CA2609905C - Process for fabricating a composite - Google Patents

Process for fabricating a composite Download PDF

Info

Publication number
CA2609905C
CA2609905C CA2609905A CA2609905A CA2609905C CA 2609905 C CA2609905 C CA 2609905C CA 2609905 A CA2609905 A CA 2609905A CA 2609905 A CA2609905 A CA 2609905A CA 2609905 C CA2609905 C CA 2609905C
Authority
CA
Canada
Prior art keywords
functional
functional material
substrate
build
energy beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA2609905A
Other languages
French (fr)
Other versions
CA2609905A1 (en
Inventor
Christopher Sutcliffe
Paul Raymond Chalker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renishaw PLC
Original Assignee
Renishaw PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renishaw PLC filed Critical Renishaw PLC
Publication of CA2609905A1 publication Critical patent/CA2609905A1/en
Application granted granted Critical
Publication of CA2609905C publication Critical patent/CA2609905C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • C23C26/02Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • H10N30/082Shaping or machining of piezoelectric or electrostrictive bodies by etching, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/098Forming organic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component

Abstract

The present invention relates to a process for fabricating a composite functional body/ substrate, either by melting with an energy beam or by spin coating. The functional material is preferably a piezoelectric material (PVDF). The energy beam is preferably a laser beam.

Description

PROCESS FOR FABRICATING A COMPOSITE
The present invention relates to a process for fabricating a composite functional body/substrate.
The advent of silicon-based micro-electromechanical systems (MEMS) was largely born out of processes developed for manufacturing essentially two-dimensional (2D) integrated circuits. In order to extend MEM technologies to three-dimensional (3D) applications such as microfluidic valves, inkjet nozzles, projector micro-mirrors, high aspect ratio patterning techniques were developed such as `LIGA7 or X-ray photoresist processing [see for example M.J. Madou, Chapter 6 in "Fundamentals of Microfabrication", CRC Press, Boca Raton, FL. 1997].
Selective laser melting (SLM) is a process conventionally deployed for the manufacture of complex three-dimensional components from metallic, ceramic or polymeric powder feedstock. The process has been used to manufacture complex components exhibiting high density and homogeneity such as tooling dies and medical implants (see for example EP-A-1418013).
The present invention is based on the recognition that selective melting may be deployed in fabricating heterogenous composites. More particularly, the present invention relates to an improved process for fabricating a composite functional body/substrate by selective melting using a directed energy beam.

Thus viewed from one aspect the present invention provides a process for fabricating a composite functional body/substrate comprising:
localising a build of a functional material capable of being melted by a directed energy beam onto a substrate;
selectively melting the build of functional material with the directed energy beam; and allowing the melted functional material to form the functional body of the composite functional body/substrate.
The process of the invention advantageously opens new avenues to the manufacture of 'smart' micro-machines and mechanisms for use in micro-systems and lab-on-a-chip technologies. The process of the invention is advantageous in fabricating composite functional body/substrates for example for the aerospace or automotive industry in which the functional body is a heat exchanger or a smart material or for the electronics industry in which the functional body is a cooling/heat exchanger.
The directed energy beam may be a laser beam or E-beam. Preferred is a laser beam and the step of selective mefting is a step of selective laser melting (SLM).
Preferably the composite functional body/substrate is a part or multi-layer composite (eg a sandwich layer composite). The substrate may be a substrate layer. The functional body may be a functional layer. Alternatively the functional body may be three-dimensional (eg columnar or pillar-like or a complex 3D
structure or build). The build of functional material may be a layer of functional material. Adjacent layers may be interleaved with binding layers.
The composite functional body/substrate may comprise integral parts, devices or structures. The integral parts, devices or structures may be layered or three-dimensional. The integral parts, devices or structures may be functional.
Preferably the composite functional body/substrate is a three-dimensional composite, particularly preferably a high aspect ratio three-dimensional composite. A typical aspect ratio (width of the composite or composite dimension in X-Y divided by the height from the base) is in excess of 1000 which is not achievable by conventional processes which are projection based and produce 2.5D composites.
The substrate may be a dielectric. The substrate may be a semiconductor.
The substrate may be an electronic substrate. The electronic substrate may comprise one or more electronic parts, devices or structures. For example, the electronic substrate may be a printed wiring board on which electronic components are mounted or a semiconductor die on which electronic devices are manufactured.
In the process of the invention, the substrate may be or contain silicon and/or silicon dioxide. Typically the substrate is or contains silicon. The substrate may include an insulator layer (eg a silicon dioxide insulating layer). For example, in the process of the invention a silicon layer may be subjected to oxidation (eg thermal oxidation) to produce a silicon dioxide insulating layer. The substrate may be a wafer.
Preferably the substrate is metallised with a metal contact layer (eg with a nickel, titanium or aluminium contact layer such as an aluminium thin film contact layer). For example, the process of the invention may further comprise metallising the substrate with an aluminium contact layer (eg with an aluminium thin film contact layer). The process may further comprise patterning the aluminium contact layer. Patterning may be carried out by a wet etch process.
The functional body may be a body with a desirable electrical, magnetic, mechanical, optical or thermal property. For example, the functional body may be piezoelectric or auxetic or exhibit shape memory. In this context, the composite functional body/substrate is useful in the electronics field as an actuator.
Preferably the functional material is capable of converting a first energy type into a second energy type. Particularly preferably the first energy type or the second energy type is electrical energy. Particularly preferably the first energy type or the second energy type is mechanical energy. Alternatively the functional body may be catalytically active.
In a particularly preferred embodiment, the functional body is a piezoelectric body (eg a polymeric piezoelectric body or a ceramic piezoelectric body). The piezoelectric body may be composed of a lead-containing material (eg a lead ceramic such as a lead zirconium titanate ceramic), quartz or polymer (eg a polyvinyl halide). Specific examples are lead titanate, lead zirconium titanate (PZT), lead zirconium lanthante, lead metaniobate, polyvinylidene fluoride (PVDF) or barium titanate. Preferred is a piezoelectric material selected from the group consisting of PVDF (d33 about 23 pmN [see IEEE 5th International Symposium on Micro Machine and Human Science Proceedings, Nagoya, Oct 1994, p.75j), PZT (d33 about 250-300pmN) and BaTiO3 (d33 about 150pmN).
In a particularly preferred embodiment, the functional body exhibits shape memory. For example, the functional body may be composed of a shape memory alloy. The shape memory alloy may be a titanium-nickel alloy (eg a 50:50 Ti:Ni alloy such as NITINOL).
In a particularly preferred embodiment, the functional body is an auxetic body.
In a particularly preferred embodiment, the functional body is catalytically active. For example, the functional body may be composed of a chemically functionalised or doped material.
The functional body may have a uniform or non-uniform identity. For example, the functional body may have a plurality of integral discrete elements.
The functional body may have uniform or non-uniform physical or chemical properties. The functional body may be non-uniformly or uniformly insulative thermally or electrically. Preferably the functional body is uniformly or non-uniformly conductive thermally or electrically.

