CA2614993C - An intervertebral disk implant - Google Patents

An intervertebral disk implant Download PDF

Info

Publication number
CA2614993C
CA2614993C CA2614993A CA2614993A CA2614993C CA 2614993 C CA2614993 C CA 2614993C CA 2614993 A CA2614993 A CA 2614993A CA 2614993 A CA2614993 A CA 2614993A CA 2614993 C CA2614993 C CA 2614993C
Authority
CA
Canada
Prior art keywords
implant
accordance
intervertebral disk
core
support cushion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA2614993A
Other languages
French (fr)
Other versions
CA2614993A1 (en
Inventor
Michael Filippi
Mathias Heller
Joern Seebeck
Guido Casutt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zimmer GmbH
Original Assignee
Zimmer GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zimmer GmbH filed Critical Zimmer GmbH
Publication of CA2614993A1 publication Critical patent/CA2614993A1/en
Application granted granted Critical
Publication of CA2614993C publication Critical patent/CA2614993C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • A61F2/4425Intervertebral or spinal discs, e.g. resilient made of articulated components
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/302Three-dimensional shapes toroidal, e.g. rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30252Three-dimensional shapes quadric-shaped
    • A61F2002/30253Three-dimensional shapes quadric-shaped ellipsoidal or ovoid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30476Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism
    • A61F2002/305Snap connection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30518Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements with possibility of relative movement between the prosthetic parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30563Special structural features of bone or joint prostheses not otherwise provided for having elastic means or damping means, different from springs, e.g. including an elastomeric core or shock absorbers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30565Special structural features of bone or joint prostheses not otherwise provided for having spring elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30604Special structural features of bone or joint prostheses not otherwise provided for modular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30604Special structural features of bone or joint prostheses not otherwise provided for modular
    • A61F2002/30616Sets comprising a plurality of prosthetic parts of different sizes or orientations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30621Features concerning the anatomical functioning or articulation of the prosthetic joint
    • A61F2002/30649Ball-and-socket joints
    • A61F2002/3065Details of the ball-shaped head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30621Features concerning the anatomical functioning or articulation of the prosthetic joint
    • A61F2002/30649Ball-and-socket joints
    • A61F2002/3065Details of the ball-shaped head
    • A61F2002/30652Special cut-outs, e.g. flat or grooved cut-outs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30621Features concerning the anatomical functioning or articulation of the prosthetic joint
    • A61F2002/30649Ball-and-socket joints
    • A61F2002/30654Details of the concave socket
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30621Features concerning the anatomical functioning or articulation of the prosthetic joint
    • A61F2002/30649Ball-and-socket joints
    • A61F2002/30662Ball-and-socket joints with rotation-limiting means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30621Features concerning the anatomical functioning or articulation of the prosthetic joint
    • A61F2002/30649Ball-and-socket joints
    • A61F2002/30663Ball-and-socket joints multiaxial, e.g. biaxial; multipolar, e.g. bipolar or having an intermediate shell articulating between the ball and the socket
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30841Sharp anchoring protrusions for impaction into the bone, e.g. sharp pins, spikes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30878Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/30934Special articulating surfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/30934Special articulating surfaces
    • A61F2002/30937Special articulating surfaces with cut-outs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • A61F2/4425Intervertebral or spinal discs, e.g. resilient made of articulated components
    • A61F2002/443Intervertebral or spinal discs, e.g. resilient made of articulated components having two transversal endplates and at least one intermediate component
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0065Three-dimensional shapes toroidal, e.g. ring-shaped, doughnut-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0073Quadric-shaped
    • A61F2230/0076Quadric-shaped ellipsoidal or ovoid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00023Titanium or titanium-based alloys, e.g. Ti-Ni alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00029Cobalt-based alloys, e.g. Co-Cr alloys or Vitallium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00592Coating or prosthesis-covering structure made of ceramics or of ceramic-like compounds
    • A61F2310/00796Coating or prosthesis-covering structure made of a phosphorus-containing compound, e.g. hydroxy(l)apatite

Abstract

The invention relates to an intervertebral disk implant having two implant plates contacting prepared vertebral body surfaces in the implanted state and an implant core which can be introduced between the implant plates. The invention further relates to a method for the manufacture of an intervertebral disk implant.

Description

;- :

An intervertebral disk implant The invention relates to an intervertebral disk implant and to a method for its manufacture.

Artificial intervertebral disks have to satisfy a plurality of demands and, in this process, do not only have to come as close as possible to the behavior of a natural intervertebral disk, but must, for example, also be usable in as simple a manner as possible, i.e. must be able to be introduced between the respective two adjacent vertebral bodies, and have to have good biocompatibility with respect to the materials used. In particular the reproduction of a resilient or dynamic behavior which is as natural as possible under different pressure conditions, which occur under the normal movements of the spinal column which also bring about extreme strains, has proved to be difficult in the design of intervertebral disk implants.

It is the object of the invention to provide an intervertebral disk implant which satisfies all substantial demands in the best possible manner and which in parti.cular comes as close as possible to a natural intervertebral disk with respect to the resilient or dynamic behavior.

This object is satisfied by the features of claim 1 and in particular in that the intervertebral disk implant includes two implant plates, which contact prepared surfaces of intervertebral bodies in the implanted state, as well as an implant core which can be introduced between the implant plates.

.. ~ =
Such an intervertebral disk implant provides a plurality of possibilities to influence the dynamic or resilient behavior in the respectively desired manner, for example by shaping or material choice. The intervertebral disk implant in accordance with the invention furthermore proves to be parti.cularly advantageous with respect to the introduction between two adjacent vertebral bodies.

This priority application relates, among other things, to an operation system for the insertion of intervertebral disk implants. This operation system and the operation itself are, however, not the subject of the present application so that they will not be looked at in any more detail.

Advantageous embodiments of the invention can also be seen from the dependent claims, from the description and from the drawing.

.The implant core preferably has a lens-like basic shape. The implant core can in particular have at least approximately the shape of two spherical segments whose planar sides lie on top of one another, with the respective spherical center of the one spherical segment lying within the other spherical segment. Alternatively, provision can be made for the implant core to have at least approximately the shape of two spherical segments whose planar sides face one another and of a cylindrical disk lying between them, with - as in the aforesaid alternative - the spherical center of the one spherical center lying within the other spherical segment.
Investigations making use of model calculations have surprisingly shown that local load peaks of the implant core can be avoided, in particular while maintaining the rotational symmetry, if specific adaptations of the geometry of the implant core are made. It has in particular been found that the peak loads can be reduced by up to 30% with an implant core directly adapted with respect to the geometry in comparison with an implant core whose articulation surfaces are in full-surface contact with the articulation surfaces of the implant plates when the implant has been assembled. Abrasion effects and wear phenomena at the cooperating articulation surfaces are hereby noticeably reduced.

It has in particular been found that the desired load reductions can be achieved by an improved "spring effect" of the implant core put under pressure via the implant plates.

Accordingly, in accordance with a preferred embodiment of the invention, it is proposed that the implant core has a basic shape of two spherical segments whose planar sides lie on top of one another or face one another and is provided by material removal from the basic shape with at least one spring region which gives the implant core increased resilient shape changeability with respect to the basic shape under the effect of pressure.
It is particula.rly preferred for the articulation surfaces of the implant core and of the implant plates to contact one another in linear or strip shape when the intervertebral disk implant is assembled.

An advantage of such an embodiment lies in the fact that hollow spaces filled with liquid between the outer surface of the implant core and the counter surfaces of the implant plates, which are sealed by a contact of implant core and implant plates, can bring about or support an advantageous hydrostatic support effect in that the effective support surface is expanded to the whole inner region.
In a particularly preferred practical embodiment, the articulation surfaces of the implant plates are each provided in the form of a part surface of a sphere having a constant radius of curvature, with the articulation surfaces of the implant core each being formed by a plurality of part surfaces of a sphere having different radii of curvature. The articulation surfaces of the implant plates are preferably each formed by two part surfaces whose radii of curvature are smaller than the radius of curvature of the articulation surfaces of the implant plates and which start from a contact line between the implant core and the implant planes in the direction of the core pole, on the one hand, and in the direction of the core equator, on the other hand.

Provision can alternatively or additionally be made for the implant core to be provided, in particular in the region of its equatorial plane, with an outer ring groove and/or with an inner ring groove preferably forming a radial extension of a passage extending perpendicular to the equatorial plane.

Spring regions likewise resulting in a reduction of peak loads are created by such a material removal, on the basis of which the implant core can be deformed in a directly pre-settable manner under the effect of pressure.

It is preferred for the implant core to have a passage extending perpendicular to the equatorial plane. The afore-mentioned load calculations have shown that the peak loads can be reduced by the explained measures irrespective of whether such a passage is present or not. Nevertheless, such a passage provides a further possibility of optimizing the implant geometry.

Complex investigations which make use of model calculations and trials have furthermore shown that specific spatial distributions of the resilience of the implant core prove to be particularly advantageous. It can be achieved by a skilful choice of the dependence of the resilient behavior or spring effect of the implant core on the radial spacing to its center or central axis that no unacceptably high speci.f'ic pressure loads occur at any point of the articulation surfaces of the implant core cooperating with the articulation surfaces of the implant plates. It can in particular be achieved that pressure peaks are avoided in the radially outer region. In this manner, it is possible to successfully counteract wear to the articulation surfaces which brings along the risk of material abrasion to be avoided in every case.

Provision is made in accordance with a preferred embodiment of the invention for the implant core to have a greater resilience in a radially outer rim region than in a radially inner central region. Provision can furthermore be made for the implant core to have the lowest resilience and thus the greatest stiffness in a radially central region which is disposed between a radially outer region, on the one hand, and a central region provided with a passage extending perpendicular to an equatorial plane, on the other hand.

In accordance with a particularly preferred embodiment of the invention, the implant core is made in multiple parts. An arrangement is in particular provided of at least one inner support cushion and at least one shell surrounding the support cushion. The support cushion can damp axial movements of the shell cooperating directly with the implant plates.
The support cushion can in particular prevent disadvantageous pressure peaks in the radially outer rim region and - where present - in the region of an inner side bounding a central passage, for example by the manner of its inner support or by its shape. This multi-part design has the advantage that the arising of damaging abrasion is prevented or is at least reduced by a sufficiently large amount even with materials used for the implant core which have a comparatively low wear resistance.
The support cushion preferably has a lens-shaped basic shape.
Provision is furthermore preferably made for the shell to include two half shells which are preferably arranged spaced apart from one another in the axial direction.

Provision is furthermore preferably made for the support cushion and the shell to be made from different materials. The material of the shell is preferably harder and/or stiffer than the material of the support cushion.
A particularly preferred material for the support cushion is polycarbonate urethane (PCU). This material is particularly well-suited to achieve a desired maximum "spring path" of the implant core of approximately 1 mm. Alternatively, e.g. silicone or a mixture of PCU and silicone correspondingly adjusted to the desired resilient properties of the support cushion can also be provided as the material for the support cushion.
Although it is in principle possible in accordance with the invention to manufacture the implant core from a suitable material such as in particular PCU, instead of having a multi-part design of the implant core, and to prevent excessive pressure loads solely by a skilful shape, in particular in the axial outer rim regions, it is nevertheless preferred to, so-to-say, "enhance" the articulation surfaces and, for this purpose, to use the mentioned shell surrounding the support cushion at least partly or the half shells. Polyethylene (PE), highly cross-linked polyethylene, UHMWPE

(UHMW = ultra-high molecular weight) or metal, in particular a CoCrMo alloy or a titanium alloy, are preferably considered as the material for the shell. The biocompatibility can in particular be ensured by such materials.

If, in accordance with a further preferred embodiment, the support cushion has its lowest resilience or its largest stiffness approximately in the center between the radially outer rim region and a central region, disadvantageous turning inside-out arrangements of the half shells which are formed in ring shape on the presence of a central passage can be avoided.

