CA2603774C - System and process for biomass treatment - Google Patents

System and process for biomass treatment Download PDF

Info

Publication number
CA2603774C
CA2603774C CA2603774A CA2603774A CA2603774C CA 2603774 C CA2603774 C CA 2603774C CA 2603774 A CA2603774 A CA 2603774A CA 2603774 A CA2603774 A CA 2603774A CA 2603774 C CA2603774 C CA 2603774C
Authority
CA
Canada
Prior art keywords
biomass
reaction vessel
vessel
reactant
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA2603774A
Other languages
French (fr)
Other versions
CA2603774A1 (en
Inventor
James B. Dunson
Melvin Tucker
Richard Elander
Robert C. Lyons
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alliance for Sustainable Energy LLC
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Alliance for Sustainable Energy LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co, Alliance for Sustainable Energy LLC filed Critical EI Du Pont de Nemours and Co
Publication of CA2603774A1 publication Critical patent/CA2603774A1/en
Application granted granted Critical
Publication of CA2603774C publication Critical patent/CA2603774C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/02Means for pre-treatment of biological substances by mechanical forces; Stirring; Trituration; Comminuting
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/02Stirrer or mobile mixing elements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/18Flow directing inserts
    • C12M27/20Baffles; Ribs; Ribbons; Auger vanes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/09Means for pre-treatment of biological substances by enzymatic treatment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2201/00Pretreatment of cellulosic or lignocellulosic material for subsequent enzymatic treatment or hydrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Abstract

A system including an apparatus is presented for treatment of biomass that allows successful biomass treatment at a high solids dry weight of biomass in the biomass mixture. The design of the system provides extensive distribution of a reactant by spreading the reactant over the biomass as the reactant is introduced through an injection lance, while the biomass is rotated using baffles (18) . The apparatus system to provide extensive assimilation of the reactant into biomass using baffles (18) to lift and drop the biomass, as well as attrition media (19) which fall onto the biomass, to enhance the treatment process .

Description

TITLE
SYSTEM AND PROCESS FOR BIOMASS TREATMENT
This application claims the benefit of U.S. Provisional Application No. 60/670437, filed April 12, 2005.
STATEMENT OF GOVERNMENT RIGHTS
This invention was made with United States government support under Contract No. 04-03-CA-70224 awarded by the Department of Energy. The government has certain rights in this invention.
FIELD OF THE INVENTION
A system including an apparatus for treatment of biomass, including pretreatment as well as saccharification, is provided. Also processes for pretreating and saccharifying biomass at high dry weight of biomass in a biomass mixture using the system are provided. In addition, methods for optimizing biomass treatment processes are provided.
BACKGROUND OF THE INVENTION
Cellulosic and lignocellulosic feedstocks and wastes, such as agricultural residues, wood, forestry wastes, sludge from paper manufacture, and municipal and industrial solid wastes, provide a potentially large renewable biomass feedstock for the production of chemicals, plastics, fuels and feeds. Cellulosic and lignocellulosic feedstocks and wastes, composed of carbohydrate polymers comprising cellulose, hemicellulose, glucans and lignin are generally treated by a variety of chemical, mechanical and enzymatic means to release primarily hexose and pentose sugars, which can then be fermented to useful products. These treatments vary in complexity and efficiency. Further, there are many ongoing efforts to identify new commercially robust processes and to optimize known processes to generate useful fermentative products from cellulosic and lignocellulosic feedstocks.
2 In order to be an economically competitive process, a commercial process for the production of fermentable sugars from a renewable resource biomass requires the hydrolysis of carbohydrates in lignocellulosic biomass to provide high yields of sugars at high concentrations, using low amounts of chemicals, to produce a source of fermentable sugars with low toxicity toward fermentative organisms that convert sugars to value-added chemicals and fuels.
In order to carry out these processes, a variety of apparatuses have been employed for different types of biomass, as well as for different treatments, including small-scale process development and some large-scale production equipment. Some types of apparatuses that have been used include a batch-stirred reactor (Gusakov and Sinitsyn, (1985) Enz.
Microb. Technol. 7:346-352), a continuous flow stirred reactor (US4257818), an attrition reactor (Ryu and Lee (1983) Biotechnol. Bioeng.
25:53-65), an extrusion reactor (US6176176), the NREL shrinking bed reactor (Lee et al. (2001) App!. Biochem. Biotech. 91-93: 331-340), and a reactor with intensive stirring induced by an electromagnetic field (Gusakov et al. (1996) Appl. Biochem. Biotechnol., 56:141-153).
In particular, a reactor that is capable of providing means for efficient biomass pretreatment and/or saccharification at a high dry weight of biomass in a mixture is needed.
There remains a need for a simple, yet effective apparatus for use in biomass treatment processes, which may be used in a small-scale format for testing process conditions, with mechanisms for sampling that mimics operation in a large commercial scale. Moreover, there is an unmet need for commercially robust processes and equipment to carry out such processes, including saccharification at a high dry weight of biomass in a biomass mixture.
SUMMARY OF THE INVENTION
In one embodiment, the present invention provides a system including an apparatus for batch processing biomass comprising:
a) an apparatus comprising:

