CA2604622A1 - Vertebral disc repair - Google Patents

Vertebral disc repair Download PDF

Info

Publication number
CA2604622A1
CA2604622A1 CA002604622A CA2604622A CA2604622A1 CA 2604622 A1 CA2604622 A1 CA 2604622A1 CA 002604622 A CA002604622 A CA 002604622A CA 2604622 A CA2604622 A CA 2604622A CA 2604622 A1 CA2604622 A1 CA 2604622A1
Authority
CA
Canada
Prior art keywords
implant
shape
disc
shaped
bone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002604622A
Other languages
French (fr)
Inventor
Arthur A. Gertzman
Barbara L. Merboth
Michael J. Schuler
Anton J. Steiner
Eric J. Semler
Judith L. Yannariello-Brown
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Musculoskeletal Transplant Foundation
Original Assignee
Musculoskeletal Transplant Foundation
Arthur A. Gertzman
Barbara L. Merboth
Michael J. Schuler
Anton J. Steiner
Eric J. Semler
Judith L. Yannariello-Brown
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Musculoskeletal Transplant Foundation, Arthur A. Gertzman, Barbara L. Merboth, Michael J. Schuler, Anton J. Steiner, Eric J. Semler, Judith L. Yannariello-Brown filed Critical Musculoskeletal Transplant Foundation
Publication of CA2604622A1 publication Critical patent/CA2604622A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • A61L27/3608Bone, e.g. demineralised bone matrix [DBM], bone powder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3641Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the site of application in the body
    • A61L27/3645Connective tissue
    • A61L27/3654Cartilage, e.g. meniscus
    • A61L27/3658Intervertebral discs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/842Flexible wires, bands or straps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/30004Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis
    • A61F2002/30057Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis made from both cortical and cancellous adjacent parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/30004Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis
    • A61F2002/30059Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis differing in bone mineralization, e.g. made from both mineralized and demineralized adjacent parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/30062(bio)absorbable, biodegradable, bioerodable, (bio)resorbable, resorptive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/30075Properties of materials and coating materials swellable, e.g. when wetted
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/3008Properties of materials and coating materials radio-opaque, e.g. radio-opaque markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30112Rounded shapes, e.g. with rounded corners
    • A61F2002/30136Rounded shapes, e.g. with rounded corners undulated or wavy, e.g. serpentine-shaped or zigzag-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30138Convex polygonal shapes
    • A61F2002/30153Convex polygonal shapes rectangular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30159Concave polygonal shapes
    • A61F2002/30172T-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30159Concave polygonal shapes
    • A61F2002/30177W-shaped, M-shaped or sigma shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30159Concave polygonal shapes
    • A61F2002/30181Y-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/302Three-dimensional shapes toroidal, e.g. rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30224Three-dimensional shapes cylindrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30224Three-dimensional shapes cylindrical
    • A61F2002/30225Flat cylinders, i.e. discs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30242Three-dimensional shapes spherical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30291Three-dimensional shapes spirally-coiled, i.e. having a 2D spiral cross-section
    • A61F2002/30293Cylindrical body made by spirally rolling up a sheet or a strip around itself
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30383Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by laterally inserting a protrusion, e.g. a rib into a complementarily-shaped groove
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30383Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by laterally inserting a protrusion, e.g. a rib into a complementarily-shaped groove
    • A61F2002/30387Dovetail connection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30795Blind bores, e.g. of circular cross-section
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/30932Special external or bone-contacting surface, e.g. coating for improving bone ingrowth for retarding or preventing ingrowth of bone tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2002/30971Laminates, i.e. layered products
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • A61F2002/4435Support means or repair of the natural disc wall, i.e. annulus, e.g. using plates, membranes or meshes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • A61F2002/444Intervertebral or spinal discs, e.g. resilient for replacing the nucleus pulposus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0004Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0061Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof swellable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0017Angular shapes
    • A61F2230/0019Angular shapes rectangular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/0052T-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/0056W-shaped, e.g. M-shaped, sigma-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/006Y-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0065Three-dimensional shapes toroidal, e.g. ring-shaped, doughnut-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0069Three-dimensional shapes cylindrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0071Three-dimensional shapes spherical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0091Three-dimensional shapes helically-coiled or spirally-coiled, i.e. having a 2-D spiral cross-section
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0096Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers
    • A61F2250/0098Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers radio-opaque, e.g. radio-opaque markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00365Proteins; Polypeptides; Degradation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/16Materials with shape-memory or superelastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/38Materials or treatment for tissue regeneration for reconstruction of the spine, vertebrae or intervertebral discs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S623/00Prosthesis, i.e. artificial body members, parts thereof, or aids and accessories therefor
    • Y10S623/915Method or apparatus for preparing biological material
    • Y10S623/919Bone

Abstract

A sterile implant for treatment of a spinal disc defect comprising an allograft cortical bone demineralized to a Type I collagen having a specific shape which is treated to eliminate osteoinductivity. The implant is lyophilized and compressed into smaller first shape which 20 to 80% from its original shape in at least one dimension and hardened. The implant expanding when hydrated into a second shape having the shape memory of the first shape and expanded in dimensional size from the first compressed shape.

Description

VERTEBRAL DISC REPAIR

RELATED APPLICATIONS
This is an application clairning priority from U.S. Provisional Application Number 60/671,514 filed April 15,2005 and U.S. Provisional ApplicationNumber 60/
filed April 14, 2006.

FIELD OF INVENTION
The present invention is directed toward a shaped implant constructed of Type I collagen obtained from demineralized bone which is used for human spinal disc repair.
The Type I
collagen is treated to eliminate osteoinductivity and the implant is used to replace or augment the nucleus pulposus of a degenerated spinal disc after rupture or hemiation. More specifically, the present invention is directed to a loadbearing implant which possesses a unique advantage of shape-memory.