It is furthermore proposed in accordance with the invention for the shell to project beyond the support cushion in the radial direction. It is achieved by this "overhang" of the shell or of the two half shells with respect to the inner support cushion that the actual support of the implant plates is transposed via the shell or half shells in the direction of a central region betweeri the axially outer rim region and a central region and, in this manner, pressure peaks are prevented, or at least greatly reduced, in the rim region or the central region.
In particular in the radially outer rim region of the implant core, a respective intermediate space can be provided between the shell or the half shells, on the one hand, and the support cushion, on the other hand, such that no support of the shell at the support cushion takes place in this region.

In accordance with a further embodiment of the invention, an intermediate layer, in particular made of metal, is arranged between the support cushion and the shell. The extent of this intermediate layer can generally be selected as desired. The intermediate layer can thus, for 8 A. .
example, extend parallel to the equatorial plane or be curved in accordance with the outer shell.

If such an intermediate layer is present, which can consist of two separate individual layers each associated with a half shell, provision can then furthermore be made for the shell or the half shells to be supported at the inner support cushion exclusively via this intermediate layer or individual layers, i.e. material contact takes place exclusively between the shell and the intermediate layer, but not between the shell and the support cushion.
The intermediate layer can be made as a path boundary for spigots of the implant plates projecting into a passage extending perpendicular to an equatorial plane. An impairment of the outer shell preferably consisting of PE is hereby avoided in an advantageous manner.
Provision is furthermore preferably made for a passage of the implant core extending perpendicular to an equatorial plane to have a cross-sectional surface varying over its length. The cross-sectional surface preferably respectively increases, in particular constantly, from the equatorial plane to the outside. The pressure behavior, in particular of the inner support cushion, can be set directly by the shape of the central passage.

A further possibility of setting the pressure behavior of the implant core lies, in accordance with a further preferred embodiment of the invention, in the fact of stiffening the support cushion in the axial direction in a central region. Alternatively or additionally, the support cushion can be inwardly stiffened in the radial direction in the event of the provision of a central passage.

In particular a separate stiffening element, preferably having a ring-shaped or cylindrical base shape, can be provided for the stiffening of the support cushion. This stiffening element can be arranged in the central passage and be made, for example, as so-called metal bellows.
Such a stiffening element can not only increase the stiffness of the support cushion in the central region or at the inner rim region of the support cushion bounding the central passage, but can simultaneously also support the support cushion in the radial direction, whereby the stiffness of the support cushion in the central region is likewise enlarged.
A stiffening element made, for example, as metal bellows moreover offers the advantageous possibility to better guide the half shells surrounding the support cushion at least in part and made in ring shape in the case of a central passage, whereby a "floating" of the half shells on the support cushion is avoided. -In a preferred embodiment of the invention, the support cushion is injection molded onto the shell or the half shells, with the material of the support cushion having a higher melting point than the material of the shell, preferably for the forming of a material composite between the support cushion and the shell which can be established by the injection molding. The manufacture of the intervertebral disk implant in accordance with the invention will be looked at in more detail at another point.
Provision can also be made for the support cushion to be injection molded onto the intermediate layer when an intermediate layer as explained above is used.

It is furthermore proposed in accordance with the invention to connect the support cushion or an intermediate layer connected to the support cushion, and in particular made of metal, to the shell or to the half shells by a clip, snap, or latch connection.
As regards the implant plates of the implant in accordance with the invention, provision is preferably made in accordance with the invention for the implant plates each to have a dome-shaped extension, in particular in the shape of a spherical segment, or a barrel-shaped extension on their 10 outer side. These domes or barrels provide a primary positional stability of the implant after the insertion, with a barrel-shaped extension moreover being able to satisfy a guide function during the insertion.

Furthermore, in accordance with the invention, it is proposed that the outer sides of the implant plates are each outwardly arched. These arches are preferably provided in addition to the aforementioned dome-shaped or barrel-shaped extensions, and indeed such that in each case the arch is shallower, but in contrast has a larger extent in the plane of the plate than the dome or the barrel.

Furthermore, provision can be made in accordance with the invention for the outer sides of the implant plates each to have a planar rim region extending at least over part of the periphery of the implant plates.

Overall, a contour-optimized interface to the osseous composition of the vertebral body can be achieved by an embodiment of the outer sides of the implant plates in each case with a comparatively strongly curved, dome-shaped or barrel-shaped extension, a relatively shallow arch and a planar rim region.

Furthermore, the implant plates can each have at least one guide projection , in particular formed as a peen, and/or a holding projection, in particular a pyramid-shaped holding projection, on their outer sides. The implant is hereby given rotational stability in the inserted state, with the holding projections additionally being able to give the inserted implant security against slipping out.

Provision is made in a particularly preferred embodiment for the implant plates each to have a recess on their inner sides for the reception of the implant core, with the cooperating articulation surfaces of the recess and of the implant core each being part surfaces of a sphere. The recesses permit a countersunk arrangement, and so an arrangement secure against slipping out, of the implant core between the implant plates. By forming the articulation surfaces as part surfaces of a sphere, the intervertebral disk implant in accordance with the invention is rotationally symmetrical with respect to its movement possibilities.

To reliably prevent a slipping out of the implant core from the reception space formed by the recesses or concavities of the implant plates with extreme body postures, provision can be made for at least one iinplant plate to have a spigot which protrudes from its inner side and which projects into a depression formed on the outer side of the implant core when the implant is put together, with the depression being dimensioned larger than the spigot in order to permit a relative movement between the implant plate and the implant core.

The spigot and/or the center of the implant core can be arranged either centrally or eccentrically with respect to the dimension of the implant plate in the sagittal direction.

To keep the required traction amount for the introduction of the implant core between the implant plates as low as possible, provision can be made in accordance with a further embodiment for the implant core to be provided with an introductory passage for the spigot of the implant plate extending from the margin to the depression on at least one outer side.
An alternative or additional possibility to keep the traction amount low consists, in accordance with a further embodiment, of the fact of providing at least one implant plate - on its inner side - with an introductory passage for the implant core extending from the rim to the recess.
The invention also relates to a method for the manufacture of an intervertebral disk implant which includes two implant plates contacting prepared vertebral body surfaces in the implanted state and an implant core which can be introduced between the implant plates and includes at least one inner support cushion and at least one shell surrounding the support cushion and preferably formed by two half shells, with the support cushion being injection molded onto the shell, in particular onto the half shells, in a plastic injection molding method, or being injection molded onto an intermediate layer arranged between the support cushion and the shell in the finished state.

A material for the support cushion to be injection molded is preferably selected for the manufacture of a material composite between the support cushion and the shell which has a higher melting point than the material of the shell. As already explained above, a preferred material for the support cushion is polycarbonate urethane (PCU), silicone or a mixture of PCU and silicone, whereas polyethylene (PE), highly cross-linked PE, UHMWPE or metal is preferably used for the shell. Whereas the melting point of PCU lies above 200 C, the melting point of PE lies in the range of 120 C. It was found that half shells manufactured from PE can nevertheless be injection molded from PCU using a cooled injection mold such that a suitable material composite is created.

This material composite can be improved in that recesses or undercuts formed at the inner side of the half shells are filled on the injection molding of the support cushion material.

The invention will be described in the following by way of example with reference to the drawing. There are shown:

Fig. 1 different views of an intervertebral disk implant in accordance with the invention;

Figs. 2a+2b different perspective views of the intervertebral disk implant of Fig. 1;

Fig. 2c an alternative embodiment of the intervertebral disk implant of Fig. 1 with respect to the implant plates;
Figs. 3a-3c in each case a plan view of an embodiment of an implant core modified with respect to Fig. 1;

Fig. 4 a perspective view of an intervertebral disk implant modified with respect to Fig. 1;

Fig. 5 a further embodiment of an intervertebral disk implant in accordance with the invention;

Fig. 6 a further embodiment of an intervertebral disk implant in accordance with the invention; and Figs. 7 - 12 further embodiments of an intervertebral disk implant in accordance with the invention.

Fig. 1 shows different views of a possible embodiment of an intervertebral disk implant in accordance with the invention which includes two implant plates 15, 17 also designated as cover plates or end plates as well as an implant core 19 also designated as an inlay. As already mentioned in the introductory part, the insertion of the intervertebral disk implant in accordance with the invention will be not looked at in more detail in this application. The likewise already mentioned European patent publication EP 1532948 describes a spreading device in particular suitable for the intervertebral disk implants in accordance with the invention in accordance with Figs. 1 to 4 of which some components will be mentioned in the following to the extent this is required for the understanding of the implants described in Figs. 1 to 4.

The implant core 19 has a lens-like base shape which corresponds to two spherical segments contacting one another at their planar sides. The outer articulation surfaces 49 of the implant core 19 are thus part surfaces of a sphere. As can in particular be seen from the upper side view in Fig. 9, the shape of the implant core 19 does not precisely correspond to two spherical segments placed on top of one another, but a spacer 18 of relatively low height and with a straight rim is located between the planar sides of the spherical segments.

The implant core 19 is provided at its poles with depressions 53 into which spigots 51 of the implant plates 15, 17 project, when the implant is assembled, which will be considered in more detail in the following.

5 As can in particular be seen from sections B-B and C-C, the implant plates 15, 17 are each provided at their outer sides with a relatively shallow arch 63 on which a more strongly curved dome-shaped extension 41 in turn rises which corresponds to a recess 45 on the inner side of the implant plate 15, 17 whose articulation surface 47 is likewise a part 10 surface of a sphere whose radius corresponds to that of the articulation surfaces 49 of the implant core 19. As in particular section C-C shows, there is full-area contact between the two articulation surfaces 47, 49 in the assembled state of the implant. For each spherical segment of the implant core 19, the centre point M of the sphere, on whose surface the 15 articulation surfaces 47, 49 lie, lies within the respectively other spherical segment; and indeed in the region of the depression 53.

The implant plates 15, 17 are furthermore provided with peens 43 on their outer sides. The implant plates 15, 17 are guided at these guide projections 43 in groove-shaped recesses on the surfaces of the vertebral bodies previously prepared by means of a ball-peen hammer on insertion into the disk space.

Cut-outs 20 for the reception of an adapter element of a traction shoe are formed opposite the peens 43 on the inner sides of the implant plates 15, 17.

The variant in accordance with Fig. 2c differs from the implant shown in Fig. 1 and Figs. 2a and 2b by the design of the outer sides of the implant plates 15, 17, which are here each provided with a barrel-shaped extension 41', whereby - in the inserted state - in turn a positional stability of the implant plates 15, 17 and additionally a longitudinal guidance is provided on the insertion of the implant plates 15, 17.

Instead of e.g. peen-like guide elements, spike-shaped holding projections 43' having a pyramid shape are moreover provided. The height of these acutely tapering projections 43' also known as pins is selected such that they do not disadvantageously influence the insertion of the implant plates 15, 17, but provide positional fixing, when the implant is inserted, in that they engage into the vertebral body surfaces facing one another. An optimum insertion behavior is achieved in that a respective edge of the pyramid-shaped pins 43' faces in the direction of insertion.

The implant in accordance with Fig. 2c is designed for a different surgical.
- procedure and in particular for a different kind of insertion of the implant plates 15, 17 and of their spreading than the implant in accordance with Fig. 1 and Figs. 2a and 2b. In particular different instruments-are used which will not be looked at in more detail in the present application.
Reference is made in this respect to the European patent application publication EP 1532950 filed on October 15, 2004. The implant plates 15, 17 are each provided with bores 44 on their ventral side for the reception of corresponding projections of the setting devices for use with the instruments, in particular setting units, described in the said application.
The diameter of the spigots 51 of the implant plates 15, 17 provided in the form of separate elements (section C-C in Fig. 1) is smaller than that of the depressions 53 formed in the implant core 19. The spigots 51, which project with clearance into the depressions 53 in this manner, prevent the implant core 19 from slipping out of the reception space formed by the two recesses 45 on extreme body postures.

As in particular the section A-A in Fig. 1 shows, the shallow arches 63 on the outer sides of the implant plates 15, 17 in each case do not extend over the total periphery up to the plate edge. A planar rim region 65 extends over a partial periphery of the implant plates 15, 17.

The section A-A moreover shows that the so-called angulation of the implant plates 15, 17 is respectively measured with respect to a zero frequency 0 which is a plane which extends perpendicular to the center axes of the spigots 51 drawn as dashed lines. The resulting angulation angle a of the assembled implant at a specific relative position between the implant core 19 and the two implant plates 15, 17 is determined by the sum of the caudal angulation a 1 and the cranial angulation a2.

