CA2548149A1 - Methods for the dietary management of irritable bowel syndrome and carbohydrate malabsorption - Google Patents

Methods for the dietary management of irritable bowel syndrome and carbohydrate malabsorption Download PDF

Info

Publication number
CA2548149A1
CA2548149A1 CA002548149A CA2548149A CA2548149A1 CA 2548149 A1 CA2548149 A1 CA 2548149A1 CA 002548149 A CA002548149 A CA 002548149A CA 2548149 A CA2548149 A CA 2548149A CA 2548149 A1 CA2548149 A1 CA 2548149A1
Authority
CA
Canada
Prior art keywords
composition
patient
bacteria
bacillus coagulans
lactase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002548149A
Other languages
French (fr)
Other versions
CA2548149C (en
Inventor
Sean Farmer
Andrew R. Lefkowitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ganeden Biotech Inc
Original Assignee
Ganeden Biotech, Incorporated
Sean Farmer
Andrew R. Lefkowitz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ganeden Biotech, Incorporated, Sean Farmer, Andrew R. Lefkowitz filed Critical Ganeden Biotech, Incorporated
Publication of CA2548149A1 publication Critical patent/CA2548149A1/en
Application granted granted Critical
Publication of CA2548149C publication Critical patent/CA2548149C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • A61K35/741Probiotics
    • A61K35/742Spore-forming bacteria, e.g. Bacillus coagulans, Bacillus subtilis, clostridium or Lactobacillus sporogenes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/125Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives containing carbohydrate syrups; containing sugars; containing sugar alcohols; containing starch hydrolysates
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/135Bacteria or derivatives thereof, e.g. probiotics
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/175Amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • A61K35/741Probiotics
    • A61K35/744Lactic acid bacteria, e.g. enterococci, pediococci, lactococci, streptococci or leuconostocs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/465Hydrolases (3) acting on ester bonds (3.1), e.g. lipases, ribonucleases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/47Hydrolases (3) acting on glycosyl compounds (3.2), e.g. cellulases, lactases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/12Antidiarrhoeals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/14Prodigestives, e.g. acids, enzymes, appetite stimulants, antidyspeptics, tonics, antiflatulents
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K2035/11Medicinal preparations comprising living procariotic cells

Abstract

The invention relates generally to digestive disorders, and in particular to methods for treating irritable bowel syndrome by increasing carbohydrate absorption by administering a composition containing a Bacillus coagulans bacterium.

Description

METHODS FOR THE DIETARY MANAGEMENT OF IRRITABLE BOWEL
SYNDROME AND CARBOHYDRATE MALABSORPTION
TECHNICAL FIELD OF THE INVENTION
The present invention relates to the utilization of probiotic lactic acid-producing bacteria in a nutritional composition. More specifically, the present invention relates to the use of Bacillus coagulafts for increasing the absorption of carbohydrates within the gastrointestinal tract of a mammal.
BACKGROUND OF THE INVENTION
The human digestive system uses a series of enzymes to break down complex foods into simple molecules (e.g., sugars, peptides and lipids) that can be absorbed by the body.
The inability or diminished capacity of the body's production of one or more enzymes that are crucial for proper digestion can lead to gastrointestinal symptoms that have been characterized by the medical community as irntable bowel syndrome (IBS). A
patient with IBS typically presents clinically with one of three variants: i) chronic abdominal pain and constipation (also known as spastic colitis); ii) chronic intermittent diarrhea, often without pain; or iii) both features, in an alternating cycle of constipation and diarrhea.

SUMMARY OF THE INVENTION
The invention is based, in part, on the discovery of the therapeutic effects of Bacillus coagulans, a spore-forming lactic acid bacterium, in the prevention and treatment of IBS
and carbohydrate malabsorption. Carbohydrate malabsorption includes the inability of a mammal to fully digest the naturally occurring sugars (e.g., lactose, fructose, and glucose) in foods and beverages.
In one aspect, the invention provides a method of reducing one or more symptoms of irritable bowel syndrome, by identifying a patient suffering from or at risk of developing irritable bowel syndrome, and administering to the patient a composition that includes Bacillus coagularas bacteria. Bacterial species include Bacillus coagulans, e.g., Bacillus coagulans hammer, preferably Bacillus coagularrs hammer strain Accession No.
ATCC
31284, or strains derived from Bacillus coagularrs hammer strain Accession No.
ATCC
31284, such as, GBI-20 (ATCC Designation Number PTA-6085); GBI-30 (ATCC
Designation Number PTA-6086); and GBI-40 (ATCC Designation Number PTA-6087).
(See, copending U.S. patent application 09/708,870, the contents of which are incorporated by reference in their entirety). Symptoms of IBS include diarrhea, constipation, alternating diarrhea and constipation, gas, bloating, urgency, and abdominal pain (intestinal discomfort). The composition also includes a supplementary enzyme (e.g., a lactase, a fructase, a lipase, or a protease), an anti-diarrheal agent (e.g., loperamide, attapulgite, Croton Lechleri Extract, or calcium polycarbophil), an anti-gas agent (e.g., a-galactosidase enzyme, simethicone, calcium carbonate, aluminum hydroxide or magnesium hydroxide), or a laxative (e.g., a sennoside such as sennosides A, B, C or D, docusate sodium, magnesium hydroxide, or a dietary fiber). A supplemental lactase includes an enzyme that catalyzes the hydrolysis of lactose in the gastrointestinal tract of a mammal, in a concentration that exceeds the amount of lactase that is present in the small or large intestine of a mammal prior to Bacillus coagulans colonization. The composition contains an isolated lactase, i. e., an enzyme that has been purified from a cell which produces the enzyme. A
supplemental fructase includes an enzyme that catalyzes the hydrolysis of fructose in the gastrointestinal tract of a mammal, in a concentration that exceeds the amount of fructase that is present in the small or large intestines of a mammal prior to Bacillus coagulans colonization. The
2 gastrointestinal tract is the system of organs in a mammal including the mouth (buccal cavity), pharynx, esophagus and cardia, stomach(s), and intestines.
Colonization of Bacillus coagularas bacteria generally occurs between 24-48 hours following delivery. Continued colonization is improved by the repeated administration of Bacillus coagulans, such as daily administration. Generally, the supplementary fructase is provided at a dose of from about 1000IU to about 12,OOOIU, and the supplementary lactase is provided at a dose of from about 1000ILJ to about 12,OOOICT. In some treatment regimens, the target patient pool is female, such as a female that is post-menstrual or post-menopausal.
Alternatively, the patient is male.
A therapeutic dose includes purified or substantially purified Bacillus coagulans bacteria at a concentration of from about 1x104 to about 1x1012 viable bacteria, specifically about 1x106 to about 1x1011, more specifically about 1x108 to about 1x101°, and most specifically about 8x10$. A substantially purified preparation of a bacterial cell is a preparation of cells wherein contaminating cells without the desired genotype constitute less than 10%, preferably less than 1 %, and more preferably less than 0.1 % of the total number of cells in the preparation. The Bacillus coagulans bacteria are in the form of spores, vegetative cells, or a combination thereof. Preferably, the composition does not contain Lactobacillus acidoplailus bacteria.
The invention also provides a method of reducing one or more symptoms of irntable bowel syndrome, by identifying a patient suffering from or at risk of developing irritable bowel syndrome, and administering to the patient a composition including an effective IBS
inhibiting amount of Bacillus coagularas bacteria prior to or concomitant with the onset of one or more IBS symptoms. Symptoms of IBS include diarrhea, constipation, alternating diarrhea and constipation, bloating, urgency, and abdominal pain.
In another aspect, the invention, the invention provides a method of reducing a symptom of irritable bowel syndrome, by identifying a patient suffering from or at risk of developing irritable bowel syndrome, and administering to the patient a composition that includes a supplementary enzyme, preferably a fructase and a lactase.
The invention also provides a method of diagnosing irritable bowel syndrome in a patient, including the steps of identifying a patient having a symptom of irritable bowel syndrome, providing a patient-derived biological sample from the identified patient, determining an amount of a product of a gastrointestinal enzyme in the patient-derived sample, and comparing the amount in the patient-derived sample with a reference amount of a product of a gastrointestinal enzyme, whereby an alteration in the test amount relative to the reference amount indicates that the patient has irntable bowel syndrome.
A gastrointestinal enzyme includes any enzyme that is active in the gastrointestinal tract, particularly the stomach and the small and large intestines. A
biological sample includes any solid, liquid, or gaseous material obtained from a mammal, such as a human patient. The symptoms of IBS include diarrhea, constipation, or alternating diarrhea and constipation. The gastrointestinal enzyme includes a lactase, a fructase, a lipase and a protease. In embodiments of the invention, the patient identified as having a symptom of irntable bowel syndrome has one or more symptoms classified under the Rome Criteria.
The amount of the product of a gastrointestinal enzyme in the patient-derived sample is modulated following administration of the compositions of the invention. For example, hydrogen measured using the hydrogen breath test declines following administration of a Bacillus coagzdayzs-containing composition.
In another aspect, the invention provides a method of improving stool consistency in a patient afflicted with non-constipated IBS, by administering an effective amount of a Bacillus coagulans bacteria provided at a concentration of from about 1x10$ to about 1x1010 viable bacteria, where the patient's stool consistency is improved following the administration. For example, abnormal patient stool is characterized as lumpy/hard or loose/watery and an improvement includes less constipated or diarrhea stool.
In a further aspect, the invention relates to a method of decreasing urgency in a subject afflicted with IBS, by administering an effective amount of a Bacillus coagulazzs bacteria provided at a concentration of from about 1x10$ to about 1x101° viable bacteria wherein urgency is decreased following the administration. Incontinence of stool is an inability to control or delay bowel movements until an appropriate time, e.g., until one can get to a toilet. Urgency is a sudden urge to have a bowel movement that is so strong that if a toilet is not immediately available, incontinence will occur.
The invention also provides a composition that includes Bacillus coagulazzs bacteria, a supplementary lactase (e.g., (3-galactosidase), and a supplementary fructase. Generally, the supplementary lactase is provided in a concentration from about 1000 ILJ
to about 12,000 ICT (e.g., about 3000IU), and the supplementary fructase is provided in a concentration from about 1000 ILT to about 12,000 ILT (e.g., about 3000IU).
The composition also includes an anti-diarrheal agent, an anti-gas agent, a laxative, a vitamin, a mineral, an isolated amino acid, a source of dietary fiber, or an antibiotic.
The composition may also include a pharmaceutically-acceptable Garner containing, e.g., silicone. The composition is in the form of a capsule, tablet (including a chewable tablet), powder, liquid or in a formulation with a food product. Food products include dairy products including ice cream, nutritional bars (energy or candy bars), sugar substitutes, non-dairy creamers, tea bags, and similar products. Sources of dietary fiber include psyllium husk, soy fiber, citrus fiber, beet fiber, pumpkin seed meal, ground flax, black walnut hull, rice fiber, hydrocollodial polysaccharides, pecan husks, and peanut husks.
The invention provides a composition containing a Bacillus coagulans bacteria and a supplemental enzyme provided in a formulation with a food product. For example, the food product is a dairy product (a product containing a component obtained from the milk of a cow, sheep, goat, or similar mammal).
The invention further provides a composition that includes from about 1x108 to about 1x101° Bacillus coagularas bacteria, a supplemental lactase in a concentration of about 3000 ILT, a supplemental fructase in a concentration of about 3000 IU, and manganese stearate.
The invention also provides a composition that includes an isolated lactase provided in a concentration from about 1000 IU to about 12,000 ICT per dose and an isolated fructase provided in a concentration from about 1000 ILT to about 12,000 ILT per dose.
The composition also includes an anti-diarrheal agent, an anti-gas agent, a laxative, a vitamin, a mineral, an isolated amino acid, a source of dietary fiber, an antibiotic, or a combination thereof.
The invention also provides a method for increasing carbohydrate absorption in a mammal, by administering to a mammal a composition that includes a Bacillus coagulans bacteria, a supplementary lactase (e.g., provided in a concentration from about 1000 ILT to about 12,000 IU), and a supplementary fructase (e.g., provided in a concentration from about 1000 ICJ to about 12,000 ILT), where carbohydrate absorption is increased following the administration. The mammal is diagnosed as suffering from or being at risk of developing a disorder associated with carbohydrate malabsorption. Disorders associated with carbohydrate malabsorption include lactose intolerance, fructose intolerance, glucose-galactose intolerance, sorbitol intolerance, irritable bowel syndrome, short bowel syndrome, stagnant loop syndrome, celiac disease, chronic malnutrition, chronic persistent diarrhea, immunoproliferative small intestinal disease, intractable diarrhea of infancy, postenteritis syndrome, tropical sprue, Whipple's disease, Wolman disease, Crohn's disease and ulcerative colitis. The composition optionally includes an anti-diarrheal agent, an anti-gas agent, a laxative, a vitamin, a mineral, an isolated amino acid, a source of dietary fiber, or an antibiotic.
The invention further provides a method for increasing lactose digestion, including the steps of identifying a patient suffering from or at risk of developing lactose intolerance, and administering to the patient a composition that includes Bacillus coagularas bacteria and a supplemental lactase (e.g., provided in a concentration from about 1000 ItJ
to about 12,000 IU), whereby lactose digestion is increased following the administration.
The invention also provides a composition including a Bacillus coagularas bacteria and a supplementary fructase, e.g., a fructase provided in a concentration from about 1000 ICT to about 12,000 ILT. The composition also includes an isolated amino acid.
The composition is provided in the form of a capsule, tablet (including chewable tablet), powder, liquid or in a formulation with a food product. The Bacillus coagulans bacteria are derived from Bacillus coagulans Hammer strain Accession No. ATCC 31284.
In another aspect, the invention provides a medical food for the management of irntable bowel syndrome, that includes Bacillus eoagularas bacteria and an isolated amino acid (e.g., L-lysine), wherein said medical food is formulated to provide at least about 1x106 (e.g., 1x107, 1 x108 or 8x108 or more) viable Bacillus coagularas bacteria in the gastrointestinal tract of a mammal per day based on a serving size of about 0.5 gram to about 25 grams of the medical food taken up to twice a day. In embodiments of the invention, the medical food is provided at a dosage such that colonization of about 1x105 (e.g., 1x106 or 1x107) viable Bacillus coagularas bacteria per gram of fecal material in a mammal following consumption of the medical food. In embodiments of the invention, the medical food includes a supplemental enzyme such as a lactase, a fructase, a lipase or a protease. In other embodiments, the medical food includes an anti-diarrheal agent, an anti-gas agent, a laxative, a vitamin, a mineral, an appropriate amino acid(s), a source of dietary fiber, and/or an antibiotic.
In a further aspect, the invention provides a method of dietary management of a subject's carbohydrate absorption, including the steps of identifying a patient having a symptom of carbohydrate malabsorption, and providing a composition comprising Bacillus coagulayas bacteria to the identified patient, wherein the bacteria colonize the subject's gastrointestinal tract, whereby carbohydrate absorption by the subject is modulated, such that the subject's carbohydrate absorption and is managed. The dietary management of the subject's carbohydrate absorption results in a reduction or elimination of one or more of the symptoms of carbohydrate malabsorption.
In another aspect, the invention provides a method of dietary management of a subject's carbohydrate absorption, including the steps of identifying a patient having a symptom of carbohydrate malabsorption, providing a patient-derived biological sample from the identified patient, determining an amount of a product of a gastrointestinal enzyme in the patient-derived sample, comparing the amount in the patient-derived sample with a reference amount of a product of a gastrointestinal enzyme, and providing a composition comprising Bacillus coagulaus bacteria, whereby the subject's carbohydrate absorption is managed. The amount of a product of a gastrointestinal enzyme in the patient-derived sample is determined using hydrogen and/or methane breath testing. The amount of the product in the patient-derived sample declines following administration of the Bacillus eoagulans-containing composition. The patient's carbohydrate absorption is managed such that one or more symptoms of carbohydrate malabsorption are decreased or eliminated.
The invention further provides a method for increasing carbohydrate absorption in a patient diagnosed as suffering from or being at risk of developing celiac disease, by administering to the subject a composition comprising Bacillus coagulans bacteria, wherein carbohydrate absorption in the patient is increased following the administration.
In another aspect, the invention provides a method of reducing a symptom of IBS, wherein the symptom includes alternating diarrhea and constipation, by identifying a patient suffering from or at risk of developing irritable bowel syndrome, and administering to the patient a composition including Bacillus coagularas bacteria in dose that reduces one or more symptoms of IBS.

A composition containing Bacillus coagulans bacteria for the treatment of IBS, lactose intolerance, and other pathological states associated with carbohydrate malabsorption has several advantages of other products containing Lactobacillus acidophilus, including the ability to grow in a wider variety of pH conditions such as the acidic environment of the stomach and the basic environment of the small and large intestines, enhanced germination and survival in the presence of bile acids (including cholic acid, deoxycholic acid, dehydrocholic acid, and chenodeoxycholic acid), and to compete more efficiently with the resident bacteria of the gut.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety.
In the case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
Other features and advantages of the invention will be apparent from the following detailed description and claims.
BRIEF DESCRIPTION OF THE DRAWING
Figure 1 is a graph showing the results of a kinetic assay that demonstrates the utilization of dietary sugars by Bacillus coagulans bacteria.
DETAILED DESCRIPTION
Medical diagnosis of IBS was based on the absence or presence of a number of symptoms, which are generally regarded as typical of IBS and are provided, for example, by the "Rome Criteria" (See, W. G. Thompson et al., Gastroent. Int. 2 (1989) 92-95; W. G.
Thompson et al., Gut 45/II (1999) II43-II 47; W. G. Thompson, Lancet 341 (1993) 1569-1572), and the Rome II Criteria. Guidelines for IBS diagnosis under the Rome criteria include the continuous or recurrent symptoms of abdominal pain or discomfort that may be relieved with defecation, may be associated with a change in frequency, or may be associated with a change in the consistency of stools; and that two or more of the following symptoms are present at least 25 percent of the time: altered stool frequency (greater than 3 bowel movement per day or less than 3 bowel movements per week), altered stool form (hard or loose watery stools or poorly formed stools), passage of mucous stools, and bloating (feeling of abdominal distention).
The Rome II Diagnostic Criteria (a system for diagnosing functional gastrointestinal disorders based on symptoms) for IBS is as follows:
At least 12 weeks or more, which need not be consecutive, in the preceding 12 months of abdominal discomfort or pain that is accompanied by at least two of the following features:
1) It is relieved with defecation, and/or 2) Onset is associated with a change in frequency of stool, and/or
3) Onset is associated with a change in form (appearance) of stool.
Other symptoms that are not essential but support the diagnosis of IBS:
Abnormal stool frequency (greater than 3 bowel movements/day or less than 3 bowel movements/week); Abnormal stool form (lumpy/hard or loose/watery stool);
Abnormal stool passage (straining, urgency, or feeling of incomplete evacuation);
Passage of mucus;
Bloating or feeling of abdominal distension.
The importance of carbohydrates in the onset of IBS symptoms has recently been discussed. (See, Scand J Gastroenterol. 1998. 33(11):1158-63, Isr Med Assoc J.
2000.
2(8): 583-7, Arn J ~astYOenterol. 2003. 98(6):1348-53). IBS and carbohydrate malabsorption have often been confused for one another. Reliable diagnosis is critical to determining the appropriate dosage for treating the symptoms of IBS. The present invention provides diagnostic methods for the detection and diagnosis of IBS
in patients, such as humans, who are suffering from IBS, or are at risk of developing IBS.
The present invention also provides methods for the reduction of symptoms of IBS.
Prior to the present invention, it has been difficult to effectively reduce symptoms in the treatment of irritable bowel syndrome. The goals of therapeutic treatment were to reduce the variety of complaints, and to improve conditions so as to decrease morbidity and increase the quality of the patient's daily life. Therapeutic treatments include psychotherapy, life guidance, diet therapy, and drug therapy used on a symptomatic basis against the patient's complaints. Compounds including opioid agonists (e.g., loperamide) or anticholinergic agents (e.g., mepenzolate bromide and timepidium bromide) have been used to control hypermotility of the digestive tract, and benzodiazepine drugs (e.g., diazepam) have been prescribed for anxiety, insomnia and similar complaints. Recently, antagonists of 5-hydroxytryptamine (5-HT; serotonin) and 5-HT receptors have been used to treat IBS.
4 PCT/US2004/040513 (See, U.S. Patent 6,429,209). A deficiency of these treatments is that they are usually incapable of reducing or eliminating multiple symptoms of IBS, particularly when the patient presents with alternations of diarrhea and constipation. The compositions of the present invention alleviate multiple symptoms of carbohydrate malabsorption, including pain, flatus, abdominal bloating, diarrhea, constipation, and alternating diarrhea and constipation The present invention also provides methods of treatment of diseases associated with carbohydrate malabsorption. These diseases, in addition to IBS, include lactose intolerance, fructose intolerance, glucose-galactose intolerance, sorbitol intolerance, short bowel syndrome, stagnant loop syndrome, celiac disease, chronic malnutrition, chronic persistent diarrhea, immunoproliferative small intestinal disease, intractable diarrhea of infancy, postenteritis syndrome, tropical sprue, Whipple's disease, Wolman disease, Crohn's disease and ulcerative colitis.
Bacillus coagulates Bacillus eoagularas is a strain of bacteria that possesses the ability to sporulate, making the strain resistant to heat and other conditions, as well as providing for a long shelf life in product formulations. Further, Bacillus coagularas is ideal for survival and colonization of tissues under conditions of pH, salinity, and the like within the gastrointestinal tract. Additionally, Bacillus coagulants is non-pathogenic.
Preferred methods disclosed herein utilize Bacillus coagularas cells and spores. Methods of preparing Bacillus coagulans vegetative cells and spores are presented in Example 1.
Bacillus coagularas bacteria have the ability to consume and rapidly intracellularly metabolize many dietary carbohydrates. In addition, Bacillus coagulans bacteria also secrete extracellularly one or more enzymes, such as lactase, that extracellularly enzymatically digest dietary sugars. As described in Example 6 and shown in Figure l, Bacillus coagulans bacteria are capable of metabolizing carbohydrates including lactose, fructose, sorbitol, maltose, sucrose, inulin, and mannan.
Bacillus coagularas bacteria colonize the gastrointestinal tract of a mammal to which they are provided enterically. Generally, colonization occurs within twenty four to forty eight hours following administration. Efficiency of intestinal colonization of a mammal is determined, e.g., by quantitating the number of Bacillus coagulans bacteria per gram of the mammal's feces. A mammal has been colonized by the Bacillus coagulans bacteria of the present invention if the mammal's feces contain greater than 1x104 viable bacteria per gram of feces, preferably 1x105 viable bacteria per gram of feces. Preferably, the feces contain 1x106 viable bacteria per gram of feces.
One species ofBacillus coagulans, that is useful in this invention, had previously S been mischaracterized as a Lactobacillus; this bacterium was labeled as Lactobacillus sporogenes. However, initial classification was incorrect due to the fact that Bacillus coagulazzs produces spores and through metabolism excretes L(+)-lactic acid, both aspects which provide key features to its utility. Instead, these developmental and metabolic aspects required that the bacterium be classified as a lactic acid Bacillus, and therefore it was re-designated. Accordingly, the bacteria useful in the invention (i) possess the ability to produce and excrete enzymes useful in digestion (e.g., lactase, various proteases, lipases and amylases); (ii) demonstrate beneficial function within the gastrointestinal tract; and (iii) are non-pathogenic.
The Gram positive rods of Bacillus coagulans have a cell diameter of greater than 1.0 pm with variable swelling of the sporangium, without parasporal crystal production.
Bacillus coagulans is a non-pathogenic, Gram positive, spore-forming bacteria that produces L(+) lactic acid (dextrorotatory) under homo-fermentation conditions.
It has been isolated from natural sources, such as heat-treated soil samples inoculated into nutrient medium (see e.g., Bergey's Manual of Systemic Bacteriology, Vol. 2, Sneath, P.H.A. et al., eds., Williams & Wilkins, Baltimore, MD, 1986). Purified Bacillus coagulans strains have served as a source of enzymes including endonucleases (e.g., U.S. Pat. No.
5,200,336);
amylase (CT.S. Pat. No. 4,980,180); lactase (U.S. Pat. No. 4,323,651) and cyclo-malto-dextrin glucano-transferase (U.S. Pat. No. 5,102,800). In particular, Bacillus coagzzlans strains have been used as general nutritional supplements and agents to control constipation and diarrhea in humans and animals.
Various Bacillus coagulans bacterial strains which are currently commercially available from the American Type Culture Collection (ATCC, Manassas, VA) include the following accession numbers: Bacillus coagulans Hammer NRS 727 (ATCC No.
11014);
Bacillus coagulans Hammer strain C (ATCC No. 11369); Bacillus coagulans Hammer (ATCC No. 31284); and Bacillus coagulans Hammer NCA 4259 (ATCC No. 15949).
Purified Bacillus coagulazzs bacteria are also available from the Deutsche Sarumlung von Mikroorganismen and Zellkuturen GmbH (Braunschweig, Germany) using the following accession numbers: Bacillus coagulans Hammer 1915 (DSM No. 2356); Bacillus coagulazzs Hammer 1915 (DSM No. 2383, corresponds to ATCC No. 11014); Bacillus coagulans Hammer (DSM No. 2384, corresponds to ATCC No. 11369); and Bacillus coagulans Hammer (DSM No. 2385, corresponds to ATCC No. 15949). Bacillus coagulans bacteria can also be obtained from commercial suppliers such as K.K. Fermentation (Kyoto, Japan) and Nebraska Cultures (Walnut Creek, CA). Compositions include strains or variants derived from Bacillus coagulans Hammer strain ATCC No. 31284 such as ATCC PTA-6085, PTA-6086, or PTA-6087.
Bacillus coagulans bacteria are provided in amounts sufficient to colonize the gastrointestinal tract of a mammal. The invention provides Bacillus coagulans bacteria at a concentration of from about 1x104 to about 1x1012 viable bacteria, specifically about 1x106 to about 1x1011, more specifically about 1x10$ to about 1x101°, and most specifically about 8108. Bacillus coagularzs bacteria are provided as vegetative cells, spores, or a combination thereof.
Fructase The fructase of the invention is an enzyme that catalyzes the hydrolysis of fructose in the gastrointestinal tract of a mammal. Fructase is purified from a fungus such as Aspergillus oayzae. Fructase is also commercially available from Specialty Enzymes and Biochemicals (Chino, CA), Spectrum Chemicals (Los Angeles, CA), and Solvay Enzymes (Edison, NJ).
Fructase activity is measured in vivo using the hydrogen ion breath test. A
patient who has abstained from carbohydrates for at least twelve hours is given a 33%
fructase solution (50g per 150 ml of water), and end-expiratory breath samples are collected before (the baseline value) and every 15-30 minutes for four to six hours after sugar ingestion.
Hydrogen (and other gases such as methane) breath concentrations are measured using gas chromatography. A person is defined as fructose intolerant if a rise of at least 3 parts per million (ppm) over three consecutive breath tests from the baseline value or a value over 20 ppm following sugar ingestion is observed.
Lactase The lactase of the invention is an enzyme that catalyzes thelhydrolysis of lactose in the stomach and/or intestine. In certain embodiments, two lactases with different optimum pH ranges are used (e.g., a first lactase that has an optimum pH range that encompasses pH
3.0 to about pH 6.0, and a second lactase that preferably has an optimum pH
range that encompasses about pH 6.0 to about pH 8.0). An optimum pH range means the pH
over which the hydrolytic activity of the lactase is within about 10 to 100 percent of its maximum, and optimum pH value means the pH at which the lactase exhibits maximum hydrolytic activity.
Generally, the supplementary lactase is provided at a dose of from about 1000 ILT to about 12,000 ItJ, e.g., 3,000 ICT of lactase per dose. In embodiments of the invention, the supplementary lactase is provided at a concentration that is a function of the number of Baeillus coagulans bacteria present in the administrable dose. For example, a supplemental lactase and Bacillus coagul~ ns bacteria are provided at ratio of about 1 ICT
of lactase to about every 3 Bacillus coagulans bacteria. The lactase to Baeillus coagulans bacteria ratio can be from about 1:10, 1:5, 1:3, 1:2, 1:1.5, 1:1, 1.5:1, 2:1, 3:1, 5:1 or 10:1.
Lactases derived from fungi are generally known to have optimum pH values that fall within the acid range. Genera of fungi useful in obtaining lactases include Aspergillus;
Mucor; Fusarium; Scopuloriopsis; Alternaria; and Curvularia and the bacterium Thernzus aquaticus. The lactases, having the optimum pH value shown in the parentheses, are preferably derived from the following fungi: Aspergillus oryzae; (4.5-5.0) Aspergillus niger (3.0-4.0); Fusarium rnoniliforme (3.8-5.0); Scopulariopsis (3.6-5.0); Mucor pueillus (4.5-6), Alternaria alterrzara (4.5-5.3); and Curvularia ifzaegualis (3.4-4.3) and the bacterium Tlzerrrzus aquaticus (4.5-5.5).
Lactases derived from yeast and bacteria are generally known to have optimum pH
values in the more neutral region, including I~luyveromyces (Saccharomyces), Lactobacillus, Bacillus, Streptococcus, and Escherichia. Lactase derived from the following organisms, having the optimum pH value shown in the parentheses, are preferred:
Ifluyveronzyces lactic (6.5), Kluyveronzyces fragilis (6.6), Lactobacillus thernzoplzilus (6.2-7.1), Bacillus circulars (6.0), Lactobacillus bulgarieus (7.0), Leuconostoc citrovorunz (56.5), Bacillus stearotlzernzaphilus (6.0-6.4), Streptococcus therznophilus (6.5-7.5), and Bacillus cp. (6.8).
The lactases used in the present invention are produced by a variety of well-known techniques. Many of these lactases are produced by commercial processes that cultivate the bacterium, yeast or fungus, and then isolate the lactase from the culture or culture broth of the microorganism. Further techniques for preparing such lactases may be found in U.S. Pat.

No. 3, 629,073; U.S. Pat No. 3,718,739; and U.S. Pat. No. 3,919,049, all of which are hereby incorporated by reference.
Lactase activity is measured in vivo using the hydrogen ion breath test. A
patient who has abstained from carbohydrates for at least twelve hours is given a lactose solution S (18-SOg), and end-expiratory breath samples are collected before and every 15-30 minutes for four to six hours after sugar ingestion. Hydrogen (and other gases such as methane) breath concentrations are measured using gas chromatography. An increase in breath hydrogen concentration of 10 parts per million (ppm) following sugar ingestion is typically observed in non-lactose intolerant patients. Incomplete absorption of carbohydrate is defined as an increase in breath hydrogen of 20 ppm (or its equivalent of 5 ppm in methane) following sugar ingestion.
Lactase activity is quantified in units. An FCC lactase unit (FCC Lac U), and ICT
and a neutral lactase unit are deftned as that quantity of enzyme that will liberate 1 ~rnol of o-nitrophenol from o- nitrophenyl-(3-D-galactoside per minute under the conditions, of the assay described in Food Chemicals Codex, National Academy Press, Wash., D. C., pp. 491 2 (1981), which is hereby incorporated by reference, at pH 4. 5 and 6.5, respectively.
Other gastrointestinal enzymes Amylase (oc-1,4-glucan 4-glucanohydrolase, EC 3.2.1.1.) activity is determined using the method of Somogyi (See, Somogyi, 1960. "Modification of two methods for the assay of amylase." Clin Claem. 6:23-35). One amylase activity unit is defined as the amount of amylase that will cause the formation of reducing power equivalent to 1 mg glucose in 30 minutes at 40 degrees C per milligram of intestinal digests protein.
Cornstarch is an amylase substrate useful for calibration of amylase activity units.
Lipase (e.g., lps aw 02513, triacylglycerol lipase, EC 3.1.1.3.) activity is assayed using the method of Tietz and Fiereck (See, Tietz and Fiereck, 1966. Clin.
Chim. Acts 13:352-58). One lipase activity unit is equal to the volume (mL) of 0.05 M
NaOH required to neutralize the fatty acid liberated during a 6 hour incubation with 3 mL of lipase substrate (e.g., olive oil) at 37 degrees C per milligram of digests protein. Lipases can be purifted from Bacillus subtilis and Pseudozzzoraas arugirzosa and are also commercially available.
Peptidases and proteases include enzymes that degrade a polypeptide by hydrolysis of the peptide bonds. Peptidases include amino-, dipeptidyl-, and tripeptidyl-peptidases.
Useful proteases include Arg-C proteinase, Asp-N endopeptidase, caspases, chymotrypsin, clostripain, enterokinase, granzyme B, glutamyl endopeptidase, pepsin, proline-endopeptidase, proteinase K, Staphylococcal peptidase I, thermolysin, thrombin and trypsin.
Coarzposatiou Formulations The compositions of the present invention are combined with a pharmaceutically acceptable carrier and are preferably administered orally. The unit dosages of these compositions may be in the form of solid preparations, such as tablets, pills, capsules, caplets, powders, granules and wafers, or liquid preparations, such as suspensions or dispersions in aqueous or non-aqueous vehicles, such as syrups and elixirs.
The compositions of the present invention optionally contain components in addition to the Bacillus coagulans bacteria. Additional components include supplementary enzymes, anti-diarrheal agents, anti-gas agents, laxatives, dietary fibers, isolated amino acids, vitamins, minerals, antibiotics, and buffering agents.
Supplementary enzymes include a lactase, a fructase, a lipase, and a protease.
Generally, a supplementary enzyme is provided in an amount exceeding the amount of the enzyme contained in or produced by the Bacillus coagulans bacteria provided in the therapeutic composition. For example, a supplemental lactase is an amount of purified lactase that is administered to digest the lactose present in the gastrointestinal tractof a mammal.
Anti-diarrheal agents include any compounds that reduce diarrhea, such as by reducing water content in the stool. Preferred anti-diarrheal agents include loperamide (such as loperamide HCL), attapulgite, Croton Lechleri Extract, and calcium polycarbophil.
Anti-gas agents include compounds that reduce gas in the gastrointestinal tract of a mammal. Preferred anti-gas agents include oc-galactosidase enzyme, simethicone, calcium carbonate, aluminum hydroxide or magnesium hydroxide.
Laxatives include any compound that increases stool density or frequency of bowel movements. Preferred laxatives include sennosides, docusate sodium, magnesium hydroxide, and a dietary fiber. Sennosides include hydroxyanthracene glycosides such as sennosides A, B, C or D, generally obtained from pulverized Cassia acustifolia husk.
Exemplary dietary fibers include psyllium husk, soy fiber, citrus fiber, beet fiber, pumpkin seed meal, ground flax, black walnut hull, rice fiber, hydrocollodial polysaccharides, pecan husks, and peanut husks.
Isolated amino acids include alanine, arginine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine.
Preferably, the isolated amino acid is lysine.
The compositions are usable in the form of medicines, foods, and drinks, including supplements, medical foods, health foods, nutraceuticals, and dietary supplements, as directed by a healthcare practitioner. A medical food is prescribed by a physician when a patient has special nutrient needs in order to manage a disease or health condition such as IBS or carbohydrate malabsorption, and the patient is under the physician's ongoing care.
In preparing solid unit dosage forms, the compositions of the present invention (e.g., Bacillus coagulans bacteria) are mixed with conventional solid fillers or carriers, such as silicone, starch, talc, calcium phosphate, calcium sulfate, calcium stearate, magnesium stearate, stearic acid, sorbitol, mannitol, gelatin, natural or synthetic gums, such as carboxymethylcellulose, methylcellulose, alginates, dextrans, acacia gum, karaya gum, locust bean gum, tragacanth and other conventional carriers. Additionally, other excipients such as diluents, binders, lubricants, disintegrants, colors and flavoring agents may be employed.
Suitable liquid forms of the present invention can be prepared by incorporating the lactase in aqueous or non-aqueous dispersions, suspensions, or solutions.
Conventional liquid carriers such as glycerol, and edible glycols, edible oils, such as cottonseed oil, soybean oil, corn oil, peanut oil, safflower oil, and other triglyceride oils, and dispersing or suspending agents, such as the aforementioned natural and synthetic gums.
Conventional methods are employed for preparing the solid and liquid forms of the present invention. Suitable techniques are described in Rerniragtorz's Pharmaceutical Sciences, 18th Ed., Chapters~83 and 89 (1990), which is hereby incorporated by reference.
The compositions are produced in powdered or granular form for direct admixture with food products consumed by subjects suffering from IBS or other carbohydrate malabsorption diseases. For instance, in the case of a lactose intolerant infant, a suitable amount of the Bacillus coagularas and lactase-containing composition, in a powdered or granular form, is added directly to the milk or other food consumed by the infant. In the case of an animal, such as a mammal, that normally requires a dietary regime of whey, the compositions of the present invention may be added directly to the whey.
The composition optionally contains an enteric coating, such as coating of a Bacillus coagulans bacterium as a vegetative cell. This coating remains intact in the stomach, but dissolves and release the vegetative cell once it reaches the more neutral environment of the small intestine. Suitable enteric coatings include amylose acetate phthalates, styrene-malefic acid copolymer, cellulose acetate succinate, cellulose acetate phthalate, polyvinyl acetate phthalate, hydroxy-propylmethylcellulose phthalate, fatty acids, fatty acid esters, glycerol esters, polyglycerol esters, paraffin waxes, carnauba wax, formalized gelatin, shellac and hydrogenated vegetable waxes, such as hydrogenated castor oil and cottonseed oil. Other suitable enteric coatings are disclosed in Liebernan, H. A. et al., Pharmaceutical Dosage Forrns: Tablets, Vol. 3, pp. 114-116 (1990), which is hereby incorporated by reference. The enteric coating is applied using conventional particle coating techniques. If the vegetative cell is granulated with other excipients, the resulting granule may also be coated with the enteric material.
Diagnosis ofIBS in ma»imals The guidelines for IBS diagnosis promulgated under the Rome criteria are focused upon subjective symptoms, including the continuous or recurrent symptoms of abdominal pain or discomfort that may be relieved with defecation, a change in frequency or consistency of stools, and that, at least 25 percent of the time, the patient experiences altered stool frequency (greater than 3 bowel movement per day or less than 3 bowel movements per week), altered stool form (hard or loose watery stools or poorly formed stools), passage of mucous stools, or bloating (feeling of abdominal distention). The present invention provides a method of diagnosing irritable bowel syndrome in a patient, based on the patient's malabsorption of carbohydrates. A patient that has one or more IBS
symptoms (e.g., a symptom classified under the Rome Criteria) is identified, and a biological sample is obtained from this identified patient. The biological sample can be, e.g., fecal material, urine, blood, serum, plasma, or breath. The amount of a product of a gastrointestinal enzyme in the patient-derived sample is then determined. For example, the hydrogen gas breath test is used to measure hydrogen gas, which is produced as a result of breakdown of unabsorbed carbohydrates in the gastrointestinal tract. The amount of the product in the patient-derived sample is compared with a reference amount of a product of a gastrointestinal enzyme. This reference amount is obtained from a patient or plurality of patients known not to have IBS or other disorders involving carbohydrate malabsorption.
An alteration in the test amount relative to the reference amount indicates that the patient has irritable bowel syndrome. For example, an increase in hydrogen gas in a patient-derived sample as compared to a reference sample, measured as described above, indicates poor carbohydrate absorption in the gastrointestinal tract of the patient, leading to the diagnosis of IBS.
Thet~apeutic Administration A therapeutic regimen is carned out by identifying a subject, e.g., a human patient suffering from (or at risk of developing) IBS and providing treatment to the subject. For example, patients characterized as producing less than normal amounts of enzymes that degrade carbohydrates, e.g. lactase or fructase, or other digestive enzymes such as amylases, lipases or proteases, are diagnosed as suffering from or at risk of developing IBS, as now described. A composition including Bacillus coagulafzs bacteria is administered to the patient, such as by oral administration, such that one symptom of IBS is reduced. In embodiments of the invention, the patient is a female, such as a post-menstrual female, since symptoms of IBS are often more prevalent and/or severe in post-menstrual women.
The patient may be a post-menopausal woman. The composition including Bacillus coagulans bacteria is provided prior to or concomitant with the onset of one or more symptoms of IBS.
Prior to the present invention, dietary management of IBS and other diseases associated with carbohydrate malabsorption has focused on the dietary control of a patient's intake of carbohydrate. The invention provides a method of dietary management of a subject's carbohydrate absorption, by identifying a patient having a symptom of carbohydrate malabsorption, and providing Bacillus coagulans bacteria to the subject, which then colonize the subject's gastrointestinal tract, and cause the subject's carbohydrate absorption to be modulated. Colonization of Bacillus coagularzs bacteria in the subject's small and large intestine increases absorption of dietary carbohydrates including fructose and lactose, therefore reducing pain, abdominal bloating, flatus, diarrhea, constipation, and other symptoms of carbohydrate malabsorption.
The methods allow a clinician to tailor carbohydrate malabsorption treatment to more effectively manage patient health and wellness. When a patient presents with one or more symptoms of IBS, the physician is able to determine the extent of the patient's carbohydrate malabsorption by measuring the product of a gastrointestinal enzyme such as fructase or lactase in a sample derived from the patient. Measurement of the enzymatic product is performed by methods known in the art and disclosed herein, including the hydrogen and methane breath tests. The physician then provides the compositions described herein in amounts that reduce or eliminate one or more symptoms of IBS.
A therapeutic system for treating, reducing and/or controlling carbohydrate malabsorption is in the form of a package containing a therapeutic composition containing B. coagulazzs and a supplementary digestive enzyme in combination with packaging material. The packaging material includes a label or instructions for use of the components of the package. The instructions describe the use of the packaged component as described herein for the methods or compositions of the invention.
By way of example, and not of limitation, a system can comprise one or more unit dosages of a composition according to the present invention. Alternatively, the system can alternately contain bulk quantities of a composition. The label contains instructions for using the therapeutic composition in either unit dose or in bulk forms as appropriate, and may also include information regarding storage of the composition, disease indications, dosages, routes and modes of administration and the like information.
Furthermore, depending upon the particular contemplated use, the system may optionally contain either combined or in separate packages one or more of the following components:
bi~dogenic oligosaccharides, flavorings, carriers, and the like components. One particularly preferred embodiment comprises unit dose packages of Bacillus coagulans bacteria, for use in combination with a conventional liquid product, together with instructions for combining the bacteria with the liquid product, for use in a therapeutic method.
The methods and compositions described herein are useful in the treatment of Celiac disease. Celiac disease is a hereditary disorder that is caused by sensitivity to the gliadin fraction of gluten, a cereal protein found in wheat and rye and less so in barley and oats.
The prevalence of celiac disease varies from about 1:300 in southwest Ireland to about 1:5000 in North America. No single genetic marker exists. Celiac disease may be asymptomatic, but most patients have steatorrhea that can range from mild to massive.
Symptoms are usually absent until food containing gluten has been eaten. The subject then begins to pass pale, malodorous, bulky stools, and suffers painful abdominal bloating.
Thus, a diagnosis is made on the basis of the symptoms and signs, enhanced by laboratory and x-ray studies, and confirmed by biopsy showing a flat mucosa and by subsequent clinical and histologic improvement on a gluten-free diet. Also, the 5-g D-xylose test is usually abnornlal, and untreated patients have low C3 and C4, which rise with gluten withdrawal, and normal or increased serum IgA; in 33% to 50%, IgM is reduced.
EXAMPLES
EXAMPLE 1. Preparation of Bacillus coa~ularzs I. Preparation of Vegetative Bacillus coaQUlans Bacillus coagulans is aerobic and facultative, and is typically cultured at pH
5.7 to
6.8, in a nutrient broth containing up to 2% (by wt) NaCI, although neither NaCl, nor KCl are required for growth. A pH of about 4.0 to about 7.5 is optimum for initiation of sporulation (i.e., the formation of spores). The bacteria are optimally grown at 20°C to 45°C, and the spores can withstand pasteurization. Additionally, the bacteria exhibit facultative and heterotrophic growth by utilizing a nitrate or sulfate source.
However, Bacillus coagularas strains and their growth requirements have been described previously (see e.g., Baker, D. et al, 1960. Cars. J. Microbiol. 6: 557-563; Nakamura, H.
et al, 1988.
Irat. J. Svst. Bacter-iol. 38: 63-73. In addition, various strains of Bacillus coagulans can also be isolated from natural sources (e.g., heat-treated soil samples) using well-known procedures (see e.g., Ber~gey's Manual of Systemic Bacteriology, Yol. 2, p.
1117, Sneath, P.H.A. et al., eds., Williams & Wilkins, Baltimore, MD, 1986).
Bacillus coagulans is cultured in a variety of media, although it has been demonstrated that certain growth conditions are more efficacious at producing a culture that yields a high level of sporulation. For example, sporulation is demonstrated to be enhanced if the culture medium includes 10 mg/1 of MgS04 sulfate, yielding a ratio of spores to vegetative cells of approximately 80:20. In addition, certain culture conditions produce a bacterial spore that contains a spectrum of metabolic enzymes particularly suited for the present invention (i.e., production of lactic acid and enzymes for the enhanced probiotic activity and biodegradation). Although the spores produced by these aforementioned culture conditions are preferred, various other compatible culture conditions that produce viable Bacillus coagulans spores may be utilized in the practice of the present invention.

Suitable media for the culture of Bacillus coagulaos include: TSB (Tryptic Soy Broth), GYE (Glucose Yeast Extract Broth), and NB (nutrient broth), which are all well-known within the field and available from a variety of sources. Media supplements which contain enzymatic digests of poultry and/or fish tissue, and containing food yeast are particularly preferred. A preferred supplement produces a media containing at least 60%
protein, and about 20% complex carbohydrates and 6% lipids. Media can be obtained from a variety of commercial sources, notably DIFCO (Newark, NJ); BBL
(Cockeyesville, MD);
and Troy Biologicals (Troy, MD.
II. Preparation of Bacillus coa~ulans Spores Dried Bacillus coagulafZS Hammer bacteria (ATCC No. 31284) spores---prepared as follows. Approximately 1x10' spores were inoculated into one liter of culture medium containing: 30g (wt./vol.) Tryptic Soy Broth; 10 g of an enzymatic-digest of poultry and fish tissue; and 10 g MnS04. The culture was maintained for 72 hours under a high oxygen environment at 37°C so as to produce a culture having approximately 6x109 cells/gram of culture. The culture was then centrifuged to remove the liquid culture medium and the resulting bacterial paste was re-suspended in 100 ml of sterile water and 20%
malto-dextrin and lyophilized. The lyophilized bacteria were ground to a fne powder by use of standard good manufacturing practice (GMP) methodologies.
EXAMPLE 2. Therapeutic formulations The following formulations were made and tested.

Formulation #1 Active In edient(s); amount Inactive Ingredients (optional);
amount Bacillus coagulafzs; 27 mg Microcrystalline cellulose;
(405 Million 292 mg CFU) lactase; 3,120 IIJ

Formulation #2 chewable tablet Active Ingredient(s); amount Inactive Ingredient (optional);
amount Bacillus coagulans; 27 mg Microcrystalline cellulose;
(405 Million 65.7 mg CFU) lactase; 3,120 ILT L-lysine; 35 mg Unmilled dicalcium phosphate;
170 mg Sodium starch glycolate; lOmg Cabosil M-5~; 5 mg FD&C Blue #1 Lake Dye; 0.13mg Stearic acid; 4 mg Formulation #3 (chewable tablet Active Ingredient(s); amount Inactive Ingredient (optional);
amount Bacillus coagulans; 54 mg L-lysine; 35 mg (810 Million CFU) Compressible sugar (Di-pac):
378 rng Mannitol; 350mg Flavor-906.300(Raspberry);
Smg FD&C Blue #1 Lake Dye; 0.2 mg Stearic acid; 8 mg Formulation #4 ca let Active Ingredient(s); amount Inactive Ingredient (optional);
amount Bacillus coagulans; 54 mg L-lysine; 35 mg (810 Million CFU) Unmilled sugar (Di-Cal); 148 mg Microcrystalline cellulose;
65mg Cab-O-Sil MSP~; Smg FD&C Blue #1 Lake Dye; 0.2 mg Magnesium stearate: 3.5 mg Formulation #5 Active Ingredient(s); amount Inactive Ingredient (optional) Bacillus coagulans; 800 MillionDibasic Calcium Phosphate CFU