SACKGROUND OF THE INVENTION
Degeneration of the intervertebral disc within the spine is generally believed to be a common cause of debilitating lower back and neck pain. An intervertebral disc primarily serves as a mechanical cushion between the vertebral bones, permitting controlled motions within vertebral segments of the axial skeleton. The normal disc is a unique, structure, comprised of three component tissues: the nucleus pulposus ("NP"), the annulus fibrosus ("AF"), and the cartilaginous end plates of the two opposing vertebral bodies. The configuration of the healthy disc is such that the NP, a soft gelatinous material, is situated in the center of the disc while the AF, a tough, laminated ring of crisscrossing layers, surrounds and contains the NP. The disc is connected to the superior and inferior vertebrae through hyaline cartilage-based vertebral end plates that are approximately 1 mm thick and serve as a semipermeable membrane.
The AF is a tough annular shaped fibrocartilage tissue which consists mainly of Type 1 collagen fibers which are organized into many crisscrossed layers forming a tough, outer fibrous ring that binds together adjacent vertebrae. Approximately 60 - 70% of the mass of the AF is water. This fibrous portion, which is shaped much like a laminated automobile tire, is generally about 10 to 15 millimeters in height and about 15 to 20 millimeters in thickness. The AF consists of overlapping multiple plies at roughly a 30-degree angle with respect to the radial direction that are sequentially oriented to alernate in direction. The fibers of the AF are connected to the vertebral end plates as well as being directly bound to the superior and inferior vertebral bodies.
This configuration particularly resists torsion, as about half of the angulated fibers will tighten when the vertebrae rotate in either direction, relative to each other. The laminated plies are less firmly attached to each other. This configuration ensures significant resistance against radial stress and inner over-pressure, while allowing significant deformation during twisting and bending.
The AF disc contains a complex flexible and hydrophilic core, the nucleus pulposus (NP).
The NP consists of a gel-like composite made of proteoglycans (PGs) and Type II collagen. The NP resides in the center of the AF and the transition between these two tissues is quite distinct at birth but becomes more gradual with increasing age. The high PGs content, as much as 65% for young individuals allows it to maintain a water content of more than 90% of its total mass. PGs possess glycosaminoglycan chains with ionic carbonyl and sulfate groups that have the ability to attract and retain water molecules. The NP absorbs water rapidly when load is applied to the spine_ (sitting up, standing, hip rotation, walking, etc.) serving as a pump that takes up and expels water depending on the pressure within the disc. In this manner, the degree to which the disc is loaded with external forces determines the amount of water in the NP. For example, if the disc is under increased compression, the pressure within the disc increases and water is forced out of the NP.
When the load on the disc decreases, the pressure within the disc lessens and water is allowed to flow back in. This phenomenon is an effective mechanism for providing the exchange of waste and nutrients through the vertebral end plates. This is particularly critical for cells that reside within the disc since the disc is a largely avascular structure, having no direct blood supply. A
healthy NP is largely a gel-like substance having a high water content, and similar to the air in a tire, serves to keep the annulus tight in tension yet flexible enough to allow some degree of motion.
The complex structure of the intervertebral disc performs the important role of absorbing mechanical loads while allowing for constrained flexibility of the spine. A
healthy NP is critical to the disc function and the normal load transfer mechanism that occurs within the spine. In particular, the swelling pressure generated by the NP transmits external forces that act on the disc to the AF. For example, an axial load acting on the disc causes the intradiscal pressure within the NP to increase thereby creating tension on the surrounding ring shaped AF, pushing it outward and preventing it from bulging inward. When the fibers of the AF are stretched, they are strengthened to better resist the vertical loading on the disc.
With increased aging, degenerative changes naturally occur within the disc.
The term, degenerative disc disease (DDD), refers to degradation of normal disc architecture into a pathological state. It has been previously reported that by age 50, nearly all intervertebral discs have undergone some degree of degeneration. The onset of DDD is believed to occur as the NP
begins to lose its ability to retain water. This is due to a decrease in the PGs content within the NP
of the disc as well as changed in the PGs chemical composition. More specifically, the PGs composition is modified as the ratio of keratin sulfate to chondroitin sulfate increases. The changes result in the PGs composing approximately 65% of the dry weight of the NP in young individuals to less than 30% with aging. This impacts the water binding capacity of the NP
as its water content may decline from about 90% at birth to about 70% or less in old age. There is also an associated decrease in the number of resident cells within the NP tissue. With the decreased water content and cellularity, the NP loses volume and becomes less gel-like and more fibrous in nature and the border between the NP and the AF becomes much less distinct. This transformation of the NP
within the disc is similar to the air leakin from a tire.
As the DDD evolves, the load transfer mechanism of the disc is significantly modified.
With these pathologic changes, the NP can no longer effectively iransfer loads and provide _ sufficient pressurization to keep the AF in tension. When not properly tensioned, the layers of the AF do not have the same ability to resist compressive loads and experience atypical stresses.
Without a healthy NP to resist the AF from bulging inward, this abnormal stretching of the AF
causes this tissue structure to weaken by making the successive plies buclcle and separate from each other. This causes the AF to become more susceptible to radial fissures or cracks under loading.
Over time, the disc also loses stability and height bringing the spinal facet joints in close contact with each other.
Following a full-thickness tear in the AF, the NP is no longer prevented from escaping from the disc under loading. NP material then moves through the crack in the annulus and reaches the outside of the disc where it may cause inflammation and come into contact with a nerve root. This phenomenon is often referred to as "herniated" disc with the nerve impingement typically resulting in debilitating back or leg pain, loss of muscle control or even paralysis.
The most common resulting symptoms are pain radiating along a compressed nerve and low back pain, either of which can be crippling for the patient. The significance of this problem is increased by the low average age of diagnosis with over 80% of patients in the United States being under 59.
While conservative care is frequently the first treatment option, surgical solutions are often necessary to alleviate pain and discomfort. When conservative approaches are not successful, the most common surgical options are currently discectomy and spinal fusion. While both of these options are reasonably successful at acutely decreasing pain, neither one restores proper biomechanics to the spine, which may lead to further degeneration at the operated disc or discs at the adjacent levels in the spine.
Since 1934, discectomy has been utilized as a common surgical procedure for treating intervertebral disc herniation. This procedure is performed with the AF still relatively intact and involves removal of disc materials impinging on the nerve roots or spinal cord external to the disc, generally posteriorly. Depending on the surgeon's preference, varying amounts of NP are then removed from within the disc space either through the herniation site or through an incision in the AF. This removal of extra NP fiirther diminishes the volume of the NP but is commonly done to minimize the risk of recurrent herniation.
The most significant drawbacks of discectomy are recurrence of hemiation, recurrence of radicular symptoms, continuing loss of disc height and increasing low back pain. Re-herniation can occur in a significant number of cases. The site for re-herniation is most commonly the same level and side as the previous herniation and can occur through the same weakened site in the AF.
Persistence or recurrence of radicular symptoms happens in many patients and when not related to re-herniation, tends to be linked to stenosis of the neural foramina_caused.by a loss in height of the operated disc. All of these failings are most directly related to the loss of NP material and AF
competence that results from hemiation and surgery.
Loss of NP material via discectomy further deflates the disc, causing a decrease in disc height. Loss of disc height increases loading on the facet joints. This can result in deterioration of facet cartilage and ultimately osteoarthritis and pain in this joint. As the joint space decreases the neural foramina formed by the inferior and superior vertebral pedicles also close down. This leads to foraminal stenosis, pinching of the traversing nerve root, and recurring radicular pain.
Loss of NP also increases loading on the remaining AF, a partially ennervated structure that can produce pain. Finally, loss of NP results in greater bulging of the AF under load. This can result in renewed impingement by the AF on nerve structures posterior to the disc.
Persisting tears in the AF that result either from herniation or surgical incision also contribute to poor results from discectomy. The AF has limited healing capacity with the greatest healing occurring in its outer borders. Healing takes the form of a thin fibrous film that does not approach the strength of the uninjured disc. Surgical incision in the AF has been shown to produce immediate and long lasting decreases in stiffness of the AF particularly against torsional loads.
This may over-stress the facets and contribute to their deterioration.
Further, in as many as 30%
of cases, the AF never closes. In these cases, not only is re-herniation a risk but also leakage of fluids or solids from within the NP into the epidural space can occur. This has been shown to cause localized pain, irritation of spinal nerve roots, decreases in nerve conduction velocity, and may contribute to the formation of post-surgical scar tissue in the epidural space.
Spinal fusion is a common surgical treatment option for patients that have persistent back pain and whose annulus is severely compromised. This procedure involves removing a majority of the disc and causing bone to grow between the two adjacent vertebrae. If successful, this results in the two vertebrae being "fused" together This treatment generally reduces back pain but limits the mobility of the spine. It is suspected that this abnormal biomechanical loading may lead to DDD and repeat surgeries at the adjacent levels.
All present surgical interventions, whether laminectomy or fusion of adjacent vertebrae, lower the functionality of the spine in some way. For that reason it is desirable to try to develop a prosthetic for the spinal disc or its parts. This is, however, extremely difficult. The spine is a very complex part of the body and its proper fi.inction is dependent on proper coordination of the function of all the parts, including the spinal discs. The spinal disc needs to withstand complex stresses, including various angles of bending, pressure, shear, and twisting.
The spinal disc must also function as a shock and vibration absorber. And finally, a spinal disc must allow the transport of the nutrients and metabolic products needed for its health and survival.
There have been a number of attempts to try to correct or repair the problems connected to defective spinal discs. The first prostheses embodied a wide variety of ideas primarily using mechanical devices such as ball bearings, springs, metal spikes and other perceived aids. These prosthetic discs were designed to replace the entire intervertebral disc space, and were large and rigid. Beyond the questionable efficacy of those devices were the inherent difficulties encountered during implantation.
A new procedure has been developed which is a mechanical, motion-preserving device replacing the natural interbody joint. The mechanical disc is based on the highly successful hip or knee prostheses; these have metal on plastic or metal on metal rotating or sliding elements.
These mechanical discs are in the early stages of clinical evaluation and are relatively unproven.
Concerns exist based on the metal/plastic interface which would result in fme plastic particles being created in the delicate disc space adjacent to the spinal chord. These plastic debris particles have caused serious complications in the knee and hip applications.
The construction of a fully functional prosthesis is extremely difficult and most prosthetic devices suggested to date are strictly mechanical, and they mimic only some fun.ctions of the disc.
A prosthetic with a simulation of the disc function is shown in U.S. Patent Nunlber 4,911,718 issued March 27, 1990 describing a composite construction of the prosthetic of the disc using a biocompatible elastomer, reinforced by fibers which mimic the function of collagen fibers in a natural spinal disc. One disadvantage of this solution, which is common to all full spinal disc replacements, remains a complicated surgical procedure, which translates into a high cost, and a high risk to the patient.
Another surgical approach to restore natural biomechanics in the spine for patients with DDD is augmentation or replacement of the disc nucleus. Here, rather than replacing the entire disc, only the central core of the disc is modified. This preserves the surrounding structures of the disc including the annulus as well as the cartilaginous end plates. The procedure is less complicated and less invasive than TDR therapies. However, this approach does require the AF
to be sufficiently intact to contain the NP implant.
The first disc nucleus replacements implant into humans were stainless steel balls developed by Fernstrom in 1966. These solid implants did not restore proper biomechanics in discs due to their stiffness. In addition, some implants migrated from the disc space or subsided into the vertebral end plates.
U.S. Patent Number 5,047,055 issued September 10, 1991 describes a hydrogel prosthesis of the nucleus, whose shape and size corresponds to the removed disc nucleus when the prosthesis is fully swollen. The prosthetic is prepared in a partially dehydrated state when the dimensions are smaller and the device can be inserted through a smaller opening. After implantation, the prosthesis will grow to its full size by absorbing bodily fluids. It is necessary to note, however, that the dehydration prior to implantation and rehydration after implantation are isotropic, i.e. all dimensions change at the same rate. During implantation the implant will try to expand equally in all directions, but it will expand most in the direction of the least resistance. Therefore it will expand the least in the axial direction, where expansion is most needed (so that the separation of the vertebrae is the highest), and it will expand the most in the radial direction, where the expansion is least desirable; especially in places where the AF is weakened or even missing.
The use of expandable materials in a prosthetic element is also disclosed in U.S. Patent Number 5,545,222 issued August 13, 1996. Such materials which expand when they come in contact with water or other fluids include PEEK (polyether-etherketone), a desiccated biodegradable material, or a desiccated allograft. As an example, a tendon can be compressed in a desiccated state, and as it imbibes water it expands and creates a firmer lock or tighter fit in the host site.
A shaped, swollen demineralized bone and its use in bone repair is disclosed in U.S. Patent.
Number 5,298,254 issued March 29, 1994. In general, cortical allogeneic bone tissue is preferred as the source of bone. Demineralized bone is contacted with a biocompatible swelling agent for a period of time sufficient to cause swelli.ng of the piece.
U.S. Patent Number 6,620,196 issued September 16, 2003 is directed toward a nucleus pulposus implant having an elastic body and an outer shell which can take a number of forms including a cylinder, rectangular block, spiral and other shapes having a shape memory. The body can be formed from a wide variety of biocompatible polymeric materials.
U.S. Patent Number 6,652,593 issued November 25, 2003 discloses a demineralized cancellous bone formed into an implant. The implant is capable of being softened and compressed into a small first shape and hardened in the first shape. The compressed shape is hydrated and expands into a second shape having larger dimensions than the original shape.
The demineralized cancellous bone may also be used in nucleus replacement.
U.S. Patent Publication Number 2004/0243242 published December 2, 2004 is directed towards an implant constructed of a demineralized fibular ring placed within the medullary canal of another demineralized femoral ring for replacement of an invertebral disc.
The disc implant is placed so that the axis of the medullary canal runs parallel to the axis of loading to provide load bearing capacity.
As previously described, in addition to restoring normal biomechanics within the disc, an important feature of a prosthetic nucleus pulposus implant is that the annulus is not entirely removed upon implantation. Normally, however, an opening of some type must be created through the annulus in order for the device to be inserted. Since the creation of this opening traumatizes the annulus, it is highly desirable to minimize its size. Unfortunately, however, most prosthetic nucleus devices that are designed to be implanted through a small annulotomy do not properly fill the nuclear cavity. On the other hand, a relatively rigid prosthesis configured to approximate a shape of the natural nucleus requires an extremely large opening in the annulus in order for the prosthetic device to "pass" into the nucleus cavity.
Degenerated, painfully disabling spinal discs are a major economic and social problem for patients, their families, employers and the public at large. Any significant means to correct these conditions without further destruction or fusion of the disc will serve an important role and be highly beneficial. Other means to replace the function of a degenerated disc have major problems such as complex surgical procedures, unproven efficacy, placing unnecessary and possibly destructive forces on an already damaged annulus, etc. Therefore, a substantial need exists for a prosthetic spinal disc nucleus formed to facilitate implantation through an annulus opening while providing necessary intradiscal support following implant.

