CA2600841C - Catheter with larger diameter proximal end portion - Google Patents

Catheter with larger diameter proximal end portion Download PDF

Info

Publication number
CA2600841C
CA2600841C CA2600841A CA2600841A CA2600841C CA 2600841 C CA2600841 C CA 2600841C CA 2600841 A CA2600841 A CA 2600841A CA 2600841 A CA2600841 A CA 2600841A CA 2600841 C CA2600841 C CA 2600841C
Authority
CA
Canada
Prior art keywords
catheter
diameter
introducer sheath
proximal end
proximal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA2600841A
Other languages
French (fr)
Other versions
CA2600841A1 (en
Inventor
Kenneth Chesnin
Timothy Schweikert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medical Components Inc
Original Assignee
Medical Components Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medical Components Inc filed Critical Medical Components Inc
Publication of CA2600841A1 publication Critical patent/CA2600841A1/en
Application granted granted Critical
Publication of CA2600841C publication Critical patent/CA2600841C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0021Catheters; Hollow probes characterised by the form of the tubing
    • A61M25/0023Catheters; Hollow probes characterised by the form of the tubing by the form of the lumen, e.g. cross-section, variable diameter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0021Catheters; Hollow probes characterised by the form of the tubing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0021Catheters; Hollow probes characterised by the form of the tubing
    • A61M25/0023Catheters; Hollow probes characterised by the form of the tubing by the form of the lumen, e.g. cross-section, variable diameter
    • A61M25/0026Multi-lumen catheters with stationary elements
    • A61M25/003Multi-lumen catheters with stationary elements characterized by features relating to least one lumen located at the distal part of the catheter, e.g. filters, plugs or valves
    • A61M2025/0031Multi-lumen catheters with stationary elements characterized by features relating to least one lumen located at the distal part of the catheter, e.g. filters, plugs or valves characterized by lumina for withdrawing or delivering, i.e. used for extracorporeal circuit treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0021Catheters; Hollow probes characterised by the form of the tubing
    • A61M25/0023Catheters; Hollow probes characterised by the form of the tubing by the form of the lumen, e.g. cross-section, variable diameter
    • A61M25/0026Multi-lumen catheters with stationary elements
    • A61M2025/0037Multi-lumen catheters with stationary elements characterized by lumina being arranged side-by-side

Abstract

Catheter assembly (100) having at least one lumen (150 or 160) and joined to hub (106). While the lumen inner diameter(s) remain constant from distal end (144) of the catheter (140) to proximal end (142), the outer catheter diameter increases proximate the hub (106) providing increased resistance to kinking during connection and disconnection from medical apparatus. The increased proximal catheter diameter preferably is sufficiently large to plug the proximal end of an introducer sheath through which the catheter is inserted during patient placement, to plug the proximal sheath end and minimize blood aspiration therethrough, and later serves to fill the vascular insertion upon complete catheter insertion after removal of the introducer sheath again to minimize blood aspiration through the vascular incision. The catheter may have two lumens (150, 160) or more, joined to respective extension tubes in hub (106).

Description

TITLE
Catheter with Larger Diameter Proximal End Portion The invention relates to medical devices and more particularly to catheters and catheter assemblies.
Catheter assemblies, and particularly catheter assemblies for use in hemodialysis, are known that have one, two or more lumens extending from a distal end to a proximal end, where the distal end is placed in a blood vessel of a patient, such as the jugular vein, with the proximal end extending from the patient for each lumen to be connected to a respective conduit of a hemodialysis machine. Customarily, each lumen of the catheter assembly is first connected to a respective extension tube within a hub body, and the extension tube is terminated in a luer connector to facilitate connection with and disconnection from the conduit of the hemodialysis machine and commonly the extension tube has disposed therealong a clamp, such as a Roberts clamp, for temporarily closing the conduit when necessary. Implanted catheter assemblies are connected to medical apparatus such as hemodialysis apparatus through the luer connectors, and then disconnected therefrom, all through many cycles; such connection and disconnection involves the catheter assembly undergoing many cycles of stress and strain especially focused at the proximal end where the catheter proximal end enters the hub which connects the catheter lumens to respective extension tubes, or where a single lumen catheter enters its luer connector directly instead of via a hub and extension tube.
It is desired to provide an assurance against occluding or kinking of the catheter lumens, as well as greater strength, at the connection of the catheter and the hub, or at the connection of a single lumen catheter luer connection where no hub is utilized.

