CN100388415C - 半导体材料和形成半导体材料的方法 - Google Patents

半导体材料和形成半导体材料的方法 Download PDF

Info

Publication number
CN100388415C
CN100388415C CNB2005100691176A CN200510069117A CN100388415C CN 100388415 C CN100388415 C CN 100388415C CN B2005100691176 A CNB2005100691176 A CN B2005100691176A CN 200510069117 A CN200510069117 A CN 200510069117A CN 100388415 C CN100388415 C CN 100388415C
Authority
CN
China
Prior art keywords
layer
substrate
semiconductor layer
lamination
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2005100691176A
Other languages
English (en)
Other versions
CN1705077A (zh
Inventor
D·奇丹巴尔拉奥
O·H·多库马奇
O·格卢斯陈克夫
朱慧珑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of CN1705077A publication Critical patent/CN1705077A/zh
Application granted granted Critical
Publication of CN100388415C publication Critical patent/CN100388415C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823878Complementary field-effect transistors, e.g. CMOS isolation region manufacturing related aspects, e.g. to avoid interaction of isolation region with adjacent structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1054Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility

Abstract

本发明提供了一种应变Si结构,其中该结构的nFET区域发生拉伸应变,该结构的pFET区域发生压缩应变。具体地说,应变Si结构包括:衬底;在衬底上的第一叠层,该第一叠层包括衬底的第一含Si部分、在衬底的第一含Si部分上的压缩层、以及在压缩层上的第一半导体层;以及在衬底上的第二叠层,该第二叠层包括衬底的第二含Si部分、在衬底的第二含Si部分上的拉伸层、以及在拉伸层上的第二半导体层。