SUMMARY OF THE INVENTION
The invention further relates to an implant for repairing a vertebral disc by providing non-fusion repair of an intervertebral disc by providing a non-osteoinductive, substantially demineralized bone prosthesis that possesses the characteristic of shape memory following implantation. The demineralized bone prosthesis is configured to fit within the space of a spinal disc nucleus and to have sufficient mechanical integrity to provide load bearing in order to act as a cushion between the superior and inferior vertebrae. The invention can be formed from either cortical or cancellous bone and may be processed into an annular, discoid, spheroid, cylindrical spiral, accordion, snake-like and W-shaped cross section.
It is an object of the invention to provide an allograft prosthesis derived from substantially demineralized bone for implantation within a spinal disc nucleus.
It is another object of the invention to provide an allograft cortical bone prosthesis which has been treated to eliminate osteoinductivity.
It is another object of the invention to provide a sterile compressed prosthesis that when hydrated assumes an expanded shape memory.
These and other objects, advantages, and novel features of the present invention will become apparent when considered with the teachings contained in the detailed disclosure along witli the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a side elevational view of the spinal column with the individual vertebrae being numbered;
Figure 2 is a perspective view of a ring shaped spinal disc implant;
Figure 3 is a side elevational view of a dehydrated compressed disc implant of Figure 2 which can be used in the repair of a spinal disc;
Figure 4 is a side elevational view of a spinal disc implant of Figure 3 when hydrated and expanded;
Figure 5 is a top plan view of another embodiment of the invention disclosing a dehydrated compressed spiral shaped configuration implant embodiment which can be used in the repair of a spinal disc;
Figure 6 is a top plan view of the embodiment of Figure 5 when hydrated;
Figure 7 is an enlarged perspective view of the solid cancellous disc embodiment which can be used in the repair of a spinal disc;
Figure 8 is a side elevational view of the cancellous disc embodiment of Figure 7;
Figure 9 is an enlarged perspective view of the composite cortical ring with cancellous cylinder placed within the ring embodiment which can be used in the repair of a spinal disc;
Figure 10 is a top plan view of the composite cortical cancellous ring of Figure 9;
Figure 11 is an enlarged perspective view of a hydrated T-shaped implant which can be used in the repair of a spinal disc;
Figure 12 is an enlarged perspective view of a hydrated Y-shaped implant which can be used in the repair of a spinal disc;

Figure 13 is an enlarged top plan view of another embodiment of the invention in a hydrated expanded accordion configuration which can be used in the repair of a spinal disc;
Figure 14 is an enlarged top plan view of another embodiment of the invention in a hydrated expanded accordion configuration having arcuate ends which can be used in the repair of a spinal disc;
Figure 15 is an enlarged top plan view of another embodiment of the invention in a hydrated expanded snake-like configuration which can be used in the repair of a spinal disc; and Figure 16 is an enlarged top plan view of another embodiment of the invention in a hydrated expanded W shape configuration which can be used in the repair of a spinal disc.

DETAILED DESCRIPTION OF THE INVENTION
While the present invention is susceptible of embodiment in various forms as is shown in the drawings, and will hereinafter be described, a presently preferred embodiment is set forth with the understanding that the present disclosure is to be considered as an exemplification of the invention, and is not intended to limit the invention to the specific embodiments disclosed herein.
The preferred embodiment and best mode of the invention for these purposes is shown in Figures 2 through 4.
The present invention is directed toward a spinal disc repair implant fashioned from demineralized human allograft bone and more particularly toward an implant 10 that includes at least one load bearing elastic body 12 sized for introduction into an intervertebral disc space as shown in Figure 1. Figure 1 shows a spinal column with numbered vertebrae separated by discs.
The implants have shape memory and are configured to have a specific original shape that allows extensive deformation without permanent deformation, cracks, tears or other breakage in the implant. The original shape of the implant is configured to allow it to be placed into a disc nucleus with minimal disruption to the disc annulus. Following implantation and re-hydration, the implants are designed to return to their original shape within the disc space. The implant body 12 can be surrounded by a resorbable shell that provides the initial fixation for the elastic body within the disc space.
The present invention provides intervertebral disc implants that may fully or partially replace the disc itself, or natural, or native, nucleus pulposus in humans and are configured to resist expulsion or other migration through a defect, or other opening, in the annulus fibrosis and to resist excessive migration within an intervertebral disc space.
The implant 10 is fabricated into the desired shape from a 6-12 mm thick cortical cross-section of long bones, such as a femur, tibia, or humerus. It can also be manufactured from dense cancellous bone for specific uses. The thickness of the cortical walls is at least 2mm. The cortical walls may also be milled such that they are of uniform or a defmed tlzickness. In one embodiment, the top and bottom faces of the cross-section are milled to have a lordotic curvature that is similar to the native curvature of the superior and inferior vertebral end plates. The total angle of this curvature may be between 3 - 15 degrees.
The cortical cross sections were demineralized by treating the bone in a dilute acid such as in HC 1(0.6N) for at least 48 hours to 96 hours at room temperature to achieve a residual calcium level of about 0.2% wt/wt or less. It is understood that the treatment of the fully demineralized ring shaped cortical tissue (to less than 0.2% residual calcium) can be easily adapted to treatment of other shaped demineralized bone implants. Following demineralization, the resultant tissue is Type I collagen which is tough and resilient with_an elastic quality. _ _ After the demineralization step, the bone is either thermally or chemically treated or irradiated to render the tissue non-osteoinductive. Such chemical treatment may include soaking the tissue in a strong oxidizing agent such as 3% hydrogen peroxide for at least 1 hour. Chemical treatment may also involve exposure to a detergent solution that can extract proteins from the bone material such as guanidine hydrochloride, sodium dodecyl sulfate or urea for at least 1 hour. The thermal treatment may involve exposure to heat at temperatures greater than 40 C for up to 24 hours. Irradiation may involve subjecting the implant to a dosage of at least 20 KiloGrays (Kgy).
One gray is defined as an energy absorption of 1 joule per kilogram of irradiated material. One gray is also equivalent to 100 rads. It is prerequisite the treatment procedure inactivates or removes the resident bone morphogenic proteins (BMPs) that are known to be contained within bone and have the ability to induce ectopic bone formation. A non osteoinductive implant is desirable for on-fusion spinal disc therapy where motion preservation is the preferred outcome. The chemical, thermal, or radiation treatment aimed to render the bone non-osteoinductive may precede the demineralization process.
Following demineralization, inactivation of osteoinductivity and addition cleaning steps, the pH of the implant is returned to near physiological levels. In the preferred embodiment the pH
is restored to a range of 6.6 to 7.4 by soaking the implant in a phosphate-buffered saline solution for at least 30 minutes.
After processing of the implant is complete, the cortical demineralized bone structure is compressed to its desired small configuration preferably so that at least one dimension of the implant is compressed by at least 20% and most preferably where one dimension of the implant is coxnpressed to about 50%. In the preferred embodiment the implant is squeezed radially until opposing sides of the ring shaped structure are brought within close contact of each other, thereby eli.ininating the hollow center ofthe bone cross-section. In order to achieve this radial compression witliout generating fractures in the demineralized bone, the implant may require being axially compressed to first soften its structure in order to allow it to be compressed to the desired smaller configuration. The implant is compressed axially to 20 - 60% strain in order to render it sufficiently pliable to squeeze radially without causing cracks, tear or other breakage in its structure. After a sufficient amount of water is expelled from the wet collagenous tissue via the axial compression, the structural backbone possesses greater flexibility due to the empty space that had previously been occupied by water molecules at equilibrium. Therefore, the collagen fibers may be fiuther collapsed without inducing fractures in their structure. Once compressed radially, the implant may be held in this shape by placing it into a mold. The compressed implant is then hardened by dehydration._ The resulting collapsed ring structure_may have a width between_4-12 mm. This smaller compressed shape of the implant allows it to pass through a 4 - 12 mm small portal in the annulus fibrosus during implantation into the disc nucleus. It is necessary that the size of the annulotomy is kept to these dimension as to not further compromise the integrity of the disc or the ability of the implant to be contained within the disc space.
The implant, having the characteristic of shape-memory expands to its original geometry including the recovery of the height, width and length of its initial shape.
If desired in order to cause rehydration to be more rapid, small perforation in the implant are created. The holes may be partial, drilled from the axial direction or from the radial direction. The holes should be no greater than 1 mm in diameter. The term DFR while referring to demineralized femoral ring can also be interpreted to refer back to other demineralized allograft implant shapes. The mechanical compression, which softens the tissue, is what allows the DFRs to be squeezed together without causing fractures in their structure. Without the mechanical compression, the DFRs typically split when compressed radially.
After regaining its annular configuration, the implant serves as a load bearing, flexible prosthesis for the disc nucleus that acts as a malleable cushion between the vertebrae. The ring shaped structure also serves to resist the hoop stresses generated by surrounding annulus fibrosus keeping the annulus under tension. Without providing resistance to these stresses, the fibers of the annulus may separate and weaken leading to further disc degeneration and loss of disc height. By keeping the annulus under tension with an appropriately sized demineralized bone implant design for non fusion disc repair, the integrity of the annulus may be maintained while sparing motion within the spine.
The implant 10 has a body 12 with a rounded exterior surface 14 such as that shown in Figures 2-4, either ring shaped or of a solid disc shape. A spiral shaped form 16 is cut from a long bone. In this configuration, the bone is cut at an angle circumferentially down the length of a long bone. The height and width of the curved bone strip 17 comprising the spiral may range between 2-8mm. The spiral form is shown in compressed dehydrated form in Figure 5 and hydrated form in Figure 6. The spiral shown in hydrated fonn in Figure 6 may be straightened under mechanical force and hardened as shown in Figure 5. Following implantation and re-hydration , the implant exhibits shape memory regaining its original spiral shape. Other embodiments include the hydrated cancellous form 20 of Figures 7 and 8, and the cortical cancellous composite form 22 of Figures 9 and 10. In this composite form 22 the, cancellous cylinder member 23 is compressed and put into the cortical ring member 24. Additional embodiments are the hydrated T- shaped form 25 of Figure 11, the hydrated Y- shaped form 27 of Figure 12, the hydrated accordion form 26 with straight legs 28 of Figure 13 and a second hydrated accordion form 30 with arcuate ends 32 as shown in Figure 14. A hydrated snake-like fonn 34 having a serpentine body is shown in Figure 15 and a hydrated W-shaped form 3 8 is shown in Figure 16 are among the numerous shaped variants which can be used. Folds 27 and 39 of Figures 13 and 16 respectively are shown with sharp edges but the same can easily be rounded for specific implant usage..
Additional implant configurations may include solid discoid, cylindrical or rectangular shapes. These demineralized bone forms may be soft ended, folded from any of the described shapes into a second smaller shape that is significantly smaller in at least one dimension, and then placed into a mold. The second smaller shape may be at least 25-50% smaller in at least one dimension after compression or folding. Once fully hydrated, the implant "pops" back to its original configuration and serves as at least one part of a load-bearing flexible disc nucleus augmentation or replacement device.
The implant may also comprise more than a single section of demineralized bone. In one embodiment multiple cross-sections ranging in thickness from 1-6 mm of demineralized cortical bone are layered on top of one another to constitute the disc nucleus implant.
This set of bone cross-sections may be designed to have interlocking mechanisms such as dove-tail grooves or be milled to have ridges that fit tightly together once fully hydrated.
Alternatively, multiple demineralized bone *cross-sections may be designed to be fit within each other when hydrated to constitute the nucleus pulposus implant.
Alternatively the spinal disc implants may be manufactured from dense cancellous bone.
Sources of dense cancellous bone include distal and proximal femur, distal and proximal tibia, proximal humerus, talus, calcaneus, patella and ilium. Here cancellous bone is demineralized so that it has similar mechanical properties to that of sponge-like material. The resulting highly deformable tissue form may be compressed to a smaller shape that exhibits shape-memory when fully hydrated. It is known that processing time (demineralization, chemical inactivation and restoration of pH) are faster than that for cortical bone, which is denser and less penetrable than highly porous cancellous tissue. In one embodiment a cancellous block is milled into a solid discoid or cylinder shape. The shaped demineralized cancellous bone may then be radially compressed into a tube or axially compressed to resemble a flat sheet. The tissue form may then be hardened in this configuration by dehydration. Upon implantation and rehydration, the cancellous bone expands back to its original configuration and serves as a partial or total disc nucleus replacement device. When hydrated, the demineralized cancellous bone implant serves to act as a cushion between the vertebrae and depending on the degree of expansion from its compressed shape, may also provide a lifting force capable of restoring disc height. The sponge-like characteristics of the demineralized cancellous bone may also allow it to be utilized to_soak _ up fluids at the site of implantation. The porous nature of the demineralized cancellous bone may also allow it to be remodeled more rapidly after iniplantation than the denser cortical tissue. A
plurality of demineralized cancellous bone implants may be used to comprise the disc nucleus implant. In another embodiment, the cancellous bone is configured to have a similar shape to that of a nucleus pulposus with corresponding curvature to that of the native tissue prior to compression into a small shape. This unique shape may be configured to be proportionately sized to be as nluch as 2-5 times larger than the anatomical void in the disc nucleus. Upon insertion of the implant into a disc, the implant is allowed to expand to its original shape ranging from 50% to 500% greater than its compressed shape.
In another embodiment as shown in Figures 9 and 10 , the demineralized bone im.plant 22 may be fashioned using a combination of cortical and cancellous bone. At least one cylindrical or discoid cancellous block 23 is added to fill the center of a ring-shaped implant 24 derived from cortical bone. The composite implant is compressed to a smaller dimension and then fitted into a mold. Once rehydrated the composite implant regains its original shape.
The demineralized bone implants can be treated with bioactive agents prior to implantation to facilitate biological remodeling of the implant, minimize inflammation or accelerate repair of surrounding tissues. Bioactive molecules include viral particles, plasmids, hormones, antibodies, extracellular matrix proteins, platelet rich plasma or growth factors such as those in TGF-(3, FGF, VEGF, PDGF, EGF, HGF, IGF and Interleuken (IL) families. These molecules may be adsorbed to the surface of the implant, covalently bound to the collagen backbone or impregnated with the bone structure. Growth factors such as TGF-(3 1, FGF-2 and BMP-7 have been reported in the literature to stimulate regeneration of nucleus pulposus tissue upon injection into a disc space.