It can be seen from the plan view and from section A-A that the center of the dome 41 and of the spigot 51 is ecceritrically displaced toward posterior along the center line.

The intervertebral disk implant in accordance with the invention has specific characteristic values which can be varied on the manufacture of the implant for the optimization of the implant and for adaptation to the respective anatomy of the patient. These are in particular the following parameters whose definition can be seen from the respective different views of Fig 1:
H height of the implant B width of the implant T depth of the implant R radius of the articulation surfaces d dome position h dome height z arch center w arch height a peen spacing f peen height v spacing of the cut-outs Corresponding parameters also exist analogously for the variant of Fig. 2c in which consequently the respective parameters d and h relate to the barrel 41' and the parameters a and f to the position or to the spacing and to the height of the pins 43' and the parameter v gives the spacing between the two outer bores 44 for the insertion instrument.

In contrast to the embodiment shown in Fig. 1, the spigots 51 can also be omitted. Such an alternative embodiment can in particular be considered when the recesses 45 are made- or can be made in the implant plates 15, 17 such that they already provide sufficient extrusion security alone, i.e.
prevent the implant core 19 from slipping out with adequate security.

The implant plates 15, 17 can be made from a CoCr alloy or from a titanium alloy and be coated on the outer bone side with porous titanium and, optionally, also with hydroxyapatite (HAC) in order to permit a particularly fast ongrowth of the bone in this manner. In practice, a set of differently sized implant plates 15, 17 is preferably available to achieve optimum matching to different patient anatomies. The implant plates 15, 17 can in particular differ from one another with respect to their width, depth and angulation.

The implant core 19 can consist, for example, of polyethylene, highly cross-linked PE, UHMWPE or metal, in particular a CoCrMo alloy.

Polyethylene is the preferred material, since hereby axially acting forces can be absorbed better resiliently, i.e. a better axial damping property is present. To avoid any possible abrasion, a thin metallic shell can be laid over the plastic material. A combination of inetallic part surfaces of a sphere then arises which can be manufactured in enormously high precision with respect to one another due to their spherical form. Such a metal/metal interplay is generally described in the European patent (publication number EP 0 892 627);

By the countersunk arrangement of the implant core 19 in the concavities 45 of the implant plates 15, 17, a relatively large force transmission area is provided and thus a comparatively small surface load is achieved, with the risk of extrusion simultaneously being kept low.

The perspective representations of the implant in Figs. 2a and 2b in particular show the cut-outs 20 formed on the inner sides of the implant plates 15, 17 for the traction shoes and the design of the outer sides of the implant plates 15, 17 with the dome 43 and the peens 43:

Figs. 3a-3c and Fig. 4 show possible measures which can be taken at the implant core 19 (Figs. 3a-3c) and at the inner sides of the implant plates 15, 17 (Fig. 4) in order to keep the degree by which the implant plates 15, 17 have to be pressed apart for the introduction of the implant core 19 as low as possible.

In accordance with Figs. 3a-3c, an introduction passage 55 is formed in each case on the outer side of the implant core 19 extending from the rim of the implant core 19 up to the central depression 53. The introduction 20 ~ =

passage 55 can generally have an extent of any desired curvature and open either substantially radially (Fig. 3a) or tangentially (Fig. 3b) into the depression 53. Alternatively, the introduction passage 55 can have a straight-line radial extent (Fig. 3c).
On the introduction of the implant core 19 between the implant plates 15, 17, the spigots 51 project into the introduction passages 55 of the implant core 19 so that the spigots 51 are also not in the way of an implant core 19 to be introduced with a lower plate spacing.
Alternatively or additionally to the introduction passages 55 of the implant core 19, the implant plates 15, 17 are each provided on their inner sides with an introduction passage 57 in the form of a groove-like depression which extends from the anterior plate rim up to the recess 45, whereby in total an "introduction tunnel" for the implant core 19 is present which extends from the anterior side up to the reception space for the implant core 19. The implant core 19 has already partly been received in the introduction passages 57 at the start of the introduction process so that the implant plates 15, 17 have to be pressed apart from one another by less much.

On an operation for the insertion of the intervertebral disk implant in accordance with the invention, the preparation of the disk space takes place up to the time at which the operation system in accordance with the invention comes into use, as previously, i.e. the scraping of the natural intervertebral disk takes place without the operation system in accordance with the invention. A first preparation of the end plates of the vertebral bodies also takes place in particular with a so-called "sharp spoon" (e.g.
Cobb) without using the work plates 11, 13 in accordance with the invention.

Subsequently to this first preparation of the disk space, an operation system can be used, for example, such as is described in the afore-mentioned European patent application publicalion EP 1532948.
Figs. 5 and 6 show preferred embodiments for an intervertebral disk implant in accordance with the invention. It is common to both embodiments that the articulation surfaces 147 of the implant plates 115, 117 are each part surfaces of a sphere with a radius RO and a center MO
lying on the center axis 167 of the implant and on a spigot 151 of the respectively other plate. Both implant cores 119 are moreover each made rotationally symmetrically and are provided with a central passage 173 whose longitudinal axis coincides with the center axis 167.

In the implant core 119 in accordance with Fig. 5, the articulation surfaces 149 are likewise part surfaces of a sphere with a radius RO and a center MO in accordance with the articulafiion surfaces 147 of the implant plates 115, 117 so that - analogously to the implant in accordance with Fig. 1- the articulation surfaces 147, 149 of the implant core 119 and of the implant plates- 115, 117 contact one another over a full area.

In order to achieve an improved "spring effect" for the min ~ mi?~ tion of peak loads under the influence of pressure, as is explained in the introductory part, the implant core 119 is provided at the height of the equatorial plane with an outer ring groove 169 and an inner groove nut 171 which is substantially wider in comparison with the outer ring groove 169 and which in this respect represents a radial extension of the central passage 173.

In the implant core 119 in accordance with Fig. 6, a different approach was selected to achieve an improved support effect. The articulation surfaces 149 of the implant core 119 are here not part surfaces of a sphere shaped in accordance with the articulation surfaces 147 of the implant plates 115, 117. It is rather the case that the articulation surface 149 of the implant core 119 is shaped in each quadrant such that the implant core 119 and the implant plates 115, 117 only touch at a line P.
In the cross-section shown here along the center axis 167, the position of the contact line P is selected such that a straight line extending through the center MO and the point P, that is intersecting the tangent t through the point P at right angles, includes an angle co with the equatorial plane of the implant core 119 which amounts to approximately 60 . The angle c,o preferably lies in an angular range from approximately 45 to 75 .

Fig. 6 shows two preferred variants on the basis of this basic principle of a line contact between the implant core 119 and the implant plates 115, 117. In the variant shown with solid lines, the articulation surface 149 of the implant core 119 has a constant radius of curvature R 1< RO with a center M 1. A variant is shown by the double chain-dotted line in Fig. 6 in which, starting from the contact line P, the curvature of the articulation surface 149 of the implant core 119 is larger in the direction of the core pole than in the direction of the core equator, i.e. the radius of curvature R2 with the center M2 is smaller than the radius of curvature R 1 with, the center M 1.
A preferred condition for these parameters is RO - 6 mm < R 1< RO - 1 mm, where R2 < R 1 and 8 mm < RO < 18 mm.

In accordance with Fig. 6, provision is furthermore made in this embodiment for the centers MO, M i and M2 to lie on a common straight line which intersects the contact line P marking the transition between the two articulation surface regions of the implant core 119.

In accordance with the invention, a combination of the specific articulation surface geometry in accordance with Fig. 6 with the ring groove approach in accordance with Fig. 5 is also basically possible, i.e.
different measures which each result in a geometry of the implant core differing from a simple base shape can generally be combined with one another to achieve an improved "spring effect".
The implant cores described in this application and in particular in the following in connection with Figs. 7 to 12 are in particular coordinated to an average central European with respect to their dimensions. The implant cores have a lens-shape with an outer diameter of approximately 25 mm and a height of approximately 19 mm which is provided by the flattening of a central passage extending in the axial direction.
Furthermore, the implant cores are designed for a radius of curvature RO
of approximately 14 mm of the implant plates not shown in Figs. 7 to 12.

It is furthermore common to all implant cores that the articulation surfaces of the implant core cooperating with articulation surfaces of the implant plates are part surfaces of a sphere with the mentioned radius of curvature RO of approximately 14 mm. The lens shape of the implant cores is self-aligning in that the implant cores have at least approximately the shape of two spherical segments whose planar sides face one another, with the respective spherical center of the one spherical segment lying inside the other spherical segment.

The implant core in accordance with Figs. 7a and 7d includes an approximately lens-shaped support cushion 277 on which two half-shells 279, 281 lying spaced apart from and opposite to one another are arranged. The support cushion 277 consists of polycarbonate urethane (PCU), silicone or a PCU/silicone mix, whereas the two half shells 279, 281 are manufactured from polyethylene (PE), highly cross-linked PE, UHMWPE or metal, in particular a CoCrMo alloy. Both the support cushion 277 and the two half shells 279, 281 each had a ring shape due to a passage 273 which extends perpendicular to the equatorial plane 275 and whose center axis coincides with the center axis 267 of the implant core 219.

The half shells 279, 281 project beyond the support cushion 277 in the radial direction. In the region of this overhang or of this covering, a ring gap is present between the half shells 279, 281 axially spaced apart in this respect which forms a radially outer ring groove 269 of the implant core 219. This ring gr-oove 269 can in particular be recognized in the perspective representation of Fig. 7b.

The articulation surfaces 249 of the implant core 219 formed by the outer sides of the half shells 279, 281 are part surfaces of a sphere and have the same radius of curvature as the articulation surfaces of the implant plates (not shown) of the intervertebral disk implants.

The radially outer side edge of the support cushion 277 extends parallel to the center axis 267, whereas the inner rim or inner side of the support cushion 277 bounding the central passage 273 is made in convex shape.
This extent of the inner side of the support cushion 277 is continued by the inner rim region of the half shells 279, 281. The central passage 273 consequently has a shape in the axial section shown here of a double cone, a double funnel or an hourglass with a minimal free inner cross-sectional area in the equatorial plane 275.

Spigots of the implant plates project into the central passage 273 in the assembled state of the intervertebral disk implant, e.g. corresponding to the embodiments of Figs. 5 and 6.

The support cushion 277 and the two half shells 279, 281 form a solid material composite which is manufactured by injection molding of the material used for the support cushion 277 (in particular PCU, silicone or a PCU/ silicone mix) onto the half shells 279, 281 consisting in particular of 10 PE highly cross-linked PE, UHMWPE or metal, in particular a CoCrMo alloy, as is described in the introductory part.

Thanks to its lens shape, the support cushion 277 provides a softer support for the half shells 279, 281 in. its central range in the axial 15 direction than in the radially outer rim region. This behavior can be influenced by the shape of the central passage 273. The actual support is transposed radially inwardly by the mentioned radial overhang of the half shells 279, 281, whereby the occurrence of pressure peaks in the radially outer rim region is avoided.

The implant core 219 in accordance with Fig. 8 differs from that of Figs.7a and 7b by the provision of an outer ring groove 285 formed in the support cushion 277 at the height of the equatorial plane 275. The extent of the reduction of the axial height of the support cushion 277 in the radially outer rim region can be set by such a restriction.

The ring groove 285 of the support cushion 277, together with the equatorial ring gap between the two half shells 279, 281, forms the outer ring groove 269 of the total implant core 219.

In the implant core 219 in accordance with the invention shown in Figs.
9a - 9c, the support cushion 277 terminates in a respectively flush manner downwardly and upwardly with a ring shaped intermediate layer 289, 291 made of metal. The outer diameter of the intermediate rings 289, 291 extending parallel to the equatorial plane 275 amounts to approximately 60% of the outer diameter of the outer PE half shells 279, 281, whereas the inner diameter of the intermediate rings 289, 291 amounts to approximately 24% of the outer diameter of the half shells.

