管(LED)来倾斜地照明要通过的表面。表面上5到500μm量级的高度变化会投射阴影,这可以用几何光学来描述。阴影图案图像的大小和对比度部分取决于表面类型以及高度变化的大小。一般,将检测器定位以接收表面法线方向上的反射,而表面与入射光之间的角度一般被选择用来优化阴影图案图像的对比度,这在暗视野成像技术中是大家熟知的。入射角度的典型值在大约5度到大约20度的范围内。
例如白板、高光洁度纸、塑料或者经喷涂的金属的光滑表面对目前一般的光学导引设备提出了功能上的挑战。通常,光滑表面是那些包含了较少的空间中频和更多的空间高频结构的表面。为了提高信号强度,LED照明需要高光功率,导致典型的最大电流超过30mA。
发明内容
根据本发明,光学导引设备的检测器捕获预先选择的角度分布的反射光。一般地,将光学导引设备的检测器定位以捕获来自表面的镜面反射。镜面反射生成与阴影图案图像和斑纹图案都不相同的该表面的图像。与阴影图案图像方法相比,镜面反射一般提供更好的信号。这使得即使在极为光滑的表面上也能获得高对比度图像。另外,对于朗伯表面而言保持了图像质量,因为光仍然被散射到镜面方向。镜面反射图像取决于照明源的波长,镜面反射图像的对比度一般随着照明源带宽的减小而增大,因此基于激光的照明提供了最高的对比度。
根据本发明,可以通过使用波长处于检测器响应曲线的峰值处的照明源来减少功率需求。镜面反射图像的对比度取决于照明源的空间和时间相干度。对例如垂直腔表面发射激光器(VCSEL)或者窄带发光二极管(LED)的窄带照明源的使用使得以减少了的功率提供了增强的图像对比度。由于来自以不同波长照明的不同散射体的返回光非相干地叠加,所以增大带宽引入了均化作用结果导致更低的对比度。因此,根据本发明,照明源的带宽必须足够窄以具有足够的相干干涉,从而获得对比度足够高的图像以用于可靠的光学导引。例如,具有20nm量级的带宽的照明源在办公室桌面环境中的各种表面上为光学导引提供了足够的对比度。
附图说明
图1a-1c示出了来自不同类型的表面的光反射;
图1d示出了根据本发明的表面散射的概念;
图2示出了根据本发明的镜面反射;
图3a示出了根据本发明的高级别框图;
图3b示出了根据本发明的一个实施例的光学元件的简化图示;
图4示出了根据本发明的系统;
图5示出了根据本发明的一个实施例;
图6示出了根据本发明的一个实施例;
图7示出了描述根据本发明的一种方法中所涉及的步骤的流程图。
具体实施方式
如果光束入射到光滑表面上,该入射光束的光线反射并且离开光滑表面时保持会聚成束。但是,如果表面在微光学意义上是粗糙的,则光线反射并在很多不同方向上被散射。对应于表面粗糙度的空间频率可以是照明波长级别的。每条独立的光线都遵守反射定律。但是,在粗糙表面的情况下,各条独立的光线遇到该表面具有不同取向的部分。因此,对于不同的入射光线表面的法线方向是不同的。所以,当独立的光线根据反射定律反射时,该独立的光线在不同方向上被散射。另外,当使用相干或者准相干照明时,在镜面反射的图像中可能会观察到由于反射光与散射光之间的干涉产生的高光强对比度的图案。这种干涉效果为用于导引的图像提供了增强的对比度。
图1a-1c图示了来自不同类型表面的光反射。图1a示出了光束135从朗伯(Lambertian)表面140反射出光束图案136。朗伯表面是一种理想的漫射表面,从任何小表面部分在给定方向上发出的光的强度成比例于与表面140的法线199的夹角的余弦。图1b示出了光束145从镜面反射器表面150反射出光束146,光束146处于角度θr=θi,其中这些角度是相对表面法线199定义的。图1c示出了光束155从表面160反射出光束156。表面160的表面特性介于表面140和表面150之间,光束图案156存在镜面分量,同时存在朗伯分量。
很重要的一点是要认识到镜面反射与光学斑纹(speckle)并没有关系。来自镜面反射的图像是由于利用相干或者准相干光对要被通过的表面进行成像而造成的。根据本发明获得的具有丰富特征的图像在不同类型的表面之间变化很显著,并且一般与下层表面具有一对一的相关性。相反,斑纹图像本质是高度的统计意义上的,对于一次近似来说在不同类型的表面之间是不变化的。斑纹图像显示了其中与可见的下层表面特征的一一对应是有限的图像图案。尽管物体用相干光进行照明的任何时候斑纹图像都会出现,光学斑纹的平均大小一般小于用于一般光学导引应用的成像阵列的象素大小。当象素大小显著大于平均的斑纹大小时,斑纹不再是光学导引的可信的图案,因为入射在检测器阵列的象素上的多个亮的和暗的斑纹特征在整个象素区域上被平均了。例如,假设成像系统的f数为10,激光源工作于850nm,利用公式:平均斑纹大小=f×λ得到平均斑纹大小=8.5μm,其中f是f数而λ是波长。这里,假设一般的检测器阵列的象素大小为60μm,则检测器阵列的每个象素对多于49个斑纹成像。得到的平均的结果从斑纹分布中去除了潜在的可用于导引的特征。
图1d是根据本发明的来自粗糙表面105的散射的简化图示。入射光束的入射光线110、115、120、125、130每个都遵循反射定律,结果得到来自粗糙表面105的反射光线110′、115′、120′、125′、130′并在反射时被散射。这里所指的光意图包括波长范围从大约1纳米(nm)延伸到大约1毫米(mm)的电磁辐射。
图2示出了根据本发明的来自表面的镜面反射的更为详细的视图。入射光线205在被表面220反射之前具有角坐标Фi,θi。一般,表面220会具有影响反射光的反射角的微观粗糙度或者光学不规则性。如果反射光线210处在由定义的角度锥体之内,则对应于光线205的表面元素会被检测器所捕获到。
图3a是根据本发明基于使用导引镜面反射的光学导引系统300的高级别框图。表面330由来自光源单元304的光束398照明。镜面反射光束399从要被检测器阵列单元311所检测的表面330被反射,所述检测器阵列单元311生成发送给处理器320的信号370。处理器320响应于信号370提供输出信号375。输出信号375可以被用来,例如,驱动计算机屏幕上的指示器的位置。处理器320可以是光学导引设备303的一部分,或者位于光学导引系统300中的其它地方。根据本发明,光学导引设备303的某些实施例可以是可手动的计算机系统的光学鼠标。