The demineralized bone implants may also be treated with one or more types of live cells.
Cells may be autologous or allogeneic progenitor cells including but not limited to stroma cells and mesenchymal stem cells. Cells may also be autologous or allogeneic chondrocytes derived from cartilage or disc cells derived from native nucleus pulposus tissue or originate from bone marrow aspirate. Pretreatment of the implants with cells may engender matrix remodeling and tissue regeneration. The combination may be stored frozen before usage or stabilized with cryoprotectants before freezing. Cells may be adhered to the surface of the implant or impregnated within the collagen network. Alternately, autologous cells that were previously recovered, expanded and frozen could be thawed in the operating room and introduced into the implant.
It is also envisioned that a radiopaque marker may be added to the demineralized bone implant in order to make the implant visible during surgery. The radiopaque marker may -be derived from beryllium copper, brass, bronze, carbon steel, clad metals, copper, kovar, molybdenum, niclcel, niobium, stainless steel, tantalum, titanium, zirconium or other radio-opaque material.
If desired anchors may be combined with the implant in order to secure the implant to the superior or inferior vertebra and prevent the implant from migrating from the disc space. The anchoring devices such as sutures tied around the ring-shaped implant which are fastened to suture anchors or bone screws, are then driven into the end plates or through the opposing side of the annulus during implantation in order to preclude implant migration.
If desired the demineralized bone implant may be used as a plug for insertion into the herniation of the annulus fibrosus to block the potential of re-hemiation following a discectomy.
As an annulus fibrosus (AF) closure device, the cortical bone base material can have different levels of demineralization and the compressive strength and elasticity may be varied by altering the degree of residual calcium. This may be achieved by varying the time of exposure to acid. The compressive resistance of an intact intervertebral disc is about 2600 Newtons.
Various combinations of compressive strength and elasticity can thus be achieved. In one configuration, a ring shaped implant may have an additional plug section milled into one of its sides. Upon insertion into the disc space, the implant is oriented such that the plug is situated into the defect of the annulus fibrosus. In yet another embodiment as shown in Figures 11 and 12 the implant may be configured to have a T-shape or a Y-shape where the implant possesses a cylindrical plug section with two folding flaps. Prior to implantation the flaps are folded so that they can pass through a portal in the annulus fibrosus and be secured in the disc. Upon rehydration these flaps return to their initial configuration pressing against the inner annulus of the implanted disc. The flaps may also be further secured to the disc annulus via sutures, tacks or anchors.

The tough collagen (Type I) can be used as a plug for insertion in the hemiation of the AF
as well as replacement of the NP. The device when hydrated will swell up from the rehydration and securely fill the herniated defect. It can be held in place or in a relative position by a suture applied externally to the AF and device.
The principles, preferred embodiments and modes of operation of the present invention have been described in the foregoing specification. However, the invention should not be construed as limited to the particular embodiments which have been described above.
Instead, the embodiments described here should be regarded as illustrative rather than restrictive. Variations and changes may be made by others without departing from the scope of the present invention as defined by the following claims:

Claims (28)

1. A sterile implant for non-fusion spinal disc repair comprising substantially demineralized bone implant treated to be non-osteoinductive, said implant possessing a specific original shape, is compressed into a smaller second shape, from which said implant is capable of exhibiting shape-memory upon re-hydration with a fluid.
2. The implant of claim 1 wherein said implant is derived from allogeneic human cortical bone.
3. The implant of claim 1 wherein said implant is derived from dense cancellous bone.
4. The implant of claim 1 wherein said implant is a cortical ring with a cancellous inner member.
5. The implant of claim 1 wherein said implant possesses less than 0.2% wt/wt residual calcium.
6. The implant of claim 1 wherein said implant is perforated with a plurality of holes having a diameter less than 1 mm to allow for more rapid re-hydration.
7. The implant of claim 1 wherein the said implant is compressed and maintained in a second shape wherein at least one dimension of said implant is compressed in a range of 20 to 50%.
8. The implant of claim 1 wherein said implant is ring-shaped.
9. The implant of claim 1 wherein said implant shape is taken from a group consisting of spiral-shaped, cylindrically shaped, discoid shaped, spheroid shaped, T-shaped, Y-shaped, accordion shaped and W-shaped cross-section.
10. The implant of claim 1 wherein said implant has curved upper and lower wall faces with the angle of curvature ranging from between 3 and 15 degrees.
11. The implant of claim 3 wherein said implant is compressed and maintained in a second shape wherein at least one dimension of said implant is compressed in a range of 50% to 80%.
12. The implant of claim 1 wherein said implant comprises at least one cross-section of cortical bone and at least one cross section of cancellous bone.
13. The implant of claim 1 wherein at least one dimension of said implant is compressed over 50% prior to hardening.
14. The implant of claim 1 wherein said implant is treated with one or more bioactive agents such as growth factors, hormones, viral particles, platelet rich plasma, or naked DNA.
15. The implant of claim 14 wherein said growth factors are take from a group consisting of TGF.beta., FGF, VEGF, PDGF, EGF, HGF, IGF or IL superfamilies.
16. The implant of claim 1 wherein said implant is supplemented with one or more live cells, tissue fragments, or bone marrow aspirate.
17. The implant of claim 16 wherein said live cells are taken from a group consisting of autogenic stem cells, disc cells, marrow cells and chondrocytes.
18. The implant of claim 1 wherein said implant is provided with a radiopaque marker.
19. A sterile implant for non-fusion spinal disc repair comprising substantially demineralized human cortical bone of less than 0.2% wt/wt residual calcium formed of Type I
collagen treated to be non-osteoinductive, said implant having a pH ranging from 6.6 to 7.4 and possessing a specific original shape which is compressed by 20- 50% in at least one dimension and hardened into a smaller second shape, from which said second shape said implant is capable of expansion and exhibiting shape-memory when contacted with a fluid.
20. A process for producing a sterile implant for insertion into the nucleus pulposus of a spinal disc comprising the steps of:
a. forming a bone portion into a desired initial configuration;
b. demineralizing said bone portion;
c. treating the demineralized bone portion to preclude osteoinductivity;
d. treating the demineralized bone portion to obtain a pH ranging from-about 6.6 to about 7.4;

e. reshaping the formed configuration from its original configuration by compaction into a smaller second shape;
f. hardening the configuration by lyophilization; and g. packaging the formed configuration into a sterile package.
21. The process of claim 20 wherein said treating step to preclude osteoconductivity is with an oxidizing agent such as hydrogen peroxide.
22. The process of claim 20 wherein said treating step to preclude osteoconductivity is with chemical reagents that extract the bone growth-promoting molecules .
23. The process of claim 20 wherein said treating step to preclude osteoconductivity is by applying irradiation to receive a dosage of at least 20 kiloGrays.
24. The process of claim 20 wherein said treating step to preclude osteoconductivity is by applying heat of at least 50°C for at least 1 hour.
25. The process of claim 20 wherein said initial configuration is taken from a group consisting of ring-shaped, cylindrically shaped, discoid shaped, accordion shaped and W-shaped cross-section.
26. The process of claim 20 wherein said implant is formed into said second shape by softening via non-destructive mechanical pressure, compression into a mold, and then hardened by dehydration.
27. The process of claim 20 wherein said implant is compressed by at least 50%
in at least one dimension during the compaction step.
28. The process of claim 20 wherein said reshaping step includes softening the demineralized bone portion by at least one cycle of axial compression to 20-60% strain.
CA002604622A 2005-04-15 2006-04-17 Vertebral disc repair Abandoned CA2604622A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US67151405P 2005-04-15 2005-04-15
US60/671,514 2005-04-15
US79190406P 2006-04-14 2006-04-14
US60/791,904 2006-04-14
PCT/US2006/014342 WO2006113586A2 (en) 2005-04-15 2006-04-17 Vertebral disc repair

