CA2575841A1 - Novel silicate-based yellow-green phosphors - Google Patents

Novel silicate-based yellow-green phosphors Download PDF

Info

Publication number
CA2575841A1
CA2575841A1 CA002575841A CA2575841A CA2575841A1 CA 2575841 A1 CA2575841 A1 CA 2575841A1 CA 002575841 A CA002575841 A CA 002575841A CA 2575841 A CA2575841 A CA 2575841A CA 2575841 A1 CA2575841 A1 CA 2575841A1
Authority
CA
Canada
Prior art keywords
phosphor
group
silicate
wavelength ranging
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002575841A
Other languages
French (fr)
Other versions
CA2575841C (en
Inventor
Ning Wang
Yi Dong
Shifan Cheng
Yi-Qun Li
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intematix Corp
Original Assignee
Ning Wang
Yi Dong
Shifan Cheng
Yi-Qun Li
Intematix Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/912,741 external-priority patent/US7267787B2/en
Application filed by Ning Wang, Yi Dong, Shifan Cheng, Yi-Qun Li, Intematix Corporation filed Critical Ning Wang
Publication of CA2575841A1 publication Critical patent/CA2575841A1/en
Application granted granted Critical
Publication of CA2575841C publication Critical patent/CA2575841C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • AHUMAN NECESSITIES
    • A44HABERDASHERY; JEWELLERY
    • A44BBUTTONS, PINS, BUCKLES, SLIDE FASTENERS, OR THE LIKE
    • A44B19/00Slide fasteners
    • A44B19/02Slide fasteners with a series of separate interlocking members secured to each stringer tape
    • A44B19/04Stringers arranged edge-to-edge when fastened, e.g. abutting stringers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7734Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77342Silicates
    • AHUMAN NECESSITIES
    • A44HABERDASHERY; JEWELLERY
    • A44DINDEXING SCHEME RELATING TO BUTTONS, PINS, BUCKLES OR SLIDE FASTENERS, AND TO JEWELLERY, BRACELETS OR OTHER PERSONAL ADORNMENTS
    • A44D2203/00Fastening by use of magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Abstract

Novel phosphor systems are disclosed having the formula A2SiO4:Eu2+D, where A
is at least one of a divalent metal selected from the group consisting of Sr, Ca, Ba, Mg, Zn, and Cd; and D is a dopant selected from the group consisting of F, Cl, Br, I, P, S and N. In one embodiment, the novel phosphor has the formula (Sr1-x-yBaxMy)2 SiO4: Eu2+F (where M is one of Ca, Mg, Zn, or Cd in an amount ranging from 0<y<0.5). The phosphor is configured to absorb visible light from a blue LED, and luminescent light from the phosphor plus light from the blue LED may be combined to form white light. The novel phosphors can emit light at intensities greater than either conventionally known YAG compounds, or silicate-based phosphors that do not contain the inventive dopant ion.

Claims (24)

1. A silicate-based yellow-green phosphor having the formula A2SiO4:Eu2+D, wherein:
A is at least one of a divalent metal selected from the group consisting of Sr, Ca, Ba, Mg, Zn, and Cd; and D is a dopant selected from the group consisting of F, Cl, Br, I, P, S and N, wherein D is present in the phosphor in an amount ranging from about 0.01 to 20 mole percent.
2. The silicate-based phosphor of claim 1, wherein the phosphor is configured to absorb radiation in a wavelength ranging from about 280 nm to 490 nm.
3. The silicate-based phosphor of claim 1, wherein the phosphor emits visible light having a wavelength ranging from about 460 nm to 590 nm.
4. The silicate-based phosphor of claim 1, wherein the phosphor has the formula (Sr1-x-y Ba x M y)2 SiO4: Eu2+D, where M is at least one of an element selected from the group consisting of Ca, Mg, Zn, and Cd, and where 0<=x<=1;
0<=y<=1 when M is Ca;
0<=y<=1 when M is Mg; and 0<=y<=1 when M is selected from the group consisting of Zn and Cd.
5. The silicate-based phosphor of claim 1, wherein D is F.
6. The silicate-based phosphor of claim 1, wherein the phosphor has the formula (Sr1-x-y Ba x M y)2 SiO4: Eu2+F, where M is at least one of an element selected from the group of Ca, Mg, Zn,Cd, and where 0<=x<=0.3;
0<=y<=0.5 when M is Ca;
0<=y<=0.1 when M is Mg; and 0<=y<=0.5 when M is selected from the group consisting of Zn and Cd.
7. The silicate-based phosphor of claim 6, wherein the phosphor emits light in the yellow region of the electromagnetic spectrum, and has a peak emission wavelength ranging from about 540 to 590 nm.
8. The silicate-based phosphor of claim 1, wherein the phosphor has the formula (Sr1-x-y Ba x M y)2 Si04: Eu2+F, where M is at least one of an element selected from the group consisting of Ca, Mg, Zn, and Cd, and where 0.3<=x<=1;
0<=y<=0.5 when M is Ca;
0<=y<=0.1 when M is Mg; and 0<=y<=0.5 when M is selected from the group consisting of Zn and Cd.
9. The silicate-based phosphor of claim 8, wherein the phosphor emits light in the green region of the electromagnetic spectrum, and has a peak emission wavelenth ranging from about 500 to 530 nm.
10. A white LED comprising:
a radiation source configured to emit radiation having a wavelength ranging from about 410 to 500 nm;