Description

半导体材料和形成半导体材料的方法
技术领域
本发明涉及电子和空穴的迁移率得到提高的半导体材料,尤其涉及电子和空穴的迁移率得到提高的包括含硅(Si)层的半导体材料。本发明还提供了用于形成该半导体材料的方法。
背景技术
经过三十多年,硅金属氧化物半导体场效应晶体管(MOSFET)的持续小型化已经驱动了全球半导体工业。对持续小型化的各种中断因素已经断言了几十年,但是创新的历史不断证实了摩尔定律,尽管有很多困难。然而,如今的发展表现出MOSFET正开始达到其传统的小型化极限。在2002年更新的International Technology Roadmap for Semiconductor(ITRS)的“Grand Challenges”部分中可以找到对持续CMOS小型化的短期和长期困难的简要说明。在Proc.IEEE,Vol.89,No.3,March 2001(说明半导体技术极限的特定文献)中可以找到对器件、材料、电路以及系统的全面论述。
因为通过持续小型化来改进MOSFET以及互补金属氧化物半导体(CMOS)的性能变得越来越困难,从而不通过小型化来改进性能的方法变得非常重要。一种这样的方法是增加载流子(电子和/或空穴)迁移率。提高载流子迁移率的一种方法是在Si晶格中引入适当的应变。
应力或应变的施加改变了含Si的晶格尺寸。通过改变晶格尺寸,也改变了材料的能隙。该变化在本征半导体中可能是轻微的,只导致电阻值的微小变化,但是当半导体材料被掺杂,如n型,并被部分离子化时,能隙的微小变化将导致在杂质能级和带边之间的能量差的巨大百分比变化。从而,具有应力的材料的电阻值的变化是巨大的。
现有的尝试提供了半导体衬底的基于应变的改进,其中利用了蚀刻停止里衬或嵌入SiGe结构。n型沟道场效应晶体管(nFET)需要在沟道上的拉伸力用于基于应变的器件改进,而p型沟道场效应晶体管(pFET)需要在沟道上的压缩力用于基于应变的器件改进。半导体器件的进一步小型化需要控制在衬底中产生的应变水平以及开发新方法用于增加可以产生的应变。
从上述现有技术来看,存在持续的需求,在体Si或SOI衬底中提供应变Si衬底,其中对于nFET和pFET器件,衬底都可以适当地应变。
发明内容
本发明提供了一种应变Si衬底,其中衬底的nFET区域发生拉伸应变,衬底的pFET区域发生压缩应变。本发明还提供了结合体Si或SOI衬底结构的应变Si衬底。
通过在半导体层下设置压缩SiGe层或拉伸Si:C层,在本发明中实现了上述目的。术语“压缩SiGe层”表示发生内部压缩应变(也称为本征压缩应变)的SiGe层,其中通过较大晶格尺寸的压缩SiGe层与较小晶格尺寸的在其上外延生长压缩SiGe层的层之间的晶格失配,来产生压缩应变。术语“拉伸Si:C层”表示发生内部拉伸应变(也称为本征拉伸应变)的Si:C层,其中通过较小晶格尺寸的拉伸Si:C层与较大晶格尺寸的在其上外延生长拉伸Si:C层的层之间的晶格失配,来产生拉伸应变。
压缩SiGe层弹性地将拉伸应力传递到上面的半导体层。因此,压缩SiGe层提供了对n型场效应晶体管(nFET)的基于应变的器件改进。拉伸Si:C层弹性地将压缩应变传递到上面的半导体层。因此,拉伸Si:C层提供了对p型场效应晶体管(pFET)的基于应变的器件改进。具体地说,本发明的应变Si衬底包括:
衬底;
在衬底上的第一叠层,该第一叠层包括衬底的第一含Si部分、在衬底的第一含Si部分上的压缩层、以及在压缩层上的第一半导体层;
在衬底上的第二叠层,该第二叠层包括衬底的第二含Si部分、在衬底的第二含Si部分上的拉伸层、以及在拉伸层上的第二半导体层;以及分离第一叠层和第二叠层的隔离区域。
结合到第一叠层中的压缩层的晶格尺寸大于下面的衬底的含Si部分。压缩层可以包括SiGe。第一半导体层可以是晶格尺寸小于压缩层的含Si材料。
压缩层弹性地将拉伸应变传递到上面的第一半导体层。因此,第一半导体层发生应变以提供对nFET器件的应变Si器件改进,其中从压缩层传递到上面的第一半导体层的拉伸应变增加了n型沟道的载流子迁移率。
结合到第二叠层中的拉伸层的晶格尺寸小于下面的衬底的含Si部分。拉伸层可以包括掺杂碳的硅(Si:C)。第二半导体层可以是晶格尺寸大于拉伸层的含Si材料。
拉伸层弹性地将压缩应变传递到第二半导体层。因此,第二半导体层发生应变以提供对pFET器件的应变Si器件改进,其中从拉伸层传递到上面的第二半导体层的压缩应变增加了p型沟道的载流子迁移率。在其上形成有第一叠层和第二叠层的衬底可以是SOI衬底或体Si衬底。
本发明的另一方面是用于形成上述应变Si衬底的方法。具体地说,本发明的用于形成应变Si衬底的方法包括:
提供含Si衬底;
在含Si衬底的第一部分上形成第一叠层,该第一叠层包括位于含Si衬底的第一部分上的压缩层、在压缩层上的第一半导体层、以及在第一半导体层上的第一蚀刻阻挡层;
在含Si衬底的第二部分上形成第二叠层,该第二叠层包括位于含Si衬底的第二部分上的拉伸层、在拉伸层上的第二半导体层、以及在第二半导体层上的第二蚀刻阻挡层;
蚀刻含Si衬底,相对于第一蚀刻阻挡层和第二蚀刻阻挡层具有选择性,其中压缩层弹性地将拉伸应变传递到第一半导体层,并且拉伸层弹性地将压缩应变传递到第二半导体层;
除去第一蚀刻阻挡层和第二蚀刻阻挡层;以及
在第一叠层和第二叠层之间形成隔离区域。
可以通过在含Si衬底上外延生长SiGe来形成压缩层,其中SiGe的生长厚度小于SiGe的临界厚度。如果SiGe的厚度大于临界厚度,该层由于缺陷的形成将发生弛豫。可以通过外延生长Si、并在其中就地掺杂碳来形成拉伸层。拉伸Si:C层的生长厚度小于Si:C的临界厚度。如果Si:C的厚度超过其临界厚度,该层将由于缺陷的形成将发生弛豫。为了维持拉伸层内的拉伸,Si:C的厚度不能大于临界厚度。
附图说明
图1(a)(通过截面图)示出了本发明的一个实施例,其中包括SOI衬底,所述衬底具有压缩应变半导体部分和拉伸应变半导体部分;
图1(b)(通过截面图)示出了本发明的一个实施例,其中包括体Si衬底,所述衬底包括压缩应变半导体部分和拉伸应变半导体部分;
图2(通过截面图)示出了本发明的一个实施例中的压缩应力和拉伸应力,其中具有包括SiGe层的材料叠层;
图3(通过截面图)示出了本发明的一个实施例中的压缩应力和拉伸应力,其中具有包括Si:C层的材料叠层;
图4(a)-10(a)(通过截面图)示出了制造如图1(a)所示结构的工艺步骤;
图4(b)-10(b)(通过截面图)示出了制造如图1(b)所示结构的工艺步骤。
具体实施方式
本发明提供了衬底及其形成方法,所述衬底包括压缩应变半导体部分和拉伸应变半导体部分。
本发明通过在衬底上形成第一和第二材料叠层,有利地提供了同时具有压缩应变和拉伸应变半导体部分的衬底,其中第一材料叠层包括压缩层,其弹性地将拉伸应变传递到上面的半导体部分,而第二材料叠层包括拉伸层,其弹性的将压缩应变传递到上面的半导体部分。现在参考本申请的附图更详细地说明本发明。在所述附图中,类似的标号表示类似或对应的部分。
本发明提供不同晶格材料的材料叠层,用于可以结合到同一衬底上的nFET和pFET器件。有利的是,nFET具有拉伸应变的沟道区域,而pFET具有压缩应变的沟道,其中施加到沟道上的应变提高了器件的性能。
参考图1(a),在本发明的一个实施例中,在绝缘体上硅(SOI)衬底30的掩埋绝缘层15上设置nFET叠层11和pFET叠层12,其中由隔离区域13分离nFET叠层11和pFET叠层12。
nFET叠层11包括第一半导体层16、压缩SiGe层17以及含Si衬底部分18。从SOI衬底30的上含Si层形成含Si衬底部分18。压缩SiGe层17弹性地将拉伸应变传递到上面的第一半导体层16上。第一半导体层16发生拉伸应变,从而非常适于作为nFET器件的沟道区域。