The functional body may have a plurality of integral discrete elements with different characteristics (eg different chemical or physical characteristics) or properties (eg chemical or physical properties). For example, the functional body may have a first integral discrete element which is electrically or thermally conductive and a second integral discrete element which is electrically or thermally insulative.
In a preferred embodiment, the functional body is capable of thermal management. In a particularly preferred embodiment, the functional body is capable of thermal management and the substrate is an electronic substrate.
The functional body capable of thermal management may be a heat spreading body which transfers heat away from the substrate (for example via diffusion) or a heat exchanger body that transfers heat to a coolant (eg a coolant fluid which may be passing through, over or near to the functional body). Advantages of the embodiment of the process of the invention for fabricating a composite in which the functional body is capable of thermal management over existing processes for fabricating arrangements with thermal management properties include the minimisation of waste compared with machining from a single block of material, the feasibility of heat spreader/exchangers not feasible by selective removal manufacturing methods (eg channels) and the integration of external thermal management systems with integral elements of an electronic substrate eg thermal vias or heat management layers.

The functional material capable of being melted by a directed energy beam is typically a solid. Preferably the functional material capable of being melted by a directed energy beam is particulate, particularly preferably powdered. The functional material capable of being melted by a directed energy beam may be elemental or non-elemental.
The functional material capable of being melted by a directed energy beam may be a thermoplastic.
Preferably the functional material capable of being melted by a directed energy beam is metal-containing. The metal-containing functional material may contain one or more metal species (eg elemental metal, metal compounds, metal composites, metal alloys, metal ceramics or organometallics). Preferred metal-containing functional materials are metal alloys (eg low melt alloys such as bronze and cobalt chrome), zinc, titanium, aluminium oxide, lead titanate, lead zirconium titanate (PZT), lead zirconium lanthante, lead metaniobate, barium titanate, cadmium sulphide and steel (eg stainless steel).
The functional material capable of being melted by a directed energy beam may be a non metal-containing functional material. A specific example of a non metal-containing functional material is silicon carbide.
Preferably the functional material is a functional material composition comprising a plurality of material components (eg powdered material components), at least one (preferably more than one, more preferably all) of which is a functional material component (eg a powdered functional material component). Particularly preferably the material components differ in at least one physical or chemical property. More preferably the functional material composition exhibits non-uniform behaviour on exposure to a directed energy beam (eg laser irradiation). For example, at least one material component exhibits different behaviour on exposure to a directed energy beam (eg laser irradiation) from another material component. By exhibiting differential behaviour on exposure to a directed energy beam (eg different thresholds to laser damage), it will be feasible using this embodiment of the process of the invention to fabricate a functional body with a selective identity (eg a uniform or non-uniform identity). For example a first material component may be a polymer and a second material component may be a metal. In this embodiment, a high laser power may volatilise the first material component leaving behind metal (ie the second material component) alone to form a uniform functional body. At a lower laser power, neither material component is volatised and a non-uniform (ie metal-plastic) functional body may be formed. This may be advantageous for example in fabricating electrically insulating and conducting elements within the functional body.
In a preferred embodiment, the functional material is a piezoelectric material (eg a polymeric piezoelectric material or a ceramic piezoelectric material). The piezoelectric material may be a lead-containing material (eg a lead ceramic such as a lead zirconium titanate ceramic), quartz or polymer (eg a polyvinyl halide). Specific examples are lead titanate, lead zirconium titanate (PZT), lead zirconium lanthante, lead metaniobate, polyvinylidene fluoride (PVDF) or barium titanate. Preferred is a piezoelectric material selected from the group consisting of PVDF (d33 about 23 pmN [see IEEE 5th International Symposium on Micro Machine and Human Science Proceedings, Nagoya, Oct 1994, p.75]), PZT (d33 about 250-300pmN) and BaTiO3 (d33 about 150pmN).
In a preferred embodiment, the functional material may exhibit shape memory. For example, the functional material may be a shape memory alloy. The shape memory alloy may be a titanium-nickel alloy (eg a 50:50 Ti:Ni alloy such as NITINOL).
In a preferred embodiment, the functional material may be auxetic.
In a preferred embodiment, the functional material may be catalytically active. For example, the functional material may be chemically functionalised or doped.
In the process of the invention, localising the functional material onto the substrate may bring them into close proximity or into contact. For example, the functional material may be applied to (eg coated or spread onto) the surface of the substrate.
Preferably the substrate is provided (eg coated) with an interfacial material. Preferably the process further comprises:
applying an interfacial material to the substrate before localising the substrate with the functional material.