In each case starting from the ring shaped intermediate layers 289, 291, the diameter of the support cushion 277 increases in the direction of the equatorial plane 275, with a respective intermediate space 283 becoming outwardly wider, however, being present radially outside the intermediate layers 289, 291 between the support cushion 277 and the half shells 279, 281. The half shells 279, 281 are consequently only supported via the metal rings 289, 291 at the support cushion 277.

The support cushion 277 forms, with the metal intermediate rings 289, 291, a solid material composite which is manufactured at the inner sides of the intermediate layers 289, 291 by injection molding of the material provided for the support cushion 277 for which e.g. the aforesaid materials are considered. An additional shape-matched connection is created by undercut bores 295 which are formed in the intermediate layers 289, 291 and into which the material of the support cushion 277 flows during manufacture. As Fig. 9c shows, a plurality of circular undercuts 295 are provided which are arranged at a uniform spacing from one another.

As the detail "C" of Fig. 9a shows, the side edges of the intermediate rings 289, 291 and the radially outer bounding sides of reception regions formed in the half shells 279, 281 are undercut such that a respective snap-connection can be established between the composite of support cushion 277 and intermediate rings 289, 291, on the one hand, and the two half shells 279, 281, on the other hand. The half shells 279, 281 can therefore simply be clipped onto the support cushion 277 fixedly connected to the metal rings 289, 291.

In the embodiment of Figs. l0a and lOb, ring-shaped intermediate layers 289, 291 are in turn arranged between the support cushion 277 made of PCU and the PE shells 279, 281. In this embodiment, the intermediate rings 289, 291 do not, however, extend perpendicular to the center axis 267 of the implant core 219, but are rather curved in accordance with the outer half shells 279, 281 providing the articulation surfaces 249.

The radial inner side of the ring-shaped support cushion 277 has a comparatively strong convex curvature, with the central passage 273 having a pronounced narrowing in the equatorial plane 275.

In the radial direction, the support cushion 277 terminates in a flush manner with the intermediate rings 289, 291 via a flange-like section 287 lying between the intermediate metal rings 289, 291. The PE half shells 279, 281 therefore in turn have an overhang with respect to the composite of support cushion 277 and intermediate rings 289, 291. The half shells 279, 281 each terminate in the axial direction in a flush manner with the intermediate rings 289, 291, whereby the implant core 219 has an outer ring groove 269 whose axial height corresponds to the thickness of the flange section 287 of the support cushion 277.

The connection between the intermediate layers 289, 291 made from a CoCrMo alloy and the PE half shells 279, 281 takes place in each case by injection molding of the PE material onto the outer sides of the metal intermediate layers 289, 291 which are provided for this purpose with recesses or undercuts (not shown in Fig. l0a) into which the PE material can flow during injection molding. These undercuts are preferably provided in the form of circular, recessed steps whose width and height vary with the radial position such that the step width reduces and the step height increases from the inside to the outside. This manufacture of the material composite can basically also be used with other material pairs, that is it is not limited to PE for the half shells and a CoCrMo alloy for the intermediate layers.

It is preferred for the embodiments of Figs. 9 and 10 for the spigots (cf.
Figs. 5 and 6) projecting from the implant plates (not shown here) and protruding into the central passage 273 to extend up to the metallic intermediate layers 289, 291 since then, with tilt movements of the implant plates taking place relative to the implant core 219 due to the articulation, the metal rings 289, 291 can serve as path boundaries for the spigots and thus the implant plates without impairing the PE half shells 279, 281.

The implant core 219 in accordance with Figs. 11 a, 1 l b does not have any intermediate layers between the support cushion 277 again made of PCU
and the outer half shells 279, 281 which are not made of PE in this embodiment, but of metal. The connection between the PCU support cushion 277 and the half shells 279, 281 takes place by injection molding of the PCU material.

At its radial inner side, the support cushion 277 is supported by a stiffening element 293 which is made as metal bellows and which extends up to the inner sides of the metal half shells 279, 281. On the one hand, the stiffness of the support cushion 277 in the axial direction is hereby increased. On the other hand, an improved guide of the half shells 279, 281 relative to one another results due to the stiffening element 293, whereby it is prevented that the half shells 279, 281 "float" on the support cushion 277.

The half shells 279, 281 and the stiffening element 293 are preferably made from the same material for which in particular a CoCrMo alloy is used.
The wall thickness of the half shells 279, 281 lies in an order of approximately 1 mm, whereby sufficient shape resilience results. A
resulting support of the half shells 279, 281 in the central region between a radially outer ring groove 285 of the support cushion 277 and the inner side, i.e. the stiffening element 293, permits a comparatively small change of shape of the half shells 279, 281 in the radially outer rim region in the order of m in the axial direction.

The outer ring groove 285 of the support cushion 277 and the ring gap between the half shells 279, 281 axially spaced apart in this respect together form an outer ring groove 269 of the total implant core 219. An inner ring groove 271 is created by a radially outwardly directed bulging of the metal bellows 293 at the height of the equatorial plane 275.

The articulation surfaces 249 (formed by part surfaces of a sphere)of the half shells 279, 281 made of metal in this embodiment and the corresponding articulation surfaces of the implant plates (not shown) can be processed - when the spigots of the implant plates (cf. e.g. Figs. 5 and 6) are subsequently attached to the implant plates e.g. by pressing in - by means of the method already mentioned in the aforesaid European patent application with the publication number EP 0 892 627 with that precision which is required to achieve the desired reduction in the surface pressing in these rim regions via the shape resilience of the radially outer rim regions of the half shells 279, 281.

Alternatively to the embodiment shown in Figs. 11 a and 11 b, in accordance with a further variant of the invention shown in Fig. 11 c, the support cushion can also be omitted and the support of the half shells 279, 281 can take place exclusively via a stiffening element 293', e.g.
10 corresponding to the bellows 293 in accordance with Fig. l la. In this variant, the stiffening element 293' is offset radially outwardly, i.e.
provided with a larger diameter, with respect to the position shown in Fig.
11a. As a result, the support of the half shells 279, 281 takes place in a central region - in which the half shells 279, 281 each have an axial ring 15 projection for the stiffening element 293' - between the radially outer margin, on the one hand, and the inner margin bounding the central passage 273 or the central openings of the ring-shaped half shells 279, 281, on the other hand, whereby pressure peaks are in turn avoided in these radially outer and inner rim regions.

In the embodiment of Figs. 12a and 12b, the implant core 219 is only formed by a PCU support cushion which is provided with a central passage 273 symmetrical to the equatorial plane 275 in the form of a double cone converging in the equatorial plane 275.
The implant core 219 has the shape of two spherical segments whose planar sides face one another and a cylindrical disk 218 disposed therebetween. The axial height of this cylindrical disk 218 is selected such that the part surfaces of a sphere (not shown) of the implant plates cooperating with the articulation surfaces 249 of the implant core 219 cover the cylinder disk 218, i.e. still have a sufficiently large overhang, in every permitted articulation position.

Compression takes place under load due to the comparatively high resilience of the PCU material forming the implant core 219 not only in the axial direction, but also in the radial direction, whereby the axially outer rim region of the articulation surfaces 249 is reduced. A reduction of the pressure load of the articulation surfaces 249 in the direction of the axially outer rim regions consequently also occurs with coinciding radii of curvature RO between the implant core 219 and the implant plates.

The pressure distribution adopted under load can also be set directly toward the radially inner side by the shape of the central passage 273 which is of double cone shape here.
The articulation surfaces 249 of the PCU implant core 219 can additionally be provided with a cross-link and/or a coating which serves to reduce the wear. In this process, the wear reduction can be achieved by a higher strength and/or by a lower friction value.

The implant cores 219 explained above with reference to Figs. 7 to 12 have the following dimensions, with reference moreover being made to the introductory part in this respect:

The smallest inner diameter of the ring-shaped support cushion 277, i.e.
the diameter of the central passage 273 at the narrowest restriction disposed in the equatorial plane 275 amounts to approximately 5 mm in the examples of Figs. 7, 8 and 9, to approximately 0.4 mm in the example of Fig. 10 and to approximately 4 mm in the example of Fig. 12.

The largest diameter of the central passage 273 at the outer side of the half shells 279, 281 or of the implant core 219 amounts to approximately 7.4 mm in the examples of Figs. 7 and 8 and to approximately 7.3 mm in the example of Fig. 12.
The spacing between the centers of the spherical segments defining the part surfaces of a sphere 249 amounts to approximately 6 mm in the examples of Figs. 7, 8 and 11 and to approximately 5 mm in the example of Fig. 12.

The opening angle of the central passage 273 at the outer side of the half shells 279, 281 amounts to approximately 20 in the examples of Figs. 7 and 8.

The axial height of the radially outer ring gap between the half shells 279, 281 amounts to approximately 2 mm in the examples of Figs. 7, 8 and 10.
In the example of Fig. 11, the smallest spacing between the half shells 279, 281 and thus the maximum axial width of the outer ring groove 285 of the support cushion 277 (Figs. 11 a and 11b) amounts to approximately 2.6 mm.

In the example of Fig. 9, the axial spacing between the metal rings 289, 291, i.e. the axial height of the support cushion 277, amounts to approximately 8 mm and the diameter of the central passage 273 at the height of the outer sides of the metal rings 289, 291 amounts to approximately 6 mm. The thickness of the metal rings 289, 291 amounts to approximately 1 mm.

In the example of Fig. 10, the wall thickness of the ring-shaped intermediate layers 289, 291 amounts to approximately 1.7 mm. The 33 N .

diameter of the central passage 273 at the maximum axial height of the support cushion 277, i.e. the smallest diameter of the intermediate rings 289, 291, amounts to approximately 6 mm.

In the example of Figs. 11 a and 11b, the inner diameter of the stiffening element 293 amounts to approximately 6.7 mm, whereas its wall thickness - also in the example of Fig. 11c - amounts to approximately 0.5 mm.

Reference numeral list 15, 115 implant plate 17, 117 implant plate 18, 218 intermediate disk 19, 119, 219 implant core 20 cut-out for the adapter element 41, 41' dome shaped or barrel shaped extension 42 abutment pin 43, 43' guide projection, peen or holding projection 44 bore 45 recess of the implant plate 47, 147 articulation surface of the recess or implant plate 49, 149, 249 articulation surface of the implant core 51, 151 spigot 53 cut-out 55 introduction passage of the implant core 57 introduction passage of the implant plate 59 fluid line 61 vertebral body 63 arch 65 rim region M spherical center R radius of the articulation surfaces 0 zero reference a angulation H height of the implant plates B width of the implant plates T depth of the implant plates d dome position h dome height z arch center w arch height a peen spacing f peen height v spacing of the cut-outs 167, 267 center axis of the implant core 169, 269 outer ring groove 171, 271 inner ring groove 173, 273 central passage MO, M 1, M2 center RO, R1, R2 radius of curvature P contact line 5 t tangent 0) angle 275 equatorial plane 10 277 support cushion 279 half shell 281 half shell 283 intermediate space 285 outer ring groove of the support cushion 15 287 flange section of the support cushion 289 intermediate layer 291 intermediate layer 293, 293' stiffening element 294 ring projection 20 295 recess, undercut

Claims (58)