i) a cylindrical reaction vessel with an opening on at least one end;
ii) one or more baffles attached to the interior of said vessel;
iii) attrition media comprising pellets free-floating in the interior of the reaction vessel;
iv) a cover for said vessel open end comprising one or more ports; and v) an injection lance comprising means for delivering a processing reactant, wherein said means is an injection lance extending the length of the reaction vessel and connecting to a first port in the cover of iv); and b) means for rotating the baffles of the vessel.
In another embodiment, the present invention provides a process for treating biomass comprising:
a) introducing biomass to the reaction vessel of the apparatus of Claim 1;
b) introducing a processing reactant to the reaction vessel; and c) assimilating said processing reactant into said biomass by rotating the baffles of the reaction vessel whereby the baffles lift and drop the attrition media.
In another embodiment, the present invention provides a process for treating biomass comprising:
a) pretreating biomass in the reaction vessel of the apparatus of Claim 1, producing pretreated biomass;
b) adjusting the temperature and pH of the pretreated biomass of a) in the reaction vessel; and c) saccharifying the adjusted pretreated biomass of b) in the reaction vessel.
3 In yet another embodiment, the present invention provides a method for optimizing a treatment process comprising:
a) introducing biomass to the reaction vessel of the apparatus of Claim 1;
b) varying treatment conditions in the reaction vessel;
c) sampling the treated biomass via said one or more ports under said varying treatment conditions; and d) testing said samples to determine optimal treatment conditions for processing biomass.
This invention relates to:
<1> An apparatus for batch processing biomass comprising:
a) a cylindrical reaction vessel with an opening on at least one end;
b) one or more baffles attached to the interior of said vessel;
c) attrition media comprising pellets free-floating in the interior of the reaction vessel;
d) a cover for said vessel open end comprising one or more ports;
e) an injection lance comprising means for delivering a processing reactant, wherein said means is an injection lance extending the length of the reaction vessel and connecting to a first port in the cover of d);
and means for rotating the baffles of the vessel.
<2> The apparatus of <1> wherein the attrition media occupy less than 10%
of the volume of the reaction vessel.
<3> The apparatus of <1>, further comprising a rotary joint connected to a port in the reaction vessel cover.
<4> The apparatus of <1> wherein a second port is a port for adding reactants to the reaction vessel, for sampling the contents of the reaction vessel, or both.
4 <5> The apparatus of <1>, wherein said vessel is composed of a non-corrosive material that withstands temperatures ranging from about -10 C to about 220 C.
<6> The apparatus of <5>, wherein the vessel withstands temperatures ranging from about 4 C to about 170 C.
<7> The apparatus of <5>, wherein said material is stainless steel.
<8> The apparatus of <1>, wherein said vessel is composed of a non-corrosive material that withstands pressures up to 1200 kPa.
<9> The apparatus of <8>, wherein the vessel withstands pressures up to 310 kPa.
<10> The apparatus of <1>, wherein said baffles are attached at perpendicular angles to the interior surface of the reaction vessel.
<11> The apparatus of <1>, wherein said processing reactant is an aqueous solution comprising ammonia.
<12> The apparatus of <1>, wherein said processing reactant is a saccharifying enzyme mixture.
<13> The apparatus of <1>, further comprising means for temperature control.
<14> The apparatus of <13>, wherein said means for temperature control is a temperature controlling jacket or an external incubator.
<15> The apparatus of <1>, further comprising a vacuum source connected to the port.
<16> The apparatus of <1>, wherein said apparatus provides for treatment of biomass at high dry biomass concentrations ranging from about 15 weight percent to about 80 weight percent of a biomass-reactant mixture.
<17> The apparatus of <1>, wherein said apparatus provides for treatment of biomass at high dry biomass concentrations ranging from about 15 weight percent to about 60 weight percent of a biomass-reactant mixture.
4a , , <18> The apparatus of <1>, wherein said means for rotation is rollers, a shaft and crank, belts, wheels, or trunnion bearings.
<19> A process for treating biomass comprising:
a) introducing biomass to the reaction vessel of the apparatus of <1>;
b) introducing a processing reactant to the reaction vessel; and c) assimilating said processing reactant into said biomass by rotating the baffles of the reaction vessel whereby the baffles lift and drop the attrition media.
<20> The process of <19>, wherein said process is a biomass pretreatment process.
<21> The process of <20>, wherein said processing reactant is an aqueous solution comprising ammonia.
<22> The process of <20>, wherein said process is a saccharification process.
<23> The process of <22>, wherein said processing reactant is a saccharification enzyme mixture.
<24> A process for treating biomass comprising:
a) pretreating biomass in the reaction vessel of the apparatus of <1>, producing pretreated biomass;
b) adjusting the temperature and pH of the pretreated biomass of (a) in the reaction vessel; and c) saccharifying the adjusted pretreated biomass of (b) in the reaction vessel.
<25> A process for pretreating biomass comprising:
a) introducing biomass to the reaction vessel of the apparatus of <1>; and 4b b) contacting said biomass with an aqueous solution comprising ammonia to form a biomass-aqueous ammonia mixture in the reaction vessel, wherein the ammonia is present at a concentration that maintains alkaline pH of the biomass-aqueous ammonia mixture but wherein said ammonia is present at less than 12 weight percent relative to dry weight of biomass, and further wherein the dry weight of biomass is at a high solids concentration of at least 15 weight percent relative to the weight of the biomass-aqueous ammonia mixture.
<26> A process for saccharifying pretreated biomass at high dry biomass concentration, comprising:
a) providing biomass, wherein said biomass has optionally been pretreated to provide a readily saccharifiable composition;
b) providing an enzyme consortium that hydrolyzes the biomass of (a);
and C) assimilating the enzymes of (b) into the biomass of (a) in the apparatus of <1>.
<27> The process of <26>, wherein fermentable sugars are produced.
<28> The process of <26>, wherein the dry weight of biomass is at high solids concentration of at least 15 weight percent relative to the weight of the biomass-reactant mixture.
<29> The process of <25> or <26>, wherein said biomass is selected from the group consisting of switchgrass, waste paper, sludge from paper manufacture, corn grain, corn cobs, corn husks, corn stover, grasses, wheat, wheat straw, hay, barley, barley straw, rice straw, sugar cane bagasse, sorghum, soy, components obtained from processing of grains, trees, branches, roots, leaves, wood chips, sawdust, shrubs and bushes, vegetables, fruits, flowers and animal manure.
<30> The process of <29> wherein biomass is selected from the group consisting of corn cobs, corn stover, corn husks, sugar cane bagasse, sawdust, switchgrass, wheat straw, hay, rice straw, and grasses.
4c <31> The process of <30>, wherein biomass is selected from the group consisting of corn cobs, corn stover, sawdust, and sugar cane bagasse.
<32> The process of <25> or <26>, wherein said biomass is derived from multiple feedstocks.
<33> A method for optimizing a treatment process comprising:
a) introducing biomass to the reaction vessel of the apparatus of <1>;
b) varying treatment conditions in the reaction vessel;
c) sampling the treated biomass via said one or more ports under said varying treatment conditions; and d) testing said samples to determine optimal treatment conditions for processing biomass.
<34> The method of <33>, wherein said varying conditions include, pH, temperature, processing reactants and concentrations of processing reactants, percent initial dry weight of biomass in the biomass-reactant mixture, type and form of biomass, type of inert atmosphere, pressure, feed strategies for process reactants, and processing time.
<35> The method of <33>, wherein said treatment process is a saccharification process.
<36> The method of <33>, wherein said treatment process is a pretreatment process.
4d BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 shows a schematic representation of an embodiment of the biomass treatment system.
Figure 2A shows a detailed drawing of an embodiment of the biomass treatment system. 2B shows a drawing of the reaction vessel cover.
DETAILED DESCRIPTION OF THE INVENTION
Further, when an amount, concentration, or other value or parameter is given as either a range, preferred range,, or a list of upper preferable values and lower preferable values, this is to be understood as specifically disclosing all ranges formed from any pair of any upper range limit or preferred value and any lower range limit or preferred value, regardless of whether ranges are separately disclosed.
Where a range of numerical values is recited herein, unless otherwise stated, the range is intended to include the endpoints thereof, and all integers and fractions within the range. It is not intended that the scope of the invention be limited to the specific values recited when defining a range.
The present invention provides a system including an apparatus used in biomass treatment processes, as well as processes for biomass treatment and methods for optimizing a treatment process that are carried out in the apparatus. The design of the system provides extensive 4e distribution of a reactant by spreading the reactant over the biomass as the reactant is introduced or as the reactor is run. The system functions to provide extensive assimilation of the introduced reactant into biomass to enhance the treatment process. These features allow treatment at a high dry weight of biomass in a biomass mixture.
Definitions:
In this disclosure, a number of terms are used. The following definitions are provided:
The term "fermentable sugar" refers to oligosaccharides and monosaccharides that can be used as a carbon source by a microorganism in a fermentation process.
The term "lignocellulosic" refers to a composition comprising both lignin and cellulose. Lignocellulosic material may also comprise hemicellulose.
The term "cellulosic" refers to a composition comprising cellulose.
By "dry weight" of biomass is meant the weight of the biomass having all or essentially all water removed. Dry weight is typically measured according to American Society for Testing and Materials (ASTM) Standard El 756-01 (Standard Test Method for Determination of Total Solids in Biomass) or Technical Association of the Pulp and Paper Industry, Inc. (TAPPI) Standard T-412 onn-02 (Moisture in Pulp, Paper and Paperboard).
The term "saccharification" refers to the production of fermentable sugars from polysaccharides.
The term "pretreated biomass" means biomass that has been subjected to pretreatment prior to saccharification.
"Biomass" refers to any cellulosic or lignocellulosic material and includes materials comprising cellulose, and optionally further comprising hemicellulose, lignin, starch, oligosaccharides and/or monosaccharides.
Biomass may also comprise additional components, such as protein and/or lipid. According to the invention, biomass may be derived from a single source, or biomass can comprise a mixture derived from more than one source; for example, biomass could comprise a mixture of corn cobs and corn stover, or a mixture of grass and leaves. Biomass includes, but
5 is not limited to, bioenergy crops, agricultural residues, municipal solid waste, industrial solid waste, sludge from paper manufacture, yard waste, wood and forestry waste. Examples of biomass include, but are not limited to, corn grain, corn cobs, crop residues such as corn husks, corn stover, grasses, wheat, wheat straw, barley, barley straw, hay, rice straw, switchgrass, waste paper, sugar cane bagasse, sorghum, soy, components obtained from processing of grains, trees, branches, roots, leaves, wood chips, sawdust, shrubs and bushes, vegetables, fruits, flowers and animal manure. In one embodiment, biomass that is useful for the invention includes biomass that has a relatively high carbohydrate value, is relatively dense, and/or is relatively easy to collect, transport, store and/or handle. In one embodiment of the invention, biomass that is useful includes corn cobs, corn stover and sugar cane bagasse.
An "aqueous solution comprising ammonia" refers to the use of ammonia gas (NH3), compounds comprising ammonium ions (NH4) such as ammonium hydroxide or ammonium sulfate, compounds that release ammonia upon degradation such as urea, and combinations thereof in an aqueous medium.
The term "treatment" refers to a process of a reactant acting on a material wherein the physical and/or chemical properties of the material.
are altered.
The term "reactant" refers to a composition that is able to alter the physical and/or chemical properties of a target material under conditions used in a treatment process.
An "enzyme consortium" for saccharification is a combination of enzymes that are able to act on a biomass mixture to produce fermentable sugars. Typically, a saccharification enzyme consortium may comprise one or more glycosidases; the glycosidases may be selected from the group consisting of cellulose-hydrolyzing glycosidases, hemicellulose-hydrolyzing glycosidases, and starch-hydrolyzing glycosidases. Other enzymes in the saccharification enzyme consortium may include peptidases, lipases, ligninases and feruloyl esterases.
6 Biomass Treatment System The present biomass processing system may best be understood by making reference to the schematic drawing in Figure 1, which shows one embodiment of the system. The apparatus of the system comprises a cylindrical reaction vessel (10) having one closed end (11), and one open end (12). A removable cover (13) fits onto the open end, and may be securely fastened to the vessel open end. In the cover is at least one port.
An injection lance (14) extends through the port, which is in the center of the cover (15), into the reaction vessel. The injection lance is a tube extending from the port through the longitudinal center of the cylindrical reaction vessel. The end of the injection lance that is distal from the port (16) is sealed. The injection lance has holes along its length that are arranged in a V-shape (17). These holes allow the escape of contents from inside the injection lance into the reaction vessel in an upward direction at about 10 o'clock and 2 o'clock. In addition, a vacuum source may be applied through the port to which the lance is connected, thereby creating a vacuum inside the vessel. Attached to the inside surface of the reaction vessel are baffles (18) which extend into the open space in the vessel, and do not touch the injection lance. In the interior of the reaction vessel are free-floating attrition media (19). The apparatus is placed horizontally on rollers (20) that are used to rotate the reaction vessel in the biomass processing system.
During biomass processing, the apparatus is maintained in a horizontal position and a means for rotating the baffles of the reaction vessel around the longitudinal axis of the vessel is applied to form a system for biomass processing. The baffles may be attached to the inside surface of the reaction vessel wall, in which case the whole vessel is rotated. Alternatively, the baffles may be attached to a sleeve type of surface on the inside of the reaction vessel, in which case the vessel itself is stationary while the sleeve rotates. Rotating the vessel or the sleeve may be accomplished by any method that provides for rotation. For example, to rotate the vessel it may be placed on external rollers, belts, wheels, trunnion bearings, or other rolling motion-inducing platforms. The apparatus may be housed in a reactor that imparts rotation to the vessel,
7 or the rotation mechanism may be integrated with the apparatus. There may be a drive shaft extending through the vessel that is attached either to the vessel wall or to the sleeve for applying rotation. The speed of rotation may vary depending on the specific treatment process being used and the size of the apparatus. The rotation speed is sufficient to promote cascading of attrition media, as described herein below, and can readily be determined by one skilled in the art.
The cover for the open end of the reaction vessel may be secured to the vessel by means known in the art such as with screws, clamps, bars, dogs, or other fastners. The reaction vessel may be open at both ends, with a cover for each end. The port or ports in the cover (or both covers, if there is one at each end) are openings for access to the interior of the reaction vessel. A port may be a site for attachment of internal equipment such as the lance, and/or of external equipment such as a vacuum, or gas injection apparatus. Attachment of the external equipment may be temporary, only at times when needed during the treatment process, or permanent. Thus a port may have a connector, as well as a cover to close the port when not in use. Conventional connectors are used for joining to the port(s) in the cover(s), including a branched connector and a rotary joint. A port may also be an opening in the cover to provide access to the interior, such as for taking samples or releasing pressure, that itself may have a cover.
For biomass processing, the temperature of the apparatus is brought to the desired temperature and controlled. Control of the apparatus temperature may be accomplished by any method whereby heat is applied, such as by applying a heating jacket, injecting hot gas through the injection lance or through another port, flammable gas firing, or using waste flue gas heat from a boiler. Alternatively the apparatus may be housed in an oven, oil bath, or other type of reactor that provides heat to the apparatus. The temperature internal to the apparatus may be assessed by inserting a temperature measurement device, such as a thermocouple, through the port in the cover that is connected to the injection lance, and down the injection lance. By inserting the temperature measurement device halfway down the injection lance, the temperature at
8 the approximate center of the reaction vessel may be determined. Cooling of the vessel may be imposed by methods such as applying ice or another coolant in a cooling jacket, passing cool gas through the injection lance, placing the reactor in a coolant bath, or cooling (refrigerating) an external box that the reaction vessel sits in. This may be done by an external mechanism, or by a mechanism of the apparatus.
The injection lance provides a means for introducing and distributing solutions or gases along the length of the reaction vessel. For example, nitrogen, CO2, steam, processing reactant(s), and pH adjusting solution may be introduced through the injection lance. Processing reactants that are introduced through the injection lance may be preheated prior to injection, using any method known to one skilled in the art. For example, reactant heating may be accomplished by passing the processing reactant through a heating coil which is connected to the injection lance through the center port in the cover. The heating coil is immersed in a heated water bath, which is maintained at a temperature desirable for heating the processing reactant.
A vacuum may be applied to the reaction vessel of the apparatus through a port in the cover. A vacuum source may be connected to a port in the cover, typically the port that is connected to the injection lance. A
=
branched connector or rotary joint provides connection for both the vacuum and access for reactant to the injector lance. A vacuum may be used to aid the infiltration of a processing reactant into biomass in the reactor vessel. By applying a vacuum to the vessel containing biomass, air may be evacuated from the biomass, allowing better penetration of the processing reactant when it is added. Also air in the reactor may be replaced with an inert atmosphere such as N2 or Argon. A vacuum may be applied to help cool the contents of the reaction vessel, when a process is used that is amenable to evaporative cooling. Gases created during a biomass treatment process may be recovered by applying a vacuum and using a vent condenser. A vacuum source and a vent condenser may be attached to a port in the cover, such that vapors pass through the port and into the condenser. Condensed, recovered processing reactants, such as ammonia, may be reused in later biomass treatment processes. Removing
9 . WO 2006/110902 ammonia, when used in pretreatment processing, lowers the pH of the pretreated biomass and thus saves on chemicals needed to neutralize the pretreated biomass to a pH optimal for enzymatic saccharification and biocatalyst fermentation. The lower chemical use also improves subsequent fermentation by lowering the salt load in contact with the microorganism, thus improving yield and productivity.
The reaction vessel of the apparatus may also be pressurized by injection through a port in the cover. For example, a CO2 source may be connected to the port in the cover that is connected to the injection lance, and the CO2 is injected, for example, to release a vacuum inside the reaction vessel, to reduce the pH, and/or to otherwise promote the biomass treatment process. A branched connector may serve for connection of the CO2 source, a vacuum source, and access for reactant to the injection lance all through the same port.
Baffles attached to an inside surface in the reaction vessel may be in any form, number, and arrangement that promote the assimilation of processing reactant into the biomass when in the presence of attrition media (described herein below). The attrition media and biomass are lifted by the baffles as the baffles rotate around the bottom of the vessel, then slide off the baffles as they rotate around the top of the vessel. The baffles may extend in a perpendicular orientation to the inside surface, or they may be angled, with an angle that allows the lifting and then sliding off, or cascading, of the media. Baffles may run the length of the reactor vessel uninterrupted, or partial reactor length baffles may be placed in a line, or offset to each other. The baffles extend into the vessel interior forming a surface that is wide enough to lift the attrition media and narrow enough that the attrition media will readily slide off as the baffles move towards the top of the vessel. It will be understood to one skilled in the art that a variety of baffle forms, positioning, and number will be effective in cascading the attrition media and biomass as the baffles rotate to promote assimilation of processing reactant into the biomass, and that different arrangements will be optimal in different sized reaction vessels.
The apparatus is made from a generally non-corrosive material that will withstand pressures, temperatures, and processing reactants that are commonly used in biomass treatment processes. Examples of non-corrosive materials include stainless steel, HasteHoy , ceramics, Incone10, duplex stainless steel, zirconium and carbon steel. Different biomass treatment processes are carried out at temperatures ranging between -10 C and about 220 C, with typical temperatures ranging between 4 C and 170 C. Also biomass treatment processes may be carried out at temperatures ranging between room temperature (about 25 C) and about 170 C. Pressures used in biomass treatment processes generally range between atmospheric and about 1200 kPa, with typical pressures ranging between atmospheric and about 310 kPa, and more typically between about atmospheric and 138 kPa. The materials used in a specific embodiment of the apparatus are those that withstand the conditions of the specific biomass treatment process to be used, as is well known to one skilled in the art. In one embodiment, a particularly suitable material for the reaction vessel is stainless steel of schedule 10 thickness that may be used with pressures between atmospheric and about 310 kPa, and temperatures up to about 145 C. Alternatively, the apparatus may be made of other materials that withstand higher temperatures and pressures, as well as highly corrosive process reactants such as strong acids. These more harsh biomass treatment conditions include temperatures up to about 220 C, with pressures up to about 1216 kPa, and strong acid reactants such as sulfuric acid. When using these process conditions, materials such as HasteHoy() and zirconium would be effective.
The diameter of the reaction vessel is large enough that the vessel can encompass the injection lance and baffles, as well as having room for attrition media to freely cascade as the baffles rotate. The reaction vessel may have an inner diameter of about 10 cm, with a typical inner diameter being at least about 15 cm, and may be scaled up further, including to a commercial size.
Attrition media are introduced into the apparatus and are free floating in the reaction vessel. Attrition media are added such that less than about 10% of the volume of the reaction vessel is occupied by the attrition media. Typically the attrition media occupy between about 3% and about 7% of the volume of the reaction vessel. The attrition media may be of different shapes and sizes and are used in different numbers, depending on the size of the reaction vessel. The appropriate attrition media, in size, shape, number, and composition for use in a specific embodiment of the apparatus, may be determined by one skilled in the art.
Particularly useful are pellets such as cylinders made from heavy, dense material with a hard, non-porous, chip-resistant surface that is erosion resistant. Attrition media are available commercially, for example, from E.
R. Advanced Ceramics (East Palestine, OH). As the baffles rotate, the attrition media are lifted by the baffles and then fall onto the biomass. The speed at which the baffles turn is adjusted such that the media undergo this cascading motion, rather than sliding down the vessel wall as occurs at too low a speed, or remaining next to the vessel wall as occurs at too high a speed. Without wishing to be bound by theory, it is thought that the attrition media landing on the biomass provide a squeezing pressure, which results in exuding of liquid that includes a mixture of processing reactant and solubilized biomass components. Bulk liquid then replaces the spent exuded liquid. Lifting of the weight of the attrition media from the biomass, as the baffles rotate, allows expansion of the biomass wherein the processing reactant mixture infiltrates into the biomass. The repetition of this squeezing from and infiltrating into the biomass of the processing reactant mixture creates a pumping action. Pumping of reactant mixture into and out of the biomass is a specialized type of mechanical mixing process that promotes assimilation of reactant into the biomass, and thereby enhances the biomass treatment process. This exchange of liquid allows higher concentration of reactants to be exchanged in the pores for depleted liquid that has already reacted in the pores of the biomass The following description of one embodiment of the present apparatus is not meant to be limiting, but to provide one particularly suitable apparatus structure. In one embodiment, as shown in Figure 2, the apparatus has an approximately 9 L capacity in a reaction vessel (10) that is 51 cm long with an inner diameter of 15 cm. It is fabricated from 304 stainless steel pipe and fittings. The open end of the vessel (11) is 10 cm in diameter, with 4 equally spaced cover attachment sites (12) each extending 2.54 cm outward from the opening. The cover (13) is a circular plate that is 15.2 cm in diameter. There are two ports in the cover, a first port in the center (14) and a second port between the center and one edge (15), each 1.9 cm in diameter. The injection lance (16) extends through the center port in the cover and is connected to a rotary joint (17). There is a branched connector (18) attached to the rotary joint. The injection lance is made of stainless steel tubing of 0.64 cm diameter. The holes in the lance (19) are 0.165 cm in diameter, and are located at 2.54 cm intervals in a V pattern. The angle between the lines of holes is about 120 . There are two lines of holes, with the holes in a single line located 5.1 cm apart, and the holes in the 2 lines being offset by 2.54 cm, so effectively, there is a hole every 2.54 cm on alternating sides of the lance. The second port in the cover provides access for taking samples and adding reagents without removing the cover. There are four baffles (20) that each run the length of the reaction vessel wall, to which they are attached, and extend 3.8 cm from the inner vessel wall, perpendicular to that surface. Twenty-two attrition media cylinders of 3.2 cm X 3.2 cm (21), made of zirconia or alumina (purchased from E. R. Advanced Ceramics, East Palestine, OH), are added to the reaction vessel occupying about 5.5% of the vessel volume. The apparatus is rotated at about 19 rpm during a treatment process by placing the apparatus on a roller support (22; BelIco Cell Production Roller Apparatus, BelIco Technology, Vineland, N.J., USA), to form the biomass processing system. The roller support and apparatus are placed inside an incubator chamber (23) for temperature control.
External equipment is attached to the apparatus of Figure 2 to form a system, as in the following examples. For introduction of pretreatment reactant, an HPLC pump capable of approximately 800 ml/min flow rate at 10342 kPa gauge pressure is connected to the branched injection lance port rotary connector in the cover. The HPLC pump is connected through a heating coil constructed from 0.32 cm stainless steel tubing that is immersed in water in an 8 L Parr reactor vessel. The Parr reactor heater controller is set above the boiling point of water in Golden, CO (about 93 C) with a heater input of 3 kW to maintain a rapid boil. A vacuum source is attached to the branched injection lance port rotary connector in the = WO 2006/110902 PCT/US2006/014147 cover. The vacuum source may be connected to a vent condenser that is connected to a chilled water bath operating at about 1.5 C. The vent condenser includes a Teflonml coated 2 L flask that is immersed in an ice-water bath and is connected to a vacuum manifold evacuated to about 85 kPa. A CO2 source may also be connected to the branched injection lance port rotary connector.
It will be understood that the system including the apparatus may be scaled up, based on the features and principles described herein. An apparatus having a reaction vessel that is approximately 3 -4 meters in diameter and about 15 - 18 meters in length is particularly suitable for commercial scale biomass treatment. Apparatuses with reaction vessels of sizes intermediate to that described in Figure 2 and this commercial scale size are also embodiments of the present apparatus.
Methods of Apparatus Use in Biomass Treatment The present system is designed for treatment of biomass, including different types of treatment using different processes. In one embodiment the system is used in a biomass pretreatment process. In another embodiment the system is used in a biomass saccharification process.
These two types of biomass treatment may be carried out successively on the same biomass sample, or individually on different biomass samples. A
biomass sample may be pretreated in another apparatus and saccharified in the apparatus of the present system, or a biomass sample may be pretreated in the present apparatus and then saccharified in a separate apparatus.
The present system including the apparatus is particularly suited to treatment of biomass, and particularly for saccharification of biomass, at a high dry weight of biomass in the biomass-reactant mixture. The initial dry weight of biomass may be up to about 80% of the weight of the biomass-reactant mixture. More suitably, the dry weight of biomass is up to about 60% of the weight of the biomass-reactant mixture. Preferred is an initial biomass concentration that is between about 15% and about 50% of the weight of the biomass-reactant mixture. The introduction of reactant through the injection lance, and the functioning of the attrition media and baffles provide assimilation of the reactant into the biomass, such that processing at high biomass concentrations is effective. In the context of saccharification, where enzymes such as cellulases and hemicellulases hydrolyze the biomass to produce fermentable sugars, the enzymes are assimilated into the biomass in the mixture by the cascading of the biomass and attrition media by the rotating baffles of the vessel. The effects of the cascading media on the biomass allow the treatment of biomass at a high dry weight of biomass in the biomass mixture.
In a pretreatment process, biomass is introduced into the present apparatus through the open end of the reaction vessel. Prior to introducing the biomass into the apparatus, energy may be applied to the biomass to reduce the size and/or increase the exposed surface area, such as by crushing, milling, grinding, shredding, chopping, disc refining, ultrasound, and microwave. The amount of biomass introduced depends on the size of the reaction vessel and the particular treatment process to be used, and can be determined by one skilled in the art. The apparatus may be preheated to a desired processing temperature.
A processing reactant is injected through a port in the secured vessel cover, and through the injection lance into the reaction vessel. In one embodiment the reactant is preheated and is introduced by spraying through holes in the upper surface of the injection lance while the baffles rotate such that the reactant contacts the biomass as it passes above the spray. The processing reactant may be any composition that is used in a biomass pretreatment process and that is compatible with the material from which the apparatus is constructed. Typical pretreatment reactants include oxidizing agents, denaturants, detergents, organic solvents, and bases, lists of which are provided in US2004/0231060, as well as acids.
Some suitable reactants include peracetic acid (Teixeira et al. (1999) Appl.
Biochem. and Biotech. 77-79:19-34), hydrogen peroxide (Gould (1983) Biotech. and Bioeng. 26:46-52), sodium hydroxide and hydrogen peroxide (Curreli et al. (2002) Process Biochem. 37:937-941), aqueous ammonia (Kim and Lee (2005) Bioresource Tech. 96:2007-2013), and liquid anhydrous ammonia (Teymouri et al. (2005) Bioresource Tech. 96: 2014-2018). A particularly suitable processing reactant for biomass pretreatment in the present apparatus is aqueous ammonia. Most preferred is an aqueous solution comprising ammonia used in a biomass-aqueous ammonia mixture wherein the ammonia is present at a concentration at least sufficient to maintain alkaline pH of the biomass-aqueous ammonia mixture, but wherein the ammonia is present at less than about 12 weight percent relative to dry weight of biomass, as described in co-pending application CL2825.
The amount of process reactant added, and therefore the biomass concentration, may vary depending on the pretreatment process used.
Particularly suitable in the present apparatus is pretreatment at a high concentration of biomass, where the dry weight of biomass is at an initial concentration of at least about 15 weight percent relative to the weight of the biomass-aqueous ammonia mixture. The high biomass concentration reduces the total volume of pretreated material, making the process more economical. In addition, with high biomass concentration, the need for concentration of sugars following saccharification of the pretreated biomass to allow high titers in fermentation, is minimized. The squeezing and infiltrating mode of mechanical mixing in the present apparatus, described above, is particularly suitable for a biomass treatment process at a high dry weight of biomass in the biomass mixture.
Prior to loading biomass into the present apparatus, the atmosphere in the reactor vessel may be flushed with nitrogen or any other gas of choice. For example, a vacuum is pulled and N2 is introduced through a port to replace the air. This may be repeated as many times as needed to substantially replace the air.
The apparatus containing the biomass and pretreatment reactant is temperature controlled, as described herein above. The baffles of the reaction vessel are rotated, as described herein above. The amount of time allowed for the pretreatment process depends on the specific process being used and typically varies between about 5 minutes and about 8 hours. As the reaction is run, samples may be taken from a port in the cover of the apparatus. These samples may be analyzed to assess completeness of the pretreatment reaction. Various analytical methods may be used depending on the pretreatment process being used, for example, near infrared (NIR) spectroscopy, full chemical analysis or by running a small saccahrification on a sample.
When using a reactant that forms a vapor under the pretreatment conditions, the reactant vapor may be collected by applying a vacuum attached to a vent condenser, as described herein above. Typically, after the pretreatment process is complete, the reactant vapor is collected and condensed so that it may be reused. An example is the collection of ammonia vapor when using liquid ammonia as a reactant. The collected ammonia vapor may be liquefied and used in the process reactant for pretreating additional biomass.
Pretreated biomass may be removed from the apparatus, or the second type of biomass treatment, saccharification, may be performed without removing the pretreated biomass. Alternatively, a biomass sample that has been pretreated in a separate apparatus may be introduced into the present apparatus for saccharification treatment. The amount of saccharification reactant added, and therefore the biomass concentration, may vary depending on the saccharification process used. The saccharification reactant is typically injected directly into the reaction vessel using the injection lance of the present apparatus. The introduction of saccharification reactant through the injection lance, and the functioning of the attrition media and baffles promote assimilation of the reactant into the biomass, such that saccharification at high biomass concentrations is effective. A saccharification reactant may be introduced through a port in the cover, or into the vessel with the cover opened, in a dry form.
The dry weight of biomass during saccharification may be up to about 80% of the weight of the biomass-reactant mixture. More suitably, the dry weight of biomass is up to about 60% of the weight of the biomass-reactant mixture. Preferred is an initial biomass concentration that is between about 15% and about 40% of the weight of the biomass-reactant mixture. The high biomass concentration reduces the total volume of saccharified material, making the process more economical. It demonstrates the effectiveness of the saccharification enzyme consortium under high biomass content where the levels of impurities, starting substrates and products are not diluted, where various inhibition and = WO 2006/110902 PCT/US2006/014147 deactivation processes could take place. At low bidmass concentration, as typically used in saccharification, the potential inhibition and deactivation processes are significantly diminished or non-existent due to the high dilution factor. In addition, with high biomass concentration the need for concentration of sugars following saccharification, to produce high titers in fermentation, is minimized. The squeezing and infiltrating mode of mechanical mixing in the present apparatus, described above, is particularly suitable for saccharification at a high dry weight of biomass in the biomass mixture.
The saccharification processing reactant comprises enzymes that are able to hydrolyze the pretreated biomass to release oligosaccharides and/or monosaccharides. Saccharification enzymes and methods for biomass treatment with saccharification enzymes are reviewed in Lynd, L.
R., et al. (Microbiol. Mol. Biol. Rev. (2002) 66:506-577).
Typically a saccharification enzyme consortium is used, which comprises one or more enzymes selected primarily, but not exclusively, from the group "glycosidases" which hydrolyze the ether linkages of di-, oligo-, and polysaccharides and are found in the enzyme classification EC
3.2.1.x (Enzyme Nomenclature 1992, Academic Press, San Diego, CA
with Supplement 1(1993), Supplement 2 (1994), Supplement 3 (1995, Supplement 4 (1997) and Supplement 5 [in Eur. J. Biochem. (1994) 223:1-5, Eur. J. Biochem. (1995) 232:1-6, Eur. J. Biochem. (1996) 237:1-5, Eur.
J. Biochem. (1997) 250:1-6, and Eur. J. Biochem. (1999) 264:610-650, respectively]) of the general group "hydrolases" (EC 3.). Glycosidases useful in the present process can be categorized by the biomass component that they hydrolyze. Glycosidases useful for the present process include cellulose-hydrolyzing glycosidases (for example, cellulases, endoglucanases, exoglucanases, cellobiohydrolases,,q-glucosidases), hemicellulose-hydrolyzing glycosidases (for example, xylanases, endoxylanases, exoxylanases, fl xylosidases, arabinoxylanases, mannases, galactases, pectinases, glucuronidases), and starch-hydrolyzing glycosidases (for example, amylases, a-amylases, /3 -amylases, glucoamylases, a -glucosidases, isoamylases). In addition, it may be useful to add other activities to the saccharification enzyme consortium such as peptidases (EC 3.4.x.y), lipases (EC 3.1.1.x and 3.1.4.x), ligninases (EC 1.11.1.x), and feruloyl esterases (EC 3.1.1.73) to help release polysaccharides from other components of the biomass. It is well known in the art that microorganisms that produce polysaccharide-hydrolyzing enzymes often exhibit an activity, such as cellulose degradation, that is catalyzed by several enzymes or a group of enzymes having different substrate specificities. Thus, a "cellulase" from a microorganism may comprise a group of enzymes, all of which may contribute to the cellulose-degrading activity. Commercial or non-commercial enzyme preparations, such as cellulase, may comprise numerous enzymes depending on the purification scheme utilized to obtain the enzyme. Thus the saccharification enzyme consortium of the present process may comprise enzyme activity, such as "cellulase", however it is recognized that this activity may be catalyzed by more than one enzyme. Saccharification enzymes may be obtained commercially, such as Spezyme CP cellulase (Genencor International, Rochester, NY) and Multifect xylanase (Genencor).
One skilled in the art will know how to determine the effective amount of enzymes to use in the consortium and adjust conditions for optimal enzyme activity. One skilled in the art would also know how to optimize the classes of enzyme activities required within the consortium to obtain optimal saccharification of a given pretreated biomass under the selected conditions.
When pretreating and then saccharifying biomass in the present apparatus, prior to saccharification treatment, the pH and temperature of the pretreated biomass in the present apparatus are adjusted to be favorable for activity of the saccharification enzymes to be used. When pretreating with an acid or base, the pH of the pretreated biomass may be either raised or lowered, respectively, by introduction of a pH adjusting solution or solid to the reaction vessel. For good distribution of a pH
adjusting solution in the pretreated biomass, it is injected through the lance while the baffles in the reaction vessel are rotating. The solution may be prewarmed, typically to a temperature compatible with the saccharification enzyme consortium, such as to about 50 C. Alternatively, a pH adjusting solution may be introduced through a port in the cover. The baffles of the vessel may be rotated to promote assimilation of the pH
adjusting solution into the biomass provided by the attrition media and baffles, and the biomass periodically tested by removing a sample through the sample port for pH testing until the desired pH is achieved. The target pH may be between about 2 and 11, depending on the enzymes being used for saccharification, since different enzymes may exhibit different pH
optima as is known by one skilled in the art. More typically the desired pH
is between about 4 and 10, with a pH of about 5.5 being most typical.
The temperature for saccharification is generally in a range between about 15 C to about 100 C, also depending on the enzymes being used for saccharification, since different enzymes may exhibit different temperature optima as is known by one skilled in the art. Typically the temperature is between about 20 C and about 100 C. Saccharification is performed while the baffles of the reaction vessel rotate. The squeezing and infiltrating mode of assimilating the reactant into the biomass in the present apparatus, described herein above, enhances access of the saccharification reactant to the biomass, thereby providing a highly effective saccharification process. This process is run for a time of about several minutes to about 120 hours, and preferably from about several hours to about 72 hours. The time for the reaction will depend on enzyme concentration and specific activity, as well as the substrate used and the environmental conditions, such as temperature and pH. One skilled in the art can readily determine optimal conditions of temperature, pH and time to be used with a particular biomass substrate and saccharification enzyme consortium.
The present apparatus is particularly useful for optimizing biomass treatment processes. There are many treatment conditions that may be varied in a biomass treatment process, whether it is a pretreatment or a saccharification process. Variable conditions include but are not limited to, pH, temperature, types of processing reactants and concentrations of processing reactants, percent dry weight of biomass in the biomass-=

reactant mixture, feed strategies for adding reactants, pressures, type of inert atmosphere, form and type and form of biomass used, and process time. The present apparatus may be constructed on a small scale, as described in one embodiment herein above (shown in Figure 2), that is particularly suitable for optimizing treatment conditions. The conditions may be independently varied or varied in parallel using statistical design of experimentation and samples taken from the sample port while the process is run. In a saccharification process, or a combined pretreatment/saccharification process, sugars in the samples may be directly analyzed. In a pretreatment process alone, samples are saccharified and then the saccharification product is analyzed for sugar content and other components of interest, such as acetic acid, furfurals, and salts. Other methods also may be used for analysis, such as for hemicellulose. Optimization may be based on a number of criteria, including sugar monomer yield, total released sugar yield, low enzyme usage, low acetic acid, low fufurals, low impurities formed, or a global optimization based on several of these variables. For example, the percentages of glucose and xylose theoretically present in the starting biomass that are released in the treatment process being assessed, is determined. Sugar monomer yields near or above 50% indicate good results, with even higher yields being preferred. Total sugar yields, including released oligomers, of at least 70% indicate good yields.
Methods for analysis of the sugars are well known to one skilled in the art, such as by HPLC. In addition, other treated biomass sample components may be analyzed, also by HPLC, such as acetic acid, furfurals, or lactic acid, in assessing the quality of the product.
Fermentable sugars released from biomass can be used by suitable microorganisms, which are biocatalysts, to produce target chemicals, such as described in co-pending US patent applications CL3435 and CL3435.