图3b示出了根据本发明的光学导引设备303的部件的简化图示。光源305,光源单元304的一部分(见图3a),被定位成相对于表面法线350成入射角度θi,并提供入射到透镜301上的光束315以产生光束315′。透镜301主要是起到提高光束315的收集效率,透镜301是可选的。透镜301可以是,例如,准直透镜。但是,如果光源305是例如VCSEL或者边缘发光器的激光器,光束315不需要被准直。如果光源305是准相干源,例如窄带的LED(发光二极管)或者具有窄带宽滤光镜的LED,则在光滑表面上导引可能需要透镜301或者限制孔径。对限制孔径的使用减小了入射到表面330上的功率但是提高了空间相干性。如果使用了透镜301,则透镜301可以是衍射或者折射透镜或者其它适合的光学元件,并且可以进行光学镀膜以提高性能。除了使用窄化孔径(narrowingaperture)以及传统的窄带LED之外,窄带边缘发射LED也可以被用作光源。
在本申请的上下文中,检测器被定义为将光子转换为电信号的设备。检测器阵列310,检测器阵列单元311的一部分(见图3a),被定位成处于反射角θr,其中选择θr使得θr≈θi。只有满足θr≈θi的来自表面330的反射光线365构成光束317,并且会被检测器阵列310所接收到。表面330被照明的部分被透镜307所成像。表面330上的点316被透镜307在检测器阵列310上成像为点316′。这样,成像光学系统使得检测器阵列310能够捕获图像。由相干光源产生的图像一般包括表面特征和干涉特征。图像中出现的任何斑纹对于根据本发明的导引来说都不重要。干涉特征源于镜面反射区域中独立光线的相干叠加。成像透镜307可以是衍射或者折射透镜或者其它适合的光学元件,用来对表面330的部分成像,并且成像透镜307可以经过光学镀膜而具有介电薄膜以提高性能。光源305一般是窄带激光源,例如,VCSEL(垂直腔表面发射激光器)或者边缘发射激光器,但是也可以是窄带LED,而检测器阵列310一般是CCD、CMOS、GaAs、非晶硅或者其它适合的检测器阵列。可以通过对检测器阵列310应用抗反射介电涂层来提高检测器阵列310的性能。
表面对比度和分辨率越高使得光学导引设备303能够在越光滑的表面上进行导引。有效的表面分辨率定义为导引表面上的能分辨的最小特征,所述导引表面例如为表面330。有效表面分辨率取决于调制传递函数,光学系统的放大率和例如检测器阵列310的检测器阵列的有效象素大小。如果放大率是固定的,则越高的表面分辨率要求,例如,检测器阵列310具有越小的象素。光学导引设备303在表面330上的最高导引速度受到检测器阵列310的最大帧速率以及互相关计算的处理时间的限制。光学导引设备303相对于表面330的物理位移以有效象素大小为单位来测量。有效象素大小是表面330上的象素的图像大小。这意味着如果光学导引设备303的检测器阵列310的象素大小减小,则光学导引设备303的响应性或者最大导引速度将会减小。一般要考虑和权衡检测器阵列310、处理器320的成本、总的功耗与希望的响应性之间的折衷以达到用于根据本发明的实施例的表面分辨率和光学放大率。
随着光学导引设备303相对于表面330移动,在光学导引设备303与表面330之间的不同相对位置处生成窄带宽散射图案。每个散射图案都由来自处于检测器阵列310视场中的表面330的镜面反射生成。窄带宽散射图案图像强烈地依赖于光源305的波长。一般地,选择光源305的波长处于检测器阵列310的峰值处。由于图像对比度和信号一般比现有技术的阴影图案光学导引系统提高了,所以需要的是更短的图像集成时间,这允许更高的帧速率采集从而允许了以更高的速度进行导引。
通过在处理器320中比较相继的被存储的窄带宽镜面反射图像,能够确定光学导引设备300相对于表面330的相对运动。相继的窄带宽散射图案图像的相关性一般被用来确定相对运动的位移。相继的被捕获的散射图案图像相互间部分地重合。因此,处理器320识别每幅散射图案图像中的特征并计算相对运动的位移和方向。通过存储相继的散射图案图像,重合的特征能够被处理器320利用标准图像相关算法所识别,用来提供方向和位移。在例如通过引用被包含于此的美国专利No.5,786,804中还可以发现其它更多细节。根据本发明,即使在例如玻璃的非常光滑但是没有被光学抛光的表面上也能够确定相对运动。
图4是对根据本发明的系统400的图示,所述系统400中光学鼠标425在固定表面430上运动。光学鼠标一般包括检测器阵列单元,例如图3a的检测器阵列单元311。在光学鼠标425中处理器320(见图3)一般将一系列镜面反射图像转换成位置信息并通过线缆或者无线地发送给中央处理器单元475用于作为例如箭头的位置指示器在视频屏幕470上显示。或者,未加工数据或者中间数据可以从检测器阵列单元311(见图3a)发送给中央处理器单元475用于处理。无线连接可以是射频的或者红外的,而根据本发明的光学鼠标425的无线实施例可以用,例如,可重复充电电池、燃料电池或者太阳能电池来供电。
图5示出了根据本发明的光学导引设备500的一个实施例。封装的VCSEL和传感器管芯(die)510是分立的并起到光源的作用,同时准直透镜520和成像透镜525被集成和形成在模制的塑料结构515中。传感器管芯535包含有例如以上讨论的检测器阵列310的检测器阵列。将准直透镜520和成像透镜525集成到模制的塑料结构中简化了制造并降低了成本。将传感器管芯535中的检测器阵列定位成以与光束595的入射角θi相等的反射角θr接收光,从而确保从检测器阵列得到的信号表示镜面反射。可以将传感器管芯535定位使得光束595垂直检测器阵列平面入射。
图6示出了根据本发明的光学导引设备600的一个实施例。被集成的VCSEL 610管芯起到光源的作用,同时准直透镜620和成像透镜625被集成和形成在模制的塑料结构615中。传感器管芯635包含有例如以上讨论的检测器阵列310的检测器阵列。将准直透镜620和成像透镜625集成到模制的塑料结构中简化了制造并降低了成本。光束695穿过准直透镜620竖直传播并被全内反射面675所反射而以入射角θi入射到表面650上。将传感器管芯635中的检测器阵列定位成以与光束695的入射角θi相等的反射角θr接收光,从而确保从检测器阵列得到的信号表示镜面反射。可以将传感器管芯635定位使得光束695垂直检测器阵列平面入射。
图7是示出了根据本发明使用光学导引系统303的方法中所涉及的步骤的流程图。在步骤701中,用窄带宽光束398以入射角θi照明表面303。在步骤702中,检测器阵列311以接近于或者等于入射角θi的反射角θr检测反射的窄带宽光束399。在步骤703中,检测器阵列311响应于窄带宽光束399生成图像信号。在步骤704中,处理器320处理该图像信号。在步骤705中,响应于图像信号370提供输出信号375,并且该输出信号375可以被用来,例如,控制视频屏幕470上的位置指示器。
尽管结合了特定实施例对本发明进行了描述,但是对于本领域的技术人员很容易看出在以上描述的教导之下很多替换、修改和变化都是很显然的。因此,本发明意图包括落入所附权利要求的精神和范围中的所有其它的这种替换、修改和变化。