An interfacial material can usefully promote adhesion of the functional body. An interfacial material can usefully prevent damage to the substrate.
The interfacial material can advantageously promote heat transfer which is particularly usefully exploited where the functional body is capable of thermal management and the substrate is an electronic substrate.
Preferably the interfacial material is a metal-containing material. For example the interfacial material may be a metal-containing layer such as a metal-containing film (eg a metallic film). The metal-containing interfacial material may contain one or more metal species (eg elemental metal, metal compounds, metal composites, metal alloys, metal ceramics or organometallics). Preferably the metal species is a transition metal species.
Preferably the metal-containing interfacial material is capable of adhering to the substrate and to the functional body. Preferably the metal-containing interfacial material has a low thermal resistance. Preferably the metal-containing interfacial material is capable of passivation to minimise directed energy beam (eg laser) reflection.
Preferred metal-containing interfacial materials are elements or alloys (eg transition metal alloys or elements). Particularly preferred metal-containing interfacial materials are Ti, Cr, Ni and stainless steel. Other metal-containing interfacial materials may be suitable depending on the nature of the functional material. The metal-containing interfacial material may be applied to the substrate by vapour deposition, plasma spraying, spin coating, cold gas dynamic spraying or selective laser melting.
In the step of selective melting, the substrate and build of functional material may be static or in motion (eg in rotary motion). In the step of selective melting, the directed energy beam may be static or in motion. Preferably the substrate and build of functional material is rotated and the source of the directed energy beam (eg laser) is moved radially to-and-fro. This advantageously produces a functional body with a spiral configuration defining paths which might usefully carry dissimilar fluids (eg coolants).
The functional body may be fabricated with channels, ducts, tracks or chambers for fluid. The functional body may be composed of a random, pseudo-random or regular lattice. The process of the invention may be software controlled to obtain the required lattice or to introduce channels, ducts, tracks or chambers.
The step of selective melting in the process of the invention is generally carried out in a substantially oxygen free environment (eg an argon environment).
Preferably the step of selective melting in the process of the invention is carried out such that the chemical characteristics of the functional material are substantially unaltered.

Typically the step of selective melting in the process of the invention is carried out using a conventional laser. For example, the laser may be an IR
(eg a near-IR) laser. The laser is typically a tunable laser.
Typically the wavelength of the directed energy beam (eg laser) is 700nm or more, preferably a wavelength in the range 700-5000nm, particularly preferably a wavelength in the range 900-1200nm, more preferably a wavelength in the range 1000-1100nm. The step of selective melting may be carried out with an Ytterbium fibre laser, an E-beam Nd:YAG laser or a CO2 laser. A specific example of a preferred laser is an Ytterbium fibre laser operable in the range 1068-1095nm.
Preferably the step of selective melting in the process of the invention is carried out off-axis (ie at an angle to the substrate surface normal). This advantageously offsets deleterious back reflections.
Preferably the step of localising a build of a functional material onto a substrate comprises:
a plurality of sequential steps of localising the build of the functional material onto the substrate.
Preferably the step of selectively melting the build of functional material with a directed energy beam comprises:
a plurality of sequential steps of selectively melting the build of functional material with the directed energy beam.