Publications (1)

Publication Number Publication Date
CA2604622A1 true CA2604622A1 (en) 2006-10-26

Family

ID=38667207

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002604622A Abandoned CA2604622A1 (en) 2005-04-15 2006-04-17 Vertebral disc repair

Country Status (5)

Country Link
US (1) US7879103B2 (en)
EP (1) EP1868539A2 (en)
AU (1) AU2006236548A1 (en)
CA (1) CA2604622A1 (en)
WO (1) WO2006113586A2 (en)

Families Citing this family (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020026244A1 (en) * 2000-08-30 2002-02-28 Trieu Hai H. Intervertebral disc nucleus implants and methods
US7067123B2 (en) 2003-04-29 2006-06-27 Musculoskeletal Transplant Foundation Glue for cartilage repair
US7901457B2 (en) 2003-05-16 2011-03-08 Musculoskeletal Transplant Foundation Cartilage allograft plug
US7837740B2 (en) 2007-01-24 2010-11-23 Musculoskeletal Transplant Foundation Two piece cancellous construct for cartilage repair
US7879103B2 (en) 2005-04-15 2011-02-01 Musculoskeletal Transplant Foundation Vertebral disc repair
US8585765B2 (en) 2005-05-06 2013-11-19 Titan Spine, Llc Endplate-preserving spinal implant having a raised expulsion-resistant edge
US11096796B2 (en) 2005-05-06 2021-08-24 Titan Spine, Llc Interbody spinal implant having a roughened surface topography on one or more internal surfaces
US8992622B2 (en) 2005-05-06 2015-03-31 Titan Spine, Llc Interbody spinal implant having a roughened surface topography
US9125756B2 (en) 2005-05-06 2015-09-08 Titan Spine, Llc Processes for producing regular repeating patterns on surfaces of interbody devices
US8758442B2 (en) 2005-05-06 2014-06-24 Titan Spine, Llc Composite implants having integration surfaces composed of a regular repeating pattern
US8814939B2 (en) 2005-05-06 2014-08-26 Titan Spine, Llc Implants having three distinct surfaces
US8617248B2 (en) 2005-05-06 2013-12-31 Titan Spine, Llc Spinal implant having variable ratios of the integration surface area to the axial passage area
US8551176B2 (en) 2005-05-06 2013-10-08 Titan Spine, Llc Spinal implant having a passage for enhancing contact between bone graft material and cortical endplate bone
US8262737B2 (en) 2005-05-06 2012-09-11 Titan Spine, Llc Composite interbody spinal implant having openings of predetermined size and shape
US9168147B2 (en) 2005-05-06 2015-10-27 Titan Spine, Llc Self-deploying locking screw retention device
US8591590B2 (en) 2005-05-06 2013-11-26 Titan Spine, Llc Spinal implant having a transverse aperture
US8562684B2 (en) 2005-05-06 2013-10-22 Titan Spine, Llc Endplate-preserving spinal implant with an integration plate having a roughened surface topography
US8562685B2 (en) 2005-05-06 2013-10-22 Titan Spine, Llc Spinal implant and integration plate for optimizing vertebral endplate contact load-bearing edges
US8585767B2 (en) 2005-05-06 2013-11-19 Titan Spine, Llc Endplate-preserving spinal implant with an integration plate having durable connectors
US8758443B2 (en) 2005-05-06 2014-06-24 Titan Spine, Llc Implants with integration surfaces having regular repeating surface patterns
US8545568B2 (en) * 2005-05-06 2013-10-01 Titan Spine, Llc Method of using instruments and interbody spinal implants to enhance distraction
US8585766B2 (en) 2005-05-06 2013-11-19 Titan Spine, Llc Endplate-preserving spinal implant with an integration plate having durable connectors
US7815926B2 (en) 2005-07-11 2010-10-19 Musculoskeletal Transplant Foundation Implant for articular cartilage repair
WO2007035778A2 (en) 2005-09-19 2007-03-29 Histogenics Corporation Cell-support matrix and a method for preparation thereof
EP2076220A2 (en) 2006-07-25 2009-07-08 Musculoskeletal Transplant Foundation Packed demineralized cancellous tissue forms for disc nucleus augmentation, restoration, or replacement and methods of implantation
JP4569543B2 (en) * 2006-08-18 2010-10-27 ニプロ株式会社 Precursor for tissue regeneration device with swellable rod
WO2008027903A2 (en) * 2006-08-28 2008-03-06 James Dwyer Nucleus pulposus implant
US8435551B2 (en) 2007-03-06 2013-05-07 Musculoskeletal Transplant Foundation Cancellous construct with support ring for repair of osteochondral defects
US8052754B2 (en) * 2007-09-28 2011-11-08 Zimmer Gmbh Intervertebral endoprosthesis
CA2708147A1 (en) * 2007-12-05 2009-06-18 Musculoskeletal Transplant Foundation Cancellous bone implant for cartilage repair
CN105213010A (en) 2008-01-14 2016-01-06 康文图斯整形外科公司 For the apparatus and method of fracture repair
WO2009111069A1 (en) 2008-03-05 2009-09-11 Musculoskeletal Transplant Foundation Cancellous constructs, cartilage particles and combinations of cancellous constructs and cartilage particles
BRPI0914950A2 (en) * 2008-06-19 2015-10-20 Synthes Gmbh implants, systems and techniques for increasing the mechanical advantage of bone screws
US10842645B2 (en) 2008-08-13 2020-11-24 Smed-Ta/Td, Llc Orthopaedic implant with porous structural member
EP2326281A4 (en) * 2008-08-13 2013-05-29 Smed Ta Td Llc Orthopaedic implant with porous structural member
US9700431B2 (en) 2008-08-13 2017-07-11 Smed-Ta/Td, Llc Orthopaedic implant with porous structural member
US9616205B2 (en) 2008-08-13 2017-04-11 Smed-Ta/Td, Llc Drug delivery implants
US20100042213A1 (en) 2008-08-13 2010-02-18 Nebosky Paul S Drug delivery implants
EP2341852B1 (en) 2008-08-29 2018-08-15 SMed-TA/TD, LLC Orthopaedic implant
US8187333B2 (en) * 2008-09-18 2012-05-29 Mayer Peter L Intervertebral disc prosthesis and method for implanting and explanting
US8814937B2 (en) 2008-09-18 2014-08-26 Peter L. Mayer Intervertebral disc prosthesis, method for assembling, method for implanting prosthesis, and method for explanting
US9192695B2 (en) 2008-11-20 2015-11-24 Allosource Allografts combined with tissue derived stem cells for bone healing
JP2012510874A (en) * 2008-12-05 2012-05-17 リジェネレイティブ サイエンシーズ, エルエルシー Methods and compositions for promoting repair of avascular tissue
WO2011088172A1 (en) 2010-01-15 2011-07-21 Brenzel Michael P Rotary-rigid orthopaedic rod
EP2523616B1 (en) * 2010-01-20 2019-04-17 Conventus Orthopaedics, Inc. Apparatus for bone access and cavity preparation
CN108125714A (en) * 2010-03-08 2018-06-08 康文图斯整形外科公司 For fixing the device and method of bone implant
US9539109B2 (en) 2011-09-16 2017-01-10 Globus Medical, Inc. Low profile plate
US9237957B2 (en) 2011-09-16 2016-01-19 Globus Medical, Inc. Low profile plate
US8961606B2 (en) 2011-09-16 2015-02-24 Globus Medical, Inc. Multi-piece intervertebral implants
US9681959B2 (en) 2011-09-16 2017-06-20 Globus Medical, Inc. Low profile plate
US10245155B2 (en) 2011-09-16 2019-04-02 Globus Medical, Inc. Low profile plate
US9149365B2 (en) 2013-03-05 2015-10-06 Globus Medical, Inc. Low profile plate
US9770340B2 (en) 2011-09-16 2017-09-26 Globus Medical, Inc. Multi-piece intervertebral implants
US9848994B2 (en) 2011-09-16 2017-12-26 Globus Medical, Inc. Low profile plate
US9398960B2 (en) 2011-09-16 2016-07-26 Globus Medical, Inc. Multi-piece intervertebral implants
US10881526B2 (en) 2011-09-16 2021-01-05 Globus Medical, Inc. Low profile plate
US9204975B2 (en) 2011-09-16 2015-12-08 Globus Medical, Inc. Multi-piece intervertebral implants
WO2013049373A2 (en) * 2011-09-27 2013-04-04 Spillman Deborah Marie Irradiated cortical bone sheet allografts and method of forming irradiated cortical bone sheet allografts
US9198765B1 (en) 2011-10-31 2015-12-01 Nuvasive, Inc. Expandable spinal fusion implants and related methods
US8992619B2 (en) 2011-11-01 2015-03-31 Titan Spine, Llc Microstructured implant surfaces
US8920511B2 (en) 2011-11-17 2014-12-30 Allosource Multi-piece machine graft systems and methods
WO2013142480A1 (en) 2012-03-20 2013-09-26 Titan Spine, Llc Friction-fit spinal endplate and endplate-preserving method
US9393126B2 (en) 2012-04-20 2016-07-19 Peter L. Mayer Bilaterally placed disc prosthesis for spinal implant and method of bilateral placement
US9364339B2 (en) 2012-04-30 2016-06-14 Peter L. Mayer Unilaterally placed expansile spinal prosthesis
US9585764B2 (en) * 2012-07-26 2017-03-07 Warsaw Orthopedic, Inc. Bone implant device
EP2716261A1 (en) 2012-10-02 2014-04-09 Titan Spine, LLC Implants with self-deploying anchors
US9498349B2 (en) 2012-10-09 2016-11-22 Titan Spine, Llc Expandable spinal implant with expansion wedge and anchor
US9445918B1 (en) 2012-10-22 2016-09-20 Nuvasive, Inc. Expandable spinal fusion implants and related instruments and methods
US10786235B2 (en) 2012-10-31 2020-09-29 Anchor Innovation Medical, Inc. Method and apparatus for closing a fissure in the annulus of an intervertebral disc, and/or for effecting other anatomical repairs and/or fixations
US9433404B2 (en) 2012-10-31 2016-09-06 Suture Concepts Inc. Method and apparatus for closing fissures in the annulus fibrosus
KR102215401B1 (en) 2013-02-22 2021-02-10 알로소스 Cartilage mosaic compositions and methods
US9289452B2 (en) 2013-03-07 2016-03-22 Allosource Consistent calcium content bone allograft systems and methods
US9271844B2 (en) * 2013-03-13 2016-03-01 Warsaw Orthopedic, Inc. Expandable spinal implant system and method
CA2899713C (en) 2013-03-15 2022-07-19 Allosource Cell repopulated collagen matrix for soft tissue repair and regeneration
US9168140B2 (en) 2013-03-15 2015-10-27 Allosource Perforated osteochondral allograft compositions
AU2014306454B2 (en) 2013-08-16 2019-06-13 Suture Concepts Inc. Method and apparatus for closing a fissure in the annulus of an intervertebral disc, and/or for effecting other anatomical repairs and/or fixations
JP6539652B2 (en) 2013-12-12 2019-07-03 コンベンタス オーソピディックス, インコーポレイテッド Tissue displacement tools and methods
US9345589B2 (en) * 2013-12-19 2016-05-24 Ilion Medical, Inc. Bone implants for orthopedic procedures and corresponding methods
US9615935B2 (en) 2014-01-30 2017-04-11 Titan Spine, Llc Thermally activated shape memory spring assemblies for implant expansion
US9730796B2 (en) 2014-05-16 2017-08-15 Allosource Composite bone constructs and methods
US10687956B2 (en) 2014-06-17 2020-06-23 Titan Spine, Inc. Corpectomy implants with roughened bioactive lateral surfaces
US9610143B2 (en) 2014-06-19 2017-04-04 Osteolife Biomedical, Llc Compressed decalcified trabecular bone grafts and tooth socket repair
US10077420B2 (en) 2014-12-02 2018-09-18 Histogenics Corporation Cell and tissue culture container
US10709570B2 (en) 2015-04-29 2020-07-14 Institute for Musculoskeletal Science and Education, Ltd. Implant with a diagonal insertion axis
EP3760166A1 (en) 2015-04-29 2021-01-06 Institute For Musculoskeletal Science And Education, Ltd. Coiled implants and systems
US10492921B2 (en) 2015-04-29 2019-12-03 Institute for Musculoskeletal Science and Education, Ltd. Implant with arched bone contacting elements
US10449051B2 (en) 2015-04-29 2019-10-22 Institute for Musculoskeletal Science and Education, Ltd. Implant with curved bone contacting elements
US9839524B2 (en) * 2015-06-22 2017-12-12 Theodore Malinin Modified, pliable, and compressible cortical bone for spinal fusions and other skeletal transplants
US10549011B2 (en) 2015-10-26 2020-02-04 Osteolife Biomedical, Llc Bone putty and gel systems and methods
US20170128633A1 (en) 2015-11-10 2017-05-11 Theodore Malinin Bioactive Implants and Methods of Making and Using
TWI726940B (en) 2015-11-20 2021-05-11 美商泰坦脊柱股份有限公司 Processes for additively manufacturing orthopedic implants
US11253630B2 (en) 2016-04-22 2022-02-22 Vivex Biologics Group, Inc. Malleable demineralized bone composition and method of manufacture
US10596298B2 (en) 2016-04-22 2020-03-24 Vivex Biologics Group, Inc. Malleable demineralized bone composition and method of manufacture
US9788950B1 (en) 2016-04-22 2017-10-17 Vivex Biomedical, Inc. Cohesive bone composition
US11253629B2 (en) 2016-04-22 2022-02-22 Vivex Biologics Group, Inc. Bone gel sheet composition and method of manufacture
US10463767B2 (en) 2016-04-22 2019-11-05 Vivex Biologics Group, Inc. Moldable bone composition
CA3032623A1 (en) 2016-08-03 2018-02-08 Titan Spine, Inc. Titanium implant surfaces free from alpha case and with enhanced osteoinduction
US10478312B2 (en) 2016-10-25 2019-11-19 Institute for Musculoskeletal Science and Education, Ltd. Implant with protected fusion zones
US10631881B2 (en) 2017-03-09 2020-04-28 Flower Orthopedics Corporation Plating depth gauge and countersink instrument
US10667924B2 (en) 2017-03-13 2020-06-02 Institute for Musculoskeletal Science and Education, Ltd. Corpectomy implant
US10213317B2 (en) 2017-03-13 2019-02-26 Institute for Musculoskeletal Science and Education Implant with supported helical members
US10512549B2 (en) 2017-03-13 2019-12-24 Institute for Musculoskeletal Science and Education, Ltd. Implant with structural members arranged around a ring
US10357377B2 (en) 2017-03-13 2019-07-23 Institute for Musculoskeletal Science and Education, Ltd. Implant with bone contacting elements having helical and undulating planar geometries
US10376385B2 (en) 2017-04-05 2019-08-13 Globus Medical, Inc. Decoupled spacer and plate and method of installing the same
US11452608B2 (en) 2017-04-05 2022-09-27 Globus Medical, Inc. Decoupled spacer and plate and method of installing the same
US11452796B2 (en) 2017-06-30 2022-09-27 Allosource Cellular bone grafts, and methods of manufacture and use
US10918426B2 (en) 2017-07-04 2021-02-16 Conventus Orthopaedics, Inc. Apparatus and methods for treatment of a bone
US10744001B2 (en) 2017-11-21 2020-08-18 Institute for Musculoskeletal Science and Education, Ltd. Implant with improved bone contact
US10695192B2 (en) 2018-01-31 2020-06-30 Institute for Musculoskeletal Science and Education, Ltd. Implant with internal support members