Claims (10)

1.一种光学导引设备(303),包括:
光源(304、305),用于以相对于表面法线(350)的照明角用窄带宽光束(315)照明所述表面;
检测器(310、311),被定位成相对于所述表面法线(350)成反射角,所述检测器可操作以接收所述窄带宽光束(315、315′)从所述表面反射所得的反射部分(317),其中所述反射角基本上等于所述照明角;
其中,所述反射部分(317)包括干涉特征,所述干涉特征为用于导引的图像提供了增强的对比度。
2.如权利要求1所述的设备(303),其中所述光源(304、305)是激光器。
3.如权利要求2所述的设备(303),其中所述激光器是垂直腔表面发射激光器。
4.如权利要求1所述的设备(303),其中所述光源(304、305)是窄带宽的发光二极管(304、305)。
5.如权利要求4所述的设备(303),其中所述窄带宽的发光二极管是边缘发射的发光二极管。
6.如权利要求4所述的设备(303),还包括设置在所述光源(304、305)和所述表面(330)之间的限制孔径。
7.如权利要求1所述的设备(303),其中所述光源(304、305)是发光二极管,所述设备(303)还包括位于所述光源(304、305)和所述表面(330)之间的窄带宽滤光镜。
8.如权利要求4所述的设备(303),还包括准直透镜(301)以提高光收集效率。
9.如权利要求1所述的设备(303),还包括成像透镜(307),所述成像透镜(307)被定位成可操作以将所述窄带宽光束(315、315′)的所述反射部分(317)成像到所述检测器(310、311)上。
10.一种通过使用鼠标(425)检测相对于表面(430)的相对运动来控制计算机(475)视频屏幕(470)上的位置指示器的系统,所述系统包括:
用于从所述表面(430)生成窄带宽镜面反射图像的装置,每个所述窄带宽镜面反射图像对于所述鼠标(425)运动所经过的所述表面(430)的部分是特定的,所述窄带宽镜面反射图像包括干涉特征,所述干涉特征为用于导引的图像提供了增强的对比度;
用于将所述特定窄带宽镜面反射图像转换成对应于所述鼠标(425)与所述表面(430)之间的相对运动的信号的装置。
CNB2004100295451A 2003-07-30 2004-03-18 光学导引方法和设备 Expired - Lifetime CN100432905C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/630,169 2003-07-30
US10/630,169 US7321359B2 (en) 2003-07-30 2003-07-30 Method and device for optical navigation