1. An intervertebral disk implant, having two implant plates contacting prepared vertebral body surfaces in the implanted state and an implant core which is suitable for introduction between the implant plates, wherein the implant core is made rotationally symmetrically with respect to a central axis and each articulation surface of the implant core has a radius of curvature R1 in a cross-section through the central axis, said radius of curvature R1 having a center M1and being smaller than a radius of curvature R0 of the articulation surfaces of the implant plates, wherein the center M1 of the articulation surface of the implant core is spaced apart from the central axis.
2. An intervertebral disk implant in accordance with claim 1, wherein the radius of curvature R0 of the articulation surfaces of the implant plates is measured from a center M0disposed on the central axis of the implant core, the the radius of curvature R1 < the radius of curvature R0 in the direction of the core equator, the articulation surfaces of the implant core having a further radius of curvature R2 in the direction of the core pole with a center M2, the radius of curvature R2 < the radius of curvature R0.
3. An intervertebral disk implant in accordance with claim 2, wherein the radius of curvature R1 is not equal to the radius of curvature R2.
4. An intervertebral disk implant in accordance with claim 2 or claim 3, wherein the centers M0, M1 and M2 of the respective radii of curvature R0, R1 and R2 lie on a common straight line which intersects a contact line P between the implant core and the implant plates, when the intervertebral disk implant is assembled, and which includes an angle .omega. with the equatorial plane of the implant core in the range from approximately 45° to 75°.
5. An intervertebral disk implant in accordance with claim 4, wherein angle .omega. is at least approximately 60°.
6. An intervertebral disk implant in accordance with any one of claims 1 to 5, wherein the radius of curvature R0 - 6 mm < the radius of curvature R1 < the radius of curvature R0 - 1 mm.
7. An intervertebral disk implant in accordance with any one of claims 1 to 6, wherein 8 mm < the radius of curvature R0 < 18 mm..
8. An intervertebral disk implant in accordance with any one of claims 1 to 7, wherein the implant core has a lens-like basic shape.
9. An intervertebral disk implant in accordance with any one of claims 1 to 8, wherein the implant core has at least approximately the shape of two spherical segments whose planar sides lie on top of one another, with the respective spherical center of the one spherical segment lying within the other spherical segment.
10. An intervertebral disk implant in accordance with any one of claims 1 to 8, wherein the implant core has at least approximately the shape of two spherical segments whose planar sides face one another and a cylindrical disk disposed therebetween, with the respective spherical center of the one spherical segment lying within the other spherical segment.
11. An intervertebral disk implant in accordance with any one of claims 1 to 10, wherein the implant core is provided with an outer ring groove or with an inner ring groove or both an outer ring groove and an inner ring groove.
12. An intervertebral disk implant in accordance with claim 11, wherein either one or both of the outer ring groove and the inner ring groove are provided in the region of the equatorial plane of the implant core and forming a radial extension of a passage extending perpendicular to the equatorial plane.
13. An intervertebral disk implant in accordance with any one of claims 1 to 11, wherein the implant core has a passage extending perpendicular to the equatorial plane.
14. An intervertebral disk implant in accordance with any one of claims 1 to 11, wherein the implant core has a passage extending perpendicular to the equatorial plane whose longitudinal axis coincides with the central axis of the implant core.
15. An intervertebral disk implant in accordance with any one of claims 1 to 11, wherein the implant core is made in multiple parts and includes an arrangement of at least one inner support cushion and at least one shell surrounding the support cushion.
16. An intervertebral disk implant in accordance with claim 15, wherein the arrangement is made as a material composite.
17. An intervertebral disk implant in accordance with claim 16, wherein the support cushion has a lens-like base shape.
18. An intervertebral disk implant in accordance with any one of claims 15 to 17, wherein the shell includes two half shells.
19. An intervertebral disk implant in accordance with claim 18, wherein the two half shells are arranged spaced apart from one another in the axial direction.
20. An intervertebral disk implant in accordance with any one of claims 15 to 19, wherein the support cushion and the shell are made from different materials.
21. An intervertebral disk implant in accordance with claim 20, wherein the material of the shell is harder or stiffer or harder and stiffer than the material of the support cushion.
22. An intervertebral disk implant in accordance with any one of claims 15 to 21, wherein the shell projects beyond the support cushion in the radial direction.
23. An intervertebral disk implant in accordance with any one of claims 15 to 22, wherein an intermediate space is present in a radially outer rim region between the shell and the support cushion.
24. An intervertebral disk implant in accordance with any one of claims 15 to 23, wherein an intermediate layer, is arranged between the support cushion and the shell.
25. An intervertebral disk implant in accordance with claim 24, wherein the intermediate layer is made as a path boundary for a plurality of spigots of the implant plates projecting into a passage extending perpendicular to an equatorial plane.
26. An intervertebral disk implant in accordance with any one of claims 1 to 11, wherein a passage of the implant core extending perpendicular to an equatorial plane has a cross-sectional area which varies over its length.
27. An intervertebral disk implant in accordance with claim 26, wherein the cross-sectional area increases outwardly from the equatorial plane.
28. An intervertebral disk implant in accordance with claim 26, the cross-sectional area increases constantly outwardly from the equatorial plane.
29. An intervertebral disk implant in accordance with any one of claims 15 to 28, wherein a passage has a restriction bounded by an inner wall of the support cushion.
30. An intervertebral disk implant in accordance with any one of claims 15 to 29, wherein the support cushion is made in ring shape.
31. An intervertebral disk implant in accordance with claim 30, wherein the ring thickness measured in the radial direction is the largest in the equatorial plane and in each case reducing with increasing axial distance from the equatorial plane.
32. An intervertebral disk implant in accordance with any one of claims 15 to 31, wherein the support cushion is stiffened in a central region in the axial direction.
33. An intervertebral disk implant in accordance with any one of claims 15 to 32, wherein the support cushion is stiffened inwardly in the radial direction.
34. An intervertebral disk implant in accordance with any one of claims 15 to 23, wherein a separate stiffening element is provided.
35. An intervertebral disk implant in accordance with claim 34, wherein the separate stiffening element has a ring shaped or cylindrical base shape and is arranged in a passage extending perpendicular to an equatorial plane.
36. An intervertebral disk implant in accordance with any one of claims 15 to 35, wherein the support cushion is injection molded onto the shell for the forming of a material composite between the support cushion and the shell which is suitable for manufacture by injection molding.
37. An intervertebral disk implant in accordance with any one of claims 15 to 17, wherein the shell has two half shells forming the shell and the material of the support cushion has a higher melting point than the material of the shell.
38. An intervertebral disk implant in accordance with any one of claims 15 to 24, wherein the support cushion is injection molded onto an intermediate layer.
39. An intervertebral disk implant in accordance with any one of claims 15 to 17, wherein the support cushion or an intermediate layer connected to the support cushion is connected to the shell by a clip, snap, or latch connection.
40. An intervertebral disk implant in accordance with any one of claims 18 to 38, wherein the support cushion or an intermediate layer connected to the support cushion is connected to the shell by a clip, snap, or latch connection.
41. An intervertebral disk implant in accordance with claim 39, wherein the support cushion or the intermediate layer connected to the support cushion is connected to two half shells forming the shell.
42. An intervertebral disk implant in accordance with claim 40, wherein the support cushion or the intermediate layer connected to the support cushion is connected to the two half shells forming the shell.
43. An intervertebral disk implant in accordance with any one of claims 15 to 42, wherein the implant plates each have a dome-shaped extension at their outer side.
44. An intervertebral disk implant in accordance with claim 43, wherein the dome-shaped extension is in the form of a spherical segment, or a barrel-shaped extension.
45. An intervertebral disk implant in accordance with any one of claims 15 to 44, wherein the outer sides of the implant plates are each outwardly arched.
46. An intervertebral disk implant in accordance with claim 45, wherein the arches are provided in addition to a dome-shaped extension or a barrel-shaped extension.
47. An intervertebral disk implant in accordance with any one of claims 15 to 46, wherein the outer sides of the implant plates each have a planar rim region extending at least over part of the periphery of the implant plates.
48. An intervertebral disk implant in accordance with any one of claims 15 to 47, wherein the implant plates each have at least one guide projection or a holding projection on their outer side.
49. An intervertebral disk implant in accordance with claim 48, wherein the at least one guide projection is formed as a peen, or the holding projection is a pyramid-shaped holding projection.
50. An intervertebral disk implant in accordance with any one of claims 15 to 49, wherein the implant plates each have a recess on their inner sides for the reception of the implant core.
51. An intervertebral disk implant in accordance with any one of claims 15 to 50, wherein at least one implant plate has a spigot which protrudes from its inner side and which projects into a depression formed on the outer side of the implant core, when the implant is assembled, with the depression being dimensioned larger than the spigot in order to permit a relative movement between the implant plate and the implant core.
52. An intervertebral disk implant in accordance with claim 51, wherein the spigot is arranged centrally with respect to the dimension of the implant plate in the sagittal direction.
53. An intervertebral disk implant in accordance with claim 51, wherein the spigot is arranged eccentrically with respect to the dimension of the implant plate in the sagittal direction.
54. An intervertebral disk implant in accordance with any one of claims 15 to 50, wherein the implant core is provided on at least one outer side with an introduction passage for a spigot of the implant plate extending from the rim to the depression.
55. An intervertebral disk implant in accordance with any one of claims 51 to 53, wherein the implant core is provided on at least one outer side with an introduction passage for the spigot of the implant plate extending from the rim to the depression.
56. An intervertebral disk implant in accordance with any one of claims 15 to 53, wherein at least one implant plate is provided on its inner side with an introduction passage for the implant core extending from the rim to the recess.
57. An intervertebral disk implant in accordance with any one of claims 10, 24, 38, 39, 41 and 42, wherein the intermediate layer is made of metal.
58. An intervertebral disk implant in accordance with any one of claims 1 to 6, wherein the radius of curvature R2 < the radius of curvature R1.
CA2614993A 2004-05-18 2005-04-11 An intervertebral disk implant Expired - Fee Related CA2614993C (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102004024662 2004-05-18
DE102004024662.9 2004-05-18
EP04027322.9 2004-11-17
EP04027322A EP1532950B1 (en) 2003-11-18 2004-11-17 Spinal disc prosthesis
CA002503294A CA2503294C (en) 2004-05-18 2005-04-11 An intervertebral disk implant

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CA002503294A Division CA2503294C (en) 2004-05-18 2005-04-11 An intervertebral disk implant

Publications (2)

Publication Number Publication Date
CA2614993A1 CA2614993A1 (en) 2005-09-28
CA2614993C true CA2614993C (en) 2011-04-05

Family

ID=35474912

Family Applications (2)

Application Number Title Priority Date Filing Date
CA2614993A Expired - Fee Related CA2614993C (en) 2004-05-18 2005-04-11 An intervertebral disk implant
CA002503294A Expired - Fee Related CA2503294C (en) 2004-05-18 2005-04-11 An intervertebral disk implant

Family Applications After (1)

Application Number Title Priority Date Filing Date
CA002503294A Expired - Fee Related CA2503294C (en) 2004-05-18 2005-04-11 An intervertebral disk implant

Country Status (9)

Country Link
US (2) US7959678B2 (en)
EP (1) EP1532950B1 (en)
JP (2) JP4210667B2 (en)
KR (1) KR100701991B1 (en)
CN (1) CN1698551B (en)
AT (2) ATE390101T1 (en)
AU (1) AU2005201776B2 (en)
CA (2) CA2614993C (en)
DE (1) DE502004006648D1 (en)