pFET叠层12包括第二半导体层20、拉伸Si:C层21以及含Si衬底部分18。从SOI衬底30的上含Si层形成含Si衬底部分18。拉伸Si:C层21弹性地将压缩应变传递到上面的第二半导体层20。第二半导体层20发生压缩应变,从而非常适于作为pFET器件的沟道区域。
图1(b)示出了本发明的另一个实施例,其中在体硅(体Si)衬底14上形成nFET叠层11和pFET叠层12。在该实施例中,nFET叠层11和pFET叠层12的含Si衬底部分18是体Si衬底14的台面部分,其通过利用定时定向蚀刻工艺形成。
参考图2,通过位于叠层结构中的不同晶格材料的适当结合,形成了在nFET叠层11的第一半导体层16中形成的拉伸应变。尤其是,含Si衬底部分18和压缩SiGe层17的晶格结构允许SiGe层被压缩应变。所述压缩应变的是由于在较小晶格尺寸的下面的含Si衬底部分18上外延生长较大晶格尺寸的SiGe而导致的。硅的晶格尺寸大约为
Figure C20051006911700091
,而Ge的晶格尺寸大约为
Figure C20051006911700101
。在外延生长中,生长SiGe以使SiGe的较大的晶格结构生长在下面的含Si衬底部分18的较小晶格结构的上面,并与其对准。因此,将SiGe生长为具有较小的晶格而不是能量最适的,从而在SiGe中形成压缩应变。
在压缩SiGe层17上外延生长第一半导体层16,其中第一半导体层16包括含Si材料,所述材料的晶格结构小于压缩SiGe层17。在外延生长第一半导体层16后,蚀刻nFET叠层11,使得压缩SiGe层17的暴露边缘弹性地弛豫,并将拉伸应变传递到上面的第一半导体层16。参考图2,提供了对本发明的nFET叠层11的一个实施例的模拟,其中实线表示拉伸应力,虚线表示压缩应力。在所示的模拟中,形成厚度在约
Figure C20051006911700102
量级的压缩SiGe层17,其包括浓度为约25%的原子重量%的Ge,其中通过上述的晶格失配,产生约2000MPa量级的压缩应力。再参考图2,压缩SiGe层17弹性地将250MPa量级的拉伸应力传递到上面的第一半导体层16,所述层16包括厚度在约
Figure C20051006911700103
量级的外延生长硅。
现在参考图3,通过位于叠层结构中的不同晶格尺寸的材料的适当结合,产生了在pFET叠层12的第二半导体层20中产生的压缩应变。尤其是,含Si衬底部分18和拉伸Si:C层21的晶格结构允许Si:C层21被拉伸应变。所述拉伸应变是由于在较大晶格尺寸的下面的含Si衬底部分18上外延生长较小晶格尺寸的Si:C层而导致的。引入Si中的碳原子的尺寸足够小,使得当将碳原子结合到Si材料层中时,在碳原子周围产生拉伸应变场。通过将碳结合到Si材料层中,在材料层中对于每2%的原子重量%的碳可以产生约1000MPa量级的拉伸应变。
外延生长拉伸Si:C层21,从而Si:C的较小晶格结构在下面的含Si层18的较大晶格结构上生长,并与其对准。因此,将Si:C生长为具有较大晶格而不是能量最适的,从而在Si:C中产生拉伸应变。
在拉伸Si:C层21上外延生长第二半导体层20,其中第二半导体层20包括含Si材料,所述材料的晶格结构大于拉伸Si:C层21,在外延生长第二半导体层20后,蚀刻pFET叠层12,以使拉伸Si:C层21的暴露边缘弹性地弛豫并将压缩应变传递到上面的第二半导体层20。
参考图3,提供了对本发明的pFET叠层12的一个实施例的模拟,其中实线表示拉伸应力,虚线表示压缩应力。在所示的模拟中,形成厚度在
Figure C20051006911700111
量级的拉伸Si:C层21,其包括浓度为约4%的原子重量%的C,其中通过上述晶格失配产生的拉伸应力为约2000MPa量级。再参考图3,拉伸Si:C层21弹性地将250MPa量级的压缩应力传递到上面的第二半导体层20,所述层20包括厚度在约
Figure C20051006911700112
量级的外延生长硅。
如上所述,通过沉积具有与在其上生长材料层(如含硅衬底)的表面不同的能量最适晶格尺寸的材料层(如压缩SiGe层17或拉伸Si:C层21),产生了应变,因为所述材料层的晶格尺寸发生了应变,以匹配在其上生长材料层的表面的晶格尺寸。这种生长形式可以称为假晶生长。
只要所述材料层的生长厚度小于等于其临界厚度,将保持在所述材料层中产生的应变。如果材料层的生长厚度大于其临界厚度,材料层将生长为具有其能量最适的晶格尺寸,所述晶格尺寸不同于在其上生长材料层的表面的晶格尺寸。这种生长可以称为不适应(incommensurate)生长,其中材料层的晶格尺寸不再匹配在其上沉积材料层的表面。材料层与在其上生长材料层的表面的晶格尺寸的差异,导致了失配位错的形成。
一旦沉积的层超过其临界厚度,通过例如位错运动的滑移机制将发生弛豫。弛豫不利地减小了在沉积的层中形成的内部应变。“临界厚度”是所述层不发生弛豫的最大厚度。
为了保持在本发明的压缩SiGe层17、拉伸Si:C层21、第一半导体层16以及第二半导体层20中形成的应变,在其中形成应变的层的厚度必须低于其临界厚度。以位错密度表示,本发明的临界厚度是应变层的最大厚度,其中位错密度小于1.0×105cm-2
下面将更加详细地讨论用于形成同时包括适当应变的nFET和pFET区域的含Si衬底的方法。参考图4(a)-9(a)描述用于在如图1(a)所示的绝缘体上硅(SOI)衬底上形成适当应变的nFET和pFET区域的方法。参考图4(b)-9(b)描述用于在如图1(b)所示的体Si衬底上形成适当应变的nFET和pFET区域的方法。
参考图4(a),提供了SOI衬底30,其包括底部含Si层19、在底部含Si层19上的掩埋绝缘层15、以及在掩埋绝缘层15表面上的顶部含Si层18。这里使用的术语“含Si层”表示包括硅的材料。含Si材料的说明性示例包括但不限于:Si、SiGe、SiGeC、SiC、多晶硅即polySi、外延硅即epi-Si、非晶硅即a:Si、及其多层。用于顶部和底部含Si层18和19的优选含Si材料为Si。
SOI衬底10的顶部含Si层18通常具有小于约300nm的垂直厚度tv,即厚度,其垂直厚度通常为约20nm到约50nm。顶部含Si层18的成分的晶格尺寸应该小于随后形成的压缩SiGe层的晶格尺寸、大于随后形成的拉伸Si:C层的晶格尺寸。下文中将顶部含Si层18称为含Si衬底部分18。
掩埋绝缘层15的厚度可以变化,不过通常掩埋绝缘层15的厚度小于约350nm,更优选为约70nm到约150nm。底部含Si层19的厚度对于本发明是不重要的。
利用本领域的技术人员所熟知的技术形成SOI衬底30。例如可以利用热键合工艺形成SOI衬底30,或者可选地,可以利用离子注入工艺形成SOI衬底30,其在本领域中是指氧离子注入隔离(SIMOX)。当采用热键合工艺来形成SOI衬底30时,可以利用可选的薄化步骤使顶部含Si层18薄化为超薄结构,其量级小于50nm。衬底30也可以为体Si衬底14,优选包括单晶Si,如图4(b)所示。
参考图5(a),然后在如图4(a)所示的整个SOI衬底30上形成压缩SiGe层17。可以利用外延生长工艺生长压缩SiGe层17。压缩SiGe层17的Ge含量可以在5%到50%的原子重量%的范围,优选在10%到20%的范围,更优选为15%。
压缩SiGe层17的生长厚度小于其临界厚度。通常,压缩SiGe层17的生长厚度的范围为从约10nm到约100nm。压缩SiGe层17的临界厚度取决于该层的Ge浓度。该临界厚度还易于受到高温处理步骤例如活性退火的影响,该高温处理步骤在约1100℃的量级。SiGe生长工艺的温度在从约500℃到约800℃的范围。在一个实例中,当压缩SiGe层17的Ge含量在约15%的原子重量%的量级时,压缩SiGe层17的临界厚度在约100nm的量级。注意,高温处理步骤可能将压缩SiGe层17的临界厚度减小到约20nm。图5(b)示出了当在体Si衬底14上形成压缩SiGe层17时的该工艺步骤。