a yellow phosphor according to claim 7, the yellow phosphor configured to absorb at least a portion of the radiation from the radiation source and emit light with a peak intensity in a wavelength ranging from about 530 to 590 nm.
11. A white LED comprising:
a radiation source configured to emit radiation having a wavelength ranging from about 410 to 500 nm;

a yellow phosphor according to claim 7, the yellow phosphor configured to absorb at least a portion of the radiation from the radiation source and emit light with peak intensity in a wavelength ranging from about 530 to 590 nm; and a green phosphor according to claim 9, the green phosphor configured to absorb at least a portion of the radiation from the radiation source and emit light with peak intensity in a wavelength ranging from about 500 to 540 nm.
12. A white LED comprising:
a radiation source configured to emit radiation having a wavelength ranging from about 410 to 500 nm;
a green phosphor according to claim 9, the green phosphor configured to absorb at least a portion of the radiation from the radiation source and emit light with peak intensity in a wavelength ranging from about 500 to 540 nm;
a red phosphor selected from the group consisting of CaS:Eu2+, SrS:Eu2+, MgO*MgF*GeO:Mn4+, and M x Si y N z:Eu+2, where M is selected from the group consisting of Ca, Sr, Ba, and Zn; Z=2/3x+4/3y, wherein the red phosphor is configured to absorb at least a portion of the radiation from the radiation source and emit light with peak intensity in a wavelength ranging from about 590 to 690nm.
13. A white LED comprising:
a radiation source configured to emit radiation having a wavelength ranging from about 410 to 500 nm;
a yellow phosphor according to claim 7, the yellow phosphor configured to absorb at least a portion of the radiation from the radiation source and emit light with a peak intensity in a wavelength ranging from about 540 to 590 nm;
a red phosphor selected from the group consisting of CaS:Eu2+, SrS:Eu2+, MgO*MgF*GeO:Mn4+, and M x Si y N z:Eu+2, where M is selected from the group consisting of Ca, Sr, Ba, and Zn; and Z=2/3x+4/3y, wherein the red phosphor is configured to absorb at least a portion of the radiation from the radiation source and emit light with peak intensity in a wavelength ranging from about 590 to 690nm.
14. A composition comprising:
a silicate-based yellow phosphor having the formula A2SiO4:Eu2+D, wherein A is at least one divalent metal selected from the group consisting of Sr, Ca, Ba, Mg, Zn, and Cd;
and D is an ion that is present in the yellow phosphor in an amount ranging from about 0.01 to 20 mole percent; and a blue phosphor;

wherein the yellow phosphor is configured to emit visible light with a peak intensity in a wavelength ranging from about 540 nm to 590 nm; and the blue phosphor is configured to emit visible light with a peak intensity in a wavelength ranging from about 480 to 510 nm.
15. The composition of claim 10, wherein the blue phosphor is selected from the group consisting of silicate-based phosphors and aluminate-based phosphors.
16. The composition of claim 11, wherein the silicate-based blue phosphor has the formula Sr1-x-y Mg x Ba y SiO4:Eu2+F; and where 0.5<=x<=1.0; and 0<=y<=0.5.
17. The composition of claim 11, wherein the aluminate-based blue phosphor has the formula Sr1-x MgEu x Al10O17; and where 0.01<=x<=1Ø
18. A composition comprising:
a silicate-based green phosphor having the formula A2SiO4:Eu2+H, wherein A is at least one of a divalent metal selected from the group consisting of Sr, Ca, Ba, Mg, Zn, and Cd; and H is a negatively charged halogen ion that is present in the yellow phosphor in an amount ranging from about 0.01 to 20 mole percent;
a blue phosphor; and a red phosphor;
wherein the green phosphor is configured to emit visible light with a peak intensity in a wavelength ranging from about 500nm to 540 nm; the blue phosphor is configured to emit visible light with a peak intensity in a wavelength ranging from about 480 to 510 nm; and the red phosphor is configured to emit visible light with a peak intensity in a wavelength ranging from about 775 to 620 nm.
19. A method of preparing a silicate-based yellow phosphor having the formula A2SiO4:Eu2+D, wherein A is at least one of a divalent metal selected from the group consisting of Sr, Ca, Ba, Mg, Zn, and Cd; and D is a dopant selected from the group consisting of F, Cl, Br, I, P, S and N, wherein D is present in the phosphor in an amount ranging from about 0.01 to 20 mole percent, the method selected from the group consisting of a sol-gel method and a solid reaction method.
20. The method of claim 19, wherein the sol-gel method comprises:
a) dissolving a desired amount of an alkaline earth nitrate selected from the group consisting of Mg, Ca, Sr, and Ba-containing nitrates with a compound selected from the group consisting of Eu2O3 and BaF2 or other alkaline metal halides, in an acid, to prepare a first solution;
b) dissolving corresponding amount of a silica gel in de-ionized water to prepare a second solution;
c) stirring together the solutions produced in steps a) and b), and then adding ammonia to generate a gel from the mixture solution;
d) adjusting the pH of the solution produced in step c) to a value of about 9, and then stirring the solution continuously at about 60°C for about 3 hours;
e) drying the gelled solution of step d) by evaporation, and then decomposing the resulting dried gel at 500 to 700°C for about 60 minutes to decompose and acquire product oxides;
f) cooling and grinding the gelled solution of step e) with NH4F or other ammonia halides when alkaline earth metal halides are not used in step a) to produce a powder;
g) calcining/sintering the powder of step f) in a reduced atmosphere for about 6 to 10 hours, the sintering temperature ranging from about 1200 to 1400°C.
21. The method of claim 19, wherein the solid reaction method comprises:
a) wet mixing desired amounts of alkaline earth oxides or carbonates (Mg, Ca, Sr, Ba), dopants of Eu2O3 and/or BaF2 or other alkaline earth metal halides, corresponding SiO2 and/or NH4F or other ammonia halides with a ball mill; and b) after drying and grinding, calcining and/or sintering the resulting powder was in a reduced atmosphere for about 6 to 10 hours, wherein the calcining/sintering temperature ranged from about 1200 to 1400°C.
22. A silicate-based yellow-green phosphor having the formula A2SiO4 : Eu2+D, wherein:

A is at least one of a divalent metal selected from the group consisting of Sr, Ca, Ba, Mg, Zn, and Cd; and D is a dopant selected from the group consisting of F, Cl, Br, I, S and N, wherein D is present in the phosphor in an amount ranging from about 0.01 to 20 mole percent.
23. A method of preparing a silicate-based yellow phosphor having the formula A2SiO4 : Eu2+D, wherein A is at least one of a divalent metal selected from the group consisting of Sr, Ca, Ba, Mg, Zn, and Cd; and D is a dopant selected from the group consisting of F, Cl, Br, I, S and N, wherein D is present in the phosphor in an amount ranging from about 0.01 to 20 mole percent, the method selected from the group consisting of a sol-gel method and a solid reaction method.
24. A silicate-based yellow-green phosphor having the formula (Al-x Eu x)2Si(O1-y D y)4, wherein:

A is at least one of a divalent metal selected from the group consisting of Sr, Ca, Ba, Mg, Zn, and Cd; and D is a dopant selected from the group consisting of F, Cl, Br, I, S and N; and, 0.001<x<0.10; 0.01<y<0.2.
CA2575841A 2004-08-04 2004-11-24 Novel silicate-based yellow-green phosphors Expired - Fee Related CA2575841C (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US10/912,741 2004-08-04
US10/912,741 US7267787B2 (en) 2004-08-04 2004-08-04 Phosphor systems for a white light emitting diode (LED)
US10/948,764 2004-09-22
US10/948,764 US7311858B2 (en) 2004-08-04 2004-09-22 Silicate-based yellow-green phosphors
PCT/US2004/039638 WO2006022792A2 (en) 2004-08-04 2004-11-24 Novel silicate-based yellow-green phosphors

Publications (2)

Publication Number Publication Date
CA2575841A1 true CA2575841A1 (en) 2006-03-02
CA2575841C CA2575841C (en) 2011-06-07

Family

ID=35756730

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2575841A Expired - Fee Related CA2575841C (en) 2004-08-04 2004-11-24 Novel silicate-based yellow-green phosphors

Country Status (9)

Country Link
US (1) US7311858B2 (en)
EP (1) EP1778816A4 (en)
KR (4) KR100538104B1 (en)
AU (1) AU2004322659B2 (en)
BR (1) BRPI0418982A (en)
CA (1) CA2575841C (en)
MX (1) MX2007001446A (en)
TW (1) TWI374926B (en)
WO (1) WO2006022792A2 (en)

Families Citing this family (150)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7271261B2 (en) * 2001-10-19 2007-09-18 Ortho-Mcneil Pharmaceutical, Inc. Substituted benzimidazoles and imidazo-[4,5]-pyridines
US7368179B2 (en) 2003-04-21 2008-05-06 Sarnoff Corporation Methods and devices using high efficiency alkaline earth metal thiogallate-based phosphors
US7390437B2 (en) * 2004-08-04 2008-06-24 Intematix Corporation Aluminate-based blue phosphors
US7601276B2 (en) * 2004-08-04 2009-10-13 Intematix Corporation Two-phase silicate-based yellow phosphor
US7575697B2 (en) * 2004-08-04 2009-08-18 Intematix Corporation Silicate-based green phosphors
US8017035B2 (en) * 2004-08-04 2011-09-13 Intematix Corporation Silicate-based yellow-green phosphors
DE102004038199A1 (en) * 2004-08-05 2006-03-16 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH LED with low color temperature
US7804238B2 (en) * 2004-08-31 2010-09-28 Nissan Motor Co., Ltd. Functional thin-film element, producing method thereof, and article using functional thin-film element
US20060067073A1 (en) * 2004-09-30 2006-03-30 Chu-Chi Ting White led device
US20070114562A1 (en) * 2005-11-22 2007-05-24 Gelcore, Llc Red and yellow phosphor-converted LEDs for signal applications
US7276183B2 (en) * 2005-03-25 2007-10-02 Sarnoff Corporation Metal silicate-silica-based polymorphous phosphors and lighting devices
EP1877519A2 (en) * 2005-04-20 2008-01-16 ETeCH AG Novel materials used for emitting light
KR100927154B1 (en) * 2005-08-03 2009-11-18 인터매틱스 코포레이션 Silicate-based orange phosphors
US20070125984A1 (en) * 2005-12-01 2007-06-07 Sarnoff Corporation Phosphors protected against moisture and LED lighting devices
US8906262B2 (en) * 2005-12-02 2014-12-09 Lightscape Materials, Inc. Metal silicate halide phosphors and LED lighting devices using the same
US7918582B2 (en) * 2005-12-30 2011-04-05 Dialight Corporation Signal light using phosphor coated LEDs
US7777322B2 (en) * 2005-12-30 2010-08-17 Dialight Corporation Apparatus for providing a light source that combines different color LEDS
US8441179B2 (en) * 2006-01-20 2013-05-14 Cree, Inc. Lighting devices having remote lumiphors that are excited by lumiphor-converted semiconductor excitation sources
CN101379164B (en) * 2006-02-10 2012-11-21 三菱化学株式会社 Phosphor, method for producing same, phosphor-containing composition, light-emitting device, image display, and illuminating device
US20080000467A1 (en) * 2006-02-16 2008-01-03 Design Annex Disposable charcoal lighting apparatus
KR100735453B1 (en) * 2006-02-22 2007-07-04 삼성전기주식회사 White light emitting device
JP4438761B2 (en) * 2006-03-09 2010-03-24 ソニー株式会社 Luminescent composition and light source device
US20070210282A1 (en) * 2006-03-13 2007-09-13 Association Suisse Pour La Recherche Horlogere (Asrh) Phosphorescent compounds
US8469760B2 (en) * 2006-03-31 2013-06-25 Dowa Electronics Materials Co., Ltd. Light emitting device and method for producing same
CN101077973B (en) * 2006-05-26 2010-09-29 大连路明发光科技股份有限公司 Silicate luminescent material, preparation method thereof and luminescent device using the same
KR100939936B1 (en) * 2006-06-21 2010-02-04 대주전자재료 주식회사 Thullium Containing Fluorescent Substance For White Light Emitting Diode And Manufacturing Method Thereof
US8947619B2 (en) 2006-07-06 2015-02-03 Intematix Corporation Photoluminescence color display comprising quantum dots material and a wavelength selective filter that allows passage of excitation radiation and prevents passage of light generated by photoluminescence materials
US20080074583A1 (en) * 2006-07-06 2008-03-27 Intematix Corporation Photo-luminescence color liquid crystal display
CN100590172C (en) 2006-07-26 2010-02-17 北京有色金属研究总院 Siliceous LED fluorescent powder and manufacturing method and produced luminescent device
US20080029720A1 (en) 2006-08-03 2008-02-07 Intematix Corporation LED lighting arrangement including light emitting phosphor
US7820075B2 (en) * 2006-08-10 2010-10-26 Intematix Corporation Phosphor composition with self-adjusting chromaticity
JP2008081625A (en) * 2006-09-28 2008-04-10 Canon Inc Electron beam-excited blue phosphor
JP2010506006A (en) 2006-10-03 2010-02-25 ライトスケイプ マテリアルズ,インク. Metal silicate halide phosphor and LED lighting device using the same
US8475683B2 (en) 2006-10-20 2013-07-02 Intematix Corporation Yellow-green to yellow-emitting phosphors based on halogenated-aluminates
US8529791B2 (en) 2006-10-20 2013-09-10 Intematix Corporation Green-emitting, garnet-based phosphors in general and backlighting applications
US9120975B2 (en) 2006-10-20 2015-09-01 Intematix Corporation Yellow-green to yellow-emitting phosphors based on terbium-containing aluminates
US8133461B2 (en) 2006-10-20 2012-03-13 Intematix Corporation Nano-YAG:Ce phosphor compositions and their methods of preparation
JP2008116849A (en) * 2006-11-07 2008-05-22 Sony Corp Display device
US7648650B2 (en) * 2006-11-10 2010-01-19 Intematix Corporation Aluminum-silicate based orange-red phosphors with mixed divalent and trivalent cations