Preferably the sequential steps of localising the build of the functional material onto the substrate alternate with the sequential steps of selectively melting the build of functional material with the directed energy beam whereby to progressively form the functional body.
The power output, current, exposure time and focusing parameters (eg beam spot size) of the source of the directed energy beam (eg laser) may be selected by the man skilled in the art according to requirements (eg to ensure that the chemical characteristics of the functional material are substantially unaltered).
Preferably the step of allowing the melted functional material to form the functional body of the composite functional body/substrate comprises cooling the melted functional material. This may occur naturally or by exposure to cooling means.
The step of allowing the melted functional material to form the functional body of the composite functional body/substrate may cause adhesion.
The step of selective melting in the process of the invention may be conveniently carried out in a MCP RealizerTM commercially available from MCP Tolling Technologies (Stone UK) or systems manufactured by Triumph, EOS, Concept Laser GmbH and Arcam. A machine for carrying out the process of the invention is described in WO-A-2004/08398.

Preferably the substrate is provided (eg coated) with a functional thin film.
In a preferred embodiment, the process further comprises before localising the substrate with the functional material:
applying a thin film material to the substrate to generate a functional thin film.
The thin film material may be as hereinbefore defined for the functional material. A preferred thin film material is a polyvinyl halide, particularly preferably PVDF.
Preferably the step of applying*the thin film material to the substrate comprises:
coating (eg spin coating) the thin film material onto the substrate.
The functional thin film may be metallised with an aluminium contact pad (eg an aluminium thin film contact pad). The aluminium contact pad may be an aluminium contact pad layer. The process may further comprise patterning the aluminium contact pad. Patterning may be carried out by wet etching.
The process may further comprise patterning the functional thin film.
Patterning may be carried out by dry etching (eg dry plasma etching). For this purpose, an aluminium contact pad applied in accordance with an embodiment of the invention described hereinbefore is a useful etching mask.
The functional thin film may be a few Tim (eg 3-5-p.nn) thick.

The process may further comprise applying to the composite functional body/substrate carbon fibres or carbon composites. This may be carried out by bonding or ultrasonic consolidation.
Viewed from a further aspect the present invention provides a method for fabricating a composite PVDF thin film/substrate comprising:
adhering PVDF to the substrate to form the functional PVDF thin film of the composite PVDF thin film/substrate.
Preferably the step of adhering PVDF to the substrate comprises:
coating (eg spin coating) PVDF onto the substrate.
The functional PVDF thin film may be a few pm (eg 3-5p.m) thick.
Preferably the method further comprises:
metallising the functional PVDF thin film with an aluminium contact pad (eg an aluminium thin film contact pad). The aluminium contact pad may be an aluminium contact pad layer. The method may further comprise patterning the aluminium contact pad. Patterning may be carried out by wet etching.
The method may further comprise patterning the functional PVDF thin film.
Patterning may be carried out by dry etching (eg dry plasma etching). For this purpose, the aluminium contact pad is a useful etching mask.

In the method of the invention, the substrate may be composed of silicon and/or silicon dioxide. Typically the substrate is or contains silicon. The substrate may include an insulator layer (eg a silicon dioxide insulating layer). For example, in the method of the invention a silicon layer may be subjected to oxidation (eg thermal oxidation) to produce a silicon dioxide insulating layer. The substrate may be a wafer.
Preferably the substrate is metallised with an aluminium contact layer (eg with an aluminium thin film contact layer). For example, the method of the invention may further comprise metallising the substrate with an aluminium contact layer (eg with an aluminium thin film contact layer). The method may further comprise patterning the aluminium contact layer. Patterning may be carried out by a wet etch process. This embodiment advantageously may allow a composite PVDF thin film/substrate to be fabricated in which the functional PVDF
thin film is sandwiched between the Al contact layer and the Al contact pad.
Viewed from a yet further aspect the present invention provides a composite functional body/substrate obtainable by a process as hereinbefore defined.
The composite functional body/substrate, functional body and substrate may be as hereinbefore defined.

Viewed from a still yet further aspect the present invention provides a composite PVDF thin film/substrate obtainable by a method as hereinbefore defined.
The composite PVDF thin film/substrate, PVDF thin film and substrate may be as hereinbefore defined.
In a preferred embodiment, the PVDF thin film is sandwiched between an aluminium contact layer and an aluminium contact pad.
The present invention will now be described in a non-limitative sense with reference to the examples and accompanying Figures in which:
Figure 1 is a schematic representation of an embodiment of the process of the invention;
Figure 2 is a schematic representation of an MCP Realizer for carrying out the process of the invention;
Figure 3 is a schematic representation of a micro-positioner fabricated to determine the properties of the composite fabricated in accordance with an embodiment of the process of the invention;
Figures 4a-c show optical micrographs of SLM steel bodies fabricated in accordance with an embodiment of the process of the invention;
Figure 5 illustrates the correlation between laser power, exposure time and laser optic focal length in an embodiment of the process of the invention;