参考图5(a),然后在压缩SiGe层17上形成第一半导体层16。第一半导体层16包括外延生长含Si材料,其晶格尺寸小于下面的压缩SiGe层17的晶格尺寸。
第一半导体层16可以生长为小于其临界厚度的厚度。通常,第一半导体层16的生长厚度可以在从约10nm到约100nm的范围。第一半导体层16的临界厚度在100nm或更小的量级,取决于下面的压缩SiGe层17的性质。在一个实例中,当压缩SiGe层17的Ge含量在约15%的原子重量%的量级时,第一半导体层16的临界厚度在约100nm的量级。注意,高温处理步骤可能将第一半导体层16的临界厚度减小到约20nm。图5(b)示出了当在位于体Si衬底14上的压缩SiGe层17上形成第一半导体层16时的该工艺步骤。
参考图5(a),在第一半导体层16上沉积形成第一覆盖层22。第一覆盖层22可以是任何介质,如氧化物、氮化物、或氧氮化物,优选为氮化物,如Si3N4。这里还考虑了所述介质的组合。利用沉积方法沉积第一覆盖层22,所述方法如化学气相沉积(CVD)、等离子体辅助CVD、高密度化学气相沉积(HDCVD)、以及化学溶液沉积。第一覆盖层22的厚度优选为在从约20nm到约30nm的范围。图5(b)示出了当利用体Si衬底14时的该工艺步骤。
参考图6(a),在下一个工艺步骤中构图和蚀刻第一覆盖层22以提供蚀刻掩膜,所述掩膜随后用于构图nFET叠层。尤其是,这样形成图形:在将被蚀刻的表面上施加光致抗蚀剂;将光致抗蚀剂暴露在照射图形下;以及然后利用常规的抗蚀剂显影器将图形显影到光致抗蚀剂中。一旦完成对光致抗蚀剂的构图,由光致抗蚀剂覆盖的第一覆盖层22的部分受到保护,而利用选择性蚀刻工艺除去暴露的区域,所述选择性蚀刻工艺除去第一覆盖层22的未保护区域,而基本上不蚀刻下面的第一半导体层16。然后将构图的第一覆盖层22用作蚀刻掩膜,来蚀刻第一半导体层16和压缩SiGe层17。优选利用例如反应离子蚀刻的定向蚀刻工艺来蚀刻第一半导体层16和压缩SiGe层17。
在优选实施例中,利用这样的蚀刻化学试剂来蚀刻第一半导体层16,所述试剂基本上不蚀刻第一覆盖层22或下面的压缩SiGe层17。在蚀刻第一半导体层16后,然后利用基本上不蚀刻含Si衬底部分18的蚀刻化学试剂蚀刻压缩SiGe层17。图6(b)示出了对在体Si衬底14上的第一覆盖层22、第一半导体层16以及压缩SiGe层17的构图和蚀刻。
参考图7(a),然后在图6(a)所示的整个结构的上形成拉伸Si:C层21。可以利用外延生长工艺生长拉伸Si:C层21。拉伸Si:C层21的C含量小于约6%的原子重量%,优选在从1%到4%的范围,更优选为3%。拉伸Si:C层17的生长厚度小于其临界厚度。通常,拉伸Si:C层17的生长厚度在从约10nm到约100nm的范围。拉伸Si:C层17的临界厚度取决于该层的C浓度。Si:C生长工艺的温度可以在从约500℃到约800℃的范围。在一个实例中,当拉伸Si:C层21的C含量在约3%的原子重量%的量级时,拉伸Si:C层21的临界厚度在约100nm的量级。注意,高温处理步骤可能将拉伸Si:C层17的临界厚度减小到约20nm。
参考图7(a),然后在拉伸Si:C层21上形成第二半导体层20。第二半导体层包括外延生长含Si材料,所述材料的晶格尺寸大于下面的拉伸Si:C层21的晶格尺寸。
第二半导体层20的生长厚度可以小于其临界厚度。通常,第二半导体层20的生长厚度可以在从约10nm到约100nm的范围。第二半导体层20的临界厚度在100nm或更小的量级,取决于下面的拉伸Si:C层20的性质。在一个实例中,当拉伸Si:C层21的C含量在约3%的原子重量%的量级时,第二半导体层20的临界厚度在约100nm的量级。注意,高温处理步骤可能将第二半导体层20的临界厚度减小到约20nm。图7(b)示出了当在位于体Si衬底14上的拉伸Si:C层21上形成第二半导体层20时的该工艺步骤。
参考图7(a),然后在第二半导体层20上形成第二覆盖层23。第二覆盖层23可以是任何介质,如氧化物、氮化物、氧氮化物或其组合,优选为氮化物,如Si3N4。利用沉积方法沉积第二覆盖层23,所述方法如化学气相沉积(CVD)、等离子体辅助CVD、高密度化学气相沉积(HDCVD)、以及化学溶液沉积。第二覆盖层23的厚度在从约20nm到约30nm的范围。图7(b)示出了当利用体Si衬底14时的该工艺步骤。
参考图8(a),在下一个工艺步骤中构图和蚀刻第二覆盖层23以提供蚀刻掩膜,所述掩膜随后用于构图pFET叠层。尤其是,这样形成图形:在将被蚀刻的表面上施加光致抗蚀剂;将光致抗蚀剂暴露在照射图形下;以及然后利用常规的抗蚀剂显影器将图形显影到光致抗蚀剂中。
一旦完成对光致抗蚀剂的构图,由光致抗蚀剂覆盖的第二覆盖层23的部分受到保护,而利用选择性蚀刻工艺除去暴露的区域,所述选择性蚀刻工艺除去第二覆盖层23的未保护区域,而基本上不蚀刻下面的第二半导体层20。然后将构图的第二覆盖层23用作蚀刻掩膜,来蚀刻第二半导体层20和拉伸Si:C层21。优选利用例如反应离子蚀刻的定向蚀刻工艺来蚀刻第二半导体层20和拉伸Si:C层21。
在优选实施例中,利用这样的蚀刻化学试剂来蚀刻第二半导体层20,所述试剂基本上不蚀刻第二覆盖层23或下面的拉伸Si:C层21。在蚀刻第二半导体层20后,然后利用基本上不蚀刻含Si衬底部分18的蚀刻化学试剂蚀刻拉伸Si:C层21。注意,第一覆盖层22在该蚀刻步骤中保护下面的第一半导体层16和压缩SiGe层17的部分。图8(b)示出了对在体Si衬底14上的第二覆盖层23、第二半导体层20以及拉伸Si:C层21的构图和蚀刻。
参考图9(a),在下一个工艺步骤中,然后利用高选择性直接蚀刻工艺蚀刻含Si衬底部分18,所述工艺如反应离子蚀刻,其中第一覆盖层22和第二覆盖层23用作nFET叠层11和pFET叠层12的蚀刻掩膜。优选为,蚀刻化学试剂选择性地蚀刻含Si衬底部分18,而基本不蚀刻第一覆盖层22和第二覆盖层23以及掩埋绝缘层15。该蚀刻工艺可以定时或利用端点检测。在蚀刻含Si衬底部分18后,利用湿蚀刻工艺除去第一覆盖层22和第二覆盖层23。
图9(b)示出了当在体Si衬底14上形成应变nFET11和pFET12叠层时的该工艺步骤。在该实施例中,利用高选择性的定向蚀刻工艺如反应离子蚀刻,来蚀刻体Si衬底14的上表面,其中第一覆盖层22和第二覆盖层23用作nFET叠层11和pFET叠层12的蚀刻掩膜。在该实施例中,蚀刻工艺可以定时,从而使体Si衬底14的表面的蚀刻深度在从约20nm到约50nm的范围。在衬底蚀刻时由第一和第二覆盖层22、23保护的体Si衬底14并在压缩SiGe层17和拉伸Si:C层21的下面的部分是nFET和pFET叠层11、12的含Si衬底部分18。
参考图9(a),然后形成隔离区域13,用于分离nFET叠层11和pFET叠层12。可以可选地用常规的里衬材料如氧化物或氮化物给隔离区域13加衬里,并且然后利用CVD或其它类似的沉积工艺用绝缘材料来填充沟槽。可以可选地在沉积后硬化所述介质。可以可选地利用例如化学机械抛光(CMP)的常规平面化工艺来提供平面结构。
图9(b)示出了形成隔离区域13用于分离nFET叠层11和pFET叠层12,其中nFET叠层11和pFET叠层12位于体Si衬底14上。在该实施例中,区域18表示体衬底上的平台(即未蚀刻)部分。
然后可以进行常规的nFET和pFET形成工艺,以如图10(a)和10(b)所示,在nFET叠层11上形成至少一个nFET器件35,以及在pFET叠层12上形成至少一个pFET器件40。
尽管参考本发明的优选实施例特定地示出和描述了本发明,但是应该理解,在不偏离本发明的精神和范围下,本领域的技术人员可以在形式和细节上对本发明进行上述和其它修改。因此,本发明不局限于所述和所示出的特定形式和细节,而是落入所附权利要求书的范围中。