Families Citing this family (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2002805A3 (en) 2002-09-19 2009-01-07 Malan De Villiers Intervertebral prosthesis
JP4275699B2 (en) 2003-01-31 2009-06-10 スパイナルモーション, インコーポレイテッド Intervertebral prosthesis placement instrument
EP2329778A3 (en) * 2003-01-31 2012-06-20 Spinalmotion, Inc. Spinal midline indicator
US7575599B2 (en) * 2004-07-30 2009-08-18 Spinalmotion, Inc. Intervertebral prosthetic disc with metallic core
EP2226038A1 (en) 2003-05-27 2010-09-08 Spinalmotion, Inc. Prosthetic disc for intervertebral insertion
US10052211B2 (en) 2003-05-27 2018-08-21 Simplify Medical Pty Ltd. Prosthetic disc for intervertebral insertion
ATE390101T1 (en) * 2003-11-18 2008-04-15 Zimmer Gmbh DISC IMPLANT
US7837732B2 (en) 2003-11-20 2010-11-23 Warsaw Orthopedic, Inc. Intervertebral body fusion cage with keels and implantation methods
US7585326B2 (en) 2004-08-06 2009-09-08 Spinalmotion, Inc. Methods and apparatus for intervertebral disc prosthesis insertion
WO2006042487A1 (en) * 2004-10-18 2006-04-27 Buettner-Janz Karin Intervertebral disc endoprosthesis having cylindrical articulation surfaces
WO2006042485A1 (en) * 2004-10-18 2006-04-27 Buettner-Janz Karin Intervertebral disk endoprosthesis for lumbar and cervical spine, which corresponds to the physiology of movement
WO2006042484A1 (en) * 2004-10-18 2006-04-27 Buettner-Janz Karin Bent sliding core as part of an intervertebral disk endoprosthesis
US8083797B2 (en) 2005-02-04 2011-12-27 Spinalmotion, Inc. Intervertebral prosthetic disc with shock absorption
US8911498B2 (en) * 2005-02-10 2014-12-16 DePuy Synthes Products, LLC Intervertebral prosthetic disc
EP1903996A2 (en) * 2005-07-06 2008-04-02 Copf jun., Franz Intervertebral disc prosthesis
FR2891135B1 (en) 2005-09-23 2008-09-12 Ldr Medical Sarl INTERVERTEBRAL DISC PROSTHESIS
US20070135923A1 (en) * 2005-12-14 2007-06-14 Sdgi Holdings, Inc. Ceramic and polymer prosthetic device
EP1978897B1 (en) 2006-02-01 2013-05-01 Synthes GmbH Total disc replacement device
US8252058B2 (en) * 2006-02-16 2012-08-28 Amedica Corporation Spinal implant with elliptical articulatory interface
US8066774B2 (en) * 2006-04-07 2011-11-29 Warsaw Orthopedic, Inc. Artificial disc implants and associated methods and instrumentation
JP2009533187A (en) 2006-04-12 2009-09-17 スパイナルモーション, インコーポレイテッド Posterior spine apparatus and method
US20080051900A1 (en) * 2006-07-28 2008-02-28 Spinalmotion, Inc. Spinal Prosthesis with Offset Anchors
US20080051901A1 (en) 2006-07-28 2008-02-28 Spinalmotion, Inc. Spinal Prosthesis with Multiple Pillar Anchors
US20080114453A1 (en) * 2006-11-13 2008-05-15 Warsaw Orthopedic, Inc. Intervertebral prosthetic devices and surgical methods
US9867640B2 (en) 2006-12-07 2018-01-16 Nexus Spine, LLC Press-on pedicle screw assembly
FR2909859B1 (en) * 2006-12-13 2011-02-11 Lionel Francois Simon JOINT PROSTHESIS OF INTERVERTEBRAL DISC
US8715352B2 (en) 2006-12-14 2014-05-06 Depuy Spine, Inc. Buckling disc replacement
US8308801B2 (en) * 2007-02-12 2012-11-13 Brigham Young University Spinal implant
US9314346B2 (en) 2007-02-12 2016-04-19 Brigham Young University Spinal implant
US9289310B2 (en) 2007-03-10 2016-03-22 Spinesmith Partners, L.P. Artificial disc with post and modular collar
US10335288B2 (en) 2007-03-10 2019-07-02 Spinesmith Partners, L.P. Surgical implant secured by pegs and associated methods
US9358121B2 (en) * 2007-03-10 2016-06-07 Spinesmith Partners, L.P. Artificial disc with unique articulating geometry and associated methods
US20090043391A1 (en) 2007-08-09 2009-02-12 Spinalmotion, Inc. Customized Intervertebral Prosthetic Disc with Shock Absorption
US8052754B2 (en) * 2007-09-28 2011-11-08 Zimmer Gmbh Intervertebral endoprosthesis
FR2921820B1 (en) 2007-10-05 2011-09-16 Vincent Pointillart INTERVERTEBRAL PROSTHESIS
WO2009055481A1 (en) 2007-10-22 2009-04-30 Spinalmotion, Inc. Dynamic spacer device and method for spanning a space formed upon removal of an intervertebral disc
EP2211785B1 (en) 2007-10-25 2016-01-27 Synergy Disc Replacement, Inc. Systems for vertebral disc replacement
US9561845B2 (en) 2007-12-06 2017-02-07 Roller Bearing Company Of America, Inc. Bearing installed on an aircraft structure
US10012265B2 (en) 2007-12-06 2018-07-03 Roller Bearing Company Of America, Inc. Corrosion resistant bearing material
US8894687B2 (en) 2011-04-25 2014-11-25 Nexus Spine, L.L.C. Coupling system for surgical construct
US9232965B2 (en) 2009-02-23 2016-01-12 Nexus Spine, LLC Press-on link for surgical screws
EP2244671A4 (en) * 2008-01-25 2013-03-20 Spinalmotion Inc Intervertebral prosthetic disc with shock absorbing core formed with disc springs
US8216314B2 (en) * 2008-02-13 2012-07-10 Marc Richelsoph Distractable spinal implant assembly
US8764833B2 (en) 2008-03-11 2014-07-01 Spinalmotion, Inc. Artificial intervertebral disc with lower height
FR2929105B1 (en) * 2008-03-25 2010-04-02 Medicrea International PROSTHESIS OF VERTEBRAL DISC, IN PARTICULAR FOR CERVICAL VERTEBRATES
US9034038B2 (en) 2008-04-11 2015-05-19 Spinalmotion, Inc. Motion limiting insert for an artificial intervertebral disc
KR20110009216A (en) 2008-05-05 2011-01-27 스피날모우션, 인코포레이티드 Polyaryletherketone artificial intervertebral disc
EP2116211A1 (en) * 2008-05-05 2009-11-11 Christian Röbling Intervertebral prosthesis
US9220603B2 (en) 2008-07-02 2015-12-29 Simplify Medical, Inc. Limited motion prosthetic intervertebral disc
EP2299944A4 (en) 2008-07-17 2013-07-31 Spinalmotion Inc Artificial intervertebral disc placement system
WO2010009153A1 (en) 2008-07-18 2010-01-21 Spinalmotion, Inc. Posterior prosthetic intervertebral disc
US8545566B2 (en) * 2008-10-13 2013-10-01 Globus Medical, Inc. Articulating spacer
CN102325508A (en) * 2009-02-19 2012-01-18 安东·E·鲍登 The dynamic type spinal implant of compliance
FR2948558A1 (en) * 2009-07-31 2011-02-04 Euros Sa INTERVERTEBRAL DISC PROSTHESIS
CN101627931B (en) * 2009-08-06 2010-12-01 雷伟 Artificial cervical complex joint
US9157497B1 (en) 2009-10-30 2015-10-13 Brigham Young University Lamina emergent torsional joint and related methods
US9028553B2 (en) * 2009-11-05 2015-05-12 DePuy Synthes Products, Inc. Self-pivoting spinal implant and associated instrumentation
US8303879B2 (en) 2010-02-01 2012-11-06 Sb Technologies, Llc Composite interbody device and method of manufacture
US8496713B2 (en) * 2010-12-10 2013-07-30 Globus Medical, Inc. Spine stabilization device and methods
US9724135B2 (en) * 2010-12-17 2017-08-08 DePuy Synthes Products, Inc. Methods and systems for minimally invasive posterior arch expansion
US9101485B2 (en) * 2011-01-04 2015-08-11 DePuy Synthes Products, Inc. Intervertebral implant with multiple radii
US8998991B2 (en) * 2011-02-23 2015-04-07 Globus Medical, Inc. Six degree spine stabilization devices and methods
WO2012125382A1 (en) 2011-03-11 2012-09-20 FBC Device ApS Spinal implant, instrument for preparation and method of use
FR2974497A1 (en) * 2011-04-27 2012-11-02 Centre Nat Rech Scient INTERVERTEBRAL DISC PROSTHESIS IN THERMOPLASTIC MATERIAL WITH A GRADIENT OF MECHANICAL PROPERTIES
WO2012177412A2 (en) 2011-06-07 2012-12-27 Brigham Young University Serpentine spinal stability device and associated methods
US8840673B2 (en) 2011-09-21 2014-09-23 Linares Medical Devices, Llc Implantable elbow joint assembly with spherical inter-support
EP3881805A1 (en) 2011-10-13 2021-09-22 Simplify Medical Pty Ltd. Anatomy accommodating prosthetic intervertebral disc with lower height
US9017410B2 (en) * 2011-10-26 2015-04-28 Globus Medical, Inc. Artificial discs
WO2014145766A1 (en) * 2013-03-15 2014-09-18 Paradigm Spine, Llc Modular, customizable spine stabilization system
US10039575B2 (en) * 2013-07-01 2018-08-07 Cousin Biotech Sas Dynamic intervertebral stabilisation device
US10077808B2 (en) 2013-12-18 2018-09-18 Roller Bearing Company Of America, Inc. Roller profile for hourglass roller bearings in aircraft
US9890814B2 (en) 2014-06-03 2018-02-13 Roller Bearing Company Of America, Inc. Cage for hourglass roller bearings
US9642651B2 (en) 2014-06-12 2017-05-09 Brigham Young University Inverted serpentine spinal stability device and associated methods
RU2626139C2 (en) * 2015-07-13 2017-07-21 Федеральное государственное автономное образовательное учреждение высшего образования "Севастопольский государственный университет" Closed design spinal implant
RU2626137C2 (en) * 2015-07-13 2017-07-21 Федеральное государственное автономное образовательное учреждение высшего образования "Севастопольский государственный университет" Closed endoprosthesis for intervertebral disc
RU2626134C2 (en) * 2015-07-16 2017-07-21 Федеральное государственное автономное образовательное учреждение высшего образования "Севастопольский государственный университет" Intervertebral disk revisional endoprosthesis
RU2646585C2 (en) * 2015-09-10 2018-03-05 ФГАОУ ВО Севастопольский государственный университет Liquid-torsion endoprosthesis of intervertebral disc
RU2646580C2 (en) * 2015-09-10 2018-03-05 Федеральное государственное автономное образовательное учреждение высшего образования"Севастопольский государственный университет" Vertebra endoprosthesis with adjacent intervertebral discs
RU2646579C2 (en) * 2015-09-10 2018-03-05 ФГАОУ ВО Севастопольский государственный университет Liquid spinal endoprosthesis
RU2641980C2 (en) * 2015-09-10 2018-01-23 ФГАОУ ВО Севастопольский государственный университет Liquid intervertebral disk endoprosthesis
CN105266928B (en) * 2015-09-29 2017-11-10 深圳清华大学研究院 The method of cervical intervertebral disk prosthesis, implantation instrument, cervical intervertebral disk prosthesis and implantation instrument combination unit and utilization of cervical implants implantation cervical vertebra
US10617531B2 (en) * 2015-10-26 2020-04-14 K2M, Inc. Cervical disc and instrumentation
EP3448318A4 (en) 2016-04-26 2019-12-04 K2M, Inc. Orthopedic implant with integrated core
US20200069436A1 (en) * 2016-11-09 2020-03-05 Exponential Medical Technologies (Properietary) Limited Artificial intervertebral disc
US10307263B2 (en) * 2017-04-04 2019-06-04 Robert B. Dzioba Mobile cage system for restoring motion kinematics of the spine
KR101964862B1 (en) * 2017-09-15 2019-04-02 주식회사 지에스메디칼 Artificial disc for cervical vertebrae
US10426628B2 (en) * 2017-12-14 2019-10-01 Simplify Medical Pty Ltd Intervertebral prosthesis
CN112451184A (en) * 2020-12-18 2021-03-09 北京爱康宜诚医疗器材有限公司 Intervertebral disc prosthesis
WO2023278243A1 (en) * 2021-06-28 2023-01-05 Spine Wave, Inc. Bellows shaped spinal implant
US11826265B2 (en) * 2021-06-28 2023-11-28 Spine Wave, Inc. Bellows shaped spinal implant having gyroid lattice structures

Family Cites Families (165)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9542C (en) H. KEFERSTEIN in Halle a. Saale, Königsstr. 25 Pot lid that does not fall off when pouring out
DE2031043A1 (en) 1970-04-23 1971-11-04 Synthese Chemie Gmbh Emulsion for testing for colour fastness
DE2263842A1 (en) 1972-12-28 1974-07-04 Hoffmann Daimler Siegfried Dr DISC PROTHESIS
FR2372622A1 (en) 1976-12-03 1978-06-30 Fassio Bernard Intervertebral prosthesis for surgical use - has flat semicircular disc with hemispherical boss each side to support between vertebrae
CH624573A5 (en) 1978-02-01 1981-08-14 Sulzer Ag Intervertebral prosthesis
CH640131A5 (en) 1979-10-03 1983-12-30 Sulzer Ag Complete intervertebral prosthesis
EP0176728B1 (en) * 1984-09-04 1989-07-26 Humboldt-Universität zu Berlin Intervertebral-disc prosthesis
DD239523B3 (en) 1985-07-19 1993-04-01 Buettner Janz Karin intervertebral disc prosthesis
JPH07121265B2 (en) 1986-12-26 1995-12-25 京セラ株式会社 Cervical artificial disc
CA1283501C (en) * 1987-02-12 1991-04-30 Thomas P. Hedman Artificial spinal disc
DE3809793A1 (en) * 1988-03-23 1989-10-05 Link Waldemar Gmbh Co SURGICAL INSTRUMENT SET
FR2659226B1 (en) * 1990-03-07 1992-05-29 Jbs Sa PROSTHESIS FOR INTERVERTEBRAL DISCS AND ITS IMPLEMENTATION INSTRUMENTS.
GB9125798D0 (en) 1991-12-04 1992-02-05 Customflex Limited Improvements in or relating to spinal vertebrae implants
US5425773A (en) * 1992-01-06 1995-06-20 Danek Medical, Inc. Intervertebral disk arthroplasty device
DE4208116C2 (en) * 1992-03-13 1995-08-03 Link Waldemar Gmbh Co Intervertebral disc prosthesis
DE4208115A1 (en) * 1992-03-13 1993-09-16 Link Waldemar Gmbh Co DISC ENDOPROTHESIS
DE4213771C1 (en) 1992-04-27 1993-09-30 Eska Medical Gmbh & Co Spinal disc endoprosthesis - has elastic core with rim beading between shaped cover plates with a screw bonding for implantation without adhesive
FR2694882B1 (en) 1992-08-24 1994-10-21 Sofamor Intervertebral disc prosthesis.
JPH06178787A (en) * 1992-12-14 1994-06-28 Shima Yumiko Centrum spacer with joint, intervertebral cavity measuring device and centrum spacer pattern
US5676701A (en) 1993-01-14 1997-10-14 Smith & Nephew, Inc. Low wear artificial spinal disc
FR2709949B1 (en) * 1993-09-14 1995-10-13 Commissariat Energie Atomique Intervertebral disc prosthesis.
US5458642A (en) 1994-01-18 1995-10-17 Beer; John C. Synthetic intervertebral disc
US7166121B2 (en) 1994-01-26 2007-01-23 Kyphon Inc. Systems and methods using expandable bodies to push apart cortical bone surfaces
FR2718635B1 (en) 1994-04-15 1996-07-05 Axcyl Medical Cervical prosthesis.
US7494507B2 (en) * 2000-01-30 2009-02-24 Diamicron, Inc. Articulating diamond-surfaced spinal implants
FR2724109A1 (en) 1994-09-05 1996-03-08 Medinov Sa INTERVERTEBRAL SLIDING PROSTHESIS, ESPECIALLY CERVICAL
US5674296A (en) * 1994-11-14 1997-10-07 Spinal Dynamics Corporation Human spinal disc prosthesis
FR2730159B1 (en) 1995-02-06 1997-04-25 Teule Jean Germain PROSTHESIS FOR INTERVERTEBRAL DISC
FR2734148A1 (en) 1995-05-15 1996-11-22 Biomat Spinal intervertebral disc replacement prosthesis
US5683465A (en) * 1996-03-18 1997-11-04 Shinn; Gary Lee Artificial intervertebral disk prosthesis
US6126695A (en) 1996-04-12 2000-10-03 Sulzer Orthopaedie Ag Artificial joint, particularly an artificial hip joint
US5782832A (en) 1996-10-01 1998-07-21 Surgical Dynamics, Inc. Spinal fusion implant and method of insertion thereof
US5895428A (en) * 1996-11-01 1999-04-20 Berry; Don Load bearing spinal joint implant
US5893889A (en) * 1997-06-20 1999-04-13 Harrington; Michael Artificial disc
US6146421A (en) 1997-08-04 2000-11-14 Gordon, Maya, Roberts And Thomas, Number 1, Llc Multiple axis intervertebral prosthesis
CN1271262A (en) 1997-08-04 2000-10-25 弋登玛雅,罗伯特&托马斯第一有限责任公司 Multiple axle intervertebral prosthesis
US5888226A (en) * 1997-11-12 1999-03-30 Rogozinski; Chaim Intervertebral prosthetic disc
US5989291A (en) * 1998-02-26 1999-11-23 Third Millennium Engineering, Llc Intervertebral spacer device
FR2775587B1 (en) 1998-03-03 2001-10-19 Hassan Razian ADJUSTABLE DISC / SHOCK ABSORBER AND ITS POSTERIOR SYSTEM
ES2163216T3 (en) 1998-03-13 2002-01-16 Link Waldemar Gmbh Co ENDOPROTESIS GAME FOR INTERVERTEBRAL DISCS.
CA2329363C (en) 1998-04-23 2007-12-11 Cauthen Research Group, Inc. Articulating spinal implant
US6019792A (en) 1998-04-23 2000-02-01 Cauthen Research Group, Inc. Articulating spinal implant
CN2333369Y (en) * 1998-05-29 1999-08-18 中山医科大学孙逸仙纪念医院 Artificial lumbar intervertebral disc
US5928284A (en) * 1998-07-09 1999-07-27 Mehdizadeh; Hamid M. Disc replacement prosthesis
DE69936263T2 (en) 1998-07-22 2007-10-04 Warsaw Orthopedic, Inc., Warsaw SCREWED CYLINDRICAL, MULTIDISKOIDE EASY OR MULTIPLE NETWORK PLATE PROTESTS
US6063121A (en) * 1998-07-29 2000-05-16 Xavier; Ravi Vertebral body prosthesis
AU5813599A (en) 1998-09-04 2000-03-27 Spinal Dynamics Corporation Cylindrical hemi-lunar parallel array threaded disc prosthesis
AU754516B2 (en) 1998-09-04 2002-11-21 Warsaw Orthopedic, Inc. Peanut spectacle multi discoid thoraco-lumbar disc prosthesis
FR2787014B1 (en) * 1998-12-11 2001-03-02 Dimso Sa INTERVERTEBRAL DISC PROSTHESIS WITH REDUCED FRICTION
FR2787017B1 (en) * 1998-12-11 2001-04-27 Dimso Sa INTERVERTEBRAL DISC PROSTHESIS WITH IMPROVED MECHANICAL BEHAVIOR
US6368350B1 (en) 1999-03-11 2002-04-09 Sulzer Spine-Tech Inc. Intervertebral disc prosthesis and method
US6579321B1 (en) * 1999-05-17 2003-06-17 Vanderbilt University Intervertebral disc replacement prosthesis
EP1057462B1 (en) * 1999-05-21 2003-04-02 Waldemar Link (GmbH &amp; Co.) Intervertebral endoprosthesis with a toothed connection plate
CA2376097A1 (en) 1999-06-04 2000-12-14 Sdgi Holdings, Inc. Artificial disc implant
ATE388677T1 (en) 1999-07-02 2008-03-15 Spine Solutions Inc INTERVERBARY IMPLANT
DE59914213D1 (en) 1999-09-14 2007-04-05 Spine Solutions Inc INSERT INSTRUMENT FOR A INTERMEDIATE IMPLANT
FR2799638B1 (en) * 1999-10-14 2002-08-16 Fred Zacouto FIXATOR AND VERTEBRAL JOINT
ATE336952T1 (en) * 1999-12-01 2006-09-15 Henry Graf DEVICE FOR INTERVERBEL STABILIZATION
US7066957B2 (en) * 1999-12-29 2006-06-27 Sdgi Holdings, Inc. Device and assembly for intervertebral stabilization
FR2805733B1 (en) * 2000-03-03 2002-06-07 Scient X DISC PROSTHESIS FOR CERVICAL VERTEBRUS
FR2805985B1 (en) 2000-03-10 2003-02-07 Eurosurgical INTERVERTEBRAL DISK PROSTHESIS
AU2001275253A1 (en) 2000-06-05 2001-12-17 Laser Fire Orthopedic implant and method of making metal articles
EP1363565A2 (en) 2000-08-08 2003-11-26 SDGI Holdings, Inc. Implantable joint prosthesis
US7601174B2 (en) * 2000-08-08 2009-10-13 Warsaw Orthopedic, Inc. Wear-resistant endoprosthetic devices
FR2817734A1 (en) 2000-12-11 2002-06-14 Jean Claude Bouvet Intervertebral prosthesis has parallel plates with perpendicular rims set with gap between permitting relative rotation
DE10061975C2 (en) 2000-12-13 2003-01-30 Eska Implants Gmbh & Co Intervertebral disc replacement implant part
US6436103B1 (en) * 2000-12-21 2002-08-20 Loubert Suddaby Drill guide and plate attachment mechanism for orthopedic plating
US7563285B2 (en) * 2001-07-16 2009-07-21 Spinecore, Inc. Artificial intervertebral disc utilizing a ball joint coupling
US6740117B2 (en) * 2001-02-15 2004-05-25 Spinecore, Inc. Intervertebral spacer device having a radially thinning slotted belleville spring
EP1250898A1 (en) * 2001-04-05 2002-10-23 Waldemar Link (GmbH &amp; Co.) Intervertebral disc prosthesis system
US6632235B2 (en) 2001-04-19 2003-10-14 Synthes (U.S.A.) Inflatable device and method for reducing fractures in bone and in treating the spine
WO2002085261A1 (en) 2001-04-20 2002-10-31 Douglas Stafford Maclennan Intervertebral disc implant device
FR2824261B1 (en) 2001-05-04 2004-05-28 Ldr Medical INTERVERTEBRAL DISC PROSTHESIS AND IMPLEMENTATION METHOD AND TOOLS
US6607558B2 (en) 2001-07-03 2003-08-19 Axiomed Spine Corporation Artificial disc
DE10132588C2 (en) * 2001-07-05 2003-05-22 Fehling Instr Gmbh Disc prosthesis
WO2003007779A2 (en) 2001-07-16 2003-01-30 Third Millenium Engineering Llc Artificial intervertebral disc having a deformable wire mesh vertebral body contact element
US6527806B2 (en) * 2001-07-16 2003-03-04 Third Millennium Engineering, Llc Intervertebral spacer device having a spiral wave washer force restoring element
US7160327B2 (en) 2001-07-16 2007-01-09 Spinecore, Inc. Axially compressible artificial intervertebral disc having limited rotation using a captured ball and socket joint with a solid ball and compression locking post
DE60231718D1 (en) 2001-07-16 2009-05-07 Spinecore Inc ARTIFICIAL BELT WASH WITH A FORCE RESTORING ELEMENT IN THE FORM OF A WAVE WASHER
US6468310B1 (en) * 2001-07-16 2002-10-22 Third Millennium Engineering, Llc Intervertebral spacer device having a wave washer force restoring element
US6375682B1 (en) * 2001-08-06 2002-04-23 Lewis W. Fleischmann Collapsible, rotatable and expandable spinal hydraulic prosthetic device
EP1287795B1 (en) * 2001-08-24 2008-06-18 Zimmer GmbH Artificial spinal disc
DE50114037D1 (en) * 2001-08-24 2008-07-31 Zimmer Gmbh Artificial disc
AU2002345747A1 (en) 2001-10-01 2003-04-14 Third Millennium Engineering Llc Artificial intervertebral disc having a grooved belleville washer force restoring element
WO2003032801A2 (en) 2001-10-18 2003-04-24 Third Millennium Engineering Llc Artificial intervertebral disc having a spider spring force restoring element
WO2003032802A2 (en) 2001-10-18 2003-04-24 Third Millennium Engineering Llc Intervertebral spacer device having an arched spring element
FR2831796B1 (en) * 2001-11-06 2003-12-26 Ldr Medical BONE ANCHORING DEVICE FOR PROSTHESIS
US7025787B2 (en) * 2001-11-26 2006-04-11 Sdgi Holdings, Inc. Implantable joint prosthesis and associated instrumentation
US6572653B1 (en) * 2001-12-07 2003-06-03 Rush E. Simonson Vertebral implant adapted for posterior insertion
EP1344507A1 (en) * 2002-03-12 2003-09-17 Waldemar Link (GmbH &amp; Co.) Intervertebral prosthesis for the cervical spine
DE50210270D1 (en) * 2002-03-12 2007-07-19 Cervitech Inc Intervertebral prosthesis, especially for the cervical spine
RU2303422C2 (en) * 2002-03-12 2007-07-27 Сервитек Инк. Intervertebral prosthesis and system of intervertebral prostheses, in peculiar case, for cervical department of vertebral column
EP1344506A1 (en) 2002-03-12 2003-09-17 Waldemar Link (GmbH &amp; Co.) Intervertebral prosthesis for the cervical spine
US6808538B2 (en) 2002-03-15 2004-10-26 Stryker Spine Vertebral body spacer having variable wedged endplates
AU2003228391A1 (en) 2002-03-30 2003-10-20 Cool Brace Intervertebral device and method of use
US20030195631A1 (en) * 2002-04-12 2003-10-16 Ferree Bret A. Shape-memory spacers for artificial disc replacements
US8038713B2 (en) * 2002-04-23 2011-10-18 Spinecore, Inc. Two-component artificial disc replacements
US20040093082A1 (en) * 2002-04-19 2004-05-13 Ferree Bret A. Mobile-bearing artificial disc replacement
US20040030390A1 (en) * 2002-04-23 2004-02-12 Ferree Bret A. Intradiscal component installation apparatus and methods
US20030233097A1 (en) * 2002-04-23 2003-12-18 Ferree Bret A. Artificial disc replacement (ADR) distraction sleeves and cutting guides
US6706068B2 (en) * 2002-04-23 2004-03-16 Bret A. Ferree Artificial disc replacements with natural kinematics
US7156848B2 (en) * 2002-04-24 2007-01-02 Ferree Bret A Check reins for artificial disc replacements
US20040030391A1 (en) * 2002-04-24 2004-02-12 Bret Ferree Artificial intervertebral disc spacers
US7179294B2 (en) * 2002-04-25 2007-02-20 Warsaw Orthopedic, Inc. Articular disc prosthesis and method for implanting the same
US6960232B2 (en) 2002-04-25 2005-11-01 Blackstone Medical, Inc. Artificial intervertebral disc
US7338525B2 (en) * 2002-04-30 2008-03-04 Ferree Bret A Methods and apparatus for preventing the migration of intradiscal devices
WO2003094806A1 (en) 2002-05-10 2003-11-20 Ferree Bret A Prosthetic components with cushioning elements
US7001433B2 (en) * 2002-05-23 2006-02-21 Pioneer Laboratories, Inc. Artificial intervertebral disc device
US6770095B2 (en) 2002-06-18 2004-08-03 Depuy Acroned, Inc. Intervertebral disc
WO2004002373A2 (en) * 2002-06-27 2004-01-08 Ferree Bret A Arthroplasty devices for improved bone ingrowth
US6793678B2 (en) 2002-06-27 2004-09-21 Depuy Acromed, Inc. Prosthetic intervertebral motion disc having dampening
WO2004016217A2 (en) 2002-08-15 2004-02-26 David Gerber Controlled artificial intervertebral disc implant
DE10242331B4 (en) * 2002-09-12 2005-10-20 Biedermann Motech Gmbh Placeholder for vertebral bodies or intervertebral discs
DE10242329B4 (en) 2002-09-12 2005-03-17 Biedermann Motech Gmbh Disc prosthesis
EP2002805A3 (en) * 2002-09-19 2009-01-07 Malan De Villiers Intervertebral prosthesis
US6899735B2 (en) * 2002-10-02 2005-05-31 Sdgi Holdings, Inc. Modular intervertebral prosthesis system
US20040068321A1 (en) * 2002-10-04 2004-04-08 Ferree Bret A. Reduced-friction artificial disc replacements
DE10247762A1 (en) * 2002-10-14 2004-04-22 Waldemar Link (Gmbh & Co.) Intervertebral prosthesis
US7267688B2 (en) * 2002-10-22 2007-09-11 Ferree Bret A Biaxial artificial disc replacement
AU2002333151B2 (en) 2002-10-28 2006-07-06 Synthes Gmbh Intervertebral disk prosthesis or artifical vertebra
EP1555966A4 (en) 2002-10-29 2011-03-16 Spinecore Inc Instrumentation, methods, and features for use in implanting an artificial intervertebral disc
CA2502292C (en) 2002-10-31 2011-07-26 Spinal Concepts, Inc. Movable disc implant
US20040133278A1 (en) * 2002-10-31 2004-07-08 Marino James F. Spinal disc implant
FR2846550B1 (en) 2002-11-05 2006-01-13 Ldr Medical INTERVERTEBRAL DISC PROSTHESIS
US20040093087A1 (en) * 2002-11-05 2004-05-13 Ferree Bret A. Fluid-filled artificial disc replacement (ADR)
WO2004047691A1 (en) 2002-11-21 2004-06-10 Sdgi Holdings, Inc. Systems and techniques for interbody spinal stablization with expandable devices
US7204852B2 (en) * 2002-12-13 2007-04-17 Spine Solutions, Inc. Intervertebral implant, insertion tool and method of inserting same
CN100457062C (en) 2002-12-17 2009-02-04 斯恩蒂斯有限公司 Intervertebral implant comprising joint parts mounted to form a universal joint
CA2510246A1 (en) 2002-12-17 2004-07-01 Mathys Medizinaltechnik Ag Intervertebral implant
KR101004464B1 (en) * 2002-12-17 2010-12-31 신세스 게엠바하 Intervertebral implant
AU2002347116B2 (en) 2002-12-17 2006-10-26 Synthes Gmbh Intervertebral implant with joint parts mounted on roller bodies
US8388686B2 (en) 2002-12-17 2013-03-05 Max Aebi Intervertebral implant with tiltable joint parts
EP1437101A3 (en) 2002-12-31 2004-12-22 DePuy Spine, Inc. Prosthetic facet joint ligament
US7815679B2 (en) * 2003-01-06 2010-10-19 Cardo Medical, Inc. Modular motion preservation artificial spinal joint assembly
US7048764B2 (en) * 2003-01-07 2006-05-23 Ferree Bret A Artificial disc replacements with articulating components
US20040143334A1 (en) * 2003-01-08 2004-07-22 Ferree Bret A. Artificial disc replacements (ADRS) with features to enhance longevity and prevent extrusion
US20040167626A1 (en) * 2003-01-23 2004-08-26 Geremakis Perry A. Expandable artificial disc prosthesis
AT6369U1 (en) 2003-01-29 2003-09-25 Dienstleistungsabteilung Htbl MOTION SIMULATION AND TEST DEVICE FOR ARTIFICIAL DISCS
US20040186577A1 (en) * 2003-01-29 2004-09-23 Ferree Bret A. In situ artificaial disc replacements and other prosthetic components
JP4275699B2 (en) 2003-01-31 2009-06-10 スパイナルモーション, インコーポレイテッド Intervertebral prosthesis placement instrument
FR2851157B1 (en) * 2003-02-13 2005-12-09 Spinevision INTERVERTEBRAL PROSTHESIS
AU2003209911A1 (en) 2003-03-24 2004-10-18 Synthes Gmbh Vertebral disc or intervertebral disc prosthesis
US6893465B2 (en) * 2003-03-31 2005-05-17 Shi, Tain-Yew Vividly simulated prosthetic intervertebral disc
JP2006521899A (en) 2003-03-31 2006-09-28 デピュイ・スパイン・インコーポレイテッド Method and apparatus for inserting an artificial disc
KR100754570B1 (en) 2003-04-07 2007-09-05 서비텍, 인크. Prosthetic joint of cervical intervertebral for a cervical spine
US6969405B2 (en) * 2003-04-23 2005-11-29 Loubert Suddaby Inflatable intervertebral disc replacement prosthesis
WO2004098466A2 (en) 2003-05-02 2004-11-18 Smart Disc, Inc. Artificial spinal disk
US20040220672A1 (en) * 2003-05-03 2004-11-04 Shadduck John H. Orthopedic implants, methods of use and methods of fabrication
US7105024B2 (en) 2003-05-06 2006-09-12 Aesculap Ii, Inc. Artificial intervertebral disc
EP2226038A1 (en) * 2003-05-27 2010-09-08 Spinalmotion, Inc. Prosthetic disc for intervertebral insertion
US7270679B2 (en) * 2003-05-30 2007-09-18 Warsaw Orthopedic, Inc. Implants based on engineered metal matrix composite materials having enhanced imaging and wear resistance
WO2004105655A1 (en) * 2003-06-02 2004-12-09 Impliant Ltd. Spinal disc prosthesis
DE20310432U1 (en) 2003-07-08 2003-09-18 Aesculap Ag & Co Kg Artificial intervertebral disc, comprising particularly shaped complementary joint surfaces
DE20310433U1 (en) 2003-07-08 2003-09-04 Aesculap Ag & Co Kg Surgical device for inserting dual component implant into appropriate space at spine, comprising particularly shaped holding area
US7621956B2 (en) * 2003-07-31 2009-11-24 Globus Medical, Inc. Prosthetic spinal disc replacement
DE10339170B4 (en) 2003-08-22 2009-10-15 Aesculap Ag Intervertebral implant
DE10347172B4 (en) 2003-10-08 2005-09-29 Aesculap Ag & Co. Kg Intervertebral implant
DE50303981D1 (en) 2003-11-18 2006-08-03 Zimmer Gmbh Operating system for inserting disc implants
ATE390101T1 (en) * 2003-11-18 2008-04-15 Zimmer Gmbh DISC IMPLANT
US7695517B2 (en) * 2003-12-10 2010-04-13 Axiomed Spine Corporation Apparatus for replacing a damaged spinal disc
DE20320454U1 (en) 2003-12-22 2004-10-14 Meisel, Hans Jörg, Dr. med. Component for a prosthesis, especially a cervica vertebra, comprises two base parts coupled together by a hinge
DE10361772B4 (en) * 2003-12-31 2006-10-12 Henning Kloss Intervertebral disc implant
US7250060B2 (en) * 2004-01-27 2007-07-31 Sdgi Holdings, Inc. Hybrid intervertebral disc system
PL1857079T3 (en) 2004-09-08 2010-01-29 Synthes Gmbh Universal intervertebral disc prosthesis
WO2006042486A1 (en) * 2004-10-18 2006-04-27 Buettner-Janz Karin Intervertebral disk endoprosthesis having a motion-adapted edge for the lumbar and cervical spine