Certain catheter assemblies, termed PICC catheters (for peripherally inserted central catheters), are implanted through a vessel entry on an arm of the patient, known as axillary placement. But, usually, the catheter assembly is secured to the torso of the patient in a manner to prevent any dislocation of the distal tips of the catheter lumens from any movement along the vessel after initial placement at the catheterization site. This manner of securement is usually accomplished by a process termed tunneling, in which the proximal portion of the catheter assembly outside of the vessel is tunneled subcutaneously near the vessel entry site, typically beneath the clavicle of the patient, whereafter the hub is sutured or otherwise secured to the patient. By this process, during the connection with and disconnection from the hemodialysis machine of the extension tubes, there is no stress or strain passed to the distal end of the catheter assembly that might tend to dislodge the distal lumen tips from the desired location along the vessel.
The orientation of the tunneled portion of the catheter assembly is not axially aligned with the distal portion of the catheter assembly and in fact a relatively sharp bend may be made in the catheter assembly distally of the tunneled portion during placement.
It is desired to provide an assurance against occluding or kinking in the sharp bend between the tunnel's distal end and the venotomy.
When a catheter is being inserted vascularly into a patient, and the incision is made into the vessel at the access site or venotomy, and the introducer sheath is placed to maintain open the vascular access site for introduction of the catheter assembly, the catheter assembly is initially inserted along the guide wire through the introducer sheath. During this process, aspiration of blood occurs and measures must be taken to temporarily stop the flow, such as manually closing off the proximal end of the introducer sheath. But as the catheter is inserted into the sheath, additional blood again begins to extrude from the sheath.
It is desired to provide a means for minimizing the flow of blood as the catheter assembly is inserted through the introducer sheath and into the vessel, and also after catheter insertion as the introducer sheath is removed from the access site.
Catheters are conventionally produced in various sizes depending on desired uses, and their outer diameters are measured in units termed "french" or "F", with one F
equaling 0.013 inches or 0.32 millimeters. The largest sized catheters utilized for vascular placement may have an outer diameter of about 17 F, while the smallest sized dual-lumen catheters presently preferred are 5 F although smaller sized single lumen catheters are known. Certain problems are associated with catheters after they are vascularly in a patient; for example, development of phlebitis and thrombosis is known when the catheter outer diameter is almost the same size as the inner diameter of the vessel within which it is implanted.
It is desired to provide a catheter with a very small outer diameter, especially a dual lumen catheter, thereby minimizing the tendency of phlebitis or thrombosis or the like, to develop.
In accordance with an aspect of the present invention, there is provided, in combination, an introducer sheath and catheter. The introducer sheath has a proximal end opening having an inner diameter and the catheter including a catheter body having a distal end and a proximal end with a lengthy distal portion of the catheter body having a constant outer diameter, and a lengthy proximal portion tapering from a larger outer diameter to a smaller outer diameter in a direction beginning at the proximal end of the catheter body and extending toward the distal portion. The proximal portion includes a diameter therealong greater than the inner diameter of the sheath proximal end opening such that upon at least partial insertion of the catheter body through the introducer sheath the proximal portion closes off the proximal end opening of the introducer sheath The accompanying drawings, which are incorporated herein and constitute part of this specification, illustrate the presently preferred embodiments of the invention, and, =