Figure 6 is a Raman spectrograph illustrating the effect of SLM conditions on the chemical characteristics of PVDF powder subjected to an embodiment of the process of the invention; and Figure 7 illustrates a composite PVDF thin film/substrate fabricated in accordance with an embodiment of the invention.
Wafer Patterning A silicon wafer platform (see Figure la) was processed using conventional clean room steps:
- Si(100) wafers (1) with a SiO2 insulating layer (2) grown thermally (10 hours at 1000 0) were first metallized with a thin film of Al (500nm) evaporated under vacuum to produce an Al contact layer (3) - a spin coated film of positive photoresist was patterned in the wafer with a 20 second UV exposure and developed - the protected Al was patterned into the wafer using an 8:1:1 HCl/H202/H20 wet etch.
Selective Laser Melting Figure 2 is a schematic representation of an MCP Realizer and shows successive layers of powder 103 being deposited (the first layer being deposited onto the substrate 102) and spread uniformly by a wiper and powder deposition mechanism 100. For this purpose, a supporting table 104 supporting the substrate 102 drops down synchronously with the action of the wiper and powder deposition mechanism 100. A 100W Ytterbium fibre laser (wavelength 1068-1095 nm) 101 melts the successive layers of powder 103 according to a specific computer generated pattern. Single component powder particles 106 are fully or partially melted by the laser beam as it draws the design over the successive layers of powder 103. Build thickness can be as high as 200 pm per pass. The molten material is then solidified and the resultant fabrication 105 is fully dense.
The variable focussing optics are Sill 300 mm focal length lenses, which produce a focussed beam spot size of 60 pm diameter at 80 watts power. Since the successive layers of powder 103 are subjected to mOlting during the process, protection of the SLM-processed parts from oxidation is imperative. Thus all powder processing occurs in an Argon atmosphere with no more than 0.2% 02.
The process was controlled using the proprietary control software Fusco.
Example 1 High aspect ratio 3D SLM builds have been achieved on metallized Si (100) wafers (1) using steel powder having an average grain size of 50-p.m.
Figures 4a-c show optical micrographs of SLM steel bodies. In Figure 4a, an array of steel pillars (see in particular figure inset) is shown. Figures 4b and 4c show a more complex body. The fabrication time for such a steel body is approximately 10 minutes. Figure 5 illustrates the correlation between laser power, exposure time and laser optic focal length required for successful SLM
steel builds onto the metallized Si substrate (1).

A successful SLM build on metallized Si (100) wafers requires the build to be performed "off axis" in the MCP Realizer ie where the builds are constructed at an angle to the laser optics/substrate surface normal. This is to offset "back reflection" encountered by the MCP laser optics when pulsing onto the highly reflective Si/AI surface.
Example 2 In a second embodiment of the process of the invention, the use of polyvinylidene fluoride (PVDF - piezoelectric modulus, d33 ¨23 pmN [see IEEE
5th International Symposium on Micro Machine and Human Science proceedings, Nagoya, Oct 1994, p.75]) piezoelectric has been demonstrated. For this purpose, a micro-positioner (figure 3) was fabricated. The micro-positioner comprises generally twin actuators 10, a stationary leg 11 and electric earth/bias contacts 13/14.The twin actuators 10 consist of piezoelectric elements 16 produced by the embodiment of the process of the invention. When actuated, the movement of the deflection arm 15 can be established with a traveling =microscope.
A Raman spectroscopy study was performed at a range of SLM conditions in order to determine whether any chemical changes in the PVDF occurred during the laser melting step. The results are shown in Figure 6. The peaks in the spectra demonstrate a graphitic presence as laser power increased, culminating in a Raman spectra (figure 6e) devoid of any trace PVDF peaks and with only graphite features present. Figure 6 highlights the optimum SLM conditions (equivalent 10A laser current, defocused laser spot) for laser melting of PVDF

(as indicated by the similarities between the Raman spectra of figure 6b and spectra obtained from un-melted PVDF powder (see figure 6a)).
The thickness of the active PVDF layer is a significant factor in the piezoelectric function of the micro-positioner. The thinnest active region that can be achieved in the SLM build process is dependent on the diameter of the PVDF
powder grains ye 100pm in this experiment).
Example 3 In a further embodiment of the invention, a PVDF layer was patterned into a thin film (4) during wafer patterning. The additional steps (see figures 1b-d) required to achieve this included firstly dissolving the PVDF powder in N, N-dimethylformamide (DMF) solvent (15-20% PVDF by weight). The PVDF solution was spin coated onto the patterned wafer producing a PVDF thin film (4) which was (3-5)pm thick. The PVDF covered wafer was then subjected to a second Al metallization/ photoresist step (identical to the first metallization described hereinbefore) to produce an Al contact pad (5). The pattern was then transferred into the PVDF thin film by an inductively coupled plasma (ICP) 02 anisotropic plasma dry etch (6) using the Al contact pad (5) as the etch mask (see figures 1d and 7). The active PVDF thin film (4) is sandwiched between the AI contact layer (3) and the Al contact pad (5). Steel bodies may be fabricated onto the patterned Al contact pads (5) in accordance with the embodiment of the invention described hereinbefore.