EXAMPLES
GENERAL METHODS AND MATERIALS
The following abbreviations are used:
"HPLC" is High Performance Liquid Chromatography, "C" is Centigrade, "kPa" is kiloPaseal, "m" is meter, "mm" is millimeter, "kW" is kilowatt, "p.m" is micrometer, "p.L" is microliter, "mL" is milliliter, "L" is liter, "min" is minute, "mM" is millimolar, "cm" is centimeter, "g" is gram, "kg" is kilogram, "wt" is weight, "hr" is hour, "temp" or "T" is temperature, "theoret"
is theoretical, "pretreat" is pretreatment, "DWB" is dry weight of biomass.
Sulfuric acid, ammonium hydroxide, acetic acid, acetamide, yeast extract, 2-morpholinoethanesulfonic acid (M ES), potassium phosphate, glucose, xylose, tryptone, sodium chloride and citric acid were obtained from Sigma-Aldrich (St. Louis, MO).
Pretreatment and Enzymatic Hydrolysis Reactor (PEHR) A biomass treatment apparatus with dimensions and features as shown in Figure 2 and described herein above is called the PEHReactor and was used in the following Examples. Briefly, the 9L PEHReactor (constructed at NREL, Golden, CO) has an approximately 15 cm x 51 cm stainless steel reaction vessel with an injection lance for introduction of processing reactants. The injection lance is connected using a rotary joint to a port in a cover on one end of the vessel, which has an additional port for vessel access. Four baffles run the length of the vessel wall, and are attached perpendicularly to the wall. The baffles and twenty-two ceramic attrition media cylinders of 3.2 cm X 3.2 cm (E. R. Advanced Ceramics, East Palestine, OH), free floating in the vessel, apply mechanical mixing of biomass and reactant as the vessel is rotated, promoting assimilation of reactant into the biomass. The PEHReactor is placed on a BelIco Cell-Production Roller Apparatus (Belleo Technology, Vineland, NJ) which provides a mechanism for rotation, and the reactor with roller apparatus is housed in a temperature controlled chamber which provides heat. The temperature controlled chamber consists of an aluminum frame to support cork insulating pads surrounding the Bellco Cell Production Apparatus, to which a heater is attached that is controlled by thermocouples inserted =

through the center of the injection lance in the PEHRreactor. Vacuum and pressure may be applied to the reaction vessel by attaching external sources to the lance-connected port in the cover.
Steam Gun Reactor batch digestion system The 4-liter steam gun reactor (Autoclave Engineers, Erie, PA) is a steam-jacketed reactor consisting of a length of 102 mm schedule 80 Hastelloy pipe closed by two ball valves. Additional electrical heaters are placed on all exposed, non-jacketed surfaces of the reactor and controlled to the pretreatment set point temperature. Direct steam injection is also used to rapidly bring the biomass up to pretreatment temperature. Steam pressure is adjusted and controlled to maintain the desired pretreatment temperature. The bottom of the reactor is necked down to 51 mm. All pretreated material exits through a replaceable die at the bottom of the reactor and is collected in a nylon (Hotfihl ) 0.21 m3 bag supported within a heavy walled, jacketed, and cooled flash tank.
Analytical methods Measurement of sugar, acetamide, lactic acid and acetic acid content Soluble sugars (glucose, cellobiose, xylose, galactose, arabinose and mannose), acetamide, lactic acid and acetic acid in saccharification liquor were measured by HPLC (Agilent Model 1100, Agilent Technologies, Palo Alto, CA) using Bio-Rad HPX-87P and Bio-Rad HPX-87H columns (Bio-Rad Laboratories, Hercules, CA) with an appropriate guard columns. The sample pH was measured and adjusted to 5-6 with sulfuric acid if necessary. The sample was then passed through a 0.2 p.m syringe filter directly into an HPLC vial. The HPLC run conditions were as follows:
HPX-87P (for carbohydrates):
Injection volume: 10 ¨50 L, dependent on concentration and detector limits Mobile phase: HPLC grade water, 0.2 p.m filtered and degassed Flow rate: 0.6 mL / minute Column temperature: 80 ¨ 85 C, guard column temperature <60 C

Detector temperature: as close to main column temperature as possible Detector: refractive index Run time: 35 minute data collection plus 15 minute post run (with possible adjustment for later eluting compounds) Biorad Aminex HPX-87H (for carbohydrates, acetamide, lactic acid and acetic acid) Injection volume: 5-10 p.L, dependent on concentration and detector limits Mobile phase: .01N Sulfuric acid, 0.2 JIm filtered and degassed Flow rate: 0.6 mL / minute Column temperature: 55 C
Detector temperature: as close to column temperature as possible Detector: refractive index Run time: 25 - 75 minute data collection After the run, concentrations in the sample were determined from standard curves for each of the compounds.
Example 1 Saccharification of Bagasse at High Biomass Concentration in the PEHReactor; Comparison to Low Concentration Saccharification The PEHReactor (described in General Methods), with no attrition media, was charged with 1.27 cm-milled bagasse (370 g, dry weight basis). This sugar cane bagasse was NIST Reference Material RM8491, from sugar cane clone H65-7052, originally obtained from the Hawaii Sugar Planters Association, Kunia substation, Oahu, HI. It was milled in a Wiley mill to pass through a 2 mm screen, with the fines (+74 mesh) removed. The reactor vessel was cooled to 4 C by rotation in contact with ice on the outer surface. A vacuum was applied to the reactor vessel, and dilute ammonium hydroxide solution, that was pre-cooled in a cold room at 4 C and passed through tubing immersed in an ice-water bath, was injected to give an ammonia concentration of 4 g/100 g dry weight of biomass and a dry weight of biomass concentration of 45 g/100 g total biomass-aqueous ammonia mixture. The reactor vessel charged with ammonia and bagasse was cooled to 4 C by applying ice to the surface of the rotating reactor vessel, and rotated at 4 C for 30 min. At this time the contents were transferred to the steam gun reactor that is described in General Methods. Once the steam gun reactor was charged with the ammonia-bagasse mixture, the temperature was increased to 145 C and the mixture was held at temperature for 20 minutes. At the end of the pretreatment time, the bagasse was discharged from the steam gun reactor through a 2.54 cm circular die into a flash tank. A sample of pretreated bagasse was subsequently saccharified in a shake flask and another sample (approximately 163 g dry weight) was saccharified in the PEHReactor. The shake flask saccharification was carried out at 5% dry weight of biomass relative to the total weight of the pretreated biomass-saccharification enzyme consortium mixture, while the PEHReactor saccharification was carried out at 30% dry weight of biomass relative to the total weight of the pretreated biomass-saccharification enzyme consortium mixture. The pH was controlled at 5.5 during saccharification by the addition of 50 mM citrate buffer, and the temperature was maintained at 50 C.
For the PEHReactor saccharification, about 476 g (-163 g dry weight) pretreated biomass and 22 ceramic attrition cylinders were added to the reactor vessel. The pH was adjusted to 5.0-5.5 with solid citric acid.
The reactor vessel was kept inside an incubator chamber controlled to 50 C and rotated axially at 19 rpm. Unpretreated bagasse was also saccharified at 5% dry weight of biomass relative to the total weight of the pretreated biomass-saccharification enzyme consortium mixture in a shake flask. All saccharifications were done with 28.4 mg/g cellulose Spezyme CF cellulase and 28.4 mg/g cellulose Multifect xylanase at 50 C and pH 5.5 for 96 hr. Yields given in Table 1 below are the release as percent of theoretical yield.

Table 1: Yields following pretreatment and saccharification of bagasse.
No pretreatment Pretreated Pretreated 5% 5% DWB 30% DWB
saccharification saccharification saccharification Monomer 0.5% 16.6% 23.3%
glucose Total glucose ND ND 36.4%
Monomer 1.3% 15.6% 17.2%
xylose Total xylose ND ND 37.4%
ND: not determined The results demonstrate that pretreatment of bagasse with very low ammonia allows substantial sugar release as compared to the unpretreated control, and that saccharification at high solids concentration in the PEHReactor is very effective in releasing sugars.
Example 2 Saccharification of Yellow Poplar Sawdust at High Biomass Concentration in the PEHReactor; Comparison to Low Concentration Saccharification The PEHReactor, without attrition media, was charged with yellow poplar sawdust (596 g, dry weight basis; purchased from Sawmiller Inc., Haydenville, OH). A vacuum was applied to the reactor vessel, and dilute ammonium hydroxide solution was injected to give an ammonia concentration of 6 g/100 g dry weight of biomass and a dry weight of biomass concentration of 44 g/100 g total biomass-aqueous ammonia mixture. The reactor vessel charged with ammonia and yellow poplar sawdust was brought to 4 C as described in Example 1, and rotated at 4 C for 30 min. At this time the contents were transferred to the steam gun reactor. Once the steam gun reactor was charged with the ammonia-poplar mixture, the temperature was increased to 145 C and the mixture was held at temperature for 20 minutes. At the end of the pretreatment time, the yellow poplar sawdust was discharged from the steam gun reactor through a 2.54 cm circular die into a flash tank. A sample of pretreated yellow poplar sawdust was subsequently saccharified as described in Example 1 in a shake flask, and another sample was saccharified in the PEHReactor. The shake flask saccharification was carried out at 5% dry weight of biomass relative to the total weight of the pretreated biomass-saccharification enzyme consortium mixture, while the PEHReactor saccharification (using -279 g dry weight pretreated sawdust) was carried out at 30% dry weight of biomass relative to the total weight of the pretreated biomass-saccharification enzyme consortium mixture.
Unpretreated yellow poplar sawdust was also saccharified at 5% dry weight of biomass relative to the total weight of the pretreated biomass-saccharification enzyme consortium mixture in a shake flask. All saccharifications were done with 28.4 mg/g cellulose Spezyme CP
cellulase and 28.4 mg/g cellulose Multifect xylanase at 50 C and pH 5.5 for 96 hr. Yields given in the Table 2 below are the release as percent of theoretical yield.
Table 2: Yields following pretreatment and saccharification of yellow poplar sawdust.
Component No pretreatment Pretreated Pretreated 5% DWB 5% DWB 30% DWB
saccharification saccharification saccharification Monomer 2.7% 11.1% 20.6%
glucose Total glucose ND ND 30.0%
Monomer 0% 17.9% 18.9%
xylose Total xylose ND ND 40.2%
ND: not determined The results demonstrate that pretreatment of yellow poplar sawdust with very low ammonia allows substantial sugar release as compared to the unpretreated control, and that saccharification at high dry weight of biomass in the PEHReactor is more effective in releasing sugars than the shake flask.

Example 3 Pretreatment and Saccharification of Corn Cobs at Higher Dry Biomass Concentration in PEHReactor Whole corn cobs were processed with a jaw crusher (2.2 kW motor) with a jaw spacing of approximately 0.95 cm, followed by a delumper (1.5 kW motor, Franklin Miller Inc., Livingston, NJ), followed by screening with a Sweco screen equipped with a 1.9 cm U.S. Standard screen.
Approximately 805 g fractured cobs were loaded into the PEHReactor.
Moisture content in the cobs was approximately 7%. The atmosphere in the reactor vessel was flushed 5 times with nitrogen prior to loading. The reactor, with no attrition media, was preheated to 75 C before the start of the experiment, without rotation. When the temperature within the reactor vessel stabilized at 75 C the rolling mechanism in the incubator was turned on and the rotation adjusted to 19 rpm. The appropriate amount of dilute ammonium hydroxide solution to give an ammonia concentration of 6 g ammonia/100 g dry weight of biomass and a solids concentration of 50 g dry weight of biomass/100 g total weight of biomass-ammonia mixture was then pumped into the reactor. Ethanol at 1 g/100 g dry weight of biomass was also added to the solution. The ammonia solution was pumped through a heated loop in a water bath at ¨75 C fabricated using a 2-gal Parr reactor. The heated dilute ammonium hydroxide solution was injected via an injection lance into the reactor vessel and sprayed on the fractured cobs rotating and tumbling in the reactor. The reactor was maintained at 75 C for 2 hr while turning at 19 rpm. At the end of that time, a vacuum (approximately 85 kPa) was applied to the reactor vessel for 30 minutes to remove ammonia and drop the temperature of the contents of the reactor to approximately 50 C. Carbon dioxide was then injected into the reactor to relieve the vacuum and the reactor was pressurized to 103 kPa gauge pressure and held at pressure for 30 min at 50 C.
Following this, the reactor was depressurized, opened and attrition media were added. The pH of the contents was adjusted to approximately 5.5 by injecting 1 M citric acid buffer at pH 4.8 using the injection lance, to =
= WO 2006/110902 PCT/US2006/014147 increase the citric acid buffer strength to ¨75 mM, plus adding citric acid monohyd rate. The citric acid buffer was injected into the reactor following heating to 50 C and then the contents was allowed to equilibrate by incubating the reactor at 50 C and 19 rpm for 1 hour. Injection of the citric acid buffer while rotating the reactor using the injection lance allowed for a more even spraying and distribution of the buffer on the pretreated cob particles. The reactor was removed from the incubator, opened, and the pH of a sample determined. If the pH was above 5.5, then additional solid citric acid monohyd rate was added and the reactor was incubated with mixing at 50 C for an additional hour. This process was repeated until the pH was approximately 5.5. Once the desired pH was reached, 12.9 mg/g cellulose Spezyme CP (Genencor) and 5 mg active protein /g cellulose enzyme consortium consisting of 0-glucosidase, xylanase, 0-xylosidase and arabinofuranosidase were loaded into the reactor. The reactor remained in the incubator at 50 C and 19 rpm for 72 hr. Following this pretreatment and saccharification, monomer glucose yield was 62.0% and monomer xylose yield was 31.0%. Total glucose yield was 75.2% and total xylose yield was 80.3%.
Example 4 Cob Pretreatment at Higher Biomass Concentration with Very Low Ammonia and Alternate Conditions Whole corn cobs were processed with a hammermill (10-inch hammer mill, Glen Mills Inc., Clifton, NH) to pass through a 1.27 cm screen. Approximately 805 g fractured cobs were loaded into the PEHReactor. Moisture content in the cobs was approximately 7%.
Twenty-two ceramic attrition cylinders (3.2 cm diameter x 3.2 cm long; E.
R. Advanced Ceramics, East Palestine, OH) were also added to the reactor. The reactor was preheated to 95 C before the start of the experiment, without rotation. A vacuum (approximately 85 kPa) was applied to the reactor vessel before the start and the vessel was sealed off. When the temperature within the reactor vessel stabilized at 95 C the rolling mechanism in the incubator was turned on and the rotation adjusted to 19 rpm. The appropriate amount dilute ammonium hydroxide solution to give an ammonia concentration of 6 g ammonia/100 g dry weight of biomass and a solids concentration of 50 g dry weight of biomass/100 g total weight of biomass-ammonia mixture was then pumped into the reactor. The ammonia solution was pumped through a heated loop in a boiling water bath fabricated using a 2-gal Parr reactor. The heated dilute ammonium hydroxide solution was injected via an injection lance into the reactor vessel and sprayed on the fractured cobs rotating and tumbling in the reactor. The reactor was maintained at 95 C for 2 hr while turning at 19 rpm. At the end of that time, a vacuum (approximately 85 kPa) was applied to the reactor vessel for 30 minutes to remove ammonia and drop the temperature of the contents of the reactor to approximately 50 C.
Carbon dioxide was then injected into the reactor to relieve the vacuum and the reactor was pressurized to 103 kPa gauge pressure and held at pressure for 30 min at 50 C.
Following this, the reactor was depressurized, opened and the pH
of the contents was adjusted to approximately 5.5 by injecting 1 M citric = acid buffer, pH 4.8, into which citric acid monohydrate was added and dissolved. The citric acid buffer was injected into the reactor following heating to 50 C and then the contents was allowed to equilibrate by incubating the reactor at 50 C and 19 rpm for 1 hour. The reactor was removed from the incubator, opened, and the pH of a sample determined.
If the pH was above 5.5, then additional solid citric acid monohydrate was added and the reactor was incubated with mixing at 50 C for an additional hour. This process was repeated until the pH was approximately 5.5.
Once the desired pH was reached, 12.9 mg/g cellulose Spezyme CP
(Genencor) and 5 mg active prOtein/g cellulose enzyme consortium consisting of 0-glucosidase, xylanase, 0-xylosidase and arabinofuranosidase were loaded into the reactor. The reactor remained in the incubator at 50 C and 19 rpm for 72 hr. Following this pretreatment and saccharification, monomer glucose yield was 50.7% and monomer xylose yield was 35.7%. Total glucose and xylose yields were 71.7% and 89.8%, respectively.

Example 5 Pretreatment of Cobs with Very Low Ammonia and Additional Base Whole corn cobs were processed with a jaw crusher (2.2 kW motor) with a jaw spacing of approximately 0.95 cm, followed by a delumper (1.5 kW motor, Franklin Miller Inc.), followed by screening with a Sweco screen equipped with a 1.9 cm U.S. Standard screen. Approximately 460 g fractured cobs were loaded into the PEHReactor. Moisture content in the cobs was approximately 7%. The reactor was preheated to 95 C before the start of the experiment, without rotation. A vacuum (approximately 85 kPa) was applied to the reactor vessel before the start and the vessel was sealed off. When the temperature within the vessel re-stabilized at 95 C
the rolling mechanism in the incubator was turned on and the rotation was adjusted to 19 rpm. The appropriate amount of ammonium hydroxide solution to give an ammonia concentration of 3.2 g ammonia/100g dry weight of biomass and NaOH to give a concentration of 1.9 g NaOH/100 g dry weight of biomass while maintaining a solids concentration of 30 g dry weight of biomass/100 g total weight of biomass-ammonia mixture was then pumped into the reactor. The ammonia and additional base solution was pumped through a heated loop in a boiling water bath fabricated using a 2-gal Parr reactor. The heated dilute ammonium hydroxide solution was injected via an injection lance into the reactor vessel and sprayed on the fractured cobs rotating and tumbling in the reactor. Following injection, the vacuum on the vessel was relieved to atmospheric pressure. The reactor was maintained at 95 C 30 min, then the temperature was lowered to 85 C where it was maintained for 4 hr. At the end of that time, a vacuum (approximately 85 kPa) was applied to the reaction vessel for 30 minutes to remove ammonia and drop the temperature of the contents of the reactor to approximately 50 C. Carbon dioxide was then injected into the reactor to relieve the vacuum and the reactor was pressurized to 103 kPa gauge pressure and held at pressure for 30 min at 50 C.
Following this, the reactor was depressurized, opened and the pH
of the contents was adjusted to approximately 5.5 by injecting approximately 75 ml of 1 M citric acid buffer, pH 4.8, into which citric acid monohyd rate was added and dissolved. The citric acid buffer was injected into the reactor following heating to 50 C and the contents was then allowed to equilibrate by incubating the reactor at 50 C and 19 rpm for 1 hour. Injection of the citric acid buffer while rotating the reactor using the injection lance allowed for a more even spraying and distribution of the buffer on the pretreated cob particles. The reactor was removed from the incubator, opened, and the pH of a sample determined. If the pH was above 5.5, then additional solid citric acid monohydrate was added and the reactor was incubated with mixing at 50 C for an additional hour. This process was repeated until the pH was approximately 5.5. Once the desired pH was reached, 28.4 mg/g cellulose Spezyme CP (Genencor) and 28.4 mg/g cellulose Multifect were loaded into the reactor. The reactor remained in the incubator at 50 C and 19 rpm for 72 hr. Following this pretreatment and saccharification, monomer glucose yield was 56.1%
and monomer xylose yield was 39.5%. Total glucose and xylose yields were 82.8% and 84.2%, respectively. These values are the averages of 2 experiments.
Example 6 Pretreatment and Saccharification of Corm Cobs at High Dry Biomass Concentration in PEHReactor at Room Temperature Whole corn cobs were processed with a jaw crusher (2.2 kW motor) with a jaw spacing of approximately 0.95 cm, followed by a delumper (1.5 kW motor, Franklin Miller Inc.), followed by screening with a Sweco screen equipped with a 1.9 cm U.S. Standard screen. Approximately 460 g fractured cobs were loaded into the PEHReactor. Moisture content in the cobs was approximately 7%. Twenty-two ceramic attrition cylinders (3.2 cm diameter x 3.2 cm long; E. R. Advanced Ceramics, East Palestine, OH) were also added to the reactor. A vacuum (approximately 85 kPa) was applied to the reactor vessel before the start and the vessel was sealed off. When the temperature within the reactor re-stabilized at room temperature (22-26 C) the rolling mechanism in the incubator was turned on and rotation was adjusted to 19 rpm. The appropriate amount of dilute ammonium hydroxide solution to give an ammonia concentration of 4 g ammonia/100g dry weight of biomass and while maintaining a solids concentration of 30 g dry weight of biomass/total weight of biomass-ammonia mixture was then pumped into the reactor. The dilute ammonium hydroxide solution was injected via an injection lance into the reacter vessel and sprayed on the fractured cobs rotating and tumbling in the reactor. Following injection, the vacuum on each vessel was relieved to atmospheric pressure. The reactor was maintained at room temperature (22-26 C) for 24 hr. At the end of that time, a vacuum (approximately 81 kPa) was applied to the reaction vessel for 30 minutes to remove ammonia. Carbon dioxide was then injected into the reactor to relieve the vacuum and the reactor was pressurized to 103 kPa gauge pressure with CO2 and held at pressure for 30 min at room temperature.
Following this, the reactor was depressurized, opened and the pH
of the contents was adjusted to approximately 5.5 by adding citric acid monohydrate. following heating to 50 C, and then allowed to equilibrate by incubating the reactor at 50 C and 19 rpm. The reactor was removed from the incubator, opened, and the pH of a sample determined. If the pH was above 5.5, then additional solid citric acid monohydrate was added and the reactor was incubated with mixing at 50 C. This process was repeated until the pH was approximately 5.5. Once the desired pH was reached, 12.9 mg/g cellulose Spezyme CP (Genencor) and 5 mg active protein/g cellulose enzyme consortium consisting of 0-glucosidase, xylanase, D-xylosidase and arabinofuranosidase were loaded into the reactor. The reactor remained in the incubator at 50 C and 19 rpm for 72 hr. Following this pretreatment and saccharification, monomer glucose yield was 41.7% and the monomer xylose yield was 25.4%. Total glucose and xylose yields were 50.1% and 53.2%, respectively. These values were the averages of 2 experiments.