Publications (2)

Publication Number Publication Date
CN1577387A CN1577387A (zh) 2005-02-09
CN100432905C true CN100432905C (zh) 2008-11-12

Family

ID=33541492

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100295451A Expired - Lifetime CN100432905C (zh) 2003-07-30 2004-03-18 光学导引方法和设备

Country Status (5)

Country Link
US (2) US7321359B2 (zh)
EP (1) EP1503274A3 (zh)
JP (1) JP2005050350A (zh)
CN (1) CN100432905C (zh)
TW (1) TWI339347B (zh)

Families Citing this family (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040227954A1 (en) * 2003-05-16 2004-11-18 Tong Xie Interferometer based navigation device
US7321359B2 (en) * 2003-07-30 2008-01-22 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Method and device for optical navigation
TW200522710A (en) * 2003-12-29 2005-07-01 Pixart Imaging Inc Image navigation chip
US7613329B2 (en) * 2004-03-08 2009-11-03 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Apparatus for controlling the position of a screen pointer that detects defective pixels
US7446756B2 (en) * 2004-03-22 2008-11-04 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Apparatus for controlling the position of a screen pointer with low sensitivity to particle contamination
US7474297B2 (en) * 2004-03-22 2009-01-06 Avago Technologies Ecbu Ip (Singapore) Pte. Contaminant-resistant optical mouse and cradle
GB2424269A (en) * 2004-04-01 2006-09-20 Robert Michael Lipman Control apparatus
US7285766B2 (en) * 2004-05-21 2007-10-23 Silicon Light Machines Corporation Optical positioning device having shaped illumination
US20050259078A1 (en) * 2004-05-21 2005-11-24 Silicon Light Machines Corporation Optical positioning device with multi-row detector array
US7042575B2 (en) * 2004-05-21 2006-05-09 Silicon Light Machines Corporation Speckle sizing and sensor dimensions in optical positioning device
US7773070B2 (en) 2004-05-21 2010-08-10 Cypress Semiconductor Corporation Optical positioning device using telecentric imaging
US20050259097A1 (en) * 2004-05-21 2005-11-24 Silicon Light Machines Corporation Optical positioning device using different combinations of interlaced photosensitive elements
US7268341B2 (en) * 2004-05-21 2007-09-11 Silicon Light Machines Corporation Optical position sensing device including interlaced groups of photosensitive elements
US7521719B2 (en) * 2004-08-13 2009-04-21 Paul Steven Schranz Light emitting and image sensing device and apparatus
US7220956B2 (en) * 2004-08-13 2007-05-22 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Optical mouse with reduced power consumption
US7405389B2 (en) * 2004-11-19 2008-07-29 Silicon Light Machines Corporation Dense multi-axis array for motion sensing
US20060193113A1 (en) * 2005-02-28 2006-08-31 International Business Machines Corporation Controlling a surface temperature of a portable computer for user comfort in response to motion detection
US7400415B2 (en) * 2005-03-15 2008-07-15 Mitutoyo Corporation Operator interface apparatus and method for displacement transducer with selectable detector area
US20060262094A1 (en) * 2005-05-23 2006-11-23 Yuan-Jung Chang Optical mouse having a dual light source and a method thereof
US7719517B2 (en) * 2005-06-21 2010-05-18 Microsoft Corporation Input device for a computer system
US7898524B2 (en) * 2005-06-30 2011-03-01 Logitech Europe S.A. Optical displacement detection over varied surfaces
US7399954B2 (en) * 2005-08-16 2008-07-15 Avago Technologies Ecbu Ip Pte Ltd System and method for an optical navigation device configured to generate navigation information through an optically transparent layer and to have skating functionality
US7737959B2 (en) * 2005-09-08 2010-06-15 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Position detection system using laser speckle
US7233025B2 (en) * 2005-11-10 2007-06-19 Microsoft Corporation Electronic packaging for optical emitters and sensors
US7567235B2 (en) 2005-12-12 2009-07-28 Cypress Semiconductor Corporation Self-aligning optical sensor package
US7715016B2 (en) * 2005-12-15 2010-05-11 Chung Shan Institute Of Science And Technology Image invariant optical speckle capturing device and method
US7765251B2 (en) * 2005-12-16 2010-07-27 Cypress Semiconductor Corporation Signal averaging circuit and method for sample averaging
US7737948B2 (en) * 2005-12-20 2010-06-15 Cypress Semiconductor Corporation Speckle navigation system