Claims (20)

1.一种半导体材料,包括:
衬底;
在所述衬底上的第一叠层,所述第一叠层包括所述衬底的第一含Si部分、在所述衬底的所述第一含Si部分上的压缩层、以及在所述压缩层上的第一半导体层;以及
在所述衬底上的第二叠层,所述第二叠层包括所述衬底的第二含Si部分、在所述衬底的所述第二含Si部分上的拉伸层、以及在所述拉伸层上的第二半导体层。
2.根据权利要求1的半导体材料,其中所述衬底是绝缘体上硅衬底或体硅衬底。
3.根据权利要求1的半导体材料,其中所述压缩层包括SiGe,所述SiGe的Ge浓度在从5%到30%的原子重量百分数的范围。
4.根据权利要求1的半导体材料,其中所述拉伸层包括掺杂碳的硅,所述碳的浓度在从1%到6%的原子重量百分数的范围。
5.根据权利要求1的半导体材料,其中所述压缩层弹性地将拉伸应力传递到所述第一半导体层。
6.根据权利要求1的半导体材料,其中所述拉伸层弹性地将压缩应力传递到所述第二半导体层。
7.根据权利要求1的半导体材料,其中所述压缩层和所述拉伸层的厚度在10nm到100nm的范围。
8.根据权利要求1的半导体材料,其中在所述第一叠层上形成至少一个nFET器件。
9.根据权利要求1的半导体材料,其中在所述第二叠层上形成至少一个pFET器件。
10.根据权利要求1的半导体材料,其中所述第一叠层和所述第二叠层被隔离区域分离。
11.一种形成半导体材料方法,包括以下步骤:
提供含Si衬底;
在所述含Si衬底的第一部分上形成第一叠层,所述第一叠层包括位于所述含Si衬底的所述第一部分上的压缩层、在所述压缩层上的第一半导体层、以及在所述第一半导体层上的第一蚀刻阻挡层;
在所述含Si衬底的第二部分上形成第二叠层,所述第二叠层包括位于所述含Si衬底的所述第二部分上的拉伸层、在所述拉伸层上的第二半导体层、以及在所述第二半导体层上的第二蚀刻阻挡层;
蚀刻所述含Si衬底,相对于所述第一蚀刻阻挡层和所述第二蚀刻阻挡层具有选择性,其中所述压缩层弹性地将拉伸应变传递到所述第一半导体层,并且所述拉伸层弹性地将压缩应变传递到所述第二半导体层;
除去所述第一蚀刻阻挡层和所述第二蚀刻阻挡层;以及
在所述第一叠层和所述第二叠层之间形成隔离区域。
12.根据权利要求11的方法,其中所述压缩层包括SiGe。
13.根据权利要求12的方法,其中所述SiGe的Ge浓度在从5%到30%的原子重量百分数的范围。
14.根据权利要求11的方法,其中所述拉伸层包括Si:C,其中所述Si:C的碳浓度小于6%的原子重量百分数。
15.根据权利要求12的方法,其中形成所述第一叠层的步骤还包括:
在所述含Si衬底上外延生长SiGe,其中所述SiGe的生长厚度小于SiGe的临界厚度;
在所述SiGe上外延生长所述第一半导体层,其中所述第一半导体层的厚度小于第一半导体层的临界厚度;以及
沉积所述第一蚀刻阻挡层,其中所述第一蚀刻阻挡层包括介质。
16.根据权利要求15的方法,其中所述SiGe的临界厚度是这样的尺寸,在所述尺寸下所述SiGe层为压缩的。
17.根据权利要求15的方法,其中所述SiGe的临界厚度和所述半导体层的临界厚度是一个最大尺寸,在所述最大尺寸下,在所述SiGe和所述第一半导体层中形成的缺陷小于1.0×105cm-2
18.根据权利要求14的方法,其中形成所述第二叠层的步骤还包括:
在所述含Si衬底上外延生长Si:C,其中所述Si:C的生长厚度小于Si:C的临界厚度;
在所述Si:C上外延生长所述第二半导体层,其中所述第二半导体层的厚度小于第二半导体层的临界厚度;以及
沉积所述第二蚀刻阻挡层,其中所述第二蚀刻阻挡层包括介质。
19.根据权利要求18的方法,其中所述Si:C的临界厚度是这样的尺寸,在所述尺寸下所述Si:C层为拉伸的。
20.根据权利要求18的方法,其中所述Si:C的临界厚度和所述半导体层的临界厚度是一个最大尺寸,在所述最大尺寸下,在所述Si:C层和所述第二半导体层中形成的缺陷小于1.0×105cm-2
CNB2005100691176A 2004-06-03 2005-05-10 半导体材料和形成半导体材料的方法 Expired - Fee Related CN100388415C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/859,736 US7223994B2 (en) 2004-06-03 2004-06-03 Strained Si on multiple materials for bulk or SOI substrates
US10/859,736 2004-06-03

Publications (2)

Publication Number Publication Date
CN1705077A CN1705077A (zh) 2005-12-07
CN100388415C true CN100388415C (zh) 2008-05-14

Family

ID=35446703

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100691176A Expired - Fee Related CN100388415C (zh) 2004-06-03 2005-05-10 半导体材料和形成半导体材料的方法

Country Status (3)