_ Example 7 Pretreatment and Saccharification of Combined Biomass Containing Corn Cobs and Different Spent Grain Samples in PEHReactor Spent grain samples were prepared from:
1. #2 yellow dent whole corn grain (purchased from Agway) 2. Corn grain degermed by the Quick Germ process developed at the University of Illinois (Singh and Eckoff (1996) Cereal Chem. 74:
462-466). Starting material was obtained from Vijay Singh at the University of Illinois.
3. Corn grain process by the Quick Fiber process to remove the germ and the hull fiber (US6254914). Starting material was obtained from Vijay Singh at the University of Illinois.
4. Brewers' grits were obtained from Cargill (Minneapolis, MN).
Spent grains refers to residual solids from grain processing in which starch is converted to sugar. Spent grains were produced essentially by a basic whiskey process. The different starting materials were treated with starch-degrading enzymes to produce sugars, and the resulting mash was filtered to retrieve the filter cake solids, or spent grains.
The starting materials were ground in a Foss (North American HQ:
Eden Prarie, MN) Cyclotec 1093 sample mill (starting materials 1 and 2 above) to 250 pm or in a blender (starting materials 3 and 4 above), then combined with water and 200 mM CaCl2*H20 in a 2L jacketed, stirred, glass reaction vessel. The pH of the mixture was adjusted to 6.5 with 1 N
NaOH, and half of the total a-amylase (Spezyme HPA, Genencor International, Palo Alto, CA) was added. The reaction vessel was then heated to 95 C and the remaining o'-amylase was added 20 min later.
After remaining at 95 C for the specified time, the vessel was cooled to 70 C, and the pH of the mixture was adjusted to 4.5 with 1 M HCI.
Glucoamylase (Gzyme 480, Genencor) was added, and the temperature was lowered further to 50 C and held overnight. At this time, the reactor was cooled to <40 C, and the contents were filtered through Dacron filter cloth with a pore size of 10 pm. The filter cake was washed with water, and the final filter cake, or spent grains, was dried at 105 C overnight and stored at room temperature until used in pretreatment experiments.
Specific reaction conditions for each starting material are listed in the Table 3 below.
Table 3. Processing of spent grains samples.
Starting Starting Water a- Total Gluco- Time at material material added amylase time at amylase 50 C
added (g) added 95 C added (hr) (9) (ml) (ml) 3 1180 500 6 120 3 17.5 Whole corn cobs were processed with a jaw crusher (2.2 kW motor) with a jaw spacing of approximately 0.95 cm, followed by a delumper (1.5 kW motor, Franklin Miller Inc.), followed by screening with a Sweco screen equipped with a 1.9 cm U.S. Standard screen. Fractured cobs were loaded with one type of spent grain, as listed in Table 3, into a PEHReactor. Spent grains were approximately 10% of the total dry weight of biomass in the reactor. Total dry biomass charge was approximately 473 g. Each charged reactor was preheated in the roller incubator to 95 C, without rotation, before the start of the experiment. A vacuum (approximately 85 kPa gauge pressure) was applied to the reaction vessel and the vessel was sealed off. When the temperature within each reaction vessel re-stabilized at 95 C, rotation was started at 19 rpm. Dilute ammonium hydroxide solution was added to give an ammonia concentration of 4 g ammonia/100g dry weight of biomass and a solids concentration of 30 g dry weight of biomass/100 g total weight of biomass-ammonia mixture. Following injection, the vacuum on the vessel was relieved to atmospheric pressure. The reactor was maintained at 95 C for min, then the temperature was lowered to 85 C where it was 25 maintained for 4 hr with rotation. At the end of that time, a vacuum (approximately 85 kPa gauge pressure) was applied to the reactor vessel for 30 minutes to remove ammonia and drop the temperature of the contents of each reactor to approximately 50 C. Carbon dioxide was then injected into each reactor to relieve the vacuum and the reactors were pressurized to 138 kPa gauge pressure with CO2 and rotated at pressure for 30 min at 50 C.
Following this, the reactor was depressurized, opened and the pH
of the contents was adjusted to approximately 5.5 by injecting 75 ml of 1 M
citric acid buffer, pH 4.8, into which citric acid monohydrate was added and dissolved. The citric acid buffer was injected into each reactor following heating to 50 C and then allowed to equilibrate by incubating the reactors at 50 C and 19 rpm for 1 hour. The reactors were removed from the incubator, opened, and the pH of a sample determined. If the pH was above 5.5, then additional solid citric acid monohydrate was added and the reactors were incubated with rotation at 50 C for an additional hour.
This process was repeated as often as necessary to obtain a pH for each reactor of -5.5. Once the desired pH was reached, 28.4 mg/g cellulose Spezyme CP cellulase (Genencor) and 10.1 mg active protein/g cellulose =
of Diversa D2 cocktail containing a beta-glucosidase, xylanase, beta-xylosidase and arabinfuranosidase were loaded into the reactor. The reactors remained in the incubator at 50 C and 19 rpm for 72 hr. Following this pretreatment and saccharification, sugar yields were assayed as described in General Methods. Glucose and xylose yields, based on total glucan and xylan coming in with both feeds, are shown in Table 4. Yields of the cob plus spent grain combination biomass samples were similar to yields of the cob alone sample.

Table 4. Sugar yields following pretreatment and saccharification of combined biomass feeds.
Monomer Total Monomer Total xylose glucose glucose yield xylose yield yield Cob only 68.2% 85.6% 41.8% 88.9%
(avg of 2) Cob + Quick 67.9% 86.5% 49.0% - 86.5%
Germ spent grains Cob + Quick 69.5% 88.3% 54.6% 87.3%
Fiber spent grains Cob + 65.6% 79.5% 48.3% 83.2%
Brewers Grits spent grains Example 8 Pretreatment and Saccharification of Combined Biomass Containing Corn Cobs, Spent Grain, and Additional Components in the PEHReactor Fractured cobs and whiskey spent grains, prepared as described in Example 7, were combined in the PEHReactor as described in Example 7. .
In addition, other grain components were added. In one sample, starch (Sigma S4126, lot #093K0033) was added at 5 g/100 g total dry weight of biomass. In another sample, corn oil (Sysco Classic corn oil, lot #4119095) was added at a level of about 2 9/100 g total dry biomass. The samples were pretreated and saccharified as described in Example 7.
Results are shown in Table 4. These results also compare favorably with the cob only control data in Table 3.

Table 4. Sugar yields resulting from pretreatment and saccharification of cob, spent grains and additional grain components.
Monomer Total Monomer Total xylose glucose _ glucose yield _ xylose yield yield Cob + 70.4% 90.2% 48.4% 96.1%
whiskey spent grains + starch Cob + 79.2% 87.5% 54.9% 101.4%
whiskey spent grains + oil Example 9 Pretreatment and Saccharification of Combined Biomass Containing Corn Cobs and Corn Fiber in the PEHReactor Fractured corn cobs and Cargill Bran 80 (Cargill, Minnetonka, MN) corn fiber were combined such that the fiber was approximately 10% of the total dry biomass. The combined' biomass was pretreated and saccharified as described in Example 7. The resulting sugar yields are shown in Table 5. Yields of the cob plus corn fiber combination biomass were similar to yields of the cob alone sample.
Table 5: Sugar yields resulting from pretreatment of corn cobs combined with corn fiber.
Monomer Total Monomer Total xylose glucose glucose yield xylose yield yield Cob + 66.4% 82.3% 47.0% 83.5%
Cargill Bran

Claims (36)

We Claim:
1. An apparatus for batch processing biomass comprising:
a) a cylindrical reaction vessel with an opening on at least one end;
b) one or more baffles attached to the interior of said vessel;
c) attrition media comprising pellets free-floating in the interior of the reaction vessel;
d) a cover for said vessel open end comprising one or more ports;
e) an injection lance comprising means for delivering a processing reactant, wherein said means is an injection lance extending the length of the reaction vessel and connecting to a first port in the cover of d); and f) means for rotating the baffles of the vessel.
2. The apparatus of Claim 1 wherein the attrition media occupy less than 10% of the volume of the reaction vessel.
3. The apparatus of Claim 1, further comprising a rotary joint connected to a port in the reaction vessel cover.
4. The apparatus of Claim 1 wherein a second port is a port for adding reactants to the reaction vessel, for sampling the contents of the reaction vessel, or both.
5. The apparatus of Claim 1, wherein said vessel is composed of a non-corrosive material that withstands temperatures ranging from about -10 °C to about 220 °C.
6. The apparatus of Claim 5, wherein the vessel withstands temperatures ranging from about 4 °C to about 170 °C.
7. The apparatus of Claim 5, wherein said material is stainless steel.
8. The apparatus of Claim 1, wherein said vessel is composed of a non-corrosive material that withstands pressures up to 1200 kPa.
9. The apparatus of Claim 8, wherein the vessel withstands pressures up to 310 kPa.
10. The apparatus of Claim 1, wherein said baffles are attached at perpendicular angles to the interior surface of the reaction vessel.
11. The apparatus of Claim 1, wherein said processing reactant is an aqueous solution comprising ammonia.
12. The apparatus of Claim 1, wherein said processing reactant is a saccharifying enzyme mixture.
13. The apparatus of Claim 1, further comprising means for temperature control.
14. The apparatus of Claim 13, wherein said means for temperature control is a temperature controlling jacket or an external incubator.
15. The apparatus of Claim 1, further comprising a vacuum source connected to the port.
16. The apparatus of Claim 1, wherein said apparatus provides for treatment of biomass at high dry biomass concentrations ranging from about 15 weight percent to about 80 weight percent of a biomass-reactant mixture.
17. The apparatus of Claim 1, wherein said apparatus provides for treatment of biomass at high dry biomass concentrations ranging from about 15 weight percent to about 60 weight percent of a biomass-reactant mixture.
18. The apparatus of Claim 1, wherein said means for rotation is rollers, a shaft and crank, belts, wheels, or trunnion bearings.
19. A process for treating biomass comprising:
a) introducing biomass to the reaction vessel of the apparatus of Claim 1;
b) introducing a processing reactant to the reaction vessel; and c) assimilating said processing reactant into said biomass by rotating the baffles of the reaction vessel whereby the baffles lift and drop the attrition media.
20. The process of Claim 19, wherein said process is a biomass pretreatment process.
21. The process of Claim 20, wherein said processing reactant is an aqueous solution comprising ammonia.
22. The process of Claim 20, wherein said process is a saccharification process.
23. The process of Claim 22, wherein said processing reactant is a saccharification enzyme mixture.
24. A process for treating biomass comprising:
a) pretreating biomass in the reaction vessel of the apparatus of Claim 1, producing pretreated biomass;
b) adjusting the temperature and pH of the pretreated biomass of (a) in the reaction vessel; and c) saccharifying the adjusted pretreated biomass of (b) in the reaction vessel.
25. A process for pretreating biomass comprising:
a) introducing biomass to the reaction vessel of the apparatus of Claim 1; and b) contacting said biomass with an aqueous solution comprising ammonia to form a biomass-aqueous ammonia mixture in the reaction vessel, wherein the ammonia is present at a concentration that maintains alkaline pH of the biomass-aqueous ammonia mixture but wherein said ammonia is present at less than 12 weight percent relative to dry weight of biomass, and further wherein the dry weight of biomass is at a high solids concentration of at least 15 weight percent relative to the weight of the biomass-aqueous ammonia mixture.
26. A process for saccharifying pretreated biomass at high dry biomass concentration, comprising:
a) providing biomass, wherein said biomass has optionally been pretreated to provide a readily saccharifiable composition;
b) providing an enzyme consortium that hydrolyzes the biomass of (a); and c) assimilating the enzymes of (b) into the biomass of (a) in the apparatus of claim 1.
27. The process of claim 26, wherein fermentable sugars are produced.
28. The process of Claim 26, wherein the dry weight of biomass is at high solids concentration of at least 15 weight percent relative to the weight of the biomass-reactant mixture.
29. The process of Claims 25 or 26, wherein said biomass is selected from the group consisting of switchgrass, waste paper, sludge from paper manufacture, corn grain, corn cobs, corn husks, corn stover, grasses, wheat, wheat straw, hay, barley, barley straw, rice straw, sugar cane bagasse, sorghum, soy, components obtained from processing of grains, trees, branches, roots, leaves, wood chips, sawdust, shrubs and bushes, vegetables, fruits, flowers and animal manure.
30. The process of Claim 29 wherein biomass is selected from the group consisting of corn cobs, corn stover, corn husks, sugar cane bagasse, sawdust, switchgrass, wheat straw, hay, rice straw, and grasses.
31. The process of Claim 30, wherein biomass is selected from the group consisting of corn cobs, corn stover, sawdust, and sugar cane bagasse.
32. The process of Claims 25 or 26, wherein said biomass is derived from multiple feedstocks.
33. A method for optimizing a treatment process comprising:
a) introducing biomass to the reaction vessel of the apparatus of Claim 1;
b) varying treatment conditions in the reaction vessel;
c) sampling the treated biomass via said one or more ports under said varying treatment conditions; and d) testing said samples to determine optimal treatment conditions for processing biomass.
34. The method of Claim 33, wherein said varying conditions include, pH, temperature, processing reactants and concentrations of processing reactants, percent initial dry weight of biomass in the biomass-reactant mixture, type and form of biomass, type of inert atmosphere, pressure, feed strategies for process reactants, and processing time.
35. The method of Claim 33, wherein said treatment process is a saccharification process.
36. The method of Claim 33, wherein said treatment process is a pretreatment process.
CA2603774A 2005-04-12 2006-04-12 System and process for biomass treatment Expired - Fee Related CA2603774C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US67043705P 2005-04-12 2005-04-12
US60/670,437 2005-04-12
PCT/US2006/014147 WO2006110902A1 (en) 2005-04-12 2006-04-12 System and process for biomass treatment

Publications (2)

Publication Number Publication Date
CA2603774A1 CA2603774A1 (en) 2006-10-19
CA2603774C true CA2603774C (en) 2015-11-17

Family

ID=36782581

Family Applications (5)

Application Number Title Priority Date Filing Date
CA 2604100 Expired - Fee Related CA2604100C (en) 2005-04-12 2006-04-12 Integration of alternative feedstreams in biomass treatment and utilization
CA 2604964 Active CA2604964C (en) 2005-04-12 2006-04-12 Treatment of biomass to obtain a target chemical
CA2603774A Expired - Fee Related CA2603774C (en) 2005-04-12 2006-04-12 System and process for biomass treatment
CA 2603128 Active CA2603128C (en) 2005-04-12 2006-04-12 Treatment of biomass to obtain fermentable sugars
CA 2604961 Abandoned CA2604961A1 (en) 2005-04-12 2006-04-12 Treatment of biomass to obtain ethanol

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CA 2604100 Expired - Fee Related CA2604100C (en) 2005-04-12 2006-04-12 Integration of alternative feedstreams in biomass treatment and utilization
CA 2604964 Active CA2604964C (en) 2005-04-12 2006-04-12 Treatment of biomass to obtain a target chemical

Family Applications After (2)

Application Number Title Priority Date Filing Date
CA 2603128 Active CA2603128C (en) 2005-04-12 2006-04-12 Treatment of biomass to obtain fermentable sugars
CA 2604961 Abandoned CA2604961A1 (en) 2005-04-12 2006-04-12 Treatment of biomass to obtain ethanol

Country Status (7)

Country Link
US (3) US7998713B2 (en)
EP (5) EP1869197A2 (en)
JP (5) JP5804666B2 (en)
CN (5) CN101160388B (en)
BR (5) BRPI0612207A2 (en)
CA (5) CA2604100C (en)
WO (5) WO2006110891A2 (en)