together with the general description given above and the detailed description given below, serve to explain the features of the invention. In the drawings:
present invention; Fig. 1 is a top plan view of a multi-lumen catheter assembly according to the Fig. 2 is an enlarged sectional view of the lumens of the multi-lumen catheter assembly taken along lines 2 ¨ 2 of Fig. 1;
Fig. 3 is an enlarged sectional view of the lumens of the multi-lumen catheter assembly taken along lines 3 ¨ 3 of Fig. 1;
Fig. 4 is a cross-sectional view of the catheter inserted into the introducer sheath during patient placement;
Fig. 5 is a cross-sectional view of the catheter proximal end fully inserted adjacent the vascular incision after sheath removal; and Fig. 6 is an isometric view of an alternate embodiment of the present invention with a longer larger diameter proximal catheter section implanted and subcutaneously tunneled in a patient.
In the drawings, like numerals indicate like elements throughout. Certain terminology is used herein for convenience only and is not to be taken as a limitation on the present invention.
The terms "distal" and "proximal" refer, respectively, to directions closer to and farther away from, respectively, an insertion end of the catheter of the present invention. The terminology includes the words specifically mentioned, derivatives thereof and words of similar import.
The embodiments illustrated below are not intended to be exhaustive or to limit the invention to the precise form disclosed. These embodiments are chosen and described to best explain the principle of the invention and its application and practical use and to enable others skilled in the art to best utilize the invention.
Referring now to Fig. 1, a catheter assembly 100 according to the present invention is shown, having a distal end 102 and a proximal end 104. While catheter assembly 100 is shown and described as having two lumens, the present invention also is beneficial to single lumen catheters or catheters with more than two lumens. A hub 106 connects the distal end 102 and the proximal end 104, and the proximal end 104 includes first and second extension tube assemblies 110, 120, respectively. The first extension tube assembly 110 includes an extension tube 112 having a luer connection 114 fixedly connected to a proximal end 115 of the extension tube 112. A distal end 116 of the extension tube 112 is fixedly connected to the hub 106. A clamp 118, such as a Roberts clamp, is disposed over the extension tube 112 between the proximal end 115 and the distal end 116.
The second extension tube assembly 120 includes an extension tube 122 having a luer connection 124 fixedly connected to a proximal end 125 of the extension tube 122. A distal end 126 of the extension tube 122 is fixedly connected to the hub 106.. The clamp 128 is disposed over the extension tube 122 between the proximal end 125 and the distal end 126.
The hub 106 fluidly connects the extension tube assemblies 110, 120 with the distal end 102 of the catheter assembly 100. The hub 106 includes suture wings 130, 132 that are used to suture the hub 106 to a patient's skin after insertion.
The distal end 102 includes a dual lumen catheter 140 that includes a proximal end 142 that is fixedly connected to the hub 106 and a distal end 144 that is inserted into vasculature of a patient.
As can be seen from Figs. 2 and 3, the catheter 140 has a generally circular cross section. The catheter 140 tapers from a larger diameter to a smaller diameter in a proximal to distal direction, meaning that the catheter 140 is thicker proximate to the hub 106 than at the distal end 144.
Preferably, the catheter has a tapered proximal portion that extends from the larger diameter adjacent the hub for about from 5 cm to 15 cm, and preferably about 10 cm, whereafter the catheter diameter is constant extending to the distal end portion, which also may be tapered to an even smaller distal tip diameter, or have spaced distal tips for the respective lumens. Typical diameters for one particular useful embodiment of the catheter of the present invention, for use with peripherally inserted central catheters, or PICCs, are that the general diameter of the catheter is less than 5 F, such as about 4 F, and the larger diameter adjacent the hub is about 7 F; and where the general diameter is 3 F, the larger diameter is about 4 F; wherein with such small diameters the catheter would be less prone to inducing phlebitis or thrombosis or the like.