CN101210181B (en) * 2006-12-29 2010-05-19 财团法人工业技术研究院 Fluorescent material, white light luminescent device and false proof coating
KR20080069765A (en) * 2007-01-24 2008-07-29 엘지이노텍 주식회사 Manufacturing method for fluorescent material and light emitting diode using thereof
US20080192458A1 (en) * 2007-02-12 2008-08-14 Intematix Corporation Light emitting diode lighting system
US7651268B2 (en) * 2007-02-23 2010-01-26 Cao Group, Inc. Method and testing equipment for LEDs and laser diodes
US7972030B2 (en) 2007-03-05 2011-07-05 Intematix Corporation Light emitting diode (LED) based lighting systems
US7883226B2 (en) * 2007-03-05 2011-02-08 Intematix Corporation LED signal lamp
DE102007016228A1 (en) * 2007-04-04 2008-10-09 Litec Lll Gmbh Process for the production of phosphors based on orthosilicates for pcLEDs
US7781779B2 (en) * 2007-05-08 2010-08-24 Luminus Devices, Inc. Light emitting devices including wavelength converting material
JP5360857B2 (en) * 2007-05-17 2013-12-04 Necライティング株式会社 Green light emitting phosphor, manufacturing method thereof, and light emitting device using the same
TWI347687B (en) * 2007-07-13 2011-08-21 Lite On Technology Corp Light-emitting device with open-loop control
KR100966374B1 (en) * 2007-08-27 2010-07-01 삼성엘이디 주식회사 Plane light source using white LED and LCD backlight unit comprising the same
US7851990B2 (en) * 2007-09-06 2010-12-14 He Shan Lide Electronic Enterprise Company Ltd. Method for generating low color temperature light and light emitting device adopting the same
US20090117672A1 (en) * 2007-10-01 2009-05-07 Intematix Corporation Light emitting devices with phosphor wavelength conversion and methods of fabrication thereof
US8783887B2 (en) 2007-10-01 2014-07-22 Intematix Corporation Color tunable light emitting device
US8883528B2 (en) * 2007-10-01 2014-11-11 Intematix Corporation Methods of producing light emitting device with phosphor wavelength conversion
US7915627B2 (en) 2007-10-17 2011-03-29 Intematix Corporation Light emitting device with phosphor wavelength conversion
US8030839B2 (en) 2007-11-30 2011-10-04 Nichia Corporation Phosphor activated with europium, light emitting device using the same and method of manufacturing the phosphor
JP2009153712A (en) 2007-12-26 2009-07-16 Olympus Corp Light source device and endoscope apparatus comprising the same
US20090309114A1 (en) 2008-01-16 2009-12-17 Luminus Devices, Inc. Wavelength converting light-emitting devices and methods of making the same
US8337029B2 (en) * 2008-01-17 2012-12-25 Intematix Corporation Light emitting device with phosphor wavelength conversion
US8567973B2 (en) 2008-03-07 2013-10-29 Intematix Corporation Multiple-chip excitation systems for white light emitting diodes (LEDs)
US8740400B2 (en) 2008-03-07 2014-06-03 Intematix Corporation White light illumination system with narrow band green phosphor and multiple-wavelength excitation
US20090283721A1 (en) 2008-05-19 2009-11-19 Intematix Corporation Nitride-based red phosphors
US8274215B2 (en) * 2008-12-15 2012-09-25 Intematix Corporation Nitride-based, red-emitting phosphors
WO2009143283A1 (en) * 2008-05-20 2009-11-26 Lightscape Materials, Inc. Silicate-based phosphors and led lighting devices using the same
US8461613B2 (en) 2008-05-27 2013-06-11 Interlight Optotech Corporation Light emitting device
US7868340B2 (en) * 2008-05-30 2011-01-11 Bridgelux, Inc. Method and apparatus for generating white light from solid state light emitting devices
US8143769B2 (en) * 2008-09-08 2012-03-27 Intematix Corporation Light emitting diode (LED) lighting device
US8822954B2 (en) 2008-10-23 2014-09-02 Intematix Corporation Phosphor based authentication system
KR20100070731A (en) * 2008-12-18 2010-06-28 삼성전자주식회사 Halosilicate phosphors and white light emitting devices including same
US8390193B2 (en) 2008-12-31 2013-03-05 Intematix Corporation Light emitting device with phosphor wavelength conversion
US20100181582A1 (en) * 2009-01-22 2010-07-22 Intematix Corporation Light emitting devices with phosphor wavelength conversion and methods of manufacture thereof
US8541931B2 (en) * 2009-03-17 2013-09-24 Intematix Corporation LED based lamp including reflective hood to reduce variation in illuminance
TWM374153U (en) * 2009-03-19 2010-02-11 Intematix Technology Ct Corp Light emitting device applied to AC drive
US8227269B2 (en) * 2009-05-19 2012-07-24 Intematix Corporation Manufacture of light emitting devices with phosphor wavelength conversion
US8597963B2 (en) * 2009-05-19 2013-12-03 Intematix Corporation Manufacture of light emitting devices with phosphor wavelength conversion
US8227276B2 (en) * 2009-05-19 2012-07-24 Intematix Corporation Manufacture of light emitting devices with phosphor wavelength conversion
US8440500B2 (en) * 2009-05-20 2013-05-14 Interlight Optotech Corporation Light emitting device
RU2511720C2 (en) * 2009-06-15 2014-04-10 Шарп Кабусики Кайся Lighting device, display device and television receiver