Families Citing this family (554)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7537826B2 (en) * 1999-06-22 2009-05-26 Xyleco, Inc. Cellulosic and lignocellulosic materials and compositions and composites made therefrom
ES2369605T3 (en) 2004-11-29 2011-12-02 Inbicon A/S ENZYMATIC HYDROLYSIS OF BIOMASSES THAT HAVE A HIGH CONTENT OF DRY MATTER (MS).
US20150328347A1 (en) 2005-03-24 2015-11-19 Xyleco, Inc. Fibrous materials and composites
US7708214B2 (en) 2005-08-24 2010-05-04 Xyleco, Inc. Fibrous materials and composites
EP1869197A2 (en) * 2005-04-12 2007-12-26 E.I. Dupont De Nemours And Company Treatment of biomass to obtain ethanol
US7781191B2 (en) * 2005-04-12 2010-08-24 E. I. Du Pont De Nemours And Company Treatment of biomass to obtain a target chemical
US20070029252A1 (en) * 2005-04-12 2007-02-08 Dunson James B Jr System and process for biomass treatment
AU2006296353B2 (en) * 2005-09-30 2012-08-30 Renescience A/S Non-pressurised pre-treatment, enzymatic hydrolysis and fermentation of waste fractions
US20080274526A1 (en) 2007-05-02 2008-11-06 Bramucci Michael G Method for the production of isobutanol
US8945899B2 (en) 2007-12-20 2015-02-03 Butamax Advanced Biofuels Llc Ketol-acid reductoisomerase using NADH
WO2007089677A2 (en) * 2006-01-27 2007-08-09 University Of Massachusetts Systems and methods for producing biofuels and related materials
EP2013368B1 (en) * 2006-05-01 2014-11-12 Board Of Trustees Of Michigan State University Process for the treatment of lignocellulosic biomass
US8968515B2 (en) 2006-05-01 2015-03-03 Board Of Trustees Of Michigan State University Methods for pretreating biomass
US9206446B2 (en) 2006-05-01 2015-12-08 Board Of Trustees Of Michigan State University Extraction of solubles from plant biomass for use as microbial growth stimulant and methods related thereto
US8206970B2 (en) 2006-05-02 2012-06-26 Butamax(Tm) Advanced Biofuels Llc Production of 2-butanol and 2-butanone employing aminobutanol phosphate phospholyase
US7527941B1 (en) * 2006-05-24 2009-05-05 Clear Water Technologies, Inc. Process for producing ethyl alcohol from cellulosic materials
ATE529526T1 (en) * 2006-07-03 2011-11-15 Antonius Theodorus Wilhelminus Maria Hendriks PRETREATMENT OF BIOMASS
JP5190858B2 (en) * 2006-07-12 2013-04-24 独立行政法人農業・食品産業技術総合研究機構 Production method of low molecular weight carbohydrates from materials containing polysaccharides
US9499635B2 (en) 2006-10-13 2016-11-22 Sweetwater Energy, Inc. Integrated wood processing and sugar production
US8323923B1 (en) 2006-10-13 2012-12-04 Sweetwater Energy, Inc. Method and system for producing ethanol
WO2008048513A2 (en) * 2006-10-13 2008-04-24 Rowan University Ethanol resistant and furfural resistant strains of e. coli fbr5 for production of ethanol from cellulosic biomass
AU2013202819B2 (en) * 2006-10-26 2015-02-12 Xyleco, Inc. Processing biomass
EA025362B1 (en) 2006-10-26 2016-12-30 Ксилеко, Инк. Processing biomass
BRPI0717910A2 (en) * 2006-12-01 2013-11-05 Cellencor Inc TREATMENT OF CELLULOSTIC MATERIAL FOR ETHANOL PRODUCTION.
JP2008154497A (en) * 2006-12-22 2008-07-10 Japan Science & Technology Agency Method for producing transformant and new mutant of yeast
JP5109121B2 (en) * 2006-12-28 2012-12-26 国立大学法人 東京大学 Method for producing sugar, method for producing ethanol, method for producing lactic acid, cellulose for enzymatic saccharification used therein and method for producing the same
WO2008090156A1 (en) * 2007-01-23 2008-07-31 Basf Se Method for producing glucose by enzymatic hydrolysis of cellulose that is obtained from material containing ligno-cellulose using an ionic liquid that comprises a polyatomic anion
BRPI0807132A2 (en) * 2007-01-30 2018-12-04 Syngenta Participations Ag enzymes for the treatment of lignocellulosics, nucleic acids encoding them, and methods and use thereof
JP4984999B2 (en) * 2007-03-16 2012-07-25 独立行政法人産業技術総合研究所 Method for producing sugar
WO2008127629A1 (en) * 2007-04-14 2008-10-23 Gibbs Energy Llc Consortial growth of microorganisms for fuel feedstocks
AU2008242978B2 (en) 2007-04-18 2014-09-18 Butamax(Tm) Advanced Biofuels Llc Fermentive production of isobutanol using highly active ketol-acid reductoisomerase enzymes
EP2142573A4 (en) * 2007-04-19 2013-02-27 Mascoma Corp Combined thermochemical pretreatment and refining of lignocellulosic biomass
CN104450795A (en) 2007-04-24 2015-03-25 诺维信北美公司 Detoxifying Pre-Treated Lignocellulose-Containing Materials
US20080277082A1 (en) * 2007-05-07 2008-11-13 Andritz Inc. High pressure compressor and steam explosion pulping method
JP5385549B2 (en) * 2007-05-14 2014-01-08 大成建設株式会社 Preservation method of plant biomass
US20090011474A1 (en) * 2007-06-20 2009-01-08 Board Of Trustees Of Michigan State University Process for producing sugars from cellulosic biomass
US20090053771A1 (en) * 2007-08-22 2009-02-26 Board Of Trustees Of Michigan State University Process for making fuels and chemicals from AFEX-treated whole grain or whole plants
US7807419B2 (en) * 2007-08-22 2010-10-05 E. I. Du Pont De Nemours And Company Process for concentrated biomass saccharification
US7819976B2 (en) 2007-08-22 2010-10-26 E. I. Du Pont De Nemours And Company Biomass treatment method
US8445236B2 (en) * 2007-08-22 2013-05-21 Alliance For Sustainable Energy Llc Biomass pretreatment
BRPI0816191B1 (en) 2007-09-03 2020-12-29 Novozymes A/S process for converting a material containing lignocellulose into a hydrolyzate
US8580038B2 (en) * 2007-09-24 2013-11-12 Asher Vitner Ltd. Process for the recovery of a fermentation product
WO2009045527A1 (en) * 2007-10-03 2009-04-09 Michigan State University Improved process for producing sugars and ethanol using corn stillage
CA2701949A1 (en) * 2007-10-09 2009-04-16 Sunopta Bioprocess Inc. Two-stage enzymatic hydrolysis process for treating lignocellulosic materials
EP2207889A4 (en) * 2007-10-10 2014-04-02 Sunopta Bioprocess Inc Treatment of lignocellutosic materials utilizing disc refining and enzymatic hydrolysis performed under vacuum
WO2009048917A2 (en) * 2007-10-12 2009-04-16 Archer-Daniels-Midland Company Increased fiber hydrolysis by protease addition
CN101848920A (en) * 2007-10-17 2010-09-29 新日铁化学株式会社 Production methods for solubilized lignin, saccharide raw material and monosaccharide raw material, and solubilized lignin
ES2361385T3 (en) * 2007-10-30 2011-06-16 E. I. Du Pont De Nemours And Company PROCESS FOR THE PRODUCTION OF ETHANOL IN A MEDIUM THAT INCLUDES XYLOSA THAT USES A RECOMBINANT ZYMOMON CEPA WITH REDUCED HIMA EXPRESSION.
BRPI0817151A8 (en) * 2007-10-30 2018-12-11 Du Pont recombinant microorganism and process for generating the microorganism
JP2009112200A (en) * 2007-11-02 2009-05-28 Nippon Steel Engineering Co Ltd Method for producing ethanol
JP5088951B2 (en) * 2007-11-22 2012-12-05 新日鐵化学株式会社 Method for producing water-soluble saccharide raw material from beer-added koji
JP2009125050A (en) * 2007-11-28 2009-06-11 Jfe Engineering Corp Pretreatment method for enzymatic hydrolysis of herbaceous biomass, ethanol production method using herbaceous biomass as raw material and ethanol production method using palm hollow bunch
EP2237679A4 (en) * 2007-12-14 2014-01-01 Abengoa Bioenergy New Technologies Inc Improved quality and value of co-products of the ethanol production industry
NZ586014A (en) 2007-12-19 2012-07-27 Novozymes As Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
US9217163B2 (en) * 2007-12-24 2015-12-22 Reliance Life Sciences Pvt. Ltd. Process for production and quantitation of high yield of biobutanol
BRPI0907730A2 (en) * 2008-02-05 2015-07-14 Syngenta Participations Ag Systems and processes for biofuel production from biomass
JP2011514806A (en) * 2008-02-27 2011-05-12 クテロス, インコーポレイテッド A method for the conversion of plant materials into fuels and chemicals by the continuous action of two microorganisms
US8058039B2 (en) * 2008-03-13 2011-11-15 North American Bioproducts Corporation Use of erythromycin as a selective antimicrobial agent in the production of alcohols
US20090238920A1 (en) * 2008-03-21 2009-09-24 Lewis Ted C Process for making high grade protein product
CA2719023A1 (en) * 2008-03-21 2009-09-24 Danisco Us Inc. Hemicellulase enriched compositions for enhancing hydrolysis of biomass
WO2009122728A1 (en) * 2008-03-31 2009-10-08 超音波醸造所有限会社 Biomass alcohol manufacturing method
BRPI0910959B1 (en) * 2008-04-03 2021-02-09 Cellulose Sciences International, Inc method for disaggregating or de-aggregating cellulose, de-aggregating or disaggregated cellulose produced by said method, kit for carrying out the same and method for producing biofuels
WO2009124321A1 (en) * 2008-04-04 2009-10-08 University Of Massachusetts Methods and compositions for improving the production of fuels in microorganisms
CN101250567B (en) * 2008-04-16 2011-06-15 中国石油化工股份有限公司 Method for preparing monosaccharide by steam blasting lignocellulosic materials and synchronous hydrolysis with soluble oligosaccharide
WO2009134869A1 (en) * 2008-04-29 2009-11-05 Icm, Inc. Pretreatment of grain slurry with alpha-amylase and a hemicellulase blend prior to liquefaction
US8236535B2 (en) 2008-04-30 2012-08-07 Xyleco, Inc. Processing biomass
US8212087B2 (en) 2008-04-30 2012-07-03 Xyleco, Inc. Processing biomass
NZ601898A (en) 2008-04-30 2014-09-26 Xyleco Inc Processing biomass
US7931784B2 (en) 2008-04-30 2011-04-26 Xyleco, Inc. Processing biomass and petroleum containing materials
US8252566B2 (en) * 2008-05-20 2012-08-28 Jj Florida Properties Llc Ethanol production from citrus waste through limonene reduction
MX2010012736A (en) * 2008-05-20 2011-07-20 Jj Florida Properties Llc Removal of fermentation inhibiting compounds from citrus waste using solvent extraction and production of ethanol.
CN102317463B (en) 2008-06-09 2014-12-03 蓝瑟科技纽西兰有限公司 Production of butanediol by anaerobic microbial fermentation
WO2009152362A2 (en) * 2008-06-11 2009-12-17 University Of Massachusetts Methods and compositions for regulating sporulation
BRPI0915749A2 (en) * 2008-07-08 2018-07-10 Opx Biotechnologies Inc methods, compositions and systems for biosynthetic production of 1,4-butanediol
WO2010014976A2 (en) * 2008-08-01 2010-02-04 Mascoma Corporation Microbial treatment of lignocellulosic biomass
CN106978455A (en) * 2008-08-11 2017-07-25 帝斯曼知识产权资产管理有限公司 The degraded of ligno-cellulosic materials
US20110165639A1 (en) * 2008-08-15 2011-07-07 Brijen Biotech, Llc Refinery process to produce biofuels and bioenergy products from home and municipal solid waste
US8563282B2 (en) * 2008-08-27 2013-10-22 Edeniq, Inc. Materials and methods for converting biomass to biofuel
US20100068777A1 (en) * 2008-09-17 2010-03-18 Omnilytics, Incorporated Methods for producing biofuels and compositions for use in biofuel production methods
CA2735948A1 (en) 2008-09-29 2011-04-01 Butamaxtm Advanced Biofuels Llc Enhanced pyruvate to 2,3-butanediol conversion in lactic acid bacteria
BRPI0913552B1 (en) 2008-09-29 2020-09-29 Butamax Advanced Biofuels Llc METHOD FOR PRODUCTION OF ISOBUTANOL AND METHOD FOR CONVERSION OF 2,3-DIHYDROXY ISOVALERATE
AU2009296218A1 (en) * 2008-09-29 2010-04-01 Butamax(Tm) Advanced Biofuels Llc Enhanced dihydroxy-acid dehydratase activity in lactic acid bacteria
JP5846912B2 (en) 2008-09-29 2016-01-20 ビュータマックス・アドバンスド・バイオフューエルズ・エルエルシー Identification and use of bacterial [2Fe-2S] dihydroxy acid dehydratase
DK2344650T3 (en) 2008-09-30 2014-07-14 Novozymes North America Inc IMPROVEMENT OF ENZYMATIC HYDROLYSE OF TREATED LIGNOCELLULOSE-CONTAINING DISTILLERS DRIED GRAIN WITH SOLUBLES (DDG / S)
US8465964B2 (en) * 2008-11-13 2013-06-18 Butamax (TM) Advanced Biofules LLC Increased production of isobutanol in yeast with reduced mitochondrial amino acid biosynthesis
US8828694B2 (en) * 2008-11-13 2014-09-09 Butamax Advanced Biofuels Llc Production of isobutanol in yeast mitochondria
US8372609B2 (en) * 2008-11-20 2013-02-12 E I Du Pont De Nemours And Company Process for producing a sugar solution by combined chemical and enzymatic saccharification of polysaccharide enriched biomass
US8524474B2 (en) * 2008-11-20 2013-09-03 E I Du Pont De Nemours And Company Process for producing a concentrated sugar solution by enzymatic saccharification of polysaccharide enriched biomass
US8715969B2 (en) * 2008-11-20 2014-05-06 E I Du Pont De Nemours And Company Delignification of biomass with sequential base treatment
US8652823B2 (en) * 2008-12-03 2014-02-18 Butamax(Tm) Advanced Biofuels Llc Strain for butanol production with increased membrane unsaturated trans fatty acids
US7771983B2 (en) 2008-12-04 2010-08-10 Novozymos, Inc. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
US20100143995A1 (en) * 2008-12-04 2010-06-10 E. I. Du Pont De Nemours And Company Process for Fermentive Preparation of Alcohols and Recovery of Product
US20100143994A1 (en) * 2008-12-04 2010-06-10 E. I. Du Pont De Memours And Company Process for fermentive preparation of alcohols and recovery of product
US20100143999A1 (en) * 2008-12-04 2010-06-10 E.I. Du Pont De Nemours And Company Process for fermentive preparation of alcohols and recovery of product
US20100140166A1 (en) * 2008-12-04 2010-06-10 E.I. Du Pont De Nemours And Company Process for fermentive preparation of alcohols and recovery of product
US20100143993A1 (en) * 2008-12-04 2010-06-10 E.I. Du Pont De Nemours And Company Process for fermentive preparationfor alcolhols and recovery of product
US20100143992A1 (en) * 2008-12-04 2010-06-10 E. I Du Pont De Nemours And Company Process for Fermentive Preparation of Alcohols and Recovery of Product
CA2781862C (en) * 2008-12-09 2018-02-13 Sweetwater Energy, Inc. Ensiling biomass for biofuels production and multiple phase apparatus for hydrolyzation of ensiled biomass
SG172038A1 (en) 2008-12-09 2011-07-28 Toray Industries Method for producing sugar liquid
US8337663B2 (en) 2008-12-19 2012-12-25 Novozymes, Inc. Methods for increasing hydrolysis of cellulosic material
CN102325879A (en) 2008-12-19 2012-01-18 诺维信股份有限公司 Methods for increasing hydrolysis of cellulosic material in the presence of cellobiose dehydrogenase
WO2010080408A2 (en) 2008-12-19 2010-07-15 Novozymes, Inc. Methods for increasing enzymatic hydrolysis of cellulosic material in the presence of a peroxidase
US8241873B2 (en) * 2008-12-19 2012-08-14 E I Du Pont De Nemours And Company Organic solvent pretreatment of biomass to enhance enzymatic saccharification
US20100159521A1 (en) * 2008-12-19 2010-06-24 E. I. Du Pont De Nemours And Company Ozone treatment of biomass to enhance enzymatic saccharification
WO2010080428A1 (en) 2008-12-19 2010-07-15 Xyleco, Inc. Processing biomass
US8247208B2 (en) 2008-12-22 2012-08-21 Alliance For Sustainable Energy Llc Zymomonas with improved xylose utilization in stress conditions
CA2747492A1 (en) * 2008-12-22 2010-07-01 Mascoma Corporation Production of ethanol from lignocellulosic biomass
US9206434B2 (en) 2008-12-23 2015-12-08 Enchi Corporation Heterologous biomass degrading enzyme expression in thermoanaerobacterium saccharolyticum
WO2010078391A2 (en) 2008-12-30 2010-07-08 Novozymes North America, Inc. Improvement of enzymatic hydrolysis of pretreated lignocellulose-containing material with dissolved air flotation sludge
WO2010078392A2 (en) 2008-12-31 2010-07-08 Novozymes North America, Inc. Processes of producing fermentation products
JP2010161997A (en) * 2009-01-19 2010-07-29 Tech Corporation:Kk Method for producing saccharified liquid by using seed of assai palm and method for producing ethanol by using the saccharified liquid
JP5381119B2 (en) * 2009-01-23 2014-01-08 王子ホールディングス株式会社 Method for producing saccharides from bark raw material
WO2010088387A1 (en) 2009-01-28 2010-08-05 Novozymes, Inc. Polypeptides having beta-glucosidase activity and polynucleotides encoding same
WO2010088463A2 (en) 2009-01-30 2010-08-05 Novozymes, Inc. Polypeptides having expansin activity and polynucleotides encoding same
MX2011007981A (en) * 2009-02-03 2011-09-15 Hercules Inc Process for treating biomass to derivatize polysaccharides contained therein to increase their accessibility to hydrolysis and subsequent fermentation.
US8614085B2 (en) * 2009-02-27 2013-12-24 Butamax(Tm) Advanced Biofuels Llc Yeast with increased butanol tolerance involving a multidrug efflux pump gene
PL2403894T3 (en) 2009-03-03 2016-12-30 Bio-based polyethylene terephthalate packaging and method of making thereof
US20100086981A1 (en) * 2009-06-29 2010-04-08 Qteros, Inc. Compositions and methods for improved saccharification of biomass
CA2754910A1 (en) * 2009-03-09 2010-09-16 Qteros, Inc. Production of fermentive end products from clostridium sp.
EP2411511B1 (en) 2009-03-24 2018-08-08 Novozymes A/S Polypeptides having acetyl xylan esterase activity and polynucleotides encoding same
JP4818482B2 (en) * 2009-03-30 2011-11-16 三井造船株式会社 Method for producing saccharified liquid derived from cereal
US20160369304A9 (en) * 2009-05-18 2016-12-22 Poet Research, Inc. System for treatment of biomass to facilitate the production of ethanol
US8636402B2 (en) 2009-05-20 2014-01-28 Xyleco, Inc. Processing biomass
SG176154A1 (en) 2009-05-20 2011-12-29 Xyleco Inc Processing biomass
MX2011012357A (en) * 2009-05-21 2011-12-08 Univ Michigan State Methods for pretreating biomass.
MY168527A (en) 2009-05-26 2018-11-12 Arvind Mallinath Lali Method for production of fermentable sugars from biomass
AU2010253848C1 (en) 2009-05-29 2015-02-19 Novozymes, Inc. Methods for enhancing the degradation or conversion of cellulosic material
EP2438163B1 (en) 2009-06-02 2015-01-21 Novozymes Inc. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same
RU2011154243A (en) 2009-06-03 2013-07-20 ДАНИСКО ЮЭс ИНК. CELLULAR OPTIONS WITH IMPROVED EXPRESSION, ACTIVITY AND / OR STABILITY AND THEIR APPLICATION
US8669397B2 (en) 2009-06-13 2014-03-11 Rennovia, Inc. Production of adipic acid and derivatives from carbohydrate-containing materials
NZ596975A (en) 2009-06-13 2014-04-30 Rennovia Inc Production of adipic acid and derivatives from carbohydrate-containing materials
EP2440513B1 (en) 2009-06-13 2018-08-22 Archer-Daniels-Midland Company Production of glutaric acid and derivatives from carbohydrate-containing materials
BRPI1012835A2 (en) 2009-06-30 2015-09-15 Novozymes As process for converting a lignocellulose-containing material into a hydrolyzate.
WO2011005867A1 (en) 2009-07-07 2011-01-13 Novozymes, Inc. Polypeptides having cellulolytic enhancing activity activity and polynucleotides encoding same
CN102498401B (en) 2009-07-17 2015-12-02 诺维信公司 The method of Mierocrystalline cellulose decay is analyzed in cellulosic material hydrolysis
TWI676687B (en) * 2009-08-06 2019-11-11 奧地利商安尼基有限公司 Process for the production of carbohydrate cleavage products from a lignocellulosic material
JP2011037719A (en) * 2009-08-06 2011-02-24 Nippon Rensui Co Ltd Purification method of bioethanol and purification apparatus of bioethanol
US10457810B2 (en) 2009-08-24 2019-10-29 Board Of Trustees Of Michigan State University Densified biomass products containing pretreated biomass fibers
CA2760840C (en) 2009-08-24 2014-12-02 Board Of Trustees Of Michigan State University Pretreated densified biomass products and methods of making and using same
US8945245B2 (en) 2009-08-24 2015-02-03 The Michigan Biotechnology Institute Methods of hydrolyzing pretreated densified biomass particulates and systems related thereto
EP3805348A3 (en) 2009-09-17 2021-07-14 Novozymes, Inc. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
WO2011035029A1 (en) 2009-09-18 2011-03-24 Novozymes, Inc. Polypeptides having beta-glucosidase activity and polynucleotides encoding same
DK2480660T5 (en) 2009-09-23 2020-11-09 Danisco Us Inc STATUS UNKNOWN GLYCOSYL HYDROLASE ENZYMES AND USES
WO2011041402A1 (en) 2009-09-29 2011-04-07 Butamax(Tm) Advanced Biofuels Llc Improved flux to acetolactate-derived products in lactic acid bacteria
MX2012003473A (en) 2009-09-29 2012-05-22 Novozymes Inc Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same.
BR112012006939A2 (en) * 2009-09-29 2015-09-08 Butamax Tm Advanced Biofuels Recombinant yeast production host cell and method for producing a product selected from the group consisting of 2,3-butanediol, isobutanol, 2-butanol, 1-butanol, 2-butanone, valine, leucine, lactic acid, malic acid , alcohol, isoampyl and isoprenoids
EP2483403B1 (en) 2009-09-29 2017-11-15 Novozymes Inc. Polypeptides having xylanase activity and polynucleotides encoding same
US20110244536A1 (en) 2009-09-29 2011-10-06 Butamax(Tm) Advanced Biofuels Llc Fermentive production of isobutanol using highly effective ketol-acid reductoisomerase enzymes
EP2483296B1 (en) 2009-09-30 2015-07-29 Novozymes Inc. Polypeptides derived from thermoascus crustaceus having cellulolytic enhancing activity and polynucleotides encoding same
EP2483402A1 (en) 2009-09-30 2012-08-08 Novozymes A/S Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
US20110195505A1 (en) * 2009-10-08 2011-08-11 Butamax(Tm) Advanced Biofuels Llc Bacterial strains for butanol production
WO2011046818A2 (en) 2009-10-12 2011-04-21 E. I. Du Pont De Nemours And Company Ammonia pretreatment of biomass for improved inhibitor profile
CA2775355A1 (en) 2009-10-12 2011-04-21 E. I. Du Pont De Nemours And Company Methods to improve monomeric sugar release from lignocellulosic biomass following alkaline pretreatment
MX2012004423A (en) * 2009-10-14 2012-06-27 Xyleco Inc Producing edible residues from ethanol production.
CN102597228A (en) 2009-10-23 2012-07-18 诺维信股份有限公司 Cellobiohydrolase variants and polynucleotides encoding same
CN102666847B (en) 2009-10-29 2015-12-09 诺维信股份有限公司 There are the polypeptide of cellobiohydrolase activity and the polynucleotide of this polypeptide of coding
WO2011053965A2 (en) 2009-11-02 2011-05-05 Hercules Incorporated Process for treating biomass to increase accessibility of polysaccharides contained therein to hydrolysis and subsequent fermentation, and polysaccharides with increased accessibility
EP3550016B1 (en) 2009-11-06 2022-05-04 Novozymes, Inc. Composition for saccharification of cellulosic material
US9534211B2 (en) 2009-11-06 2017-01-03 Novozymes A/S Polypeptides having xylanase activity and polynucleotides encoding same
CN103068976A (en) 2009-11-06 2013-04-24 诺维信股份有限公司 Polypeptides having cellobiohydrolase activity and polynucleotides encoding same
WO2011063308A2 (en) 2009-11-20 2011-05-26 Danisco Us Inc. Beta-glucosidase i variants with improved properties
CA2781400A1 (en) * 2009-11-20 2011-05-26 Opx Biotechnologies, Inc. Production of an organic acid and/or related chemicals
BRPI0904538B1 (en) 2009-11-30 2018-03-27 Ctc - Centro De Tecnologia Canavieira S.A. VEGETABLE BIOMASS TREATMENT PROCESS
EP2333151A1 (en) * 2009-12-11 2011-06-15 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Novel method for processing lignocellulose containing material
WO2011081658A2 (en) * 2009-12-15 2011-07-07 Qteros, Inc. Methods and compositions for producing chemical products from c. phytofermentants
US8628623B2 (en) * 2009-12-21 2014-01-14 Andritz Technology And Asset Management Gmbh Method and process for dry discharge in a pressurized pretreatment reactor
WO2011080154A1 (en) 2009-12-21 2011-07-07 Novozymes A/S Biomass hydrolysis process
US8906204B2 (en) 2009-12-21 2014-12-09 Butamax Advanced Biofuels Llc Methods for alcohol recovery and concentration of stillage by-products
JP2011130680A (en) * 2009-12-22 2011-07-07 Ajinomoto Co Inc Method for producing sugar solution from residue of sugarcane-squeezed juice
CN107287250A (en) 2009-12-23 2017-10-24 丹尼斯科美国公司 The method for improving simultaneous saccharification and fermentation reaction efficiency
US8647850B2 (en) * 2009-12-23 2014-02-11 E I Du Pont De Nemours And Company Process for simultaneous saccharification and fermentation for production of ethanol
CA2785660A1 (en) 2009-12-29 2011-07-07 Butamax(Tm) Advanced Biofuels Llc Expression of hexose kinase in recombinant host cells
CA2784903A1 (en) 2009-12-29 2011-07-28 Butamax(Tm) Advanced Biofuels Llc Alcohol dehydrogenases (adh) useful for fermentive production of lower alkyl alcohols
EP2529036B1 (en) * 2010-01-27 2017-11-22 Council of Scientific & Industrial Research A one pot and single step hydrolytic process for the conversion of lignocellulose into value added chemicals
CA2788548A1 (en) 2010-01-29 2011-08-04 Novozymes A/S Biogas production process with enzymatic pre-treatment
US20130052709A1 (en) * 2010-02-09 2013-02-28 Syngenta Participations Ag Systems and processes for producing biofuels from biomass
US8574406B2 (en) 2010-02-09 2013-11-05 Butamax Advanced Biofuels Llc Process to remove product alcohol from a fermentation by vaporization under vacuum
NZ601241A (en) 2010-02-17 2014-08-29 Butamax Tm Advanced Biofuels Improving activity of fe-s cluster requiring proteins
US9034627B2 (en) 2010-03-01 2015-05-19 Toray Industries, Inc. Method for producing glucosidase, enzyme composition, and method for hydrolyzing biomass
US8669393B2 (en) 2010-03-05 2014-03-11 Rennovia, Inc. Adipic acid compositions
JPWO2011111451A1 (en) 2010-03-10 2013-06-27 東レ株式会社 Method for producing purified sugar aqueous solution and method for producing chemical product
KR101778111B1 (en) 2010-03-15 2017-09-13 도레이 카부시키가이샤 Manufacturing method for sugar solution and device for same
JP5970813B2 (en) 2010-03-15 2016-08-17 東レ株式会社 Production method and apparatus for sugar solution
GB2478791A (en) * 2010-03-19 2011-09-21 Qteros Inc Ethanol production by genetically-modified bacteria
EP3070171B1 (en) 2010-03-30 2018-06-13 Novozymes A/S Process for enhancing by-products from fermentation processes
EP2553093B1 (en) 2010-03-31 2017-06-21 Novozymes, Inc. Cellobiohydrolase variants and polynucleotides encoding same
AU2011242896C1 (en) 2010-04-19 2016-04-21 Board Of Trustees Of Michigan State University Digestible lignocellulosic biomass and extractives and methods for producing same
US8906235B2 (en) * 2010-04-28 2014-12-09 E I Du Pont De Nemours And Company Process for liquid/solid separation of lignocellulosic biomass hydrolysate fermentation broth
CN101824439A (en) * 2010-04-28 2010-09-08 江苏绿丰生物药业有限公司 Method for fermentation preparation of L-lactic acid after microwave-alkali coupling pretreatment of distilled grain
US8721794B2 (en) 2010-04-28 2014-05-13 E I Du Pont De Nemours And Company Production of high solids syrup from lignocellulosic biomass hydrolysate fermentation broth
CN101824339B (en) * 2010-05-12 2014-05-07 哈尔滨理工大学 Ethanol/water mixed solvent preprocessing biomass and method for preparing liquid fuel
JP5587028B2 (en) * 2010-05-12 2014-09-10 本田技研工業株式会社 Lignocellulosic biomass saccharification pretreatment equipment
WO2011153449A1 (en) 2010-06-03 2011-12-08 Danisco Us Inc. Filamentous fungal host strains and dna constructs, and methods of use thereof
AU2011264855B2 (en) * 2010-06-08 2016-11-10 Zilkha Biomass Technologies Llc Methods for the manufacture of fuel pellets and other products from lignocellulosic biomass
CA2800996A1 (en) 2010-06-10 2011-12-15 Arvind Mallinath Lali Process for fractionation of biomass
US9770705B2 (en) 2010-06-11 2017-09-26 Rennovia Inc. Oxidation catalysts
US8389243B2 (en) * 2010-06-16 2013-03-05 Catchlight Energy Llc Methods of spraying saccharification enzymes and fermentation organisms onto lignocellulosic biomass for hydrolysis and fermentation processes
US9012190B2 (en) 2011-06-15 2015-04-21 Butamax Advanced Biofuels Llc Use of thiamine and nicotine adenine dinucleotide for butanol production
KR20130087013A (en) 2010-06-18 2013-08-05 부타맥스 어드밴스드 바이오퓨얼스 엘엘씨 Extraction solvents derived from oil for alcohol removal in extractive fermentation
AU2011268215B2 (en) 2010-06-18 2014-10-23 Butamax(Tm) Advanced Biofuels Llc Supplementation of fatty acids for improving alcohol productivity
US8871488B2 (en) 2010-06-18 2014-10-28 Butamax Advanced Biofuels Llc Recombinant host cells comprising phosphoketolases
US9040263B2 (en) 2010-07-28 2015-05-26 Butamax Advanced Biofuels Llc Production of alcohol esters and in situ product removal during alcohol fermentation
JP2012005382A (en) * 2010-06-23 2012-01-12 Equos Research Co Ltd Biomass hydrolyzing device
CA2798853A1 (en) 2010-06-24 2011-12-29 Toray Industries, Inc. Process for production of aqueous refined sugar solution
BR112012032999B1 (en) 2010-06-26 2022-11-29 Virdia, Llc LIGNOCELLULOSIS HYDROLYZATE AND ACID HYDROLYSIS AND DEACIDIFICATION METHODS TO GENERATE SUGAR MIXTURES FROM LIGNOCELLULOSE
IL206678A0 (en) 2010-06-28 2010-12-30 Hcl Cleantech Ltd A method for the production of fermentable sugars
JP2012010638A (en) * 2010-06-30 2012-01-19 Honda Motor Co Ltd Process for producing saccharified solution of lignocellulosic biomass
EP2588604B1 (en) 2010-06-30 2016-06-29 Novozymes, Inc. Polypeptides having beta-glucosidase activity and polynucleotides encoding same
US20130230624A1 (en) * 2010-07-01 2013-09-05 Commonwealth Scientific And Industrial Research Organisation Treatment of plant biomass
US9079124B2 (en) 2010-07-05 2015-07-14 Honda Motor Co., Ltd. Presaccharification treatment device for lignocellulosic biomass
JP5779323B2 (en) * 2010-07-05 2015-09-16 本田技研工業株式会社 Pre-saccharification method for lignocellulosic biomass
JP5713591B2 (en) * 2010-07-05 2015-05-07 本田技研工業株式会社 Saccharification pretreatment equipment for lignocellulosic biomass
CA2804683C (en) 2010-07-07 2018-10-23 Novozymes North America, Inc. Fermentation process
JP2012019730A (en) * 2010-07-14 2012-02-02 Honda Motor Co Ltd Lignocellulosic biomass saccharification pre-treatment device
US8651403B2 (en) 2010-07-21 2014-02-18 E I Du Pont De Nemours And Company Anhydrous ammonia treatment for improved milling of biomass
WO2012012590A2 (en) 2010-07-23 2012-01-26 Novozymes A/S Processes for producing fermentation products
IL207329A0 (en) 2010-08-01 2010-12-30 Robert Jansen A method for refining a recycle extractant and for processing a lignocellulosic material and for the production of a carbohydrate composition
WO2012021408A1 (en) 2010-08-12 2012-02-16 Novozymes, Inc. Compositions comprising a polypeptide having cellulolytic enhancing activity and a dioxy compound and uses thereof
CA2807702C (en) 2010-08-20 2018-07-24 Codexis, Inc. Use of glycoside hydrolase 61 family proteins in processing of cellulose
US8629325B2 (en) 2010-08-30 2014-01-14 Novozymes A/S Polypeptides having beta-glucosidase activity and polynucleotides encoding same
US9187742B2 (en) 2010-08-30 2015-11-17 Novozymes, Inc. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same
WO2012030844A1 (en) 2010-08-30 2012-03-08 Novozymes A/S Polypeptides having endoglucanase activity and polynucleotides encoding same
US20130212746A1 (en) 2010-08-30 2013-08-15 Novoyzmes A/S Polypeptides Having Hemicellulolytic Activity And Polynucleotides Encoding Same
US9303074B2 (en) 2010-08-30 2016-04-05 Novoyzmes A/S Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
US8624082B2 (en) 2010-08-30 2014-01-07 Novozymes A/S Polypeptides having xylanase activity and polynucleotides encoding same
CA2807930A1 (en) 2010-09-02 2012-03-08 Butamax (Tm) Advanced Buofuels Llc Process to remove product alcohol from a fermentation by vaporization under vacuum
IL207945A0 (en) 2010-09-02 2010-12-30 Robert Jansen Method for the production of carbohydrates
CA2811311A1 (en) 2010-09-14 2012-03-22 Cellulose Sciences International, Inc. Nano-deaggregated cellulose
EP2622068B1 (en) 2010-09-30 2016-07-20 Novozymes, Inc. Variants of polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
CN103237891B (en) 2010-09-30 2017-07-14 诺维信股份有限公司 Polypeptide variants and its coded polynucleotide with cellulolytic enhancing activity
CN103221538B (en) 2010-10-01 2016-06-22 诺维信股份有限公司 β-glucosyl enzym variant and coded polynucleotide thereof
CA2811787A1 (en) 2010-10-06 2012-04-19 Bp Corporation North America Inc. Variant cbh i polypeptides
US10334870B2 (en) 2010-10-07 2019-07-02 Tropicana Products, Inc. Processing of whole fruits and vegetables, processing of side-stream ingredients of fruits and vegetables, and use of the processed fruits and vegetables in beverage and food products
DK2627763T3 (en) * 2010-10-15 2016-06-13 Andritz Tech And Asset Man Gmbh Enzyme reactor or mixer with high solid content and procedure
BR112013009817B1 (en) 2010-10-26 2020-02-04 Novozymes As methods to degrade or convert sugar cane refuse, to produce a fermentation product, and to ferment sugar cane refuse
WO2012061517A1 (en) 2010-11-02 2012-05-10 Novozymes, Inc. Methods of pretreating cellulosic material with a gh61 polypeptide
US9068235B2 (en) 2010-11-02 2015-06-30 Codexis, Inc. Fungal strains
BR112013010812A2 (en) 2010-11-02 2016-07-12 Codexis Inc compositions and methods for producing fermentable sugars.
WO2012059053A1 (en) 2010-11-04 2012-05-10 Novozymes A/S Polypeptides having cellobiohydrolase activity and polynucleotides encoding same
WO2012062220A1 (en) 2010-11-12 2012-05-18 Novozymes A/S Polypeptides having endoglucanase activity and polynucleotides encoding same
MX2013004758A (en) 2010-11-18 2013-06-28 Novozymes Inc Chimeric polypeptides having cellulolytic enhancing activity and polynucleotides encoding same.
US8444810B2 (en) 2010-11-21 2013-05-21 Aicardo Roa-Espinosa Apparatus and process for treatment of fibers
US20120125551A1 (en) * 2010-11-23 2012-05-24 E. I. Du Pont De Nemours And Company Biomass pretreatment process for a packed bed reactor
US20120125548A1 (en) * 2010-11-23 2012-05-24 E. I. Du Pont De Nemours And Company Continuously fed biomass pretreatment process for a packed bed reactor
WO2012078656A1 (en) 2010-12-06 2012-06-14 Novozymes North America, Inc. Methods of hydrolyzing oligomers in hemicellulosic liquor
PT106039A (en) 2010-12-09 2012-10-26 Hcl Cleantech Ltd PROCESSES AND SYSTEMS FOR PROCESSING LENHOCELLULOSIC MATERIALS AND RELATED COMPOSITIONS
US8476048B2 (en) 2010-12-17 2013-07-02 E I Du Pont De Nemours And Company Xylose utilizing zymomonas mobilis with improved ethanol production in biomass hydrolysate medium
WO2012093041A1 (en) 2011-01-04 2012-07-12 Novozymes A/S Process for producing biogas from pectin and lignocellulose containing material
CN103517986B (en) 2011-01-26 2016-12-07 诺维信公司 There is the polypeptide of cellobiohydrolase activity and encode the polynucleotide of this polypeptide
EP2668266B1 (en) 2011-01-26 2018-01-03 Novozymes A/S Polypeptides having cellobiohydrolase activity and polynucleotides encoding same
WO2012103322A1 (en) 2011-01-26 2012-08-02 Novozymes A/S Polypeptides having endoglucanase activity and polynucleotides encoding same
MX2013007720A (en) 2011-01-26 2013-08-09 Novozymes As Polypeptides having cellobiohydrolase activity and polynucleotides encoding same.
BR112013019038B1 (en) 2011-01-26 2021-03-30 Novozymes A/S TRANSGENIC MICROBIAL HOSTING CELL, METHODS TO PRODUCE A POLYPEPTIDE, TO PRODUCE A PROTEIN, TO DEGRAD A CELLULOSIC MATERIAL, TO PRODUCE A PRODUCT OF FERMENTATION, AND TO FERMENT A CELLULOSIC MATERIAL, AND EXECUTION OF NUTRITION, OR, CONSTRUCTION
EP2670853B1 (en) 2011-01-31 2017-05-24 Novozymes North America, Inc. Processes for enzymatic refining of pretreated cellulosic material for saccharification
US20130040340A1 (en) 2011-02-07 2013-02-14 E. I. Du Pont De Nemours And Company Production of alcohol esters in situ using alcohols and fatty acids produced by microorganisms
EP3287527A1 (en) * 2011-02-14 2018-02-28 Xyleco, Inc. Processing paper feedstocks
MX2013007997A (en) 2011-02-23 2013-08-21 Novozymes Inc Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same.
CN103619885B (en) 2011-02-28 2018-02-27 卡德纳生物有限公司 Polymer acid catalyst and application thereof
JP5867911B2 (en) * 2011-03-02 2016-02-24 日立造船株式会社 Method for producing ethanol from waste
CA2828505A1 (en) 2011-03-03 2012-09-07 Toray Industries, Inc. Method for producing sugar solution
CN103608461B (en) 2011-03-09 2016-08-03 诺维信公司 The method increasing the cellulolytic enhancing activity of polypeptide
US9409958B2 (en) 2011-03-10 2016-08-09 Novozymes, Inc. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
SG192097A1 (en) 2011-03-17 2013-08-30 Danisco Us Inc Cellulase compositions and methods of using the same for improved conversion of lignocellulosic biomass into fermentable sugars
RU2013146245A (en) 2011-03-17 2015-04-27 ДАНИСКО ЮЭс ИНК. METHOD FOR REDUCING VISCOSITY IN THE SUGARING PROCESS
WO2012125937A2 (en) * 2011-03-17 2012-09-20 Danisco Us Inc. Glycosyl hydrolase enzymes and uses thereof for biomass hydrolysis
CA2868113A1 (en) 2011-03-22 2012-09-27 Opx Biotechnologies, Inc. Microbial production of chemical products and related compositions, methods and systems
US8765425B2 (en) 2011-03-23 2014-07-01 Butamax Advanced Biofuels Llc In situ expression of lipase for enzymatic production of alcohol esters during fermentation
US8759044B2 (en) 2011-03-23 2014-06-24 Butamax Advanced Biofuels Llc In situ expression of lipase for enzymatic production of alcohol esters during fermentation
KR20140092759A (en) 2011-03-24 2014-07-24 부타맥스 어드밴스드 바이오퓨얼스 엘엘씨 Host cells and methods for production of isobutanol
DK2689011T3 (en) 2011-03-25 2018-01-22 Novozymes As PROCEDURE FOR DEGRADATION OR CONVERSION OF CELLULOSE-SUBSTANCING MATERIAL
AU2012233630B2 (en) 2011-03-29 2016-06-09 Toray Industries, Inc. Method for manufacturing sugar solution
US10179924B2 (en) 2011-03-29 2019-01-15 Toray Industries, Inc. Method for producing sugar solution
WO2012135719A1 (en) 2011-03-31 2012-10-04 Novozymes, Inc. Cellulose binding domain variants and polynucleotides encoding same