Family Cites Families (174)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA992255A (en) * 1971-01-25 1976-07-06 Cutter Laboratories Prosthesis for spinal repair
US3875595A (en) * 1974-04-15 1975-04-08 Edward C Froning Intervertebral disc prosthesis and instruments for locating same
CA1146301A (en) * 1980-06-13 1983-05-17 J. David Kuntz Intervertebral disc prosthesis
US4399814A (en) * 1981-04-27 1983-08-23 Massachusetts Institute Of Technology Method and apparatus for pressure-coated bones
US4488549A (en) 1981-08-25 1984-12-18 University Of Exeter Pressurization of cement in bones
US4466435A (en) * 1981-09-04 1984-08-21 Murray William M Bone cement nozzle and method
US4501269A (en) * 1981-12-11 1985-02-26 Washington State University Research Foundation, Inc. Process for fusing bone joints
CH657980A5 (en) * 1982-10-21 1986-10-15 Sulzer Ag DISPOSABLE BONE CEMENT SYRINGE.
US4655777A (en) * 1983-12-19 1987-04-07 Southern Research Institute Method of producing biodegradable prosthesis and products therefrom
US4627434A (en) 1985-05-03 1986-12-09 Murray William M Bone cement system and method
US5053049A (en) 1985-05-29 1991-10-01 Baxter International Flexible prostheses of predetermined shapes and process for making same
US4743260A (en) * 1985-06-10 1988-05-10 Burton Charles V Method for a flexible stabilization system for a vertebral column
US4735625A (en) * 1985-09-11 1988-04-05 Richards Medical Company Bone cement reinforcement and method
US4655749A (en) * 1985-09-30 1987-04-07 Fischione Eugene A Angioplasty pressure controller
US4751921A (en) * 1985-10-21 1988-06-21 University Of Iowa Research Foundation Bone cement syringe
US4755184A (en) * 1986-01-09 1988-07-05 Mark Silverberg Bone augmentation implant
CH671691A5 (en) 1987-01-08 1989-09-29 Sulzer Ag
US4834757A (en) * 1987-01-22 1989-05-30 Brantigan John W Prosthetic implant
US4865604A (en) * 1987-04-27 1989-09-12 Chaim Rogozinski Prosthetic bone joint
US4863477A (en) * 1987-05-12 1989-09-05 Monson Gary L Synthetic intervertebral disc prosthesis
US5306311A (en) * 1987-07-20 1994-04-26 Regen Corporation Prosthetic articular cartilage
US5108438A (en) * 1989-03-02 1992-04-28 Regen Corporation Prosthetic intervertebral disc
US4772287A (en) * 1987-08-20 1988-09-20 Cedar Surgical, Inc. Prosthetic disc and method of implanting
US4815454A (en) * 1987-11-16 1989-03-28 Dozier Jr John K Apparatus and method for injecting bone cement
FR2625097B1 (en) 1987-12-23 1990-05-18 Cote Sarl INTER-SPINOUS PROSTHESIS COMPOSED OF SEMI-ELASTIC MATERIAL COMPRISING A TRANSFILING EYE AT ITS END AND INTER-SPINOUS PADS
US5192325A (en) * 1988-02-08 1993-03-09 Mitsubishi Kasei Corporation Ceramic implant
US4911718A (en) * 1988-06-10 1990-03-27 University Of Medicine & Dentistry Of N.J. Functional and biocompatible intervertebral disc spacer
AU624627B2 (en) 1988-08-18 1992-06-18 Johnson & Johnson Orthopaedics, Inc. Functional and biocompatible intervertebral disc spacer containing elastomeric material of varying hardness
FR2639823A1 (en) 1988-12-06 1990-06-08 Garcia Alain Replacement of the nucleus of the intervertebral disc by a polyurethane polymerised in situ
US5015255A (en) * 1989-05-10 1991-05-14 Spine-Tech, Inc. Spinal stabilization method
US5290558A (en) * 1989-09-21 1994-03-01 Osteotech, Inc. Flowable demineralized bone powder composition and its use in bone repair
US4936848A (en) * 1989-09-22 1990-06-26 Bagby George W Implant for vertebrae
US4932975A (en) * 1989-10-16 1990-06-12 Vanderbilt University Vertebral prosthesis
DE8912648U1 (en) * 1989-10-23 1990-11-22 Mecron Medizinische Produkte Gmbh, 1000 Berlin, De
US5059193A (en) * 1989-11-20 1991-10-22 Spine-Tech, Inc. Expandable spinal implant and surgical method
FR2659226B1 (en) * 1990-03-07 1992-05-29 Jbs Sa PROSTHESIS FOR INTERVERTEBRAL DISCS AND ITS IMPLEMENTATION INSTRUMENTS.
US5071040A (en) 1990-03-09 1991-12-10 Pfizer Hospital Products Group, Inc. Surgical adhesives mixing and dispensing implement
DE59100448D1 (en) 1990-04-20 1993-11-11 Sulzer Ag Implant, in particular intervertebral prosthesis.
FR2662073A1 (en) 1990-05-18 1991-11-22 Bfl Medical Sarl Implant for spinal ligament correction and reinforcement
US5269785A (en) 1990-06-28 1993-12-14 Bonutti Peter M Apparatus and method for tissue removal
DE9011685U1 (en) * 1990-08-10 1991-12-12 Thera Patent Gmbh & Co. Kg Gesellschaft Fuer Industrielle Schutzrechte, 8031 Seefeld, De
US5192326A (en) * 1990-12-21 1993-03-09 Pfizer Hospital Products Group, Inc. Hydrogel bead intervertebral disc nucleus
US5047055A (en) * 1990-12-21 1991-09-10 Pfizer Hospital Products Group, Inc. Hydrogel intervertebral disc nucleus
CS277533B6 (en) * 1990-12-29 1993-03-17 Krajicek Milan Fixed osteaosynthesis appliance
US5192327A (en) * 1991-03-22 1993-03-09 Brantigan John W Surgical prosthetic implant for vertebrae
JP3007903B2 (en) * 1991-03-29 2000-02-14 京セラ株式会社 Artificial disc
DE4215137A1 (en) 1991-06-04 1992-12-10 Man Ceramics Gmbh IMPLANT FOR SPINE PILLARS
US5306307A (en) * 1991-07-22 1994-04-26 Calcitek, Inc. Spinal disk implant
US5329846A (en) * 1991-08-12 1994-07-19 Bonutti Peter M Tissue press and system
DE4128332A1 (en) * 1991-08-27 1993-03-04 Man Ceramics Gmbh SPINE BONE REPLACEMENT
US5431654A (en) * 1991-09-30 1995-07-11 Stryker Corporation Bone cement injector
GB9126396D0 (en) 1991-12-12 1992-02-12 Univ Manchester A hollow needle
US5314476A (en) * 1992-02-04 1994-05-24 Osteotech, Inc. Demineralized bone particles and flowable osteogenic composition containing same
GB9204263D0 (en) 1992-02-28 1992-04-08 Limbs & Things Ltd Artificial spinal disc
US5306309A (en) * 1992-05-04 1994-04-26 Calcitek, Inc. Spinal disk implant and implantation kit
US5324273A (en) * 1992-09-30 1994-06-28 Centrix, Inc. Disposable barrel dental impression material syringe
DE59209723D1 (en) * 1992-11-20 1999-08-12 Sulzer Orthopaedie Ag Body for distributing bone cement for anchoring implants
FR2702368B1 (en) 1993-03-10 1995-06-09 Medinov Sa Tibial implant for knee prosthesis.
EP0621020A1 (en) 1993-04-21 1994-10-26 SULZER Medizinaltechnik AG Intervertebral prosthesis and method of implanting such a prosthesis
FR2706768B1 (en) * 1993-05-13 1995-12-01 Inoteb
US5443514A (en) * 1993-10-01 1995-08-22 Acromed Corporation Method for using spinal implants
US5507813A (en) 1993-12-09 1996-04-16 Osteotech, Inc. Shaped materials derived from elongate bone particles
US20030032963A1 (en) 2001-10-24 2003-02-13 Kyphon Inc. Devices and methods using an expandable body with internal restraint for compressing cancellous bone
GB9407135D0 (en) * 1994-04-11 1994-06-01 Aberdeen University And Plasma Treatment of osteoporosis
US20050043808A1 (en) 1994-05-06 2005-02-24 Advanced Bio Surfaces, Inc. Knee joint prosthesis
US5571189A (en) 1994-05-20 1996-11-05 Kuslich; Stephen D. Expandable fabric implant for stabilizing the spinal motion segment
US5906827A (en) 1994-06-03 1999-05-25 Creative Biomolecules, Inc. Matrix for the manufacture of autogenous replacement body parts
US5697932A (en) 1994-11-09 1997-12-16 Osteonics Corp. Bone graft delivery system and method
US5782919A (en) * 1995-03-27 1998-07-21 Sdgi Holdings, Inc. Interbody fusion device and method for restoration of normal spinal anatomy
US6039762A (en) 1995-06-07 2000-03-21 Sdgi Holdings, Inc. Reinforced bone graft substitutes
US5716413A (en) 1995-10-11 1998-02-10 Osteobiologics, Inc. Moldable, hand-shapable biodegradable implant material
US5989289A (en) 1995-10-16 1999-11-23 Sdgi Holdings, Inc. Bone grafts
US5814084A (en) 1996-01-16 1998-09-29 University Of Florida Tissue Bank, Inc. Diaphysial cortical dowel
US5964807A (en) * 1996-08-08 1999-10-12 Trustees Of The University Of Pennsylvania Compositions and methods for intervertebral disc reformation
WO1998017209A2 (en) 1996-10-23 1998-04-30 Sdgi Holdings, Inc. Spinal spacer
EP0873145A2 (en) 1996-11-15 1998-10-28 Advanced Bio Surfaces, Inc. Biomaterial system for in situ tissue repair
US5718707A (en) * 1997-01-22 1998-02-17 Mikhail; W. E. Michael Method and apparatus for positioning and compacting bone graft
US5842786A (en) 1997-03-07 1998-12-01 Solomon; Alan Method and device for mixing medical compositions
US6554803B1 (en) * 1997-04-02 2003-04-29 Arthur Ashman Combination syringe and aspirator for bone regeneration material and method for using the syringe
US6022376A (en) * 1997-06-06 2000-02-08 Raymedica, Inc. Percutaneous prosthetic spinal disc nucleus and method of manufacture
US5972015A (en) 1997-08-15 1999-10-26 Kyphon Inc. Expandable, asymetric structures for deployment in interior body regions
US5972368A (en) 1997-06-11 1999-10-26 Sdgi Holdings, Inc. Bone graft composites and spacers
US5910315A (en) 1997-07-18 1999-06-08 Stevenson; Sharon Allograft tissue material for filling spinal fusion cages or related surgical spaces
US6048346A (en) 1997-08-13 2000-04-11 Kyphon Inc. Systems and methods for injecting flowable materials into bones
WO1999009914A1 (en) 1997-08-27 1999-03-04 University Of Florida Tissue Bank, Inc. Cortical bone cervical smith-robinson fusion implant
US7048762B1 (en) * 1997-08-27 2006-05-23 Regeneration Technologies, Inc. Elongated cortical bone implant
US20010031254A1 (en) 1998-11-13 2001-10-18 Bianchi John R. Assembled implant
US20020138143A1 (en) 1997-08-27 2002-09-26 Grooms Jamie M. Cortical bone cervical Smith-Robinson fusion implant
US6090998A (en) 1997-10-27 2000-07-18 University Of Florida Segmentally demineralized bone implant
US5997581A (en) 1997-12-29 1999-12-07 Johnson & Johnson Professional, Inc. Hip stem cement spacer
US5899939A (en) * 1998-01-21 1999-05-04 Osteotech, Inc. Bone-derived implant for load-supporting applications