US7247835B2 (en) * 2005-12-20 2007-07-24 Keng Yeam Chang Optical navigation device, and method for manufacturing same
US20070164998A1 (en) * 2006-01-17 2007-07-19 Win-Win Opto-Electronics Co., Ltd. Invisible infrared laser mouse
US7884801B1 (en) 2006-02-16 2011-02-08 Cypress Semiconductor Corporation Circuit and method for determining motion with redundant comb-arrays
US7746477B1 (en) * 2006-02-24 2010-06-29 Cypress Semiconductor Corporation System and method for illuminating and imaging a surface for an optical navigation system
US7593833B2 (en) * 2006-03-03 2009-09-22 At&T Intellectual Property I, L.P. System and method for determining performance of network lines
US7809035B2 (en) * 2006-03-31 2010-10-05 Cypress Semiconductor Corporation Eye-safe laser navigation sensor
US7721609B2 (en) 2006-03-31 2010-05-25 Cypress Semiconductor Corporation Method and apparatus for sensing the force with which a button is pressed
US20070242277A1 (en) * 2006-04-13 2007-10-18 Dolfi David W Optical navigation in relation to transparent objects
US7492445B1 (en) 2006-06-05 2009-02-17 Cypress Semiconductor Corporation Method and apparatus for robust velocity prediction
US7568819B2 (en) * 2006-06-07 2009-08-04 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Utilizing an internal reflection surface to reflect and collimate sidelight in an optical navigation device
US20070291164A1 (en) * 2006-06-19 2007-12-20 Kee-Siang Goh Compact and miniature optical navigation device
US7755604B2 (en) 2006-06-19 2010-07-13 Cypress Semiconductor Corporation Optical navigation sensor with tracking and lift detection for optically transparent contact surfaces
US7728816B2 (en) * 2006-07-10 2010-06-01 Cypress Semiconductor Corporation Optical navigation sensor with variable tracking resolution
DE102006041307A1 (de) * 2006-09-01 2008-03-13 Sick Ag Opto-elektronische Sensoranordnung
US7742514B1 (en) 2006-10-31 2010-06-22 Cypress Semiconductor Corporation Laser navigation sensor
US7570348B2 (en) * 2006-12-18 2009-08-04 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Methods and apparatus for navigating a surface
TW200832191A (en) * 2007-01-19 2008-08-01 Leahsin Technologies Inc Method for controlling speckle size and distribution status and the optical system thereof
JP5108330B2 (ja) * 2007-02-26 2012-12-26 アバゴ・テクノロジーズ・イーシービーユー・アイピー(シンガポール)プライベート・リミテッド ポインティングデバイス
US20080231600A1 (en) 2007-03-23 2008-09-25 Smith George E Near-Normal Incidence Optical Mouse Illumination System with Prism
JP5564421B2 (ja) * 2007-06-21 2014-07-30 ザ・ジョンズ・ホプキンス・ユニバーシティ バーチャル顕微鏡スライド/デジタル画像をナビゲートするための操作デバイス及びそれに関連する方法。
US8730167B2 (en) * 2007-06-28 2014-05-20 Microsoft Corporation Pointing device with optical positioning on low-diffusive surfaces
US8314774B1 (en) 2007-07-09 2012-11-20 Cypress Semiconductor Corporation Method and apparatus for quasi-3D tracking using 2D optical motion sensors
US8263921B2 (en) 2007-08-06 2012-09-11 Cypress Semiconductor Corporation Processing methods for speckle-based motion sensing
WO2009029912A1 (en) * 2007-08-30 2009-03-05 Microstrain, Inc. Optical linear and rotation displacement sensor
US20090102792A1 (en) * 2007-10-19 2009-04-23 Microsoft Corporation User input device with phosphorescent indicator
US20090102793A1 (en) * 2007-10-22 2009-04-23 Microsoft Corporation Optical mouse
US8138488B2 (en) * 2007-10-31 2012-03-20 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. System and method for performing optical navigation using scattered light
US20090135140A1 (en) * 2007-11-27 2009-05-28 Logitech Europe S.A. System and method for accurate lift-detection of an input device
US8847888B2 (en) * 2007-12-18 2014-09-30 Microsoft Corporation Optical mouse with limited wavelength optics
US20090160773A1 (en) * 2007-12-20 2009-06-25 Microsoft Corporation Optical mouse
US20090160772A1 (en) * 2007-12-20 2009-06-25 Microsoft Corporation Diffuse optics in an optical mouse
TWI426418B (zh) * 2007-12-25 2014-02-11 Myson Century Inc 光學導航感測器及其光學導航裝置
US8259069B1 (en) 2008-01-11 2012-09-04 Cypress Semiconductor Corporation Speckle-based optical navigation on curved tracking surface
US8031176B1 (en) 2008-01-22 2011-10-04 Cypress Semiconductor Corporation Optical navigation system using a single-package motion sensor