WO2012135659A2 (en) 2011-03-31 2012-10-04 Novozymes A/S Methods for enhancing the degradation or conversion of cellulosic material
US8765426B2 (en) 2011-04-07 2014-07-01 E I Du Pont De Nemours And Company Pantothenic acid biosynthesis in zymomonas
EP2694594A4 (en) 2011-04-07 2015-11-11 Virdia Ltd Lignocellulose conversion processes and products
MX2013012195A (en) 2011-04-18 2014-06-23 Poet Res Inc Systems and methods for stillage fractionation.
CA2834513A1 (en) 2011-04-28 2012-11-01 Novozymes, Inc. Polypeptides having endoglucanase activity and polynucleotides encoding same
MX2013011827A (en) 2011-04-29 2014-01-08 Novozymes Inc Methods for enhancing the degradation or conversion of cellulosic material.
EP2710132A1 (en) 2011-05-19 2014-03-26 Novozymes, Inc. Methods for enhancing the degradation of cellulosic material with chitin binding proteins
WO2012159009A1 (en) 2011-05-19 2012-11-22 Novozymes, Inc. Methods for enhancing the degradation of cellulosic material with chitin binding proteins
BR112013032320A2 (en) 2011-06-17 2016-12-20 Butamax Advanced Biofuels Llc butanol production method and composition, butanol and isobutanol composition, method of culturing a butanol producing microorganism in lignocellulosic material and method for inhibiting the growth of non-butanol producing microorganisms in a composition
ES2617970T3 (en) 2011-06-17 2017-06-20 Butamax Advanced Biofuels Llc Co-products of biofuel production processes and preparation methods
WO2013000945A1 (en) 2011-06-28 2013-01-03 Novozymes A/S Biogas from enzyme-treated bagasse
US8329455B2 (en) 2011-07-08 2012-12-11 Aikan North America, Inc. Systems and methods for digestion of solid waste
BR112013032861A2 (en) * 2011-07-22 2017-01-24 Novozymes North America Inc methods for increasing cellulolytic enzyme activity during hydrolysis of cellulosic material, for hydrolyzing a pretreated cellulosic material, for producing a fermentation product, and for fermenting a pretreated cellulosic material
JP6093764B2 (en) 2011-07-28 2017-03-08 ビュータマックス・アドバンスド・バイオフューエルズ・エルエルシー Ketoisovalerate decarboxylase enzyme and method of use thereof
JP6020171B2 (en) 2011-07-29 2016-11-02 東レ株式会社 Method for producing filter aid
DK2749656T3 (en) 2011-07-29 2016-06-06 Toray Industries Process for preparing sugar solution
WO2013019780A2 (en) 2011-08-04 2013-02-07 Novozymes A/S Polypeptides having endoglucanase activity and polynucleotides encoding same
DK2739727T3 (en) 2011-08-04 2016-08-22 Novozymes Inc Polypeptides having xylanase activity and polynucleotides encoding them
CN102391065B (en) * 2011-08-09 2014-02-05 山东省鲁洲食品集团有限公司 Method for producing dihydric alcohol and low molecular polyalcohol by taking corn husk as raw material
EP2748317B1 (en) 2011-08-22 2017-04-19 Codexis, Inc. Gh61 glycoside hydrolase protein variants and cofactors that enhance gh61 activity
US9663772B2 (en) 2011-08-24 2017-05-30 Novozymes, Inc. Aspergillus fumigatus cellulolytic enzyme compositions and uses thereof
WO2013028928A1 (en) 2011-08-24 2013-02-28 Novozymes, Inc. Cellulolytic enzyme compositions and uses thereof
CN102321646B (en) * 2011-09-08 2013-06-05 深圳大学 Beta-endoglucanase PEGase-2 gene, its expressed products and application
US9670510B2 (en) 2011-09-13 2017-06-06 Novozymes A/S Methods of hydrolyzing and fermenting cellulosic material
US9499783B2 (en) 2011-09-14 2016-11-22 Toray Industries, Inc. Production apparatus of sugar solution and production system of sugar solution
US20140308705A1 (en) 2011-09-20 2014-10-16 Novozymes A/S Polypeptides Having Cellulolytic Enhancing Activity And Polynucleotides Encoding Same
WO2013043981A1 (en) 2011-09-23 2013-03-28 Novozymes A/S Cellulolytic enzyme compositions and uses thereof
US20130084608A1 (en) 2011-09-30 2013-04-04 Codexis, Inc. Fungal proteases
EP2760885B1 (en) 2011-09-30 2017-07-26 Novozymes, Inc. Chimeric polypeptides having beta-glucosidase activity and polynucleotides encoding same
AR088257A1 (en) 2011-10-06 2014-05-21 Bp Corp North America Inc CBH POLYPEPTIDES (CELOBIOHIDROLASAS) I VARIANTS WITH REDUCED PRODUCT INHIBITION
US9617608B2 (en) 2011-10-10 2017-04-11 Virdia, Inc. Sugar compositions
EP2773656B1 (en) 2011-10-31 2019-06-19 Novozymes, Inc. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
US20130109055A1 (en) 2011-10-31 2013-05-02 Bp Corporation North America Inc. Use of mammalian promoters in filamentous fungi
US9249418B2 (en) 2011-10-31 2016-02-02 Bp Corporation North America Inc. Use of plant promoters in filamentous fungi
WO2013074956A2 (en) 2011-11-18 2013-05-23 Novozymes, Inc. Polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and polynucleotides encoding same
BR112014012165A2 (en) 2011-11-21 2020-06-23 Novozymes, Inc. VARIANT TO A GH61 POLYPEPTIDE, ISOLATED POLYNUCLEOTIDE, RECOMBINANT HOSTING CELL, METHOD FOR PRODUCTION OF A VARIANT TO A GH61 POLYPEPTIDE, PROCESSES FOR THE DEGRADATION OR CONVERSION OF A CELENTULATIC MATERIAL, FOR THE PRODUCTION OF A CELENTULATIC MATERIAL, FOR CELLULATION PRODUCT, ENZYMATIC COMPOSITION, COMPLETE BREATH FORMULATION, OR CELL CULTURE COMPOSITION, DETERGENT COMPOSITION, AND METHOD OF CLEANING OR WASHING A HARD SURFACE OR CLOTHING.
WO2013075644A1 (en) 2011-11-22 2013-05-30 Novozymes, Inc. Polypeptides having beta-xylosidase activity and polynucleotides encoding same
DK2785732T3 (en) 2011-12-01 2017-06-19 Novozymes Inc POLYPEPTIDES WITH BETA-XYLOSIDASE ACTIVITY AND POLYNUCLEOTIDES CODING THEM
WO2013082616A2 (en) 2011-12-02 2013-06-06 Bp Corporation North America Inc. Compositions and methods for biomass liquefaction
US9962623B2 (en) 2011-12-09 2018-05-08 Butamax Advanced Biofuels Llc Process to remove product alcohols from fermentation broth
WO2013083801A2 (en) 2011-12-09 2013-06-13 Novozymes A/S Biogas from substrates comprising animal manure and enzymes
EP3272862A1 (en) 2011-12-16 2018-01-24 Novozymes, Inc. Polypeptides having laccase activity and polynucleotides encoding same
WO2013091547A1 (en) 2011-12-19 2013-06-27 Novozymes, Inc. Polypeptides having catalase activity and polynucleotides encoding same
CA2859796A1 (en) 2011-12-19 2013-06-27 Novozymes A/S Processes and compositions for increasing the digestibility of cellulosic materials
WO2013096082A1 (en) 2011-12-20 2013-06-27 Codexis, Inc. Fatty alcohol forming acyl reductase (far) variants and methods of use
EP2794869B1 (en) 2011-12-20 2017-10-04 Novozymes, Inc. Cellobiohydrolase variants and polynucleotides encoding same
BR112014015030A2 (en) 2011-12-20 2017-06-13 Codexis Inc endoflucanase variants 1b (eg1b)
WO2013096652A1 (en) 2011-12-21 2013-06-27 Novozymes, Inc. Methods for determining the degradation of a biomass material
CA2863537C (en) * 2011-12-30 2021-02-09 Slo-Iron, LLC Methods for isolation, use and analysis of ferritin
AU2012362274A1 (en) 2011-12-30 2014-07-03 Butamax (Tm) Advanced Biofuels Llc Fermentative production of alcohols
CA2862450A1 (en) 2011-12-30 2013-07-04 Butamax Advanced Biofuels Llc Genetic switches for butanol production
US8765430B2 (en) 2012-02-10 2014-07-01 Sweetwater Energy, Inc. Enhancing fermentation of starch- and sugar-based feedstocks
CN104254601A (en) 2012-02-13 2014-12-31 Bp北美公司 Methods for detoxifying a lignocellulosic hydrolysate
CN104254613A (en) 2012-02-13 2014-12-31 Bp北美公司 Methods for detoxifying a lignocellulosic hydrolysate
US10202660B2 (en) 2012-03-02 2019-02-12 Board Of Trustees Of Michigan State University Methods for increasing sugar yield with size-adjusted lignocellulosic biomass particles
CA2868154A1 (en) 2012-03-20 2013-09-26 The Research Foundation For The State University Of New York Flocculation of lignocellulosic hydrolyzates
KR20140146616A (en) 2012-03-23 2014-12-26 부타맥스 어드밴스드 바이오퓨얼스 엘엘씨 Acetate supplemention of medium for butanologens
BR112014022278A2 (en) 2012-03-26 2017-07-11 Novozymes North America Inc preconditioning method of unwashed pre-treated cellulosic material, and processes for producing a fermentation product and a sugar
US8563277B1 (en) 2012-04-13 2013-10-22 Sweetwater Energy, Inc. Methods and systems for saccharification of biomass
JP6004321B2 (en) * 2012-04-18 2016-10-05 日立造船株式会社 Methods for controlling the growth of miscellaneous bacteria in ethanol fermentation of moss
US20150133698A1 (en) 2012-04-20 2015-05-14 Codexis, Inc. Production of fatty alcohols from engineered microorganisms
US9446102B2 (en) 2012-04-23 2016-09-20 Novozymes A/S Polypeptides having alpha-glucuronidase activity and polynucleotides encoding same
WO2013160247A2 (en) 2012-04-23 2013-10-31 Novozymes A/S Polypeptides having glucuronyl esterase activity and polynucleotides encoding same
CN113234695A (en) 2012-04-27 2021-08-10 诺维信股份有限公司 GH61 polypeptide variants and polynucleotides encoding same
CA2870567A1 (en) 2012-05-04 2013-11-07 Butamax Advanced Biofuels Llc Processes and systems for alcohol production and recovery
US9169467B2 (en) 2012-05-11 2015-10-27 Butamax Advanced Biofuels Llc Ketol-acid reductoisomerase enzymes and methods of use
US8715464B2 (en) * 2012-05-21 2014-05-06 Pure Pulp Products, Inc. Soy stalk and wheat straw pulp fiber mixtures
JP2013243954A (en) * 2012-05-24 2013-12-09 Kao Corp Xylanase and method for producing sugar therewith
JP2013243953A (en) * 2012-05-24 2013-12-09 Kao Corp Xylanase and method for producing sugar therewith
FR2991691B1 (en) 2012-06-08 2016-01-22 Toulouse Inst Nat Polytech PROCESS FOR ENZYMATIC TREATMENT OF SOLID LIGNOCELLULOSIC MATERIAL
CN102720083A (en) * 2012-06-11 2012-10-10 中国科学院过程工程研究所 Method for pretreating biomass by ball milling coupled with microwave
US8956844B2 (en) 2012-06-11 2015-02-17 Codexis, Inc. Fungal xylanases and xylosidases
MX2014015231A (en) * 2012-06-12 2015-04-10 Renescience As Methods and compositions for biomethane production.
UA116630C2 (en) * 2012-07-03 2018-04-25 Ксілеко, Інк. METHOD OF CONVERTING SUGAR TO FURFURYL ALCOHOL
US9650655B2 (en) 2012-07-20 2017-05-16 Codexis, Inc. Production of fatty alcohols from engineered microorganisms
US20140024064A1 (en) 2012-07-23 2014-01-23 Butamax(Tm) Advanced Biofuels Llc Processes and systems for the production of fermentative alcohols
JP5981263B2 (en) * 2012-08-09 2016-08-31 本田技研工業株式会社 Method for producing saccharification solution
CN104718282A (en) 2012-08-10 2015-06-17 Opx生物工艺学公司 Microorganisms and methods for the production of fatty acids and fatty acid derived products
AU2013305714A1 (en) 2012-08-22 2015-02-05 Butamax Advanced Biofuels Llc Production of fermentation products
US9238845B2 (en) 2012-08-24 2016-01-19 Midori Usa, Inc. Methods of producing sugars from biomass feedstocks
CN104919050A (en) 2012-09-12 2015-09-16 布特马斯先进生物燃料有限责任公司 Processes and systems for the production of fermentation products
WO2014092832A2 (en) 2012-09-19 2014-06-19 Novozymes, Inc. Methods for enhancing the degradation or conversion of cellulosic material
WO2014047412A1 (en) 2012-09-21 2014-03-27 Butamax(Tm) Advanced Biofuels Llc A method for producing butanol using two-phase extractive fermentation and recyclable extractant compositions
JP6407869B2 (en) 2012-09-26 2018-10-17 ビュータマックス・アドバンスド・バイオフューエルズ・エルエルシー Polypeptide having ketol acid reductoisomerase activity
AU2013323396B2 (en) 2012-09-28 2017-04-20 Butamax Advanced Biofuels Llc Production of fermentation products
US9273330B2 (en) 2012-10-03 2016-03-01 Butamax Advanced Biofuels Llc Butanol tolerance in microorganisms
EP2903412B1 (en) 2012-10-08 2019-09-11 Novozymes A/S Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
MX360035B (en) 2012-10-10 2018-10-19 Xyleco Inc Processing biomass.
CN109402192A (en) 2012-10-10 2019-03-01 希乐克公司 Treatment of biomass
WO2014059273A1 (en) 2012-10-11 2014-04-17 Butamax Advanced Biofuels Llc Processes and systems for the production of fermentation products
DE102012020166A1 (en) * 2012-10-13 2014-04-30 Green Sugar Gmbh Produktinnovationen Aus Biomasse Process for the hydrolysis of pelletable biomasses by means of hydrohalic acids
WO2014066141A2 (en) 2012-10-24 2014-05-01 Novozymes A/S Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
US9434929B2 (en) 2012-10-26 2016-09-06 Roal Oy Esterases useful in the treatment of cellulosic and lignocellulosic material
US20150252340A1 (en) 2012-10-31 2015-09-10 Danisco Us Inc. Compositions and methods of us
CN104781399A (en) 2012-10-31 2015-07-15 丹尼斯科美国公司 Beta-glucosidase from magnaporthe grisea
MX2015005424A (en) 2012-10-31 2015-08-05 Danisco Inc Beta-glucosidase from neurospora crassa.
AT513562A1 (en) 2012-11-14 2014-05-15 Annikki Gmbh Process for obtaining sugar derivatives
WO2014081848A1 (en) 2012-11-20 2014-05-30 Butamax Advanced Biofuels Llc Butanol purification
EP2929021A1 (en) 2012-12-07 2015-10-14 Danisco US Inc. Compositions and methods of use
ES2614039T3 (en) 2012-12-07 2017-05-29 Danisco Us Inc. Compositions and methods of use
BR112015013646A2 (en) 2012-12-12 2017-11-14 Danisco Us Inc isolated variant of a parental cellobiohydrolase (cbh) enzyme, isolated polynucleotide, vector, host cell, detergent composition, food additive, method for hydrolyzing a cellulosic substrate, cell culture supernatant, methods of producing a variant cbh polypeptide and supernatant cell culture
KR20150093190A (en) 2012-12-12 2015-08-17 다니스코 유에스 인크. Variants of cellobiohydrolases
KR20150093739A (en) 2012-12-12 2015-08-18 다니스코 유에스 인크. Variants of cellobiohydrolases
US20160272959A1 (en) 2012-12-12 2016-09-22 Danisco Us Inc. Variants of cellobiohydrolases
US20160122735A1 (en) 2012-12-12 2016-05-05 Danisco Us Inc. Variants of cellobiohydrolases
US9765373B2 (en) 2012-12-14 2017-09-19 Novozymes A/S Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
US9512447B2 (en) 2012-12-14 2016-12-06 Codexis, Inc. Modified native beta-ketoacyl-ACP synthases and engineered microorganisms
BR112015013933A2 (en) 2012-12-14 2017-07-11 Bp Corp North America Inc Sequential fermentation of hydrolyzate and solids from a dilute acid hydrolysis of biomass to produce fermentation products
US20150337280A1 (en) 2012-12-19 2015-11-26 Novozymes A/S Polypeptides Having Cellulolytic Enhancing Activity And Polynucleotides Encoding Same
FR3000106B1 (en) * 2012-12-20 2015-01-30 Ifp Energies Now PROCESS FOR PRODUCING OLIGOSACCHARIDES FROM LIGNOCELLULOSIC BIOMASS
US8846357B2 (en) 2012-12-20 2014-09-30 E I Du Pont De Nemours And Company Stabilized chlorine dioxide for contamination control in Zymomonas fermentation
WO2014106107A2 (en) 2012-12-28 2014-07-03 Butamax (Tm) Advanced Biofuels Llc Dhad variants for butanol production
WO2014105840A1 (en) 2012-12-31 2014-07-03 Butamax Advanced Biofuels Llc Fermentative production of alcohols
JP6307789B2 (en) 2013-01-07 2018-04-11 東レ株式会社 Sugar solution manufacturing apparatus and sugar solution manufacturing method
US10072240B2 (en) 2013-01-29 2018-09-11 Singapore Technologies Dynamics Pte Ltd Method for modular design, fabrication and assembly of integrated biocolumn systems with multiple downstream outputs
CN103114099B (en) * 2013-02-07 2014-06-11 广西大学 Beta-glucosaccharase gene for coding glycosyl hydrolase family 1 and application thereof
JP6153341B2 (en) * 2013-02-15 2017-06-28 本田技研工業株式会社 Method for producing saccharification solution
ES2867226T3 (en) 2013-02-15 2021-10-20 Pepsico Inc Preparation and incorporation of by-products in beverages to enhance nutritional and sensory attributes
WO2014130352A1 (en) 2013-02-21 2014-08-28 Butamax Advanced Biofuels Llc Recovery of thermal energy as heat source in the production of butanol from a fermentation process
BR112015019997B1 (en) 2013-02-21 2022-12-20 Novozymes A/S METHODS OF SACHARIFYING AND FERMENTATING A CELLULOSIC MATERIAL
CN110628749A (en) 2013-03-08 2019-12-31 诺维信公司 Cellobiohydrolase variants and polynucleotides encoding same
NZ706072A (en) 2013-03-08 2018-12-21 Xyleco Inc Equipment protecting enclosures
US9523104B2 (en) 2013-03-12 2016-12-20 Butamax Advanced Biofuels Llc Processes and systems for the production of alcohols
US20140273105A1 (en) * 2013-03-12 2014-09-18 E I Du Pont De Nemours And Company Gradient pretreatment of lignocellulosic biomass
JP2016511010A (en) 2013-03-14 2016-04-14 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Glycerol 3-phosphate dehydrogenase for butanol production
WO2014145768A2 (en) 2013-03-15 2014-09-18 Bp Corporation North America Inc. Use of non-fungal 5' utrs in filamentous fungi
CA2901374A1 (en) 2013-03-15 2014-09-18 Butamax Advanced Biofuels Llc Method for production of butanol using extractive fermentation
US20150057465A1 (en) 2013-03-15 2015-02-26 Opx Biotechnologies, Inc. Control of growth-induction-production phases
US9850512B2 (en) 2013-03-15 2017-12-26 The Research Foundation For The State University Of New York Hydrolysis of cellulosic fines in primary clarified sludge of paper mills and the addition of a surfactant to increase the yield
CA2906917A1 (en) 2013-03-15 2014-09-18 Sweetwater Energy, Inc. Carbon purification of concentrated sugar streams derived from pretreated biomass
WO2014144643A1 (en) 2013-03-15 2014-09-18 Butamax Advanced Biofuels Llc Method for producing butanol using extractive fermentation
US9771602B2 (en) 2013-03-15 2017-09-26 Butamax Advanced Biofuels Llc Competitive growth and/or production advantage for butanologen microorganism
US9309548B2 (en) * 2013-03-15 2016-04-12 Valicor, Inc Process and method for improving the enzymatic hydrolysis of lignocellulosic biomass by addition of hydrothermally treated stillage
WO2014151190A1 (en) 2013-03-15 2014-09-25 Butamax Advanced Biofuels Llc Dhad variants and methods of screening
WO2014151645A1 (en) 2013-03-15 2014-09-25 Butamax Advanced Biofuels Llc Process for maximizing biomass growth and butanol yield by feedback control
CN103255659B (en) * 2013-04-26 2016-09-28 安徽安生生物化工科技有限责任公司 The method that ammonia associating diluted alkaline normal pressure processes lignocellulose-like biomass
CA2910239A1 (en) 2013-05-10 2014-11-13 Novozymes A/S Polypeptides having xylanase activity and polynucleotides encoding same
CA2886840A1 (en) * 2013-05-17 2014-11-20 Xyleco, Inc. Processing biomass
WO2014190342A1 (en) * 2013-05-24 2014-11-27 Valicor Inc. Process and method for improving fermentation by the addition of hydrothermally treated stillage
CA2912579C (en) 2013-06-12 2021-08-24 Renescience A/S Methods of processing municipal solid waste (msw) using microbial hydrolysis and fermentation.
US9663759B2 (en) 2013-07-03 2017-05-30 Butamax Advanced Biofuels Llc Partial adaptation for butanol production
KR101536132B1 (en) * 2013-07-12 2015-07-13 한국화학연구원 Method for producing microbial inhibitor-free fermentable sugar solutions from lignocellulosic biomass
AU2014288309B9 (en) 2013-07-09 2018-04-26 Toray Industries, Inc. Method for producing saccharide solution
KR101447534B1 (en) 2013-08-23 2014-10-08 한국화학연구원 Method for producing fermentable sugar solution containing less toxic acetate from lignocellulosic biomass
PL3022286T3 (en) 2013-07-16 2019-12-31 Advanced Substrate Technologies A/S Method for cycling biomasses between mushroom cultivation and anaerobic biogas fermentation, and for separating and drying a degassed biomass
EP3022310B1 (en) 2013-07-19 2019-10-16 Cargill, Incorporated Microorganisms and methods for the production of fatty acids and fatty acid derived products
US11408013B2 (en) 2013-07-19 2022-08-09 Cargill, Incorporated Microorganisms and methods for the production of fatty acids and fatty acid derived products
WO2015017256A1 (en) 2013-07-29 2015-02-05 Danisco Us Inc. Variant enzymes
US20150052812A1 (en) 2013-08-20 2015-02-26 Philip James Scalzo Oxygen-Deficient Thermally Produced Processed Biogas from Beneficiated Organic-Carbon-Containing Feedstock
US9593447B2 (en) 2013-08-20 2017-03-14 Biomass Energy Enhancements, Llc System and method using a reaction chamber to beneficiate organic-carbon-containing feedstock for downstream processes
WO2015031561A1 (en) 2013-08-30 2015-03-05 Bp Corporation North America Inc. Catalytic conversion of alcohols
CN105492601A (en) 2013-09-04 2016-04-13 诺维信公司 Processes for increasing enzymatic hydrolysis of cellulosic material
US20160157437A9 (en) * 2013-09-15 2016-06-09 Freddie Hebert Lemna Based Protein Concentrate
US20150087041A1 (en) 2013-09-26 2015-03-26 E I Du Pont De Nemours And Company Production of ethanol with reduced contaminants in a cellulosic biomass based process
US20150087040A1 (en) 2013-09-26 2015-03-26 E I Du Pont De Nemours And Company Production of ethanol and recycle water in a cellulosic fermentation process
US9873846B2 (en) * 2013-10-10 2018-01-23 E I Du Pont De Nemours And Company Fuel compositions containing lignocellulosic biomass fermentation process syrup
US9725363B2 (en) 2013-10-10 2017-08-08 E I Du Pont De Nemours And Company Lignocellulosic biomass fermentation process co-product fuel for cement kiln
US9499451B2 (en) 2013-10-10 2016-11-22 E I Du Pont De Nemours And Company Soil conditioner compositions containing lignocellulosic biomass fermentation process syrup
DK3063285T3 (en) 2013-11-01 2019-05-13 Novozymes As PROCEDURES FOR SUCCESSING AND FERMENTATION OF A CELLULOSE MATERIAL
US20150147786A1 (en) 2013-11-24 2015-05-28 E I Du Pont De Nemours And Company High force and high stress destructuring for starch biomass processing
US20170166939A1 (en) 2013-11-26 2017-06-15 Novozymes A/S Enzyme Compositions and Uses Thereof
WO2015084596A1 (en) 2013-12-04 2015-06-11 Danisco Us Inc. Compositions comprising a beta-glucosidase polypeptide and methods of use
MY186318A (en) 2014-01-07 2021-07-08 Novozymes As Process for degrading mannan-containing cellulosic materials
FI127582B (en) * 2014-01-10 2018-09-14 Ab Bln Woods Ltd Method for extracting lignin
US9194012B2 (en) 2014-02-02 2015-11-24 Edward Brian HAMRICK Methods and systems for producing sugars from carbohydrate-rich substrates
KR102136842B1 (en) * 2014-02-07 2020-07-24 한국과학기술원 Methods for Pretreating Lignocellulosic Biomass
US9951363B2 (en) 2014-03-14 2018-04-24 The Research Foundation for the State University of New York College of Environmental Science and Forestry Enzymatic hydrolysis of old corrugated cardboard (OCC) fines from recycled linerboard mill waste rejects
CN105001894A (en) * 2014-04-18 2015-10-28 栖霞市海怡污水处理材料厂 Modifier for converting biomass into crude oil, production method and application process thereof
CN106488982A (en) 2014-06-06 2017-03-08 诺维信公司 Enzymatic compositions and application thereof
US9702548B2 (en) 2014-06-16 2017-07-11 Biomass Energy Enhancements, Llc System for co-firing cleaned coal and beneficiated organic-carbon-containing feedstock in a coal combustion apparatus
US9701918B2 (en) 2014-06-16 2017-07-11 Biomass Energy Enhancements, Llc System of using a reaction chamber to beneficiate organic-carbon-containing feedstock for downstream processes
US9683738B2 (en) 2014-06-16 2017-06-20 Biomass Energy Enhancements, Llc System for co-firing coal and beneficiated organic-carbon-containing feedstock in a coal combustion apparatus
US9796940B2 (en) 2014-06-16 2017-10-24 Biomass Energy Enhancements, Llc Processed biomass pellets from organic-carbon-containing feedstock
US10018355B2 (en) 2014-06-16 2018-07-10 CTP Biotechnology, LLC System and process for combusting coal and beneficiated organic-carbon-containing feedstock
US10024533B2 (en) 2014-06-16 2018-07-17 Ctp Biotechnology Llc System and process for combusting cleaned coal and beneficiated organic-carbon-containing feedstock
WO2016007350A1 (en) 2014-07-09 2016-01-14 Danisco Us Inc. Preconditioning of lignocellulosic biomass
WO2016004482A1 (en) * 2014-07-10 2016-01-14 Leaf Sciences Pty Ltd Methods for hydrolysing lignocellulosic material
US20170211231A1 (en) * 2014-07-10 2017-07-27 Leaf Sciences Pty Ltd Methods for Treating Lignocellulosic Material
US10280438B2 (en) 2014-08-11 2019-05-07 Butamax Advanced Biofuels Llc Method for the production of yeast
EP3191597A1 (en) 2014-08-21 2017-07-19 Novozymes A/S Process for saccharifying cellulosic material under oxygen addition
EP3183352B1 (en) 2014-08-22 2021-04-14 CysBio ApS A process for producing a fermentation product from a lignocellulose-containing material
EP2993228B1 (en) 2014-09-02 2019-10-09 Cargill, Incorporated Production of fatty acid esters
US11390898B2 (en) 2014-09-05 2022-07-19 Novozymes A/S Polypeptides having cellobiohydrolase activity and polynucleotides encoding same
KR20170055997A (en) 2014-09-19 2017-05-22 질레코 인코포레이티드 Saccharides and saccharide compositions and mixtures
CN107109346B (en) 2014-09-23 2021-07-20 诺维信公司 Process and fermenting organism for producing ethanol
EP3201333A1 (en) 2014-09-30 2017-08-09 Danisco US Inc. Compositions comprising beta-mannanase and methods of use
US20170211053A1 (en) 2014-09-30 2017-07-27 Danisco Us Inc. Compositions comprising beta mannanase and methods of use
US20170226494A1 (en) 2014-09-30 2017-08-10 Danisco Us Inc. Compositions comprising beta-mannanase and methods of use
WO2016054205A1 (en) 2014-09-30 2016-04-07 Danisco Us Inc Compositions comprising beta mannanase and methods of use
WO2016054194A1 (en) 2014-09-30 2016-04-07 1/1Danisco Us Inc Compositions comprising beta-mannanase and methods of use
EP3212776B1 (en) 2014-10-27 2020-04-22 Danisco US Inc. Compositions and methods related to beta-glucosidase
PL3230463T3 (en) 2014-12-09 2022-10-03 Sweetwater Energy, Inc. Rapid pretreatment
WO2016100825A1 (en) 2014-12-18 2016-06-23 Danisco Us Inc Engineered multifunctional enzymes and methods of use
WO2016100837A1 (en) 2014-12-18 2016-06-23 Danisco Us Inc Engineered multifunctional enzymes and methods of use
ES2764499T3 (en) 2015-01-07 2020-06-03 Virdia Inc Methods for extracting and converting hemicellulose sugars
EP3045234A1 (en) * 2015-01-16 2016-07-20 Clariant International Ltd. Process for the decomposition of biomass
CN104673846B (en) * 2015-01-19 2019-02-22 天津市天人世纪科技有限公司 A method of lactic acid is produced using agriculture and forestry organic waste material
DK3247201T3 (en) 2015-01-22 2020-02-17 Advanced Substrate Tech A/S Methods for upgrading spent biomass material
WO2016138167A2 (en) 2015-02-24 2016-09-01 Novozymes A/S Cellobiohydrolase variants and polynucleotides encoding same
EP3268484B1 (en) 2015-03-12 2020-06-17 Novozymes A/S Multi-stage enzymatic hydrolysis of lignocellulosic biomass
WO2016145363A1 (en) 2015-03-12 2016-09-15 Novozymes A/S Multi-stage enzymatic hydrolysis of lignocellulosic biomass employing an oxidoreductase with an aa9 polypeptide
US20180051306A1 (en) 2015-03-12 2018-02-22 Novozymes A/S Enzymatic Hydrolysis with Hemicellulolytic Enzymes
CN107428626A (en) 2015-03-12 2017-12-01 纳幕尔杜邦公司 Accessory substance for the lignocellulose biomass technique of Landscape Application
CN104774877B (en) * 2015-04-10 2017-12-29 山东龙力生物科技股份有限公司 A kind of method of lignocellulose biomass co-producing ethanol, acetone and butanol
MY185762A (en) 2015-04-10 2021-06-04 Comet Biorefining Inc Methods and compositions for the treatment of cellulosic biomass and products produced thereby
CN116676293A (en) 2015-05-27 2023-09-01 国投生物科技投资有限公司 Polypeptides having cellobiohydrolase activity and polynucleotides encoding same
MX2017016625A (en) 2015-07-07 2018-05-15 Danisco Us Inc Induction of gene expression using a high concentration sugar mixture.
US20180216089A1 (en) 2015-07-24 2018-08-02 Novozymes, Inc. Polypeptides Having Beta-Xylosidase Activity And Polynucleotides Encoding Same
CN108138153A (en) 2015-07-24 2018-06-08 诺维信股份有限公司 Polypeptide with nofuranosidase activity and encode their polynucleotides
WO2017050242A1 (en) 2015-09-22 2017-03-30 Novozymes A/S Polypeptides having cellobiohydrolase activity and polynucleotides encoding same
WO2017070219A1 (en) 2015-10-20 2017-04-27 Novozymes A/S Lytic polysaccharide monooxygenase (lpmo) variants and polynucleotides encoding same
US9422663B1 (en) 2015-11-05 2016-08-23 Aicardo Roa-Espinosa Apparatus and process for treatment of biocomponents
CN105463031A (en) * 2015-11-11 2016-04-06 首都师范大学 Method for cooperatively producing ethyl alcohol and methane through energy grass
CN108350226B (en) 2015-11-24 2021-12-31 因比肯公司 Asphalt composition comprising lignin
CN108884477A (en) 2015-11-25 2018-11-23 富林特希尔斯资源有限公司 Method for recycling product from corn fermentation wine with dregs
CN109070092A (en) 2015-11-25 2018-12-21 富林特希尔斯资源有限公司 Corn and thus the method and system of ethyl alcohol is prepared for milling
US11718863B2 (en) 2015-11-25 2023-08-08 Poet Grain (Octane), Llc Processes for recovering products from a slurry
US10059966B2 (en) 2015-11-25 2018-08-28 Flint Hills Resources, Lp Processes for recovering products from a corn fermentation mash
EP3397772A1 (en) 2015-12-28 2018-11-07 Danisco US Inc. Methods for the production of fermentation products from feedstock
CN108698963B (en) 2016-02-17 2021-12-21 东丽株式会社 Method for producing sugar alcohol
MX2018009634A (en) 2016-02-19 2018-12-17 Intercontinental Great Brands Llc Processes to create multiple value streams from biomass sources.
WO2017144670A1 (en) 2016-02-24 2017-08-31 Danmarks Tekniske Universitet Improved process for producing a fermentation product from a lignocellulose-containing material
EP3423577A1 (en) 2016-03-02 2019-01-09 Novozymes A/S Cellobiohydrolase variants and polynucleotides encoding same
BR112018069188A2 (en) 2016-03-24 2019-01-29 Novozymes As cellobiohydrolase variant, enzyme composition, whole broth formulation or cell culture composition, polynucleotide, recombinant host cell, plant, plant part or transgenic plant cell, methods for producing and obtaining a cellobiohydrolase variant and processes for degrading a cellulosic material, for producing a fermentation product and for fermentation of a cellulosic material.
BR112018070645A2 (en) 2016-04-08 2019-02-05 Du Pont recombinant yeast cells, methods for producing a yeast cell and method for producing a target compound
WO2017205535A1 (en) 2016-05-27 2017-11-30 Novozymes, Inc. Polypeptides having endoglucanase activity and polynucleotides encoding same
CN106086083B (en) * 2016-06-08 2019-10-15 辽东学院 A method of cultivation chicken manure environmental pollution is administered using fermentation brewage process
US11299723B2 (en) 2016-06-15 2022-04-12 Codexis, Inc. Engineered beta-glucosidases and glucosylation methods
WO2018026868A1 (en) 2016-08-01 2018-02-08 Novozymes, Inc. Polypeptides having endoglucanase activity and polynucleotides encoding same
WO2018050300A1 (en) 2016-09-13 2018-03-22 Institut National De La Recherche Agronomique (Inra) Polysaccharide-oxidizing composition and uses thereof
WO2018053058A1 (en) 2016-09-14 2018-03-22 Danisco Us Inc. Lignocellulosic biomass fermentation-based processes
CN106496019B (en) * 2016-10-13 2019-03-01 江南大学 A method of extracting α-ketoglutaric acid and pyruvic acid simultaneously from microbial fermentation solution or enzymatic conversion liquid
WO2018085370A1 (en) 2016-11-02 2018-05-11 Novozymes A/S Processes for reducing production of primeverose during enzymatic saccharification of lignocellulosic material
BR112019011612A2 (en) 2016-12-06 2020-08-18 Novozymes A/S improved processes for the production of ethanol from cellulosic substrates containing xylose using genetically modified yeast strains
WO2018106656A1 (en) 2016-12-06 2018-06-14 Danisco Us Inc Truncated lpmo enzymes and use thereof
CN106755282A (en) * 2016-12-14 2017-05-31 曹书华 A kind of method that prediction Alcalase alkali proteases microwave digests grass carp albumen process
RU2771261C2 (en) 2016-12-21 2022-04-29 ДюПон НЬЮТРИШН БАЙОСАЙЕНСИЗ АпС Methods for application of thermostable serine proteases
WO2018144701A2 (en) 2017-02-02 2018-08-09 Cargill Incorporated Genetically modified cells that produce c6-c10 fatty acid derivatives
CN110402288A (en) * 2017-02-16 2019-11-01 斯威特沃特能源公司 It is formed for pretreated higher-pressure region
US10730958B2 (en) 2017-03-08 2020-08-04 Board Of Trustees Of Michigan State University Pretreatment of densified biomass using liquid ammonia and systems and products related thereto
EP3596211B1 (en) 2017-03-15 2021-06-02 DuPont Nutrition Biosciences ApS Methods of using an archaeal serine protease
CN107034241B (en) * 2017-05-17 2020-10-23 华中农业大学 Pretreatment process for saccharification and utilization of bagasse
US11091753B2 (en) 2017-05-31 2021-08-17 Novozymes A/S Xylose fermenting yeast strains and processes thereof for ethanol production
BR112019025391A2 (en) 2017-06-02 2020-07-07 Novozymes A/S improved yeast for ethanol production
US11440999B2 (en) 2017-07-07 2022-09-13 Board Of Trustees Of Michigan State University De-esterification of biomass prior to ammonia pretreatment
CN107501357A (en) * 2017-08-01 2017-12-22 华南理工大学 A kind of cellulose fermentable sugars and preparation method and application
FR3069866B1 (en) 2017-08-02 2021-12-17 Inst Nat De La Rech Agronomique Inra METHODS FOR DEFIBRILLATION OF CELLULOSIC SUBSTRATES AND MANUFACTURING CELLULOSES USING A NEW FAMILY OF LYTIC POLYSACCHARIDE MONOOXYGENASE (LPMO) FUNGI.
WO2019074828A1 (en) 2017-10-09 2019-04-18 Danisco Us Inc Cellobiose dehydrogenase variants and methods of use thereof
CN107604012B (en) * 2017-10-25 2021-09-10 武汉凯迪工程技术研究总院有限公司 Biomass raw material pretreatment method based on high-frequency oscillation electromagnetic field
JP2021501231A (en) 2017-10-27 2021-01-14 キシレコ インコーポレイテッド Biomass processing method
CN107904271A (en) * 2017-12-08 2018-04-13 齐颖 A kind of method of microwave reinforced soda lime preprocessing lignocellulose
CA3089135A1 (en) 2018-01-29 2019-08-01 Novozymes A/S Microorganisms with improved nitrogen utilization for ethanol production
CN108315359B (en) * 2018-03-23 2021-07-27 安玉民 Method for preparing alcohol and preparing feed by using potato straws
JP7094622B2 (en) * 2018-03-29 2022-07-04 株式会社ディスコ Circular whetstone
CN108315358A (en) * 2018-04-18 2018-07-24 黑龙江新天地能源开发有限公司 It is a kind of to prepare biogas method using stalk
WO2019209245A1 (en) 2018-04-23 2019-10-31 Dupont Nutrition Biosciences Aps Increasing activity of 2' fucosyllactose transporters endogenous to microbial cells
US11913046B2 (en) 2018-04-23 2024-02-27 Inbiose N.V. Increasing export of 2'fucosyllactose from microbial cells through the expression of a heterologous nucleic acid
CN112367853A (en) 2018-05-10 2021-02-12 彗星生物炼制公司 Composition containing glucose and hemicellulose and application thereof
CN108374025A (en) * 2018-06-02 2018-08-07 山东省同泰维润食品科技有限公司 A kind of propionic acid preparation process
CN108823257A (en) * 2018-06-20 2018-11-16 齐齐哈尔龙江阜丰生物科技有限公司 The preparation process of Threonine Fermentation culture medium
US11193177B2 (en) 2018-06-28 2021-12-07 Indian Oil Corporation Limited Process for recovering higher sugar from biomass
FR3083247A1 (en) 2018-07-02 2020-01-03 Institut National De La Recherche Agronomique (Inra) POLYPEPTIDES AND COMPOSITIONS WITH LYSTIC OXIDASE POLYSACCHARIDE ACTIVITY
CA3107110A1 (en) 2018-07-25 2020-01-30 Novozymes A/S Enzyme-expressing yeast for ethanol production
BR112021006692A2 (en) 2018-10-08 2021-08-10 Novozymes A/S yeast expressing enzymes for ethanol production
CN109486969A (en) * 2018-10-26 2019-03-19 贵州茅台酒股份有限公司 A kind of method that directed screening generates normal propyl alcohol bacterial strain
WO2020123463A1 (en) 2018-12-12 2020-06-18 Novozymes A/S Polypeptides having xylanase activity and polynucleotides encoding same
CN111321173B (en) * 2018-12-14 2022-05-31 南京百斯杰生物工程有限公司 Application of mannase in alcohol fermentation
CA3143381A1 (en) 2019-07-26 2021-02-04 Novozymes A/S Microorganisms with improved nitrogen transport for ethanol production
EP4009807A1 (en) 2019-08-05 2022-06-15 Novozymes A/S Enzyme blends and processes for producing a high protein feed ingredient from a whole stillage byproduct
BR112021026477A2 (en) 2019-08-06 2022-02-08 Novozymes As Recombinant host cell, methods of producing a fermentation product from a starch-containing or cellulose-containing material, of producing the mature polypeptide, of producing a derivative of a recombinant host cell, and of producing ethanol, nucleic acid construct or expression vector, composition and use of a recombinant host cell
CA3152952A1 (en) 2019-09-16 2021-03-25 Novozymes A/S Polypeptides having beta-glucanase activity and polynucleotides encoding same
CN110655260B (en) * 2019-10-20 2021-11-12 广东新泰隆环保集团有限公司 Zero-emission treatment method and device for organic wastewater
MX2022006963A (en) 2019-12-10 2022-07-12 Novozymes As Microorganism for improved pentose fermentation.
AU2020412611A1 (en) 2019-12-22 2022-07-14 Apalta Patents OÜ Methods of making specialized lignin and lignin products from biomass
US11730172B2 (en) 2020-07-15 2023-08-22 Poet Research, Inc. Methods and systems for concentrating a solids stream recovered from a process stream in a biorefinery
WO2022049250A1 (en) 2020-09-04 2022-03-10 Novozymes A/S Improved fermenting organism for ethanol production
EP4237555A1 (en) 2020-11-02 2023-09-06 Novozymes A/S Glucoamylase variants and polynucleotides encoding same
CA3222371A1 (en) 2021-06-07 2022-12-15 Novozymes A/S Engineered microorganism for improved ethanol fermentation
WO2023164436A1 (en) 2022-02-23 2023-08-31 Novozymes A/S Process for producing fermentation products and biogas from starch-containing materials
WO2024064901A2 (en) 2022-09-23 2024-03-28 Novozymes A/S Improved fermenting organism for ethanol production
CN115627277A (en) * 2022-11-18 2023-01-20 中国科学院过程工程研究所 Method for performing solid state fermentation on 2, 3-butanediol by high-solid-state enzymolysis of straws