Also Published As

Publication number Publication date
CA2503294A1 (en) 2005-09-28
KR20060055297A (en) 2006-05-23
AU2005201776B2 (en) 2007-04-19
ATE508713T1 (en) 2011-05-15
JP4210667B2 (en) 2009-01-21
JP2005329232A (en) 2005-12-02
US7959678B2 (en) 2011-06-14
DE502004006648D1 (en) 2008-05-08
ATE390101T1 (en) 2008-04-15
CA2614993A1 (en) 2005-09-28
KR100701991B1 (en) 2007-03-30
JP2008289940A (en) 2008-12-04
US8968407B2 (en) 2015-03-03
EP1532950A1 (en) 2005-05-25
CN1698551A (en) 2005-11-23
CN1698551B (en) 2010-10-27
US20050261772A1 (en) 2005-11-24
AU2005201776A1 (en) 2005-12-08
US20110238185A1 (en) 2011-09-29
EP1532950B1 (en) 2008-03-26
CA2503294C (en) 2008-06-17

Similar Documents

Publication Publication Date Title
CA2614993C (en) An intervertebral disk implant
US5549700A (en) Segmented prosthetic articulation
US8821576B2 (en) Intervertebral disk prosthesis
US8613768B2 (en) Space keeper for vertebrae or intervertebral disks
US7001433B2 (en) Artificial intervertebral disc device
US6682562B2 (en) Intervertebral disc prosthesis
US7601174B2 (en) Wear-resistant endoprosthetic devices
US6579320B1 (en) Intervertebral disc prosthesis with contact blocks
EP2658482B1 (en) Prosthetic knee joint
US9107754B2 (en) Prosthetic joint assembly and prosthetic joint member
EP2588031B1 (en) Prosthetic ball-and-socket joint
US8790404B2 (en) Intervertebral disk prostheses
EP2683335A2 (en) Prosthetic joint
KR102484143B1 (en) Artificial disc
WO2013103692A1 (en) Prosthetic joint assembly and joint member therefor

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20130411