US7087082B2 (en) 1998-08-03 2006-08-08 Synthes (Usa) Bone implants with central chambers
US6123731A (en) * 1998-02-06 2000-09-26 Osteotech, Inc. Osteoimplant and method for its manufacture
US6437018B1 (en) * 1998-02-27 2002-08-20 Musculoskeletal Transplant Foundation Malleable paste with high molecular weight buffered carrier for filling bone defects
US5997582A (en) 1998-05-01 1999-12-07 Weiss; James M. Hip replacement methods and apparatus
US6019765A (en) * 1998-05-06 2000-02-01 Johnson & Johnson Professional, Inc. Morsellized bone allograft applicator device
US6004325A (en) 1998-05-11 1999-12-21 Vargas, Iii; Joseph H. Biomedical cement bonding enhancement tube
US6224630B1 (en) * 1998-05-29 2001-05-01 Advanced Bio Surfaces, Inc. Implantable tissue repair device
US6132465A (en) * 1998-06-04 2000-10-17 Raymedica, Inc. Tapered prosthetic spinal disc nucleus
US6143021A (en) 1998-07-10 2000-11-07 American Medical Systems, Inc. Stent placement instrument and method of assembly
WO2000007528A1 (en) 1998-08-06 2000-02-17 Sdgi Holdings, Inc. Composited intervertebral bone spacers
US6174311B1 (en) 1998-10-28 2001-01-16 Sdgi Holdings, Inc. Interbody fusion grafts and instrumentation
US6214012B1 (en) 1998-11-13 2001-04-10 Harrington Arthritis Research Center Method and apparatus for delivering material to a desired location
US6025538A (en) 1998-11-20 2000-02-15 Musculoskeletal Transplant Foundation Compound bone structure fabricated from allograft tissue
US6200347B1 (en) 1999-01-05 2001-03-13 Lifenet Composite bone graft, method of making and using same
DE60006356T2 (en) 1999-02-04 2004-09-09 SDGI Holding, Inc., Wilmington HIGHLY MINERALIZED OSTEOGENEOUS SPONGE COMPOSITIONS AND THEIR USE
US6183518B1 (en) * 1999-02-22 2001-02-06 Anthony C. Ross Method of replacing nucleus pulposus and repairing the intervertebral disk
US6696073B2 (en) 1999-02-23 2004-02-24 Osteotech, Inc. Shaped load-bearing osteoimplant and methods of making same
US6294187B1 (en) 1999-02-23 2001-09-25 Osteotech, Inc. Load-bearing osteoimplant, method for its manufacture and method of repairing bone using same
DE29908794U1 (en) 1999-05-19 1999-07-22 Medimex Holfeld Gmbh & Co Cannula, especially for insertion into the spinal canal
US6245107B1 (en) * 1999-05-28 2001-06-12 Bret A. Ferree Methods and apparatus for treating disc herniation
ES2164548B1 (en) * 1999-08-05 2003-03-01 Probitas Pharma Sa DEVICE FOR DOSAGE OF FRAGUABLE MASS FOR VERTEBROPLASTIA AND OTHER SIMILAR OSEOS TREATMENTS.
DE50015178D1 (en) * 1999-08-10 2008-07-10 Zimmer Gmbh Artificial knee joint
US7220281B2 (en) * 1999-08-18 2007-05-22 Intrinsic Therapeutics, Inc. Implant for reinforcing and annulus fibrosis
US6620169B1 (en) 1999-08-26 2003-09-16 Spineology Group, Llc. Tools and method for processing and injecting bone graft
US6783546B2 (en) * 1999-09-13 2004-08-31 Keraplast Technologies, Ltd. Implantable prosthetic or tissue expanding device
US7687462B2 (en) 1999-10-05 2010-03-30 The Regents Of The University Of California Composition for promoting cartilage formation or repair comprising a nell gene product and method of treating cartilage-related conditions using such composition
US6592625B2 (en) * 1999-10-20 2003-07-15 Anulex Technologies, Inc. Spinal disc annulus reconstruction method and spinal disc annulus stent
US6395034B1 (en) * 1999-11-24 2002-05-28 Loubert Suddaby Intervertebral disc prosthesis
US6458144B1 (en) 1999-12-30 2002-10-01 Osteotech, Inc. Methods for manufacturing skeletal implants
US6379385B1 (en) * 2000-01-06 2002-04-30 Tutogen Medical Gmbh Implant of bone matter
WO2001078798A1 (en) 2000-02-10 2001-10-25 Regeneration Technologies, Inc. Assembled implant
US6740093B2 (en) * 2000-02-28 2004-05-25 Stephen Hochschuler Method and apparatus for treating a vertebral body
US6447514B1 (en) * 2000-03-07 2002-09-10 Zimmer Polymer filled hip fracture fixation device
AR027685A1 (en) 2000-03-22 2003-04-09 Synthes Ag METHOD AND METHOD FOR CARRYING OUT
US8092480B2 (en) * 2000-04-07 2012-01-10 Kyphon Sarl Platform cannula for guiding the expansion of expandable bodies and method of use
DE60113095T2 (en) 2000-05-12 2006-05-18 Osteotech, Inc. SURFACES ENTMINERALIZED EASTERN OIL PLANTATE AND METHOD FOR THE PRODUCTION THEREOF
AU2001271440A1 (en) 2000-06-27 2002-01-08 Kyphon Inc. Systems and methods for injecting flowable materials into bones
US7025771B2 (en) 2000-06-30 2006-04-11 Spineology, Inc. Tool to direct bone replacement material
DE60101967T2 (en) 2000-07-03 2004-07-22 Osteotech, Inc. BONE-FORMING IMPLANT FROM BONES
US9387094B2 (en) 2000-07-19 2016-07-12 Warsaw Orthopedic, Inc. Osteoimplant and method of making same
ES2341641T3 (en) 2000-07-21 2010-06-24 The Spineology Group, Llc AN EXPANSIBLE POROUS MESH BAG DEVICE AND ITS USE FOR OSEA SURGERY.
US6620196B1 (en) * 2000-08-30 2003-09-16 Sdgi Holdings, Inc. Intervertebral disc nucleus implants and methods
US6432436B1 (en) * 2000-10-03 2002-08-13 Musculoskeletal Transplant Foundation Partially demineralized cortical bone constructs
US20020045942A1 (en) * 2000-10-16 2002-04-18 Ham Michael J. Procedure for repairing damaged discs
AU2002243270B2 (en) * 2000-10-25 2006-03-09 Warsaw Orthopedic, Inc. Vertically expanding intervertebral body fusion device
US6692528B2 (en) * 2000-11-09 2004-02-17 The Polymer Technology Group Incorporated Devices that change size/shape via osmotic pressure
DE10057616B4 (en) * 2000-11-21 2006-09-14 Stryker Trauma Gmbh Method for mixing and applying flowable bone cement and bone cement mixing device
NZ525999A (en) 2000-12-15 2006-05-26 Spineology Inc Annulus-reinforcing band
US7931692B2 (en) 2001-02-14 2011-04-26 Osteotech, Inc. Implant derived from bone
US6855169B2 (en) 2001-02-28 2005-02-15 Synthes (Usa) Demineralized bone-derived implants
US20020147497A1 (en) * 2001-04-06 2002-10-10 Integrated Vascular Systems, Inc. Methods for treating spinal discs
US6599293B2 (en) * 2001-07-16 2003-07-29 Stryker Instruments Delivery device for bone cement
US7819918B2 (en) 2001-07-16 2010-10-26 Depuy Products, Inc. Implantable tissue repair device
US6620162B2 (en) 2001-07-20 2003-09-16 Spineology, Inc. Device for inserting fill material particles into body cavities
GB2382028B (en) * 2001-11-19 2006-11-01 Aberdeen Orthopaedic Developme Intervertebral disc prosthesis
US6855167B2 (en) * 2001-12-05 2005-02-15 Osteotech, Inc. Spinal intervertebral implant, interconnections for such implant and processes for making
US6991653B2 (en) * 2002-03-21 2006-01-31 Sdgi Holdings, Inc. Vertebral body and disc space replacement devices
US7166133B2 (en) 2002-06-13 2007-01-23 Kensey Nash Corporation Devices and methods for treating defects in the tissue of a living being
US7309359B2 (en) 2003-08-21 2007-12-18 Warsaw Orthopedic, Inc. Allogenic/xenogenic implants and methods for augmenting or repairing intervertebral discs
US20040054414A1 (en) 2002-09-18 2004-03-18 Trieu Hai H. Collagen-based materials and methods for augmenting intervertebral discs
US7744651B2 (en) 2002-09-18 2010-06-29 Warsaw Orthopedic, Inc Compositions and methods for treating intervertebral discs with collagen-based materials
US7323011B2 (en) 2002-10-18 2008-01-29 Musculoskeletal Transplant Foundation Cortical and cancellous allograft cervical fusion block
US20050055094A1 (en) 2002-11-05 2005-03-10 Kuslich Stephen D. Semi-biological intervertebral disc replacement system
US6761739B2 (en) * 2002-11-25 2004-07-13 Musculoskeletal Transplant Foundation Cortical and cancellous allograft spacer
US7316689B2 (en) * 2003-04-23 2008-01-08 The Cleveland Clinic Foundation Apparatus for depositing bone grafting material
US7537617B2 (en) 2003-06-05 2009-05-26 Warsaw Orthopedic, Inc. Bone strip implants and method of making same
US20050131417A1 (en) 2003-08-22 2005-06-16 Ahern James W. Kit for treating bony defects
DE10340150A1 (en) * 2003-08-26 2005-03-31 Aesculap Ag & Co. Kg Implant for closing an opening of the annulus fibrosus
US7226482B2 (en) 2003-09-02 2007-06-05 Synthes (U.S.A.) Multipiece allograft implant
JP2007512874A (en) 2003-11-18 2007-05-24 スパイナル・エレメンツ・インコーポレーテッド Osteoconductive integrated spinal cage and method of making same
US7901461B2 (en) 2003-12-05 2011-03-08 Ethicon, Inc. Viable tissue repair implants and methods of use
US20050209602A1 (en) 2004-03-22 2005-09-22 Disc Dynamics, Inc. Multi-stage biomaterial injection system for spinal implants
US7879103B2 (en) 2005-04-15 2011-02-01 Musculoskeletal Transplant Foundation Vertebral disc repair
US20070067040A1 (en) * 2005-09-02 2007-03-22 Anova Corporation Methods and apparatus for reconstructing the anulus fibrosus
US8029575B2 (en) 2005-10-25 2011-10-04 Globus Medical, Inc. Porous and nonporous materials for tissue grafting and repair
US8403985B2 (en) 2005-11-02 2013-03-26 Zimmer, Inc. Joint spacer implant
US20070260324A1 (en) 2006-05-05 2007-11-08 Joshi Ashok V Fully or Partially Bioresorbable Orthopedic Implant
EP2076220A2 (en) 2006-07-25 2009-07-08 Musculoskeletal Transplant Foundation Packed demineralized cancellous tissue forms for disc nucleus augmentation, restoration, or replacement and methods of implantation
WO2008033501A2 (en) * 2006-09-14 2008-03-20 Spineology, Inc. Absorbent fabric implant
RU2443412C2 (en) 2006-10-06 2012-02-27 Скил Текнолоджи Гмбх Dried reconstituted vesicles for pharmaceutical application
US8574825B2 (en) 2007-06-01 2013-11-05 Bacterin International, Inc. Process for demineralization of bone matrix with preservation of natural growth factors
US8685099B2 (en) 2007-08-14 2014-04-01 Warsaw Orthopedic, Inc. Multiple component osteoimplant
WO2009067486A2 (en) 2007-11-19 2009-05-28 David Lee Method and apparatus for spinal facet joint fusion using irregularly shaped cortical bone implants