US8651692B2 (en) * 2009-06-18 2014-02-18 Intematix Corporation LED based lamp and light emitting signage
DE102009035100A1 (en) * 2009-07-29 2011-02-03 Osram Opto Semiconductors Gmbh Light-emitting diode and conversion element for a light-emitting diode
US8197105B2 (en) * 2009-08-13 2012-06-12 Intematix Corporation LED-based lamps
US8592829B2 (en) * 2009-08-17 2013-11-26 Osram Sylvania Inc. Phosphor blend for an LED light source and LED light source incorporating same
US8779685B2 (en) 2009-11-19 2014-07-15 Intematix Corporation High CRI white light emitting devices and drive circuitry
US8807799B2 (en) 2010-06-11 2014-08-19 Intematix Corporation LED-based lamps
US8888318B2 (en) 2010-06-11 2014-11-18 Intematix Corporation LED spotlight
TWI450944B (en) * 2010-07-14 2014-09-01 Intematix Corp Green-emitting, garnet-based phosphors in general and backlighting applications
CN101958316B (en) * 2010-07-20 2013-01-16 上海亚明灯泡厂有限公司 LED integrated packaging power source module
US8946998B2 (en) 2010-08-09 2015-02-03 Intematix Corporation LED-based light emitting systems and devices with color compensation
US8852455B2 (en) 2010-08-17 2014-10-07 Intematix Corporation Europium-activated, beta-SiAlON based green phosphors
WO2012024607A2 (en) 2010-08-20 2012-02-23 Research Triangle Institute, International Lighting devices utilizing optical waveguides and remote light converters, and related methods
WO2012024591A1 (en) 2010-08-20 2012-02-23 Research Triangle Institute, International Photoluminescent nanofiber composites, methods for fabrication, and related lighting devices
US9562671B2 (en) 2010-08-20 2017-02-07 Research Triangle Institute Color-tunable lighting devices and methods of use
EP2609171B1 (en) 2010-08-26 2017-11-22 Merck Patent GmbH Silicate-based phosphor
US8354784B2 (en) 2010-09-28 2013-01-15 Intematix Corporation Solid-state light emitting devices with photoluminescence wavelength conversion
US8957585B2 (en) 2010-10-05 2015-02-17 Intermatix Corporation Solid-state light emitting devices with photoluminescence wavelength conversion
KR20130139938A (en) 2010-10-05 2013-12-23 인터매틱스 코포레이션 Solid-state light emitting devices and signage with photoluminescence wavelength conversion
US8610341B2 (en) 2010-10-05 2013-12-17 Intematix Corporation Wavelength conversion component
US8614539B2 (en) 2010-10-05 2013-12-24 Intematix Corporation Wavelength conversion component with scattering particles
US9546765B2 (en) 2010-10-05 2017-01-17 Intematix Corporation Diffuser component having scattering particles
US8604678B2 (en) 2010-10-05 2013-12-10 Intematix Corporation Wavelength conversion component with a diffusing layer
US8974695B2 (en) 2010-11-11 2015-03-10 Auterra, Inc. Phosphors of rare earth and transition metal doped Ca1+xSr1-xGayIn2-ySzSe3-zF2; manufacturing and applications
JP2012109397A (en) * 2010-11-17 2012-06-07 Panasonic Corp Light-emitting device
US9117981B2 (en) * 2010-11-22 2015-08-25 Ube Material Industries, Ltd. Silicate phosphor exhibiting high light emission characteristics and moisture resistance, and light emitting device
US20120138874A1 (en) 2010-12-02 2012-06-07 Intematix Corporation Solid-state light emitting devices and signage with photoluminescence wavelength conversion and photoluminescent compositions therefor
EP2653518B1 (en) * 2010-12-14 2016-05-18 Ocean's King Lighting Science&Technology Co., Ltd. Halo-silicate luminescent materials and preparation methods thereof
US8698388B2 (en) * 2011-02-03 2014-04-15 Cree, Inc. Lighting apparatus providing increased luminous flux while maintaining color point and CRI
KR101388189B1 (en) * 2011-02-28 2014-04-24 성균관대학교산학협력단 Chlorosilicate phosphor and preparing method of the same
US9004705B2 (en) 2011-04-13 2015-04-14 Intematix Corporation LED-based light sources for light emitting devices and lighting arrangements with photoluminescence wavelength conversion
US8992051B2 (en) 2011-10-06 2015-03-31 Intematix Corporation Solid-state lamps with improved radial emission and thermal performance
US20130088848A1 (en) 2011-10-06 2013-04-11 Intematix Corporation Solid-state lamps with improved radial emission and thermal performance
TWI614452B (en) 2011-10-13 2018-02-11 英特曼帝克司公司 Photoluminescence wavelength conversion components for solid-state light emitting devices and lamps
US9115868B2 (en) 2011-10-13 2015-08-25 Intematix Corporation Wavelength conversion component with improved protective characteristics for remote wavelength conversion
US9365766B2 (en) 2011-10-13 2016-06-14 Intematix Corporation Wavelength conversion component having photo-luminescence material embedded into a hermetic material for remote wavelength conversion
KR101356962B1 (en) * 2011-10-17 2014-02-04 한국과학기술원 Oxide Green Phosphor and the Method for Preparing the Same and White LED using the same
US9006966B2 (en) 2011-11-08 2015-04-14 Intematix Corporation Coatings for photoluminescent materials