US8169420B2 (en) * 2008-02-05 2012-05-01 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Reporting optical tracking data based on integrated resolution switching and surface detection
TW200943136A (en) * 2008-04-03 2009-10-16 Pixart Imaging Inc Optical pointing device
US7791015B2 (en) * 2008-05-08 2010-09-07 Lite-On Semiconductor Corp. Motion-detecting module for combining a light-emitting function and a light-sensing function together
DE102008049846A1 (de) 2008-09-30 2010-04-01 Carl Zeiss Meditec Ag Anordnung und Verfahren zur schnellen Messung einer Augenbewegung
US8541727B1 (en) 2008-09-30 2013-09-24 Cypress Semiconductor Corporation Signal monitoring and control system for an optical navigation sensor
WO2010037485A1 (de) * 2008-09-30 2010-04-08 Carl Zeiss Meditec Ag Anordnungen und verfahren zur messung einer augenbewegung, insbesondere einer bewegung des augenhintergrunds
DE102008049881A1 (de) 2008-09-30 2010-04-01 Carl Zeiss Meditec Ag Anordnung und Verfahren zur Messung einer Augenbewegung, insbesondere einer Bewegung des Augenhintergrunds
US7723659B1 (en) 2008-10-10 2010-05-25 Cypress Semiconductor Corporation System and method for screening semiconductor lasers
EP2202613A1 (en) 2008-12-18 2010-06-30 Chung Shan Institute of Science and Technology Image invariant optical speckle capturing device and method
US8711096B1 (en) 2009-03-27 2014-04-29 Cypress Semiconductor Corporation Dual protocol input device
US8525777B2 (en) * 2009-08-25 2013-09-03 Microsoft Corporation Tracking motion of mouse on smooth surfaces
KR101053369B1 (ko) * 2010-05-11 2011-08-01 삼성전기주식회사 조명 기능을 갖는 광포인팅 모듈 및 전자 장치
US9767341B2 (en) * 2010-12-14 2017-09-19 The Regents Of The University Of California Method and device for holographic opto-fluidic microscopy
WO2012173640A1 (en) 2011-06-16 2012-12-20 Cypress Semiconductor Corporaton An optical navigation module with capacitive sensor
US9720525B2 (en) 2011-06-29 2017-08-01 Wen-Chieh Geoffrey Lee High resolution and high sensitivity optically activated cursor maneuvering device
US8859971B2 (en) 2011-10-14 2014-10-14 Blackberry Limited Light redirection in optical navigation
US9201559B2 (en) 2011-11-14 2015-12-01 Logitech Europe S.A. Method of operating a multi-zone input device
US8896553B1 (en) 2011-11-30 2014-11-25 Cypress Semiconductor Corporation Hybrid sensor module
US8553235B1 (en) 2012-01-18 2013-10-08 Wen-Chieh Geoffrey Lee High resolution and high sensitivity optically activated touch sensing device using multiple color light sources
TWI482054B (zh) 2012-03-15 2015-04-21 Wen Chieh Geoffrey Lee 具有多數個彩色光源的高解析度與高敏感度移動偵測器
US10324565B2 (en) 2013-05-30 2019-06-18 Neonode Inc. Optical proximity sensor
US9164625B2 (en) 2012-10-14 2015-10-20 Neonode Inc. Proximity sensor for determining two-dimensional coordinates of a proximal object
US9921661B2 (en) 2012-10-14 2018-03-20 Neonode Inc. Optical proximity sensor and associated user interface
US10585530B2 (en) 2014-09-23 2020-03-10 Neonode Inc. Optical proximity sensor
US10282034B2 (en) 2012-10-14 2019-05-07 Neonode Inc. Touch sensitive curved and flexible displays
TWI497099B (zh) * 2013-04-19 2015-08-21 Pixart Imaging Inc 位移偵測裝置及其動態調整影像感測區域之方法
US10254855B2 (en) 2013-06-04 2019-04-09 Wen-Chieh Geoffrey Lee High resolution and high sensitivity three-dimensional (3D) cursor maneuvering device
KR101984417B1 (ko) * 2015-01-26 2019-05-30 네오노드, 인크. 광학 근접 센서 및 관련된 사용자 인터페이스
US11307730B2 (en) 2018-10-19 2022-04-19 Wen-Chieh Geoffrey Lee Pervasive 3D graphical user interface configured for machine learning
US11216150B2 (en) 2019-06-28 2022-01-04 Wen-Chieh Geoffrey Lee Pervasive 3D graphical user interface with vector field functionality
US11842014B2 (en) 2019-12-31 2023-12-12 Neonode Inc. Contactless touch input system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4794384A (en) * 1984-09-27 1988-12-27 Xerox Corporation Optical translator device
US5103106A (en) * 1990-09-11 1992-04-07 Moshe Golberstein Reflective optical instrument for measuring surface reflectance
US6373047B1 (en) * 1998-12-21 2002-04-16 Microsoft Corp Image sensing operator input device
US6424407B1 (en) * 1998-03-09 2002-07-23 Otm Technologies Ltd. Optical translation measurement
CN1360275A (zh) * 2000-12-21 2002-07-24 三星电机株式会社 光学式鼠标
US6525306B1 (en) * 2000-04-25 2003-02-25 Hewlett-Packard Company Computer mouse with integral digital camera and method for using the same