Country Link
US (2) US7223994B2 (zh)
CN (1) CN100388415C (zh)
TW (1) TWI348179B (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7271043B2 (en) 2005-01-18 2007-09-18 International Business Machines Corporation Method for manufacturing strained silicon directly-on-insulator substrate with hybrid crystalline orientation and different stress levels
US20060234474A1 (en) * 2005-04-15 2006-10-19 The Regents Of The University Of California Method of transferring a thin crystalline semiconductor layer
US7998809B2 (en) * 2006-05-15 2011-08-16 Micron Technology, Inc. Method for forming a floating gate using chemical mechanical planarization
US7755171B2 (en) * 2006-07-24 2010-07-13 International Business Machines Corporation Transistor structure with recessed source/drain and buried etch stop layer and related method
US7462522B2 (en) 2006-08-30 2008-12-09 International Business Machines Corporation Method and structure for improving device performance variation in dual stress liner technology
US7696000B2 (en) * 2006-12-01 2010-04-13 International Business Machines Corporation Low defect Si:C layer with retrograde carbon profile
KR100824629B1 (ko) * 2006-12-29 2008-04-25 동부일렉트로닉스 주식회사 씨모스 이미지 센서 및 그 제조방법
US7888197B2 (en) * 2007-01-11 2011-02-15 International Business Machines Corporation Method of forming stressed SOI FET having doped glass box layer using sacrificial stressed layer
DE102007004861B4 (de) * 2007-01-31 2010-02-18 Advanced Micro Devices, Inc., Sunnyvale Transistor mit eingebettetem Si/Ge-Material auf einem verspannten Halbleiter-auf-Isolator-Substrat und Verfahren zum Herstellen des Transistors
US20090068824A1 (en) * 2007-09-11 2009-03-12 United Microelectronics Corp. Fabricating method of semiconductor device
US7524740B1 (en) 2008-04-24 2009-04-28 International Business Machines Corporation Localized strain relaxation for strained Si directly on insulator
FR2934085B1 (fr) * 2008-07-21 2010-09-03 Commissariat Energie Atomique Procede pour containdre simultanement en tension et en compression les canaux de transistors nmos et pmos respectivement
US8330170B2 (en) * 2008-12-05 2012-12-11 Micron Technology, Inc. Semiconductor device structures including transistors with energy barriers adjacent to transistor channels and associated methods
US8633470B2 (en) * 2009-12-23 2014-01-21 Intel Corporation Techniques and configurations to impart strain to integrated circuit devices
US8927364B2 (en) 2012-04-10 2015-01-06 International Business Machines Corporation Structure and method of high-performance extremely thin silicon on insulator complementary metal—oxide—semiconductor transistors with dual stress buried insulators
US8680576B2 (en) 2012-05-16 2014-03-25 Taiwan Semiconductor Manufacturing Company, Ltd. CMOS device and method of forming the same
US20150076559A1 (en) * 2013-09-17 2015-03-19 GlobalFoundries, Inc. Integrated circuits with strained silicon and methods for fabricating such circuits
US9735153B2 (en) 2014-07-14 2017-08-15 Samsung Electronics Co., Ltd. Semiconductor device having fin-type field effect transistor and method of manufacturing the same
US9607990B2 (en) 2015-08-28 2017-03-28 International Business Machines Corporation Method to form strained nFET and strained pFET nanowires on a same substrate
US9472671B1 (en) * 2015-10-31 2016-10-18 International Business Machines Corporation Method and structure for forming dually strained silicon
US10529716B1 (en) 2018-10-05 2020-01-07 International Business Machines Corporation Asymmetric threshold voltage VTFET with intrinsic dual channel epitaxy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09219524A (ja) * 1996-02-09 1997-08-19 Toshiba Corp 半導体装置及びその製造方法
US5906951A (en) * 1997-04-30 1999-05-25 International Business Machines Corporation Strained Si/SiGe layers on insulator
US20010003364A1 (en) * 1998-05-27 2001-06-14 Sony Corporation Semiconductor and fabrication method thereof
CN1388589A (zh) * 2001-05-14 2003-01-01 夏普公司 用硅绝缘体(SOI)基片上的应变Si/SiGe层的迁移率增强的NMOS和PMOS晶体管
US20030062537A1 (en) * 2001-10-02 2003-04-03 Nobuyuki Sugii Field-effect type semiconductor device for power amplifier