KR101641378B1 (en) 2011-12-30 2016-07-20 인터매틱스 코포레이션 Nitride phosphors with interstitial cations for charge balance
US8663502B2 (en) 2011-12-30 2014-03-04 Intematix Corporation Red-emitting nitride-based phosphors
EP3240052A1 (en) 2012-04-26 2017-11-01 Intematix Corporation Methods and apparatus for implementing color consistency in remote wavelength conversion
CN102703065A (en) * 2012-06-25 2012-10-03 重庆文理学院 Silicate green emitting phosphor powder for near ultraviolet excited light emitting diode (LED)
US8994056B2 (en) 2012-07-13 2015-03-31 Intematix Corporation LED-based large area display
US8597545B1 (en) 2012-07-18 2013-12-03 Intematix Corporation Red-emitting nitride-based calcium-stabilized phosphors
CN102757784B (en) * 2012-07-20 2014-05-07 江苏博睿光电有限公司 Silicate red fluorescent powder and preparation method thereof
JP5578739B2 (en) * 2012-07-30 2014-08-27 住友金属鉱山株式会社 Alkaline earth metal silicate phosphor and method for producing the same
KR101946263B1 (en) * 2012-12-24 2019-02-11 엘지디스플레이 주식회사 Liquid crystal display device
US20140185269A1 (en) 2012-12-28 2014-07-03 Intermatix Corporation Solid-state lamps utilizing photoluminescence wavelength conversion components
US9217543B2 (en) 2013-01-28 2015-12-22 Intematix Corporation Solid-state lamps with omnidirectional emission patterns
WO2014151263A1 (en) 2013-03-15 2014-09-25 Intematix Corporation Photoluminescence wavelength conversion components
KR102310489B1 (en) 2013-08-05 2021-10-12 바스프 에스이 Cyanated naphthalenebenzimidazole compounds
KR101434459B1 (en) * 2013-08-20 2014-08-26 한국화학연구원 A novel bromosilicate-based phosphor for near-ultraviolet excited light emitting device
JP6384893B2 (en) * 2013-10-23 2018-09-05 株式会社光波 Single crystal phosphor and light emitting device
WO2015072765A1 (en) * 2013-11-13 2015-05-21 엘지이노텍(주) Blue-green phosphor, and light-emitting device package and lighting apparatus comprising same
EP3076441A4 (en) * 2013-11-25 2017-04-26 Sichuan Sunfor Light Co., Ltd. Method for improving defect-free rate of led light source, phosphor powder, and led light source
US9753357B2 (en) 2014-02-27 2017-09-05 Intematix Corporation Compact solid-state camera flash
CN106414399B (en) 2014-05-09 2019-03-29 巴斯夫欧洲公司 Cyaniding based compound
US9318670B2 (en) 2014-05-21 2016-04-19 Intematix Corporation Materials for photoluminescence wavelength converted solid-state light emitting devices and arrangements
US9890328B2 (en) 2014-12-12 2018-02-13 General Electric Company Phosphor compositions and lighting apparatus thereof
US9537061B2 (en) 2014-12-12 2017-01-03 General Electric Company Phosphor compositions and lighting apparatus thereof
KR101945850B1 (en) 2015-03-23 2019-02-08 인터매틱스 코포레이션 Photoluminescent color display
WO2016151068A1 (en) 2015-03-26 2016-09-29 Basf Se Cyanated benzoxanthene and benzothioxanthene compounds
US10066160B2 (en) 2015-05-01 2018-09-04 Intematix Corporation Solid-state white light generating lighting arrangements including photoluminescence wavelength conversion components
US10253257B2 (en) 2015-11-25 2019-04-09 Intematix Corporation Coated narrow band red phosphor
EP3402845B1 (en) 2016-01-14 2020-03-11 Basf Se Perylene bisimides with rigid 2,2'-biphenoxy bridges
CA3022335A1 (en) 2016-04-27 2017-11-02 Basf Se Laminated lighting unit
EP3523303B1 (en) 2016-10-06 2020-09-23 Basf Se 2-phenylphenoxy-substituted perylene bisimide compounds and their use
WO2018141742A1 (en) 2017-02-03 2018-08-09 Basf Se Laminated glazing comprising a composite structure of laminated layers
EP3385603A1 (en) 2017-04-06 2018-10-10 Intematix Corporation Led-based linear lamps and lighting arrangements
WO2018215308A1 (en) 2017-05-24 2018-11-29 Basf Se Glazing with luminous coating and method for producing a glazing having a luminous coating
CN111465605A (en) 2017-12-19 2020-07-28 巴斯夫欧洲公司 Cyanoaryl substituted benzo (thia) xanthene compounds
EP3768799B1 (en) 2018-03-20 2022-02-09 Basf Se Yellow light emitting device
CN116376539B (en) * 2023-02-28 2024-03-08 江门市科恒实业股份有限公司 LED green powder and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3505240A (en) * 1966-12-30 1970-04-07 Sylvania Electric Prod Phosphors and their preparation
TW383508B (en) * 1996-07-29 2000-03-01 Nichia Kagaku Kogyo Kk Light emitting device and display
DE69731119T2 (en) 1997-03-26 2005-10-06 Xiao, Zhiguo, Dalian LONG TERM LIQUID PHOSPHORUS AND METHOD FOR THE PRODUCTION THEREOF
US6555958B1 (en) * 2000-05-15 2003-04-29 General Electric Company Phosphor for down converting ultraviolet light of LEDs to blue-green light
US6621211B1 (en) * 2000-05-15 2003-09-16 General Electric Company White light emitting phosphor blends for LED devices
EP1367655A4 (en) * 2001-09-03 2009-05-06 Panasonic Corp Semiconductor light emitting device, light emitting apparatus and production method for semiconductor light emitting device
US6982045B2 (en) 2003-05-17 2006-01-03 Phosphortech Corporation Light emitting device having silicate fluorescent phosphor