Claims (20)

1. A process for fabricating a functional body comprising:
a plurality of sequential steps of localising a build of a functional material capable of being melted by a directed energy beam onto a substrate;
a plurality of sequential steps of selectively melting the build of the functional material with the directed energy beam;
wherein the sequential steps of localising the build of the functional material alternate with the sequential steps of selectively melting the build of the functional material with the directed energy beam;
and allowing the melted functional material to form the functional body, wherein the functional material is selected from a piezoelectric material, a shape memory material and an auxetic material.
2. A process as claimed in claim 1 wherein the directed energy beam is selected from the group consisting of a laser beam and an E-beam.
3. A process as claimed in claim 1 or 2 wherein the functional body is a part or multi-layer composite.
4. A process as claimed in any one of claims 1 to 3, further comprising the step of:
metallising the substrate with a metal contact layer.
5. A process as claimed in any one of claims 1 to 4, wherein the functional material comprises a particulate solid.
6. A process as claimed in any one of claims 1 to 5, wherein the functional material is metal-containing.
7. A process as claimed in claim 6 wherein the metal-containing functional material is selected from a group consisting of lead titanate, lead zirconium titanate (PZT), lead zirconium lanthante, lead metaniobate, barium titanate, cadmium sulphide and a titanium-nickel alloy.
8. A process as claimed in any one of claims 1 to 7, wherein the functional material comprises a plurality of functional material components.
9. A process as claimed in any one of claims 1 to 8, wherein the functional material is a metal ceramic.
10. A process as claimed in claim 9 wherein the metal ceramic is a ceramic piezoelectric.
11. A process as claimed in claim 10 wherein the piezoelectric material is selected from the group consisting of lead zirconium titanate (PZT), polyvinylidene fluoride (PVDF) and barium titanate (BaTiO3).
12. A process as claimed in any of claims 1 to 11, wherein the functional body comprises a plurality of integral discrete elements.
13. A process as claimed in claim 12 wherein the plurality of integral discrete elements differ in physical or chemical properties or physical or chemical characteristics.
14. A process as claimed in claim 13 wherein the functional body has a first discrete element which is electrically or thermally conductive and a second discrete element which is electrically or thermally insulative.
15. A process as claimed in any one of claims 1 to 14, further comprising the step of:
applying an interfacial material to the substrate before localising the substrate with the functional material.
16. A process as claimed in any one of claims 1 to 15, wherein, during the step of selectively melting the build of functional material with the directed energy beam, either the substrate and the build of functional material are in motion or the directed energy beam is in motion.
17. A process as claimed in any one of claims 1 to 16, wherein the step of selective melting is carried out such that the chemical characteristics of the functional material are substantially unaltered.
18. A process as claimed in any one of claims 1 to 17, wherein the step of allowing the melted functional material to form the functional body comprises cooling the melted functional material.
19. A process as claimed in any one of claims 1 to 18, further comprising, before localising the substrate with the functional material, the step of:
applying a thin film material to the substrate to generate a functional thin film.
20. A process as claimed in claim 19 wherein the process further comprises patterning the functional thin film.
CA2609905A 2005-06-06 2006-06-05 Process for fabricating a composite Expired - Fee Related CA2609905C (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GBGB0511460.8A GB0511460D0 (en) 2005-06-06 2005-06-06 Process
GB0511460.8 2005-06-06
GB0525212.7 2005-12-12
GBGB0525212.7A GB0525212D0 (en) 2005-06-06 2005-12-12 Process
PCT/GB2006/002055 WO2006131716A2 (en) 2005-06-06 2006-06-05 Process for fabricating a composite

Publications (2)

Publication Number Publication Date
CA2609905A1 CA2609905A1 (en) 2006-12-14
CA2609905C true CA2609905C (en) 2014-11-25

Family

ID=36686010

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2609905A Expired - Fee Related CA2609905C (en) 2005-06-06 2006-06-05 Process for fabricating a composite

Country Status (8)

Country Link
US (1) US7754137B2 (en)
EP (1) EP1893372B1 (en)
JP (1) JP5876203B2 (en)
AU (1) AU2006256588A1 (en)
CA (1) CA2609905C (en)
ES (1) ES2477866T3 (en)
GB (2) GB0511460D0 (en)
WO (1) WO2006131716A2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1770176A1 (en) * 2005-09-30 2007-04-04 Haute Ecole Valaisanne Agglomerate for 3D-binder printing
DE102007043479A1 (en) * 2007-09-12 2009-03-19 Valeo Schalter Und Sensoren Gmbh Process for the surface treatment of aluminum and a layer structure of a component made of aluminum with an electrical contact
GB0819935D0 (en) * 2008-10-30 2008-12-10 Mtt Technologies Ltd Additive manufacturing apparatus and method
US8322771B2 (en) * 2009-10-05 2012-12-04 Honda Motor Co., Ltd. Connection between roof panel and side panel
US9200855B2 (en) 2012-03-06 2015-12-01 Honeywell International Inc. Tubular heat exchange systems
GB2500412A (en) * 2012-03-21 2013-09-25 Eads Uk Ltd Build Plate for an additive manufacturing process
US20130015609A1 (en) * 2012-07-18 2013-01-17 Pratt & Whitney Rocketdyne, Inc. Functionally graded additive manufacturing with in situ heat treatment
US9241808B2 (en) 2012-08-27 2016-01-26 Anthony Sabatino Auxetic prosthetic implant
US9752835B2 (en) 2013-06-06 2017-09-05 Honeywell International Inc. Unitary heat exchangers having integrally-formed compliant heat exchanger tubes and heat exchange systems including the same
US9764435B2 (en) 2013-10-28 2017-09-19 Honeywell International Inc. Counter-flow heat exchange systems
CN103950208B (en) * 2014-05-07 2016-08-24 王瑛玮 Composite is prepared in laser scanning
KR102303994B1 (en) * 2014-10-20 2021-09-23 삼성디스플레이 주식회사 Method for manufacturing substrate for organic light emitting diode
CA2973402A1 (en) 2015-01-09 2016-07-14 President And Fellows Of Harvard College Negative poisson's ratio waffle structures
JP2016160454A (en) * 2015-02-27 2016-09-05 日本シリコロイ工業株式会社 Laser sinter laminate method, heat treatment method, metal powder and molded article
CN104923784B (en) * 2015-05-25 2017-03-29 苏州大学 It is a kind of to improve the method that laser becomes the not wide component precision of speckle direct forming
CN109196044B (en) * 2016-04-01 2021-08-03 阿科玛股份有限公司 3D printed fluoropolymer structures
US11248071B2 (en) 2016-04-01 2022-02-15 Arkema Inc. 3-D printed fluoropolymer structures
US10660205B2 (en) 2016-12-01 2020-05-19 Avery Dennison Retail Information Services, Llc Functional substrates for printed electronic devices
EP3760345A1 (en) * 2019-07-04 2021-01-06 Siemens Aktiengesellschaft Computer-implemented method of calculation and method of supporting for additive manufacturing
TWI786907B (en) * 2021-10-28 2022-12-11 國立中央大學 An oscillator frequency modulation method and a piezoelectric structure of oscillator
CN114247989B (en) * 2021-12-30 2023-07-14 北京卫星制造厂有限公司 Shaping ultrafast laser processing method for carbon fiber composite material

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4474861A (en) 1983-03-09 1984-10-02 Smith International, Inc. Composite bearing structure of alternating hard and soft metal, and process for making the same
EP0538244B1 (en) 1986-10-17 1996-05-22 Board Of Regents, The University Of Texas System Method and apparatus for producing parts by selective sintering
JPH0730362B2 (en) * 1987-03-20 1995-04-05 株式会社日立製作所 Electronic component and manufacturing method thereof
IT1247009B (en) 1991-05-06 1994-12-12 Proel Tecnologie Spa METHOD FOR THE REALIZATION OF RESIN OR COMPOSITE MATERIALS WITH POLYMERIZABLE RESIN MATRIX WITH ELECTRONIC BANDS
US5745834A (en) * 1995-09-19 1998-04-28 Rockwell International Corporation Free form fabrication of metallic components
US5749041A (en) 1995-10-13 1998-05-05 Dtm Corporation Method of forming three-dimensional articles using thermosetting materials
EP0847314B1 (en) * 1996-04-17 1999-12-15 Koninklijke Philips Electronics N.V. Method of manufacturing a sintered structure on a substrate
JP3340036B2 (en) * 1996-10-31 2002-10-28 京セラ株式会社 Inkjet printer head
DE19649865C1 (en) 1996-12-02 1998-02-12 Fraunhofer Ges Forschung Shaped body especially prototype or replacement part production
SG81940A1 (en) 1998-11-12 2001-07-24 Univ Singapore Method of laser casting copper-based composites
US6876785B1 (en) * 1999-06-30 2005-04-05 The Board Of Trustees Of The Leland Stanford Junior University Embedded sensor, method for producing, and temperature/strain fiber optic sensing system
EP1248691A4 (en) 1999-11-16 2003-01-08 Triton Systems Inc Laser fabrication of discontinuously reinforced metal matrix composites
JP3687475B2 (en) * 2000-03-28 2005-08-24 松下電工株式会社 Method for modeling solid objects
JP4288873B2 (en) * 2000-07-24 2009-07-01 オムロン株式会社 Actuator and actuator manufacturing method
DE10058748C1 (en) 2000-11-27 2002-07-25 Markus Dirscherl Method for producing a component and device for carrying out the method
DE10120172C1 (en) * 2001-04-24 2002-11-14 Forschungszentrum Juelich Gmbh Manufacture of components by metal injection molding (MIM)
DE10124250C2 (en) 2001-05-18 2003-03-27 Daimler Chrysler Ag Method of forming a high strength and wear resistant composite layer
GB2378151A (en) 2001-07-31 2003-02-05 Dtm Corp Fabricating a three-dimensional article from powder
JP2003305777A (en) * 2002-04-15 2003-10-28 Aspect:Kk Three-dimensionally shaping method and device
US7431987B2 (en) * 2002-06-18 2008-10-07 Daimler Ag Core-shell particles having non-polar outer surface and methods for producing a three-dimensional object from the particles
US20060159896A1 (en) * 2002-06-18 2006-07-20 Rolf Pfeifer Laser sintering method with increased process precision, and particles used for the same
DE10231409A1 (en) 2002-07-11 2004-01-22 Giesecke & Devrient Gmbh Procedure for setting a banknote processing machine
JP2004050225A (en) * 2002-07-19 2004-02-19 Hitachi Ltd Method for producing metal-made formed material
JP3997123B2 (en) * 2002-08-12 2007-10-24 株式会社神戸製鋼所 Iron-based powder material for forming iron-based sintered body and method for producing iron-based sintered body
EP1419836B2 (en) 2002-11-07 2011-10-19 CL Schutzrechtsverwaltungs GmbH Process for preparing a workpiece through powder melting
DE60300277T2 (en) 2002-11-08 2006-01-12 Howmedica Osteonics Corp. Laser generated porous surface
JP3633607B2 (en) * 2003-02-25 2005-03-30 松下電工株式会社 Metal powder for metal stereolithography, method for producing the same, method for producing three-dimensional shaped article by metal stereolithography, and metal stereolithography
JP2004277878A (en) * 2003-02-25 2004-10-07 Matsushita Electric Works Ltd Apparatus and method for manufacturing three dimensionally shaped article
GB0312909D0 (en) 2003-06-05 2003-07-09 Univ Liverpool Apparatus for manufacturing three dimensional items
JP5013653B2 (en) * 2003-06-30 2012-08-29 京セラ株式会社 Method for manufacturing piezoelectric actuator