Family Cites Families (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3602841A (en) * 1970-06-18 1971-08-31 Ibm High frequency bulk semiconductor amplifiers and oscillators
US4853076A (en) * 1983-12-29 1989-08-01 Massachusetts Institute Of Technology Semiconductor thin films
US4665415A (en) * 1985-04-24 1987-05-12 International Business Machines Corporation Semiconductor device with hole conduction via strained lattice
EP0219641B1 (de) * 1985-09-13 1991-01-09 Siemens Aktiengesellschaft Integrierte Bipolar- und komplementäre MOS-Transistoren auf einem gemeinsamen Substrat enthaltende Schaltung und Verfahren zu ihrer Herstellung
US4958213A (en) * 1987-12-07 1990-09-18 Texas Instruments Incorporated Method for forming a transistor base region under thick oxide
US5354695A (en) * 1992-04-08 1994-10-11 Leedy Glenn J Membrane dielectric isolation IC fabrication
US5459346A (en) * 1988-06-28 1995-10-17 Ricoh Co., Ltd. Semiconductor substrate with electrical contact in groove
US5006913A (en) * 1988-11-05 1991-04-09 Mitsubishi Denki Kabushiki Kaisha Stacked type semiconductor device
US5108843A (en) * 1988-11-30 1992-04-28 Ricoh Company, Ltd. Thin film semiconductor and process for producing the same
US4952524A (en) * 1989-05-05 1990-08-28 At&T Bell Laboratories Semiconductor device manufacture including trench formation
US5310446A (en) * 1990-01-10 1994-05-10 Ricoh Company, Ltd. Method for producing semiconductor film
US5060030A (en) * 1990-07-18 1991-10-22 Raytheon Company Pseudomorphic HEMT having strained compensation layer
US5081513A (en) * 1991-02-28 1992-01-14 Xerox Corporation Electronic device with recovery layer proximate to active layer
US5371399A (en) 1991-06-14 1994-12-06 International Business Machines Corporation Compound semiconductor having metallic inclusions and devices fabricated therefrom
US5134085A (en) * 1991-11-21 1992-07-28 Micron Technology, Inc. Reduced-mask, split-polysilicon CMOS process, incorporating stacked-capacitor cells, for fabricating multi-megabit dynamic random access memories
US5391510A (en) * 1992-02-28 1995-02-21 International Business Machines Corporation Formation of self-aligned metal gate FETs using a benignant removable gate material during high temperature steps
US6008126A (en) 1992-04-08 1999-12-28 Elm Technology Corporation Membrane dielectric isolation IC fabrication
CN1129933A (zh) * 1993-08-31 1996-08-28 辉瑞大药厂 5-芳基吲哚衍生物
US5561302A (en) * 1994-09-26 1996-10-01 Motorola, Inc. Enhanced mobility MOSFET device and method
US5670798A (en) * 1995-03-29 1997-09-23 North Carolina State University Integrated heterostructures of Group III-V nitride semiconductor materials including epitaxial ohmic contact non-nitride buffer layer and methods of fabricating same
US5679965A (en) * 1995-03-29 1997-10-21 North Carolina State University Integrated heterostructures of Group III-V nitride semiconductor materials including epitaxial ohmic contact, non-nitride buffer layer and methods of fabricating same
US5557122A (en) * 1995-05-12 1996-09-17 Alliance Semiconductors Corporation Semiconductor electrode having improved grain structure and oxide growth properties
KR100213196B1 (ko) * 1996-03-15 1999-08-02 윤종용 트렌치 소자분리
US6403975B1 (en) * 1996-04-09 2002-06-11 Max-Planck Gesellschaft Zur Forderung Der Wissenschafteneev Semiconductor components, in particular photodetectors, light emitting diodes, optical modulators and waveguides with multilayer structures grown on silicon substrates
US5880040A (en) * 1996-04-15 1999-03-09 Macronix International Co., Ltd. Gate dielectric based on oxynitride grown in N2 O and annealed in NO
US6399970B2 (en) * 1996-09-17 2002-06-04 Matsushita Electric Industrial Co., Ltd. FET having a Si/SiGeC heterojunction channel
US5861651A (en) * 1997-02-28 1999-01-19 Lucent Technologies Inc. Field effect devices and capacitors with improved thin film dielectrics and method for making same
US5940736A (en) * 1997-03-11 1999-08-17 Lucent Technologies Inc. Method for forming a high quality ultrathin gate oxide layer
US6309975B1 (en) * 1997-03-14 2001-10-30 Micron Technology, Inc. Methods of making implanted structures
US6025280A (en) * 1997-04-28 2000-02-15 Lucent Technologies Inc. Use of SiD4 for deposition of ultra thin and controllable oxides
US5960297A (en) * 1997-07-02 1999-09-28 Kabushiki Kaisha Toshiba Shallow trench isolation structure and method of forming the same
JP3139426B2 (ja) * 1997-10-15 2001-02-26 日本電気株式会社 半導体装置
US6066545A (en) * 1997-12-09 2000-05-23 Texas Instruments Incorporated Birdsbeak encroachment using combination of wet and dry etch for isolation nitride
US6274421B1 (en) * 1998-01-09 2001-08-14 Sharp Laboratories Of America, Inc. Method of making metal gate sub-micron MOS transistor
KR100275908B1 (ko) * 1998-03-02 2000-12-15 윤종용 집적 회로에 트렌치 아이솔레이션을 형성하는방법
US6361885B1 (en) * 1998-04-10 2002-03-26 Organic Display Technology Organic electroluminescent materials and device made from such materials
US6165383A (en) 1998-04-10 2000-12-26 Organic Display Technology Useful precursors for organic electroluminescent materials and devices made from such materials
US5989978A (en) * 1998-07-16 1999-11-23 Chartered Semiconductor Manufacturing, Ltd. Shallow trench isolation of MOSFETS with reduced corner parasitic currents
JP4592837B2 (ja) * 1998-07-31 2010-12-08 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
US6319794B1 (en) * 1998-10-14 2001-11-20 International Business Machines Corporation Structure and method for producing low leakage isolation devices
US6235598B1 (en) * 1998-11-13 2001-05-22 Intel Corporation Method of using thick first spacers to improve salicide resistance on polysilicon gates
US20030087492A1 (en) * 2001-11-02 2003-05-08 Promos Technologies, Inc. Semiconductor device and method of manufacturing the same
US6117722A (en) * 1999-02-18 2000-09-12 Taiwan Semiconductor Manufacturing Company SRAM layout for relaxing mechanical stress in shallow trench isolation technology and method of manufacture thereof
US6255169B1 (en) * 1999-02-22 2001-07-03 Advanced Micro Devices, Inc. Process for fabricating a high-endurance non-volatile memory device
US6284626B1 (en) * 1999-04-06 2001-09-04 Vantis Corporation Angled nitrogen ion implantation for minimizing mechanical stress on side walls of an isolation trench
US6228694B1 (en) * 1999-06-28 2001-05-08 Intel Corporation Method of increasing the mobility of MOS transistors by use of localized stress regions
US6281532B1 (en) * 1999-06-28 2001-08-28 Intel Corporation Technique to obtain increased channel mobilities in NMOS transistors by gate electrode engineering
US6362082B1 (en) * 1999-06-28 2002-03-26 Intel Corporation Methodology for control of short channel effects in MOS transistors
US6656822B2 (en) * 1999-06-28 2003-12-02 Intel Corporation Method for reduced capacitance interconnect system using gaseous implants into the ILD
KR100332108B1 (ko) * 1999-06-29 2002-04-10 박종섭 반도체 소자의 트랜지스터 및 그 제조 방법
TW426940B (en) * 1999-07-30 2001-03-21 United Microelectronics Corp Manufacturing method of MOS field effect transistor
US6483171B1 (en) 1999-08-13 2002-11-19 Micron Technology, Inc. Vertical sub-micron CMOS transistors on (110), (111), (311), (511), and higher order surfaces of bulk, SOI and thin film structures and method of forming same
US6284623B1 (en) * 1999-10-25 2001-09-04 Peng-Fei Zhang Method of fabricating semiconductor devices using shallow trench isolation with reduced narrow channel effect
EP1102327B1 (en) * 1999-11-15 2007-10-03 Matsushita Electric Industrial Co., Ltd. Field effect semiconductor device
SE515480C2 (sv) * 1999-12-15 2001-08-13 Permanova Lasersystem Ab Metod och anordning för att mäta förlusteffekten i ett fiberoptiskt kontaktdon
US6476462B2 (en) * 1999-12-28 2002-11-05 Texas Instruments Incorporated MOS-type semiconductor device and method for making same
US6221735B1 (en) * 2000-02-15 2001-04-24 Philips Semiconductors, Inc. Method for eliminating stress induced dislocations in CMOS devices
US6531369B1 (en) * 2000-03-01 2003-03-11 Applied Micro Circuits Corporation Heterojunction bipolar transistor (HBT) fabrication using a selectively deposited silicon germanium (SiGe)
US6368931B1 (en) * 2000-03-27 2002-04-09 Intel Corporation Thin tensile layers in shallow trench isolation and method of making same
US6493497B1 (en) 2000-09-26 2002-12-10 Motorola, Inc. Electro-optic structure and process for fabricating same
US6501121B1 (en) 2000-11-15 2002-12-31 Motorola, Inc. Semiconductor structure
US7312485B2 (en) * 2000-11-29 2007-12-25 Intel Corporation CMOS fabrication process utilizing special transistor orientation
WO2002052652A1 (fr) * 2000-12-26 2002-07-04 Matsushita Electric Industrial Co., Ltd. Composant a semi-conducteur et son procede de fabrication
US6563152B2 (en) * 2000-12-29 2003-05-13 Intel Corporation Technique to obtain high mobility channels in MOS transistors by forming a strain layer on an underside of a channel
US20020086497A1 (en) * 2000-12-30 2002-07-04 Kwok Siang Ping Beaker shape trench with nitride pull-back for STI
US6265317B1 (en) * 2001-01-09 2001-07-24 Taiwan Semiconductor Manufacturing Company Top corner rounding for shallow trench isolation
WO2002082526A1 (fr) * 2001-04-03 2002-10-17 Matsushita Electric Industrial Co., Ltd. Dispositif a semi-conducteurs et procede de fabrication
US6403486B1 (en) * 2001-04-30 2002-06-11 Taiwan Semiconductor Manufacturing Company Method for forming a shallow trench isolation
US6531740B2 (en) * 2001-07-17 2003-03-11 Motorola, Inc. Integrated impedance matching and stability network
US6498358B1 (en) 2001-07-20 2002-12-24 Motorola, Inc. Structure and method for fabricating an electro-optic system having an electrochromic diffraction grating
US6908810B2 (en) * 2001-08-08 2005-06-21 Taiwan Semiconductor Manufacturing Co., Ltd. Method of preventing threshold voltage of MOS transistor from being decreased by shallow trench isolation formation
JP2003060076A (ja) * 2001-08-21 2003-02-28 Nec Corp 半導体装置及びその製造方法
WO2003025984A2 (en) 2001-09-21 2003-03-27 Amberwave Systems Corporation Semiconductor structures employing strained material layers with defined impurity gradients and methods for fabricating same
US20030057184A1 (en) * 2001-09-22 2003-03-27 Shiuh-Sheng Yu Method for pull back SiN to increase rounding effect in a shallow trench isolation process
US6656798B2 (en) * 2001-09-28 2003-12-02 Infineon Technologies, Ag Gate processing method with reduced gate oxide corner and edge thinning
US6635506B2 (en) * 2001-11-07 2003-10-21 International Business Machines Corporation Method of fabricating micro-electromechanical switches on CMOS compatible substrates
US6461936B1 (en) * 2002-01-04 2002-10-08 Infineon Technologies Ag Double pullback method of filling an isolation trench
US6621392B1 (en) * 2002-04-25 2003-09-16 International Business Machines Corporation Micro electromechanical switch having self-aligned spacers
WO2003098664A2 (en) * 2002-05-15 2003-11-27 The Regents Of The University Of California Method for co-fabricating strained and relaxed crystalline and poly-crystalline structures
US6703293B2 (en) * 2002-07-11 2004-03-09 Sharp Laboratories Of America, Inc. Implantation at elevated temperatures for amorphization re-crystallization of Si1-xGex films on silicon substrates
US7388259B2 (en) * 2002-11-25 2008-06-17 International Business Machines Corporation Strained finFET CMOS device structures
US6974981B2 (en) * 2002-12-12 2005-12-13 International Business Machines Corporation Isolation structures for imposing stress patterns
US6825529B2 (en) * 2002-12-12 2004-11-30 International Business Machines Corporation Stress inducing spacers
US6717216B1 (en) * 2002-12-12 2004-04-06 International Business Machines Corporation SOI based field effect transistor having a compressive film in undercut area under the channel and a method of making the device
US6825086B2 (en) 2003-01-17 2004-11-30 Sharp Laboratories Of America, Inc. Strained-silicon channel CMOS with sacrificial shallow trench isolation oxide liner
US6803270B2 (en) * 2003-02-21 2004-10-12 International Business Machines Corporation CMOS performance enhancement using localized voids and extended defects
US6887798B2 (en) 2003-05-30 2005-05-03 International Business Machines Corporation STI stress modification by nitrogen plasma treatment for improving performance in small width devices
US6982433B2 (en) * 2003-06-12 2006-01-03 Intel Corporation Gate-induced strain for MOS performance improvement
US6943407B2 (en) * 2003-06-17 2005-09-13 International Business Machines Corporation Low leakage heterojunction vertical transistors and high performance devices thereof
US7279746B2 (en) 2003-06-30 2007-10-09 International Business Machines Corporation High performance CMOS device structures and method of manufacture
US6891192B2 (en) * 2003-08-04 2005-05-10 International Business Machines Corporation Structure and method of making strained semiconductor CMOS transistors having lattice-mismatched semiconductor regions underlying source and drain regions
US7119403B2 (en) * 2003-10-16 2006-10-10 International Business Machines Corporation High performance strained CMOS devices
US8008724B2 (en) * 2003-10-30 2011-08-30 International Business Machines Corporation Structure and method to enhance both nFET and pFET performance using different kinds of stressed layers
US6977194B2 (en) 2003-10-30 2005-12-20 International Business Machines Corporation Structure and method to improve channel mobility by gate electrode stress modification
US7015082B2 (en) * 2003-11-06 2006-03-21 International Business Machines Corporation High mobility CMOS circuits
US7122849B2 (en) * 2003-11-14 2006-10-17 International Business Machines Corporation Stressed semiconductor device structures having granular semiconductor material
US20050136583A1 (en) * 2003-12-23 2005-06-23 Taiwan Semiconductor Manufacturing Co. Advanced strained-channel technique to improve CMOS performance
US7247912B2 (en) * 2004-01-05 2007-07-24 International Business Machines Corporation Structures and methods for making strained MOSFETs
US7205206B2 (en) * 2004-03-03 2007-04-17 International Business Machines Corporation Method of fabricating mobility enhanced CMOS devices
US7052946B2 (en) * 2004-03-10 2006-05-30 Taiwan Semiconductor Manufacturing Co. Ltd. Method for selectively stressing MOSFETs to improve charge carrier mobility
US7504693B2 (en) * 2004-04-23 2009-03-17 International Business Machines Corporation Dislocation free stressed channels in bulk silicon and SOI CMOS devices by gate stress engineering
US7354806B2 (en) * 2004-09-17 2008-04-08 International Business Machines Corporation Semiconductor device structure with active regions having different surface directions and methods
US7138309B2 (en) * 2005-01-19 2006-11-21 Sharp Laboratories Of America, Inc. Integration of biaxial tensile strained NMOS and uniaxial compressive strained PMOS on the same wafer
US7829978B2 (en) * 2005-06-29 2010-11-09 Taiwan Semiconductor Manufacturing Company, Ltd. Closed loop CESL high performance CMOS device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09219524A (ja) * 1996-02-09 1997-08-19 Toshiba Corp 半導体装置及びその製造方法
US5906951A (en) * 1997-04-30 1999-05-25 International Business Machines Corporation Strained Si/SiGe layers on insulator
US20010003364A1 (en) * 1998-05-27 2001-06-14 Sony Corporation Semiconductor and fabrication method thereof
CN1388589A (zh) * 2001-05-14 2003-01-01 夏普公司 用硅绝缘体(SOI)基片上的应变Si/SiGe层的迁移率增强的NMOS和PMOS晶体管
US20030062537A1 (en) * 2001-10-02 2003-04-03 Nobuyuki Sugii Field-effect type semiconductor device for power amplifier

Also Published As

Publication number Publication date
CN1705077A (zh) 2005-12-07
US20050269561A1 (en) 2005-12-08
US20070166897A1 (en) 2007-07-19
TWI348179B (en) 2011-09-01
US7560328B2 (en) 2009-07-14
TW200610001A (en) 2006-03-16
US7223994B2 (en) 2007-05-29

Similar Documents

Publication Publication Date Title
CN100388415C (zh) 半导体材料和形成半导体材料的方法
US7781800B2 (en) Embedded silicon germanium using a double buried oxide silicon-on-insulator wafer
JP4678877B2 (ja) Si:C−OIおよびSGOI上のシリコン・デバイスならびに製造方法
US7528056B2 (en) Low-cost strained SOI substrate for high-performance CMOS technology
US7312134B2 (en) Dual stressed SOI substrates
US7029994B2 (en) Strained channel on insulator device
US7091095B2 (en) Dual strain-state SiGe layers for microelectronics
JP3512701B2 (ja) 半導体装置及びその製造方法
US10217812B2 (en) Silicon-on-insulator chip having multiple crystal orientations
US8440539B2 (en) Isolation trench processing for strain control
US20090014755A1 (en) Direct bond substrate of improved bonded interface heat resistance

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080514

Termination date: 20200510

CF01 Termination of patent right due to non-payment of annual fee