Also Published As

Publication number Publication date
WO2006113586A2 (en) 2006-10-26
WO2006113586A3 (en) 2007-09-20
US7879103B2 (en) 2011-02-01
AU2006236548A1 (en) 2006-10-26
US20060235534A1 (en) 2006-10-19
EP1868539A2 (en) 2007-12-26

Similar Documents

Publication Publication Date Title
US7879103B2 (en) Vertebral disc repair
US7959683B2 (en) Packed demineralized cancellous tissue forms for disc nucleus augmentation, restoration, or replacement and methods of implantation
US8540771B2 (en) Prostheses for spine discs having fusion capability
Bao et al. Artificial disc technology
EP1531765B1 (en) Intervertebral disc implant
EP0764008B1 (en) Expandable fabric implant for stabilizing the spinal motion segment
US8608803B2 (en) Implant derived from bone
JP4990293B2 (en) Flexible elongated chain implant and method for supporting body tissue using the implant
US7662183B2 (en) Dynamic spinal implants incorporating cartilage bearing graft material
US20030195631A1 (en) Shape-memory spacers for artificial disc replacements
US20120116515A1 (en) Demineralized cortical bone implants
US20030176921A1 (en) Two-part prosthetic nucleus replacement for surgical reconstruction of intervertebral discs
US20070067040A1 (en) Methods and apparatus for reconstructing the anulus fibrosus
US20070055375A1 (en) Methods and apparatus for reconstructing the annulus fibrosis
US20120316648A1 (en) Intervertebral disc reinforcement systems
JP2008531140A (en) Intervertebral disk repair
Bertagnoli et al. Lumbar partial disc replacement
ZA200501543B (en) Invertebral disc implant
CA2543121A1 (en) Stabilized intervertebral disc barrier
US20110004311A1 (en) Shaped implants for tissue repair
Khoo et al. An anatomic approach to minimally invasive spine surgery
WO2008063169A1 (en) Methods and apparatus for reconstructing the anulus fibrosus

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued