CA2570429A1 - Receiver circuit using nanotube-based switches and transistors - Google Patents

Receiver circuit using nanotube-based switches and transistors Download PDF

Info

Publication number
CA2570429A1
CA2570429A1 CA002570429A CA2570429A CA2570429A1 CA 2570429 A1 CA2570429 A1 CA 2570429A1 CA 002570429 A CA002570429 A CA 002570429A CA 2570429 A CA2570429 A CA 2570429A CA 2570429 A1 CA2570429 A1 CA 2570429A1
Authority
CA
Canada
Prior art keywords
output
input
receiver circuit
switching element
node
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002570429A
Other languages
French (fr)
Other versions
CA2570429C (en
Inventor
Claude L. Bertin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantero Inc
Original Assignee
Nantero, Inc.
Claude L. Bertin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantero, Inc., Claude L. Bertin filed Critical Nantero, Inc.
Publication of CA2570429A1 publication Critical patent/CA2570429A1/en
Application granted granted Critical
Publication of CA2570429C publication Critical patent/CA2570429C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/02Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using elements whose operation depends upon chemical change
    • G11C13/025Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using elements whose operation depends upon chemical change using fullerenes, e.g. C60, or nanotubes, e.g. carbon or silicon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C23/00Digital stores characterised by movement of mechanical parts to effect storage, e.g. using balls; Storage elements therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/10Resistive cells; Technology aspects
    • G11C2213/17Memory cell being a nanowire transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/50Bistable switching devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure

Abstract

Receiver circuits using nanotube-based switches and transistors. A receiver circuit includes a differential input having a first and second input link, a differential output having a first and second output link, and first and second switching elements in electrical communication with the input links and the output links. Each switching element has an input node, an output node, a nanotube channel element, and a control structure disposed in relation to the nanotube channel element to controllably form and unform an electrically conductive channel between said input node and said output node. First and second MOS transistors are each in electrical communication with a reference signal and with the output node of a corresponding one of the first and second switching elements.

Claims (7)

1. A receiver circuit, comprising:
a differential input having a first and second input link;
a differential output having a first and second output link;
first and second switching elements in electrical communication with the input links and the output links, each switching element having an input node, an output node, a nanotube channel element, and a control structure disposed in relation to the nanotube channel element to controllably form and unform an electrically conductive channel between said input node and said output node; and first and second MOS transistors, each in electrical communication with a reference signal and with the output node of a corresponding one of the first and second switching elements.
2. The receiver circuit of claim 1 wherein the first and second MOS
transistors are PFET transistors in electrical communication with Vdd voltage and wherein the output node of a first switching element is coupled to the drain of the first MOS
transistor and a gate of the second MOS transistor, and wherein the output node of a second switching element is coupled to the drain of the second MOS transistor and a gate of the first MOS transistor.
3. The receiver circuit of claim 2 wherein the input node of each switching element is in electrical communication with ground.
4. The receiver circuit of claim 3 wherein the control structure of each switching element includes a set electrode and a release electrode, wherein the set electrode is activated to cause the nanotube channel element to electrically and mechanically contact the output node to form a channel, and wherein the release electrode is activated to cause the nanotube channel element to release electrical and mechanical contact with the output node to unform the channel.
5. The receiver circuit of claim 4 wherein a first link of the differential input is coupled to the set electrode of the first switching element and the release electrode of the second switching element, and wherein a second link of the differential input is coupled to the set electrode of the second switching element and the release electrode of the first switching element.
6. The receiver circuit of claim 5 wherein the output nodes of the first and second switching elements are coupled, respectively, to a first and second output link of the differential output.
7. The receiver circuit of claim 1 wherein the first and second switching elements retail channel formation non-volatilely.
CA2570429A 2004-06-18 2005-05-26 Receiver circuit using nanotube-based switches and transistors Expired - Fee Related CA2570429C (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US58116204P 2004-06-18 2004-06-18
US60/581,162 2004-06-18
US11/033,213 2005-01-10
US11/033,213 US7329931B2 (en) 2004-06-18 2005-01-10 Receiver circuit using nanotube-based switches and transistors
PCT/US2005/018540 WO2006033683A2 (en) 2004-06-18 2005-05-26 Receiver circuit using nanotube-based switches and transistors

Publications (2)

Publication Number Publication Date
CA2570429A1 true CA2570429A1 (en) 2006-03-30
CA2570429C CA2570429C (en) 2011-09-13

Family

ID=35481264

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2570429A Expired - Fee Related CA2570429C (en) 2004-06-18 2005-05-26 Receiver circuit using nanotube-based switches and transistors

Country Status (4)

Country Link
US (2) US7329931B2 (en)
EP (1) EP1756954A4 (en)
CA (1) CA2570429C (en)
WO (1) WO2006033683A2 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6706402B2 (en) 2001-07-25 2004-03-16 Nantero, Inc. Nanotube films and articles
US7666382B2 (en) 2004-12-16 2010-02-23 Nantero, Inc. Aqueous carbon nanotube applicator liquids and methods for producing applicator liquids thereof
US7858185B2 (en) 2003-09-08 2010-12-28 Nantero, Inc. High purity nanotube fabrics and films
US7294877B2 (en) * 2003-03-28 2007-11-13 Nantero, Inc. Nanotube-on-gate FET structures and applications
WO2005031299A2 (en) 2003-05-14 2005-04-07 Nantero, Inc. Sensor platform using a non-horizontally oriented nanotube element
US7245520B2 (en) * 2004-08-13 2007-07-17 Nantero, Inc. Random access memory including nanotube switching elements
EP1665278A4 (en) 2003-08-13 2007-11-07 Nantero Inc Nanotube-based switching elements with multiple controls and circuits made from same
US7375369B2 (en) 2003-09-08 2008-05-20 Nantero, Inc. Spin-coatable liquid for formation of high purity nanotube films
US7504051B2 (en) 2003-09-08 2009-03-17 Nantero, Inc. Applicator liquid for use in electronic manufacturing processes
US7658869B2 (en) 2004-06-03 2010-02-09 Nantero, Inc. Applicator liquid containing ethyl lactate for preparation of nanotube films
US7652342B2 (en) * 2004-06-18 2010-01-26 Nantero, Inc. Nanotube-based transfer devices and related circuits
US7330709B2 (en) * 2004-06-18 2008-02-12 Nantero, Inc. Receiver circuit using nanotube-based switches and logic
WO2006121461A2 (en) 2004-09-16 2006-11-16 Nantero, Inc. Light emitters using nanotubes and methods of making same
US7345805B2 (en) * 2004-09-27 2008-03-18 Idc, Llc Interferometric modulator array with integrated MEMS electrical switches
EP1807919A4 (en) 2004-11-02 2011-05-04 Nantero Inc Nanotube esd protective devices and corresponding nonvolatile and volatile nanotube switches
US7359694B2 (en) * 2004-12-16 2008-04-15 Northrop Grumman Corporation Carbon nanotube devices and method of fabricating the same
US8548415B2 (en) 2004-12-16 2013-10-01 Northrop Grumman Systems Corporation Carbon nanotube devices and method of fabricating the same
US7479654B2 (en) 2005-05-09 2009-01-20 Nantero, Inc. Memory arrays using nanotube articles with reprogrammable resistance
US7781862B2 (en) 2005-05-09 2010-08-24 Nantero, Inc. Two-terminal nanotube devices and systems and methods of making same
TWI324773B (en) 2005-05-09 2010-05-11 Nantero Inc Non-volatile shadow latch using a nanotube switch
US7598127B2 (en) * 2005-05-12 2009-10-06 Nantero, Inc. Nanotube fuse structure
US7541216B2 (en) * 2005-06-09 2009-06-02 Nantero, Inc. Method of aligning deposited nanotubes onto an etched feature using a spacer
US7538040B2 (en) * 2005-06-30 2009-05-26 Nantero, Inc. Techniques for precision pattern transfer of carbon nanotubes from photo mask to wafers
US7446044B2 (en) 2005-09-19 2008-11-04 California Institute Of Technology Carbon nanotube switches for memory, RF communications and sensing applications, and methods of making the same
US7701013B2 (en) * 2007-07-10 2010-04-20 International Business Machines Corporation Nanoelectromechanical transistors and methods of forming same
US7550354B2 (en) * 2007-07-11 2009-06-23 International Business Machines Corporation Nanoelectromechanical transistors and methods of forming same
US8222127B2 (en) 2008-07-18 2012-07-17 Micron Technology, Inc. Methods of forming structures having nanotubes extending between opposing electrodes and structures including same
US8357921B2 (en) * 2008-08-14 2013-01-22 Nantero Inc. Integrated three-dimensional semiconductor system comprising nonvolatile nanotube field effect transistors
US8435798B2 (en) 2010-01-13 2013-05-07 California Institute Of Technology Applications and methods of operating a three-dimensional nano-electro-mechanical resonator and related devices
EP2557567A1 (en) 2011-08-09 2013-02-13 Thomson Licensing Programmable read-only memory device and method of writing the same
US11056797B2 (en) 2019-07-29 2021-07-06 Eagle Technology, Llc Articles comprising a mesh formed of a carbon nanotube yarn
US11949161B2 (en) 2021-08-27 2024-04-02 Eagle Technology, Llc Systems and methods for making articles comprising a carbon nanotube material
US11901629B2 (en) 2021-09-30 2024-02-13 Eagle Technology, Llc Deployable antenna reflector