Also Published As

Publication number Publication date
WO2006131716A2 (en) 2006-12-14
CA2609905A1 (en) 2006-12-14
JP5876203B2 (en) 2016-03-02
US7754137B2 (en) 2010-07-13
GB0511460D0 (en) 2005-07-13
WO2006131716A3 (en) 2007-07-26
AU2006256588A1 (en) 2006-12-14
GB0525212D0 (en) 2006-01-18
US20090117403A1 (en) 2009-05-07
JP2008546208A (en) 2008-12-18
EP1893372B1 (en) 2014-07-02
EP1893372A2 (en) 2008-03-05
ES2477866T3 (en) 2014-07-18

Similar Documents

Publication Publication Date Title
CA2609905C (en) Process for fabricating a composite
Peng et al. Joining of silver nanomaterials at low temperatures: processes, properties, and applications
JP6728389B2 (en) Sputtering target assembly having a graded intermediate layer and method of making
TWI463605B (en) Filling material and filling method with using thereof
KR20180048665A (en) Method and apparatus for producing additive
EP1223615A1 (en) A method for producing a structure using nanoparticles
EP2150417B1 (en) Metallic ink
US20150214095A1 (en) Method for Producing a Copper Layer on a Semiconductor Body Using a Printing Process
JP2016535817A (en) LIFT printing of multiple composition material structures
JP5135079B2 (en) Semiconductor device and bonding material
KR20120007381A (en) Method of fabricating pattern
CN106825547B (en) The method of the increasing material manufacturing metal polyporous material of selective laser melting metal micro-nano hybrid particles solution under air environment
JP6241944B2 (en) Self-propagating exothermic formed body, self-propagating exothermic formed body manufacturing apparatus and manufacturing method
CN111373508A (en) Method and assembly for ohmic contacts in thinned silicon carbide devices
TW201934766A (en) Clad material and method for producing same
WO2007077397A2 (en) Production of multilayer microcomponents by the sacrificial thick layer method
TWI762469B (en) Apparatus and methods to remove unbonded areas within bonded substrates using localized electromagnetic wave annealing
TW202213442A (en) Method for bonding and debonding two substrates
CN116352252A (en) Laser auxiliary material phase change and jet micromachining process
WO2015036908A2 (en) Joining method, structure and/or material composition modification method, security method, joining means and security system using reactive material systems
JP6738760B2 (en) Through-hole sealing structure and method, and transfer substrate for sealing through-hole
Das et al. Laser micromachining of nanocomposite-based flexible embedded capacitors
JP2007095716A (en) Complex, semiconductor manufacturing device susceptor provided therewith and power module
Delaporte et al. Laser processing of flexible organic electronic materials
Xie et al. Selective preparation of high-performance Cu metal micropatterns based on laser direct writing technology

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20190605

MKLA Lapsed

Effective date: 20190605