Also Published As

Publication number Publication date
CA2575841C (en) 2011-06-07
KR20060093259A (en) 2006-08-24
TWI374926B (en) 2012-10-21
TW200619356A (en) 2006-06-16
KR20060093260A (en) 2006-08-24
BRPI0418982A (en) 2007-12-11
AU2004322659B2 (en) 2009-10-08
US7311858B2 (en) 2007-12-25
KR100701030B1 (en) 2007-03-29
AU2004322659A1 (en) 2006-03-02
KR100639532B1 (en) 2006-10-31
KR20060080645A (en) 2006-07-10
KR100538104B1 (en) 2005-12-21
MX2007001446A (en) 2008-03-07
WO2006022792A3 (en) 2006-05-18
US20060028122A1 (en) 2006-02-09
KR100632144B1 (en) 2006-10-11
WO2006022792A2 (en) 2006-03-02
EP1778816A4 (en) 2009-04-22
EP1778816A2 (en) 2007-05-02

Similar Documents

Publication Publication Date Title
CA2575841A1 (en) Novel silicate-based yellow-green phosphors
JP4625496B2 (en) Novel silicate yellow-green phosphor
CN101292009B (en) Novel silicate-based yellow-green phosphors
CN101595201B (en) Aluminum-silicate based orange-red phosphors with mixed divalent and trivalent cations
CN105331364B (en) A kind of YAG:Mn red fluorescence powders with and its preparation method and application
Yongqing et al. Properties of red-emitting phosphors Sr2MgSi2O7: Eu3+ prepared by gel-combustion method assisted by microwave
CN105038787A (en) Ce, Tb and Mn-coactivated single-matrix phosphate white phosphor powder and preparation method thereof
CN111154488A (en) Terbium-doped germanate green fluorescent powder for white light LED and preparation method thereof
CN102559185A (en) Yellow luminescent material with voelckerite structure and preparation method thereof as well as white light-emitting diode device
CN101126023B (en) Silicate substrate luminescent material with multiple emission peak, preparation method thereof and luminescent device using the same
CN107129805B (en) Europium ion doped silicate white light fluorescent powder and preparation method thereof
CN102286281B (en) Aluminate-based red fluorescent material and preparation method thereof
CN104498031A (en) Phosphate yellow phosphor for white LED, and preparation method thereof
CN107629794A (en) A kind of europium ion Eu3+The bismuthino luminescent material of activation, preparation method and application
CN108276998B (en) Trivalent samarium ion doped barium gadolinium titanate red fluorescent powder and preparation method thereof
CN101473013B (en) Thulium-containing fluorescent substance for white light emitting diode and manufacturing method thereof
JP2012526157A (en) Blue-green silicate luminescent material
CN101570688A (en) Red light-emitting material and light emitting device using same
PL220075B1 (en) Luminophore and a method for its preparation
CN104152143B (en) Rare earth-containing functional material and preparation method thereof
CN109370592A (en) A kind of divalent europium, manganese ion coactivated LED single-substrate white material and preparation method thereof
CN103045241A (en) Sulphide red fluorescent material for white-light LED (light-emitting diode) and preparation method for same
CN102492427A (en) White-light luminescent material

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20171124