Family Cites Families (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3303201A (en) 1964-02-24 1967-02-07 Herbert C Stecker Halogenated anilides of thiophene carboxylic acids
US3332301A (en) 1964-11-24 1967-07-25 Origineers Inc Gear drive
CH670914A5 (en) 1986-09-10 1989-07-14 Landis & Gyr Ag
JPH07118270B2 (en) * 1993-10-25 1995-12-18 日本電気株式会社 Carbon nanotube transistor
US6445006B1 (en) 1995-12-20 2002-09-03 Advanced Technology Materials, Inc. Microelectronic and microelectromechanical devices comprising carbon nanotube components, and methods of making same
US5818316A (en) * 1997-07-15 1998-10-06 Motorola, Inc. Nonvolatile programmable switch
US5903010A (en) 1997-10-29 1999-05-11 Hewlett-Packard Company Quantum wire switch and switching method
US6348700B1 (en) 1998-10-27 2002-02-19 The Mitre Corporation Monomolecular rectifying wire and logic based thereupon
US6472705B1 (en) 1998-11-18 2002-10-29 International Business Machines Corporation Molecular memory & logic
US6343700B1 (en) * 1999-02-05 2002-02-05 Martin J. Slendebroek Toothbrush holder
WO2000048195A1 (en) 1999-02-12 2000-08-17 Board Of Trustees Operating Michigan State University Nanocapsules containing charged particles, their uses and methods of forming the same
US6518156B1 (en) 1999-03-29 2003-02-11 Hewlett-Packard Company Configurable nanoscale crossbar electronic circuits made by electrochemical reaction
US6314019B1 (en) * 1999-03-29 2001-11-06 Hewlett-Packard Company Molecular-wire crossbar interconnect (MWCI) for signal routing and communications
US6559468B1 (en) 1999-03-29 2003-05-06 Hewlett-Packard Development Company Lp Molecular wire transistor (MWT)
US6128214A (en) 1999-03-29 2000-10-03 Hewlett-Packard Molecular wire crossbar memory
US6256767B1 (en) * 1999-03-29 2001-07-03 Hewlett-Packard Company Demultiplexer for a molecular wire crossbar network (MWCN DEMUX)
ATE481745T1 (en) 1999-07-02 2010-10-15 Harvard College ARRANGEMENT CONTAINING NANOSCOPIC WIRE, LOGICAL FIELDS AND METHOD FOR THE PRODUCTION THEREOF
EP1247089B1 (en) 1999-12-15 2008-07-23 Board Of Trustees Of The Leland Stanford Junior University Carbon nanotube devices
US7335603B2 (en) 2000-02-07 2008-02-26 Vladimir Mancevski System and method for fabricating logic devices comprising carbon nanotube transistors
EP1170799A3 (en) * 2000-07-04 2009-04-01 Infineon Technologies AG Electronic device and method of manufacture of an electronic device
US6515339B2 (en) * 2000-07-18 2003-02-04 Lg Electronics Inc. Method of horizontally growing carbon nanotubes and field effect transistor using the carbon nanotubes grown by the method
US6495905B2 (en) 2000-11-09 2002-12-17 Texas Instruments Incorporated Nanomechanical switches and circuits
US6423583B1 (en) * 2001-01-03 2002-07-23 International Business Machines Corporation Methodology for electrically induced selective breakdown of nanotubes
US6803840B2 (en) 2001-03-30 2004-10-12 California Institute Of Technology Pattern-aligned carbon nanotube growth and tunable resonator apparatus
US6777982B2 (en) 2001-04-03 2004-08-17 Carnegie Mellon University Molecular scale latch and associated clocking scheme to provide gain, memory and I/O isolation
WO2002101917A2 (en) 2001-06-11 2002-12-19 Johns Hopkins University Low-power, differential optical receiver in silicon on insulator
US6673424B1 (en) 2001-06-19 2004-01-06 Arizona Board Of Regents Devices based on molecular electronics
US7259410B2 (en) 2001-07-25 2007-08-21 Nantero, Inc. Devices having horizontally-disposed nanofabric articles and methods of making the same
US6574130B2 (en) 2001-07-25 2003-06-03 Nantero, Inc. Hybrid circuit having nanotube electromechanical memory
US6706402B2 (en) 2001-07-25 2004-03-16 Nantero, Inc. Nanotube films and articles
US6924538B2 (en) 2001-07-25 2005-08-02 Nantero, Inc. Devices having vertically-disposed nanofabric articles and methods of making the same
US6911682B2 (en) 2001-12-28 2005-06-28 Nantero, Inc. Electromechanical three-trace junction devices
US6919592B2 (en) 2001-07-25 2005-07-19 Nantero, Inc. Electromechanical memory array using nanotube ribbons and method for making same
US6643165B2 (en) 2001-07-25 2003-11-04 Nantero, Inc. Electromechanical memory having cell selection circuitry constructed with nanotube technology
US7566478B2 (en) 2001-07-25 2009-07-28 Nantero, Inc. Methods of making carbon nanotube films, layers, fabrics, ribbons, elements and articles
US6835591B2 (en) 2001-07-25 2004-12-28 Nantero, Inc. Methods of nanotube films and articles
US6835613B2 (en) * 2001-12-06 2004-12-28 University Of South Florida Method of producing an integrated circuit with a carbon nanotube
US6784028B2 (en) 2001-12-28 2004-08-31 Nantero, Inc. Methods of making electromechanical three-trace junction devices
AU2003216070A1 (en) * 2002-01-18 2003-09-02 California Institute Of Technology Array-based architecture for molecular electronics
DE60301582T2 (en) * 2002-02-09 2006-06-22 Samsung Electronics Co., Ltd., Suwon Carbon nanotube storage device and method of manufacturing the storage device
US7049625B2 (en) * 2002-03-18 2006-05-23 Max-Planck-Gesellschaft Zur Fonderung Der Wissenschaften E.V. Field effect transistor memory cell, memory device and method for manufacturing a field effect transistor memory cell
US7335395B2 (en) 2002-04-23 2008-02-26 Nantero, Inc. Methods of using pre-formed nanotubes to make carbon nanotube films, layers, fabrics, ribbons, elements and articles
US6760245B2 (en) 2002-05-01 2004-07-06 Hewlett-Packard Development Company, L.P. Molecular wire crossbar flash memory
US6759693B2 (en) * 2002-06-19 2004-07-06 Nantero, Inc. Nanotube permeable base transistor
US6809465B2 (en) 2002-08-23 2004-10-26 Samsung Electronics Co., Ltd. Article comprising MEMS-based two-dimensional e-beam sources and method for making the same
US7051945B2 (en) * 2002-09-30 2006-05-30 Nanosys, Inc Applications of nano-enabled large area macroelectronic substrates incorporating nanowires and nanowire composites
AU2003205098A1 (en) 2003-01-13 2004-08-13 Nantero, Inc. Methods of using thin metal layers to make carbon nanotube films, layers, fabrics, ribbons, elements and articles
EP1590498A4 (en) 2003-01-13 2008-01-16 Nantero Inc Methods of making carbon nanotube films, layers, fabrics, ribbons, elements and articles
US7560136B2 (en) 2003-01-13 2009-07-14 Nantero, Inc. Methods of using thin metal layers to make carbon nanotube films, layers, fabrics, ribbons, elements and articles
EP1583853A4 (en) 2003-01-13 2006-12-20 Nantero Inc Carbon nanotube films, layers, fabrics, ribbons, elements and articles
US6919740B2 (en) * 2003-01-31 2005-07-19 Hewlett-Packard Development Company, Lp. Molecular-junction-nanowire-crossbar-based inverter, latch, and flip-flop circuits, and more complex circuits composed, in part, from molecular-junction-nanowire-crossbar-based inverter, latch, and flip-flop circuits
US6918284B2 (en) * 2003-03-24 2005-07-19 The United States Of America As Represented By The Secretary Of The Navy Interconnected networks of single-walled carbon nanotubes
US7294877B2 (en) * 2003-03-28 2007-11-13 Nantero, Inc. Nanotube-on-gate FET structures and applications
TW200518337A (en) * 2003-06-09 2005-06-01 Nantero Inc Non-volatile electromechanical field effect devices and circuits using same and methods of forming same
US7289357B2 (en) 2003-08-13 2007-10-30 Nantero, Inc. Isolation structure for deflectable nanotube elements
WO2005084164A2 (en) 2003-08-13 2005-09-15 Nantero, Inc. Nanotube-based switching elements and logic circuits
US7115960B2 (en) 2003-08-13 2006-10-03 Nantero, Inc. Nanotube-based switching elements
WO2005017967A2 (en) 2003-08-13 2005-02-24 Nantero, Inc. Nanotube device structure and methods of fabrication
EP1665278A4 (en) 2003-08-13 2007-11-07 Nantero Inc Nanotube-based switching elements with multiple controls and circuits made from same
US6969651B1 (en) * 2004-03-26 2005-11-29 Lsi Logic Corporation Layout design and process to form nanotube cell for nanotube memory applications
US7161403B2 (en) * 2004-06-18 2007-01-09 Nantero, Inc. Storage elements using nanotube switching elements
US6955937B1 (en) * 2004-08-12 2005-10-18 Lsi Logic Corporation Carbon nanotube memory cell for integrated circuit structure with removable side spacers to permit access to memory cell and process for forming such memory cell
US8362525B2 (en) * 2005-01-14 2013-01-29 Nantero Inc. Field effect device having a channel of nanofabric and methods of making same

Also Published As

Publication number Publication date
US20050282515A1 (en) 2005-12-22
EP1756954A4 (en) 2009-02-18
CA2570429C (en) 2011-09-13
WO2006033683A3 (en) 2007-12-06
US20080191742A1 (en) 2008-08-14
EP1756954A2 (en) 2007-02-28
US7737471B2 (en) 2010-06-15
US7329931B2 (en) 2008-02-12
WO2006033683A2 (en) 2006-03-30

Similar Documents

Publication Publication Date Title
CA2570429A1 (en) Receiver circuit using nanotube-based switches and transistors
CA2570416A1 (en) Receiver circuit using nanotube-based switches and logic
KR100308708B1 (en) Method and apparatus for reducing parasitic bipolar current in a silicon-on-insulator transistor
WO2005084164A3 (en) Nanotube-based switching elements and logic circuits
CA2570486A1 (en) Integrated nanotube and field effect switching device
WO2006007196A3 (en) Nanotube-based transfer devices and related circuits
US7804332B2 (en) Circuit configurations having four terminal JFET devices
JP4398152B2 (en) High performance double gate latch
WO2005001899A3 (en) Non-volatile electromechanical field effect devices and circuits using same and methods of forming same
WO2005048296A3 (en) Nanotube-based switching elements with multiple controls and circuits made from same
WO2006007203A3 (en) Nanotube-based logic driver circuits
KR20010014764A (en) Switched body soi(silicon on insulator) circuits and fabrication method therefor
JP2005196738A5 (en)
JPH024011A (en) Analog switch circuit
CN101151654B (en) Load driving circuit
CN103124174B (en) Ic circuit
WO2007047166A2 (en) Output driver circuit with multiple gate devices
CN101916762B (en) Complementary metal oxide semiconductor field effect transistor structure
US20020021146A1 (en) Static logic design for CMOS
CN101727955A (en) Integrated circuit, control method, and use of a circuit for a sleep mode and an operating mode
US6064263A (en) DTCMOS differential amplifier
JP2000261306A5 (en)
CN100533733C (en) Layout circuit with stable guiding current and IC chip with the same
US7710148B2 (en) Programmable switch circuit and method, method of manufacture, and devices and systems including the same
JP2007228559A (en) Switch apparatus

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20130528