Family Cites Families (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR656385A (en) 1927-06-25 1929-05-07 Commercial Alcohol Company Ltd Glucose manufacturing process
JPS474505Y1 (en) 1967-12-25 1972-02-17
JPS4738995Y1 (en) 1969-10-07 1972-11-25
JPS516237A (en) 1974-07-05 1976-01-19 Tokyo Shibaura Electric Co TOFUHOSHIKI
JPS5710912B2 (en) 1974-08-08 1982-03-01
US4136207A (en) * 1977-01-24 1979-01-23 Stake Technology Ltd. Method of treating lignocellulose materials to produce ruminant feed
US4186658A (en) 1977-01-24 1980-02-05 Stake Technology Ltd. Apparatus for conveying particulate material
CH609092A5 (en) * 1977-04-01 1979-02-15 Battelle Memorial Institute
JPS5432070A (en) 1977-08-15 1979-03-09 Nec Corp Etching process method for semiconductor element
JPS5437235A (en) 1977-08-31 1979-03-19 Toshiba Corp Enclosed switchboard
US5366558A (en) * 1979-03-23 1994-11-22 Brink David L Method of treating biomass material
US4356144A (en) 1979-06-25 1982-10-26 General Atomic Company Closure hold-down system for a reactor vessel
JPS5610035A (en) 1979-06-30 1981-02-02 Tokyo Shibaura Electric Co Method of supplying current to electric device
US4461648A (en) 1980-07-11 1984-07-24 Patrick Foody Method for increasing the accessibility of cellulose in lignocellulosic materials, particularly hardwoods agricultural residues and the like
US4356196A (en) * 1980-10-20 1982-10-26 Hultquist Joe H Process for treating alfalfa and other cellulosic agricultural crops
US5037663A (en) * 1981-10-14 1991-08-06 Colorado State University Research Foundation Process for increasing the reactivity of cellulose-containing materials
JPS5898093A (en) * 1981-12-08 1983-06-10 Chisso Corp Pretreatment of cellulosic material for saccharification
JPS5816872B2 (en) 1982-02-12 1983-04-02 協和醗酵工業株式会社 Corynebacterium glutamicum mutant strain
DE3486229T2 (en) 1983-02-17 1994-03-31 Kyowa Hakko Kogyo Kk Process for the preparation of L-phenylalanine.
US4463648A (en) * 1983-05-02 1984-08-07 Fender C Leo Angled humbucking pick-up for an electrical musical instrument of the stringed type
JPS623776A (en) 1985-06-29 1987-01-09 Zojirushi Vacuum Bottle Co Thawing of frozen food and apparatus for controlling same
US5366553A (en) 1985-11-07 1994-11-22 Burford Corporation Sequence controller
EP0236515A1 (en) 1986-03-05 1987-09-16 Kabushiki Kaisha Bandai Assembly set for confectionery model
DE3632397A1 (en) * 1986-09-24 1988-03-31 Ruhrchemie Ag METHOD FOR PURIFYING PROPANDIOL-1,3
JPS6394985A (en) 1986-10-09 1988-04-26 Kyowa Hakko Kogyo Co Ltd Production of l-tyrosine
JPS643581A (en) 1987-06-26 1989-01-09 Nec Corp Ssr target detector
JPS6423776A (en) 1987-07-16 1989-01-26 Mitsubishi Electric Corp High tension pulse generator
JPH0193776A (en) 1987-10-06 1989-04-12 Canon Inc Image forming device
US4859283A (en) 1988-04-15 1989-08-22 E. I. Du Pont De Nemours And Company Magnesium ions in a process for alkaline peroxide treatment of nonwoody lignocellulosic substrates
JPH03207079A (en) 1990-01-10 1991-09-10 Mitsubishi Electric Corp Dynamic ram
US5192673A (en) * 1990-04-30 1993-03-09 Michigan Biotechnology Institute Mutant strain of C. acetobutylicum and process for making butanol
JP3074701B2 (en) 1990-06-15 2000-08-07 松下電器産業株式会社 Flow control valve
WO1992002631A1 (en) 1990-08-10 1992-02-20 Daicel Chemical Industries, Ltd. Process for producing optically active 3-phenyl-1,3-propanediol
US5231017A (en) * 1991-05-17 1993-07-27 Solvay Enzymes, Inc. Process for producing ethanol
ATE135061T1 (en) 1992-01-28 1996-03-15 Voith Sulzer Papiermasch Gmbh SUPPORT CONNECTIONS BETWEEN TWO ROLLERS
US5865898A (en) 1992-08-06 1999-02-02 The Texas A&M University System Methods of biomass pretreatment
EP1479765B1 (en) * 1993-03-10 2008-10-22 Novozymes A/S Enzymes with xylanase activity from aspergillus aculeatus
JPH0859681A (en) 1994-08-22 1996-03-05 Fujisawa Pharmaceut Co Ltd Cyclic-gmp-pde inhibiting substance, fr901,526
US5705369A (en) * 1994-12-27 1998-01-06 Midwest Research Institute Prehydrolysis of lignocellulose
JP3207079B2 (en) 1995-06-23 2001-09-10 京セラ株式会社 Portable communication device
BR9600672A (en) 1996-03-08 1997-12-30 Dedini S A Administracao E Par Acid hydrolysis process of lignocellulosic material and hydrolysis reactor
US5747320A (en) * 1996-08-02 1998-05-05 The United States Of America, As Represented By The Secretary Of Agriculture Glucose and cellobiose tolerant β-glucosidase from Candida peltata
ATE452979T1 (en) * 1996-11-13 2010-01-15 Du Pont PRODUCTION PROCESS OF 1,3-PROPANEDIOL BY RECOMBINANT ORGANISMS
BR9712942B1 (en) 1996-11-13 2010-09-21 method for producing glycerol and host cell from e.g. coli transformed.
JP3899572B2 (en) 1997-01-17 2007-03-28 カシオ計算機株式会社 E-mail display method and e-mail display device
EP0973929A4 (en) * 1997-05-14 2003-02-05 Univ Illinois A method of producing butanol using a mutant strain of clostridium beijerinckii
US5916780A (en) * 1997-06-09 1999-06-29 Iogen Corporation Pretreatment process for conversion of cellulose to fuel ethanol
US6159738A (en) * 1998-04-28 2000-12-12 University Of Chicago Method for construction of bacterial strains with increased succinic acid production
US6176176B1 (en) 1998-04-30 2001-01-23 Board Of Trustees Operating Michigan State University Apparatus for treating cellulosic materials
ID25513A (en) * 1998-09-25 2000-10-05 Ajinomoto Kk METHOD FORMATION OF AMINO ACID PRODUCING BACTERIA STRAINS AND METHOD FOR MAKING AMINO ACID THROUGH FERMENTATION WITH THE AMINO ACID PRODUCING BACTERIA STRAINS WHICH MADE IN AMINO ACID
US6600077B1 (en) * 1999-01-29 2003-07-29 Board Of Trustees Operating Michigan State University Biocatalytic synthesis of quinic acid and conversion to hydroquinone
US6509180B1 (en) * 1999-03-11 2003-01-21 Zeachem Inc. Process for producing ethanol
ATE271922T1 (en) * 1999-06-01 2004-08-15 Elan Pharma Int Ltd SMALL MILL AND METHOD THEREOF
BR9902607B1 (en) 1999-06-23 2010-08-24 biomass pre-hydrolysis apparatus and process.
US6254914B1 (en) * 1999-07-02 2001-07-03 The Board Of Trustees Of The University Of Illinois Process for recovery of corn coarse fiber (pericarp)
US6521748B2 (en) * 1999-08-06 2003-02-18 E. I. Du Pont De Nemours And Company Polynucleotide encoding a mutant Rhodotorula glutinis tyrosine ammonia lyase polypeptide
BRPI0013315B8 (en) * 1999-08-18 2018-02-27 Du Pont isolated nucleic acid fragment, polypeptide, chimeric gene, microorganism, recombinant microorganism, e.g. recombinant coli, klp23 strain of e.g. recombinant coli, strain rj8 of e.g. recombinant coli, pdt29 vector, pkp32 vector and 1,3-propanediol bioproduction processes
KR100325975B1 (en) * 1999-11-26 2002-02-27 손재익 Methods and equipments of ammonia recycled percolation for biomass treatment
US6777207B2 (en) * 1999-12-29 2004-08-17 Novo Nordisk A/S Method for making insulin precursors and insulin precursor analogues having improved fermentation yield in yeast
US7223575B2 (en) * 2000-05-01 2007-05-29 Midwest Research Institute Zymomonas pentose-sugar fermenting strains and uses thereof
US6861237B2 (en) 2000-11-30 2005-03-01 Novo Nordisk A/S Production of heterologous polypeptides in yeast
US7272953B2 (en) * 2002-01-08 2007-09-25 Masterson James A Method and apparatus for separating and neutralizing ammonia
US7189306B2 (en) * 2002-02-22 2007-03-13 Gervais Gibson W Process of treating lignocellulosic material to produce bio-ethanol
EP1485495B1 (en) * 2002-03-15 2010-09-15 Iogen Energy Corporation Method for glucose production using endoglucanase core protein for improved recovery and reuse of enzyme
CN100532557C (en) 2002-08-23 2009-08-26 纳幕尔杜邦公司 Utilization of starch products for biological production by fermentation
US20040231060A1 (en) 2003-03-07 2004-11-25 Athenix Corporation Methods to enhance the activity of lignocellulose-degrading enzymes
US7098009B2 (en) 2004-03-04 2006-08-29 University Of Florida Research Foundation, Inc. Production of chemicals from lignocellulose, biomass or sugars
EP1869197A2 (en) * 2005-04-12 2007-12-26 E.I. Dupont De Nemours And Company Treatment of biomass to obtain ethanol
US7781191B2 (en) 2005-04-12 2010-08-24 E. I. Du Pont De Nemours And Company Treatment of biomass to obtain a target chemical
US20070029252A1 (en) 2005-04-12 2007-02-08 Dunson James B Jr System and process for biomass treatment
US9297028B2 (en) 2005-09-29 2016-03-29 Butamax Advanced Biofuels Llc Fermentive production of four carbon alcohols
ZA200803755B (en) 2005-10-26 2009-12-30 Du Pont Fermentive production of four carbon alcohols
US8206970B2 (en) 2006-05-02 2012-06-26 Butamax(Tm) Advanced Biofuels Llc Production of 2-butanol and 2-butanone employing aminobutanol phosphate phospholyase