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3881879A (en) * 1971-10-05 1975-05-06 Reynolds Metals Co Al-Si-Mg alloy
US3881819A (en) * 1972-11-22 1975-05-06 Nippon Electric Co Cassette-type hologram graphic tablet
US4168906A (en) * 1978-04-19 1979-09-25 The United States Of America As Represented By The Secretary Of Commerce Differential Doppler velocity sensor
US4294544A (en) * 1979-08-03 1981-10-13 Altschuler Bruce R Topographic comparator
US4470696A (en) * 1981-10-14 1984-09-11 Systems Research Laboratories, Inc. Laser doppler velocimeter
US4553842A (en) * 1983-05-09 1985-11-19 Illinois Tool Works Inc. Two dimensional optical position indicating apparatus
US4664513A (en) * 1984-09-25 1987-05-12 Cornell Research Foundation, Inc. Multidimensional vorticity measurement optical probe system
US4857903A (en) * 1986-05-06 1989-08-15 Summagraphics Corporation Electro-optical mouse with improved resolution for compensation of optical distortion
US4751380A (en) * 1986-11-25 1988-06-14 Msc Technologies, Inc. Detector system for optical mouse
JPH0698827B2 (ja) * 1987-01-29 1994-12-07 富士写真フイルム株式会社 感熱記録紙
JPH0313534U (zh) * 1989-06-23 1991-02-12
JP2801360B2 (ja) * 1990-05-21 1998-09-21 キヤノン株式会社 ドツプラ速度計
EP0461437B1 (en) * 1990-05-22 1998-07-29 Canon Kabushiki Kaisha Information recording apparatus
JPH0452559A (ja) * 1990-06-20 1992-02-20 Omron Corp 空間フィルタ式速度計測装置
GB9026622D0 (en) * 1990-12-07 1991-01-23 Ometron Limited Apparatus for the measurement of surface shape
US5729009A (en) * 1992-10-05 1998-03-17 Logitech, Inc. Method for generating quasi-sinusoidal signals
JP3279116B2 (ja) * 1994-03-22 2002-04-30 株式会社豊田中央研究所 レーザドップラ流速計
IT1272219B (it) * 1994-04-27 1997-06-16 Siv Soc Italiana Vetro Apparecchio per il controllo di una finestra elettrocromica
US5578813A (en) * 1995-03-02 1996-11-26 Allen; Ross R. Freehand image scanning device which compensates for non-linear movement
US5786804A (en) * 1995-10-06 1998-07-28 Hewlett-Packard Company Method and system for tracking attitude
US6690474B1 (en) * 1996-02-12 2004-02-10 Massachusetts Institute Of Technology Apparatus and methods for surface contour measurement
US6256016B1 (en) * 1997-06-05 2001-07-03 Logitech, Inc. Optical detection system, device, and method utilizing optical matching
US6685313B2 (en) * 1997-06-30 2004-02-03 Hewlett-Packard Development Company, L.P. Early transparency detection routine for inkjet printing
US6069700A (en) * 1997-07-31 2000-05-30 The Boeing Company Portable laser digitizing system for large parts
US6220686B1 (en) * 1998-02-13 2001-04-24 Ascom Hasler Mailing Systems Ag Measurement of paper speed using laser speckle detection
US6219145B1 (en) * 1998-02-17 2001-04-17 California Institute Of Technology Interferometric system for precision imaging of vibrating structures
CA2322874A1 (en) 1998-03-09 1999-09-16 Otm Technologies, Ltd. Optical translation measurement
AU6633798A (en) * 1998-03-09 1999-09-27 Gou Lite Ltd. Optical translation measurement
US6268599B1 (en) * 1998-12-11 2001-07-31 Avision Inc. Optical sensor switch system for a scanner
US6442725B1 (en) * 1999-02-18 2002-08-27 Agilent Technologies, Inc. System and method for intelligent analysis probe
US6222174B1 (en) * 1999-03-05 2001-04-24 Hewlett-Packard Company Method of correlating immediately acquired and previously stored feature information for motion sensing
US6219143B1 (en) * 1999-06-16 2001-04-17 Bandag, Incorporated Method and apparatus for analyzing shearogram images by animation
US6564168B1 (en) * 1999-09-14 2003-05-13 Immersion Corporation High-resolution optical encoder with phased-array photodetectors
US6380529B1 (en) * 1999-09-29 2002-04-30 Hewlett-Packard Company Position sensing device having a movable photosensing element
US6642506B1 (en) * 2000-06-01 2003-11-04 Mitutoyo Corporation Speckle-image-based optical position transducer having improved mounting and directional sensitivities
US6592039B1 (en) 2000-08-23 2003-07-15 International Business Machines Corporation Digital pen using interferometry for relative and absolute pen position
ATE463004T1 (de) * 2000-11-06 2010-04-15 Koninkl Philips Electronics Nv Verfahren zur messung der bewegung eines eingabegeräts
KR100399635B1 (ko) * 2000-12-21 2003-09-29 삼성전기주식회사 광학식 마우스
US6621483B2 (en) * 2001-03-16 2003-09-16 Agilent Technologies, Inc. Optical screen pointing device with inertial properties
US6774351B2 (en) * 2001-05-25 2004-08-10 Agilent Technologies, Inc. Low-power surface for an optical sensor
JP2003202205A (ja) * 2001-12-28 2003-07-18 Mitsubishi Electric Corp 光学式距離センサ
US6903888B2 (en) * 2002-06-28 2005-06-07 Seagate Technology Llc Detection of defects embedded in servo pattern on stamper by using scattered light
JP2004151927A (ja) 2002-10-30 2004-05-27 Mitsumi Electric Co Ltd マウス入力装置
US7050798B2 (en) * 2002-12-16 2006-05-23 Microsoft Corporation Input device with user-balanced performance and power consumption
AU2003299805A1 (en) 2002-12-20 2004-07-22 Itac Systems, Inc. Cursor control device
US7019733B2 (en) * 2003-03-31 2006-03-28 Ban Kuan Koay Optical mouse adapted for use on glass surfaces
US7116427B2 (en) * 2003-10-30 2006-10-03 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Low power consumption, broad navigability optical mouse
US20040227954A1 (en) * 2003-05-16 2004-11-18 Tong Xie Interferometer based navigation device
US7321359B2 (en) * 2003-07-30 2008-01-22 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Method and device for optical navigation
US6934037B2 (en) * 2003-10-06 2005-08-23 Agilent Technologies, Inc. System and method for optical navigation using a projected fringe technique
US7400317B2 (en) * 2003-08-29 2008-07-15 Avago Technologies Ecbu Ip Pte Ltd Finger navigation system using captive surface
TWI230359B (en) * 2003-11-21 2005-04-01 Pacing Technology Co Ltd Optical image retrieval method
US7394454B2 (en) * 2004-01-21 2008-07-01 Microsoft Corporation Data input device and method for detecting lift-off from a tracking surface by electrical impedance measurement
US7439954B2 (en) * 2004-04-15 2008-10-21 Logitech Europe S.A. Multi-light-source illumination system for optical pointing devices
US7339575B2 (en) * 2004-05-25 2008-03-04 Avago Technologies Ecbu Ip Pte Ltd Optical pointing device with variable focus
US7189985B2 (en) * 2004-10-30 2007-03-13 Avago Technologies General Ip (Singapore) Pte. Ltd. Tracking separation between an object and a surface using a reducing structure
US8081159B2 (en) * 2005-02-24 2011-12-20 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Programmable lift response for an optical navigation device
US7898524B2 (en) * 2005-06-30 2011-03-01 Logitech Europe S.A. Optical displacement detection over varied surfaces
US7399954B2 (en) * 2005-08-16 2008-07-15 Avago Technologies Ecbu Ip Pte Ltd System and method for an optical navigation device configured to generate navigation information through an optically transparent layer and to have skating functionality

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4794384A (en) * 1984-09-27 1988-12-27 Xerox Corporation Optical translator device
US5103106A (en) * 1990-09-11 1992-04-07 Moshe Golberstein Reflective optical instrument for measuring surface reflectance
US6424407B1 (en) * 1998-03-09 2002-07-23 Otm Technologies Ltd. Optical translation measurement
US6373047B1 (en) * 1998-12-21 2002-04-16 Microsoft Corp Image sensing operator input device
US6525306B1 (en) * 2000-04-25 2003-02-25 Hewlett-Packard Company Computer mouse with integral digital camera and method for using the same
CN1360275A (zh) * 2000-12-21 2002-07-24 三星电机株式会社 光学式鼠标

Also Published As

Publication number Publication date
TW200504603A (en) 2005-02-01
US7161682B2 (en) 2007-01-09
JP2005050350A (ja) 2005-02-24
US7321359B2 (en) 2008-01-22
US20050024623A1 (en) 2005-02-03
EP1503274A3 (en) 2006-08-09
US20050024336A1 (en) 2005-02-03
CN1577387A (zh) 2005-02-09
TWI339347B (en) 2011-03-21
EP1503274A2 (en) 2005-02-02

Similar Documents

Publication Publication Date Title
CN100432905C (zh) 光学导引方法和设备
US6249591B1 (en) Method and apparatus for control of robotic grip or for activating contrast-based navigation
US7274461B2 (en) Optical lens system and position measurement system using the same
CN100592029C (zh) 测距设备
US10330466B2 (en) Compensation of light intensity across a line of light providing improved measuring quality
JP4463612B2 (ja) 2次元絶対位置検出装置及び2次元絶対位置検出方法
US7095002B2 (en) Adaptive lighting control for vision-based occupant sensing
KR20010041694A (ko) 물체 위치 검출용 광 센서 시스템
JP2011117917A (ja) スペックルの定位方法およびその定位系統
US20090102793A1 (en) Optical mouse
CN101346620A (zh) 光学测量设备
CN110285788A (zh) ToF相机及衍射光学元件的设计方法
CN1591468B (zh) 用于光学导引的方法和设备
JPH05332733A (ja) 検出光学系並びに立体形状検出方法
US5568258A (en) Method and device for measuring distortion of a transmitting beam or a surface shape of a three-dimensional object
US20020149762A1 (en) Chromatic diffraction range finder
CN214251479U (zh) 一种用于光束视角的测量设备
KR20190129693A (ko) 3d 구조의 광 적용을 위한 고감도 저전력 카메라 시스템
CN1367754A (zh) 边缘检测器
CN101751148B (zh) 一种不变形光斑的取像装置与方法
US6601767B1 (en) Ambient light sensing apparatus and method for a produce data collector
US8325140B2 (en) Illumination spot alignment
CN1979394A (zh) 光斑取像装置与方法
Di Leo et al. Illumination design in vision-based measurement systems
KR20100055833A (ko) 이미지 불변 광 스펙클 캡쳐링 디바이스 및 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: ANHUA HIGH SCIENCE ECBU IP (SINGAPORE)PRIVATE CO.

Free format text: FORMER OWNER: AVAGO TECHNOLOGIES GENERAL IP

Effective date: 20061124

Owner name: AVAGO TECHNOLOGIES GENERAL IP

Free format text: FORMER OWNER: ANJELEN SCI. + TECH. INC.

Effective date: 20061124

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20061124

Address after: Singapore Singapore

Applicant after: ANHUA HIGH TECHNOLOGY ECBUIP (SINGAPORE) PRIVATE Ltd.

Address before: Singapore Singapore

Applicant before: Avago Technologies General IP (Singapore) Pte. Ltd.

Effective date of registration: 20061124

Address after: Singapore Singapore

Applicant after: Avago Technologies General IP (Singapore) Pte. Ltd.

Address before: California, USA

Applicant before: AGILENT TECHNOLOGIES, Inc.

C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) CORPORAT

Free format text: FORMER OWNER: AVAGO TECHNOLOGIES ECBU

Effective date: 20130428

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20130428

Address after: Singapore Singapore

Patentee after: Avago Technologies General IP (Singapore) Pte. Ltd.

Address before: Singapore Singapore

Patentee before: ANHUA HIGH TECHNOLOGY ECBUIP (SINGAPORE) PRIVATE Ltd.

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20161025

Address after: Chinese Taiwan New Taipei City

Patentee after: PixArt Imaging Inc.

Address before: Singapore Singapore

Patentee before: Avago Technologies General IP (Singapore) Pte. Ltd.

CX01 Expiry of patent term

Granted publication date: 20081112