Referring to Figs. 1 to 3, the catheter 140 includes a first lumen 150 that fluidly communicates with the first extension tube 110 through the hub 106 and a second lumen 160 that fluidly communicates with the second extension tube 120 through the hub 106.
The first lumen 150 and the second lumen 160 are each generally rounded within the catheter 140.
While the catheter 140 tapers along its length, the diameters of each of the lumens 150, 160 remain, within manufacturing tolerances, constant.
The generally rounded lumens 150, 160 enhance fluid flow through the catheter 140 and eliminate corners which encourage blot clotting within the lumens. Preferably, the lumens 150, 160 are sized to allow a 0.018" guide wire to pass with minimal resistance through either lumen 150, 160, such as having diameters of between 0.020 in and about 0.025 in or 0.030 in. A septum 146 separates the first and second lumens 150, 160. Nearer to the proximal end 142 of the catheter 140, the septum 146 is shown as being thicker than nearer to the distal end 144 of the catheter 140. The septum 146 is preferably centered throughout the catheter 140.
The larger diameter of the catheter 140 at the proximal end 142, along with the constant diameter of the lumens 150, 160 housed within the catheter 140, reduces the likelihood of kinking of the lumens 150, 160 nearer to the proximal end 142, especially during handling when the proximal end luer connectors are connected to or disconnected from medical apparatus such as hemodialysis apparatus or the like, while just distally of the hub 106 the catheter 140 enters the subcutaneous tunnel (see Figs. 4 to 6) and thus is held fixed in position.
In Fig, 4, a catheter assembly 200 is shown, wherein its tapered proximal end portion 202 is entering the proximal end 204 of an introducer sheath 206 during vascular insertion of the catheter distal portion 208, which is mostly already in the vessel 210 with the use of a guide wire 214, entering at venotomty or vascular incision 212. It is seen that the proximal end portion 202 has been inserted until at some location along the tapered portion the proximal end portion 202 has filled the proximal opening 216 of the introducer sheath 206, thus closing off the opening 216 to stop any aspiration of blood therethrough. At this point, the introducer sheath may begin to be split manually along longitudinally extending opposed frangible sections or weaknesses such as grooves (not shown) as the catheter is continuously urged distally to continue to close off the remaining unsplit portion of the sheath, and so on until the sheath is fully split apart and discarded.
Similarly, in Fig. 5, catheter assembly 200 is shown after introducer sheath 206 of Fig. 4 has been split and removed from about the catheter, and the catheter assembly has been implanted fully into the vessel 210 and the guide wire 214 removed. The proximal end portion 202 has now become moved to be adjacent and partially into the vascular incision 212, and is seen to substantially plug and close off the vascular incision.
Figure 6 illustrates an alternate embodiment of the present invention.
Catheter assembly 300 is shown implanted and subcutaneously tunneled in a patient. Catheter 302 has a lengthy distal portion 304 with an outer diameter appropriate for the vessel of the patient, and a lengthy proximal, tunneled portion 306 with a generally constant greater diameter from the hub 308 through the tunnel 310 and about the sharp bend 312, where it tapers at transition 314 to a smaller outer diameter entering the venotomy 316 and extending to its distal end 316. The larger diameter portion at bend 312 is more resistant to occlusion and kinking than if it Were of the smaller diameter that is vascularly implanted. Catheter 302 may include a proximal end portion 320 with an even greater outer diameter adjacent to hub 308, if desired. For example, for a catheter having an outer diameter of 10 F within the vessel, the larger diameter of proximal portion 304 may be of 12 F, and the proximal end portion 320 may enlarge in a taper from 12 F to 13 F or 14 F.

Claims (15)

What is claimed is:
1. In combination, an introducer sheath and catheter, the introducer sheath having a proximal end opening having an inner diameter and the catheter including a catheter body having a distal end and a proximal end with a lengthy distal portion of the catheter body having a constant outer diameter, and a lengthy proximal portion tapering from a larger outer diameter to a smaller outer diameter in a direction beginning at the proximal end of the catheter body and extending toward the distal portion, characterized in that the proximal portion includes a diameter therealong greater than the inner diameter of the sheath proximal end opening such that upon at least partial insertion of the catheter body through the introducer sheath the proximal portion closes off the proximal end opening of the introducer sheath.
2. The introducer sheath and catheter of claim 1, wherein the catheter includes a plurality of lumens disposed within the catheter body, wherein each of the plurality of lumens has a generally constant circular diameter extending between the proximal end and the distal end of the catheter body.
3. The introducer sheath and catheter of claim 2, wherein a septum dividing the lumens within the catheter decreases from a larger thickness adjacent the proximal end to a smaller thickness proximate the distal end of the catheter body.
4. The introducer sheath and catheter of claim 1, wherein the catheter has two lumens each having a constant diameter of between about 0.508 mm (0.020 in) and 0.762 mm (0.030 in).
5. The introducer sheath and catheter of claim 1, wherein the tapering proximal portion is confined to a limited distance from a hub affixed to the proximal end of the catheter body.
6. The introducer sheath and catheter of claim 5, wherein the limited distance is about from 5 cm to about 15 cm.
7. The introducer sheath and catheter of claim 6, wherein the limited distance is about 10 cm.
8. The introducer sheath and catheter of claim 1, wherein the catheter's lengthy proximal portion has a larger outer diameter than the lengthy distal portion and the catheter transitions at transition extending from the larger diameter proximal portion to the smaller diameter distal portion.
9. The introducer sheath and catheter of claim 8, wherein the larger diameter lengthy proximal portion is 0.667 mm (2 F) greater in diameter than the diameter of the smaller diameter lengthy distal portion.
10. The introducer sheath and catheter of claim 8, wherein the catheter tapers from the larger outer diameter proximal portion to an even larger outer diameter adjacent to a hub of the catheter body.
11. The introducer sheath and catheter of claim 10, wherein the tapered hub-adjacent portion is confined to a limited distance from the hub, wherein the limited distance is about from 5 cm to about 15 cm.
12. The introducer sheath and catheter of claim 11, wherein the limited distance is about 10 cm.
13. The catheter of claim 12, wherein the even larger outer diameter adjacent the hub is 0.333 mm (1F) greater in diameter than the diameter of the lengthy proximal portion.
14. The introducer sheath and catheter in accordance with claims 1 or 8, wherein the catheter has two lumens constant in diameter from the proximal end of the catheter to the distal end of the catheter, and wherein the outer diameter of the lengthy distal portion of the catheter is less than 1.67 mm (5 F), and each lumen has a circular cross-section ranging in diameter from about 0.508 mm (0.020 in) to about 0.635 mm (0.025 in).
15. The introducer sheath and catheter as set forth in claim 14, wherein the outer catheter diameter is about 1.33 mm (4 F).
CA2600841A 2005-03-10 2006-03-09 Catheter with larger diameter proximal end portion Expired - Fee Related CA2600841C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US66037705P 2005-03-10 2005-03-10
US60/660,377 2005-03-10
PCT/US2006/008464 WO2006099067A1 (en) 2005-03-10 2006-03-09 Catheter with larger diameter proximal end portion

Publications (2)

Publication Number Publication Date
CA2600841A1 CA2600841A1 (en) 2006-09-21
CA2600841C true CA2600841C (en) 2013-05-28

Family

ID=36992022

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2600841A Expired - Fee Related CA2600841C (en) 2005-03-10 2006-03-09 Catheter with larger diameter proximal end portion

Country Status (6)

Country Link
US (2) US7871398B2 (en)
EP (1) EP1868677B1 (en)
JP (2) JP5112288B2 (en)
CA (1) CA2600841C (en)
TR (1) TR201903695T4 (en)
WO (1) WO2006099067A1 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7393339B2 (en) 2003-02-21 2008-07-01 C. R. Bard, Inc. Multi-lumen catheter with separate distal tips
US20040243095A1 (en) 2003-05-27 2004-12-02 Shekhar Nimkar Methods and apparatus for inserting multi-lumen spit-tip catheters into a blood vessel
US8992454B2 (en) 2004-06-09 2015-03-31 Bard Access Systems, Inc. Splitable tip catheter with bioresorbable adhesive
DE602007004718D1 (en) 2006-03-31 2010-03-25 Bard Inc C R Catheter with arched transition area
US8562557B2 (en) * 2007-05-25 2013-10-22 Medical Components, Inc. Small diameter dual lumen catheter
CN101918066B (en) 2007-10-17 2013-07-31 巴德阿克塞斯系统股份有限公司 Manufacture of split tip catheters and the split tip catheters
US8292841B2 (en) 2007-10-26 2012-10-23 C. R. Bard, Inc. Solid-body catheter including lateral distal openings
US8066660B2 (en) 2007-10-26 2011-11-29 C. R. Bard, Inc. Split-tip catheter including lateral distal openings
US9579485B2 (en) 2007-11-01 2017-02-28 C. R. Bard, Inc. Catheter assembly including a multi-lumen configuration
JP5452498B2 (en) 2007-11-01 2014-03-26 シー・アール・バード・インコーポレーテッド Catheter assembly including triple lumen end
US8591450B2 (en) 2010-06-07 2013-11-26 Rex Medical L.P. Dialysis catheter
US10238833B2 (en) 2010-08-12 2019-03-26 C. R. Bard, Inc. Access port and catheter assembly including catheter distal portion stability features
CN103068435B (en) 2010-08-12 2016-08-03 C·R·巴德股份有限公司 The conduit pruned including distal part stability component
US10758262B2 (en) * 2011-06-20 2020-09-01 Medtronic, Inc. Medical assemblies and methods for implantation of multiple medical leads through a single entry
US20130304030A1 (en) * 2011-11-05 2013-11-14 Vadiswire Corp. Medical guidewire system with plural parallel guidewires
US10252023B2 (en) 2013-01-11 2019-04-09 C. R. Bard, Inc. Curved catheter and methods for making same
USD748252S1 (en) 2013-02-08 2016-01-26 C. R. Bard, Inc. Multi-lumen catheter tip
EP2968915A1 (en) 2013-03-13 2016-01-20 Boston Scientific Neuromodulation Corporation System and method for making and using a lead introducer for an implantable electrical stimulation system
AU2014315385B2 (en) 2013-09-06 2017-06-22 Boston Scientific Neuromodulation Corporation Lead introducer for an implantable electrical stimulation system
US9700350B2 (en) 2013-09-06 2017-07-11 Boston Scientific Neuromodulation Corporation Systems and methods for making and using a lead introducer for an implantable electrical stimulation system
US9604050B2 (en) 2014-02-20 2017-03-28 Boston Scientific Neuromodulation Corporation Systems and methods for percutaneously implanting into a patient a paddle lead of an electrical stimulation system
WO2016011091A1 (en) 2014-07-14 2016-01-21 C. R. Bard, Inc. Apparatuses, systems, and methods for inserting split tip catheters having enhanced stiffening and guiding features
US9931109B2 (en) 2015-02-13 2018-04-03 Boston Scientific Neuromodulation Corporation Retractor and tools for implantation of electrical stimulation leads and methods of using and manufacture
WO2016176211A1 (en) 2015-04-28 2016-11-03 Boston Scientific Neuromodulation Corporation Systems and methods for making and using a lead introducer with a seal for an electrical stimulation system
US9889274B2 (en) 2015-06-18 2018-02-13 Medtronic Cryocath Lp Skive-less sheath
BR112018072916B1 (en) * 2016-05-13 2023-01-31 C.R. Bard, Inc PERIPHERALLY INSERTION CENTRAL CATHETER AND CATHETERIZATION SYSTEM
AU2017373953B2 (en) 2016-12-08 2023-05-11 Abiomed, Inc. Overmold technique for peel-away introducer design
WO2019090351A2 (en) 2017-11-06 2019-05-09 Abiomed, Inc. Peel away hemostasis valve
CA3100259A1 (en) 2018-05-16 2019-11-21 Abiomed, Inc. Peel-away sheath assembly
WO2020172071A2 (en) 2019-02-19 2020-08-27 Boston Scientific Neuromodulation Corporation Lead introducers and systems and methods including the lead introducers

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3633579A (en) * 1967-05-24 1972-01-11 Sherwood Medical Ind Inc Catheter placement device and method
US4692141A (en) * 1982-03-08 1987-09-08 Mahurkar Sakharam D Double lumen catheter
EP0107810B1 (en) * 1982-10-29 1986-06-11 Miles Laboratories, Inc. Long indwelling double bore catheter
US4775371A (en) * 1986-09-02 1988-10-04 Advanced Cardiovascular Systems, Inc. Stiffened dilatation catheter and method of manufacture
US4738658A (en) * 1986-09-19 1988-04-19 Aries Medical Incorporated Tapered hemostatic device for use in conjunction with a catheter for alleviating blood leakage and method for using same
US5020543A (en) * 1989-11-03 1991-06-04 Rothenberg Robert E Venous access catheter for removing a culture
US5167623A (en) * 1990-12-27 1992-12-01 The Kendall Company Multilumen catheter
US5219335A (en) * 1991-05-23 1993-06-15 Scimed Life Systems, Inc. Intravascular device such as introducer sheath or balloon catheter or the like and methods for use thereof
US5221263A (en) * 1992-07-30 1993-06-22 Gesco International, Inc. Catheter emplacement apparatus
US5478326A (en) * 1992-12-10 1995-12-26 Shiu; Man F. Arterial device for control of bleeding from a puncture in an artery wall
US5527276A (en) * 1993-01-12 1996-06-18 Arthroscopic Assistants, Inc. Flexible inflow/outflow cannula
JP3383009B2 (en) * 1993-06-29 2003-03-04 テルモ株式会社 Vascular catheter
NL9301642A (en) * 1993-09-22 1995-04-18 Cordis Europ Microcatheter.
US5364344A (en) * 1993-10-22 1994-11-15 The Kendall Company Dual lumen catheter
EP0744977B1 (en) * 1993-11-12 2003-03-26 Micro Interventional Systems Small diameter, high torque catheter
EP1704890B1 (en) * 1995-09-21 2009-01-21 Covidien AG Tapered and reinforced catheter
US6827710B1 (en) * 1996-11-26 2004-12-07 Edwards Lifesciences Corporation Multiple lumen access device
US5895378A (en) * 1997-05-29 1999-04-20 Target Therapeutics, Inc. Flow-directed catheter having multiple tapers and radio-opaque markers
US6030369A (en) * 1997-07-03 2000-02-29 Target Therapeutics Inc. Micro catheter shaft
EP1056501B1 (en) * 1998-02-24 2005-11-16 Boston Scientific Limited High flow rate dialysis catheters and related methods
US6045547A (en) * 1998-06-15 2000-04-04 Scimed Life Systems, Inc. Semi-continuous co-extruded catheter shaft
US6719749B1 (en) * 2000-06-01 2004-04-13 Medical Components, Inc. Multilumen catheter assembly and methods for making and inserting the same
JP4405390B2 (en) * 2002-08-29 2010-01-27 メデイカル コンポーネンツ,インコーポレーテツド Dilator and sheath assembly for releasable fixation

Also Published As

Publication number Publication date
EP1868677A4 (en) 2011-03-16
US7871398B2 (en) 2011-01-18
CA2600841A1 (en) 2006-09-21
TR201903695T4 (en) 2019-04-22
WO2006099067A1 (en) 2006-09-21
EP1868677B1 (en) 2018-12-26
EP1868677A1 (en) 2007-12-26
JP2008532646A (en) 2008-08-21
JP2012228531A (en) 2012-11-22
JP5112288B2 (en) 2013-01-09
US20060206094A1 (en) 2006-09-14
US8348899B2 (en) 2013-01-08
JP5307275B2 (en) 2013-10-02
US20110034875A1 (en) 2011-02-10

Similar Documents

Publication Publication Date Title
CA2600841C (en) Catheter with larger diameter proximal end portion
US11338075B2 (en) Split-tip catheter including lateral distal openings
US20070049960A1 (en) Method of implanting a multi-lumen catheter
EP2077775B1 (en) Catheter tunneler adapter and method of assembly to a catheter
US8303568B2 (en) Shielded tip catheter
CN115702966A (en) Central catheter insertion assembly capable of being quickly inserted
US8562557B2 (en) Small diameter dual lumen catheter
US9993618B2 (en) Method of coupling a catheter tunneler adapter to a catheter
CA2495687C (en) Shielded tip catheter
US20070282306A1 (en) Multi-lumen catheter with protected tip

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20220909

MKLA Lapsed

Effective date: 20210309