Also Published As

Publication number Publication date
WO2006110899A3 (en) 2007-03-29
EP1885840A1 (en) 2008-02-13
US20070031953A1 (en) 2007-02-08
WO2006110901A2 (en) 2006-10-19
EP1869202B1 (en) 2018-02-14
JP2008535664A (en) 2008-09-04
CN101155925A (en) 2008-04-02
CN101155928A (en) 2008-04-02
CN101160405B (en) 2014-01-01
US20070037259A1 (en) 2007-02-15
BRPI0612939A2 (en) 2010-12-07
BRPI0612966B1 (en) 2017-12-05
WO2006110891A2 (en) 2006-10-19
US7932063B2 (en) 2011-04-26
BRPI0612966A2 (en) 2010-12-14
WO2006110891A3 (en) 2007-02-08
JP5804666B2 (en) 2015-11-04
US20070031918A1 (en) 2007-02-08
EP1869194A2 (en) 2007-12-26
CN101160388B (en) 2013-05-01
JP5149785B2 (en) 2013-02-20
JP2008535524A (en) 2008-09-04
EP1885840B1 (en) 2012-02-29
EP1869197A2 (en) 2007-12-26
JP5118626B2 (en) 2013-01-16
CN101160409B (en) 2013-04-24
CA2603774A1 (en) 2006-10-19
BRPI0612937B1 (en) 2015-07-07
EP1869201A2 (en) 2007-12-26
EP1869201B1 (en) 2017-12-27
US7998713B2 (en) 2011-08-16
BRPI0612944B1 (en) 2017-11-28
CA2604961A1 (en) 2006-10-19
CA2604964A1 (en) 2006-10-19
EP1869202A2 (en) 2007-12-26
WO2006110901A3 (en) 2007-03-29
BRPI0612944A2 (en) 2010-12-07
CN101160405A (en) 2008-04-09
WO2006110902A1 (en) 2006-10-19
WO2006110900A2 (en) 2006-10-19
CN101155928B (en) 2013-04-24
BRPI0612207A2 (en) 2010-10-26
CA2603128A1 (en) 2006-10-19
JP2008535523A (en) 2008-09-04
BRPI0612937A2 (en) 2010-12-07
CN101160409A (en) 2008-04-09
JP2008537886A (en) 2008-10-02
WO2006110899A2 (en) 2006-10-19
US7910338B2 (en) 2011-03-22
CA2604964C (en) 2014-12-16
CA2604100C (en) 2013-04-02
CN101155925B (en) 2012-05-09
JP5149784B2 (en) 2013-02-20
CA2603128C (en) 2014-04-08
BRPI0612939B1 (en) 2018-05-02
CA2604100A1 (en) 2006-10-19
JP2008537682A (en) 2008-09-25
WO2006110900A3 (en) 2007-03-29
JP4991700B2 (en) 2012-08-01
CN101160388A (en) 2008-04-09

Similar Documents

Publication Publication Date Title
CA2603774C (en) System and process for biomass treatment
US8512979B2 (en) System and process for biomass treatment
US7781191B2 (en) Treatment of biomass to obtain a target chemical
US20100330638A1 (en) Thermochemical Treatment of Lignocellulosics for the Production of Ethanol
JP2010536557A (en) Biomass processing equipment
JP2013544099A (en) Continuous feed biomass pretreatment method for packed bed reactors
US20140186912A1 (en) Methods for improved ethanol production

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20180412