Loperamide HCI; 2 mg Methyl Cellulose Manganese Stereate Blue Lake Dye Formulation #6 Active Ingredient(s); amount Inactive In edient (o tional) Bacillus coa ularas; 800 M_ Dibasic Calcium Phos hate illion CFU

Sennosides; l5mg Methyl Cellulose Manganese Stearate Blue Lake Dye Formulation #7 Active Ingredient(s); amount Inactive Ingredient (optional) Lactase; 3,000 units Micro-Crystalline Cellulose Fructase; 2,000 units Manganese Stearate Blue Lake Dye #1 Raspberry Flavor Formulation #8 Active Ingredient(s); amount Inactive Ingredient (optional);
amount Lactase; 3,000 units Micro-Crystalline Cellulose Fructase; 2,000 units Manganese Stearate Blue Lake Dye #1 Psyllium Husks; 3 g Formulation #9 Active Ingredient(s); amount Inactive Ingredient (optional) Lactase; 3,000 units Micro-Crystalline Cellulose Fructase; 2,000 units Manganese Stearate Loperamide; 2 mg Blue Lake Dye #1 Formulation #10 Active Ingredient(s); amount Inactive Ingredient (optional) Lactase; 3,000 units Micro-Crystalline Cellulose Fructase; 2,000 units Manganese Stearate Sennosides; 15 mg Blue Lake Dye #1 Formulation #11 Active Ingredient(s); amount Inactive Ingredient (optional);
amount Bacillus coagulans; 800 MillionL-lysine; 125mg CFU

Mannitol; 350 mg Manganese Stearate; 8 mg Blue Lake Dye; 0.2 mg .

Nu Tab~; 358mg Red sugar specks; l6mg Flavor-906.300 (Raspberry);
4mg Formulation #12 Active Ingredient(s); amount Inactive Ingredient (o tional);
amount Bacillus coagularas; 800 MillionL-lysine CFU

_ cellulose Manganese stearate Hydroxypropylmethylcellulose Maltodextrin Flavor FD&C blue lake dye Red sucrose specks Formulation #13 Active Ingredient(s); amount Inactive Ingredient (optional);
amount Bacillus coagulafis; 800 MillionManganese stearate CFU

Methyl cellulose FD&C blue lake dye Formulation #14 Active Ingredient(s); amount Inactive Ingredient (o tional);
amount Bacillus coagulafzs; 800 MillionManganese stearate CFU

Lactase; 3,000 ILT Methyl cellulose Fructase; 3,000 1U

Lipase; 1,500ILT

Formulation #14 (wafer) Active Ingredient(s); amount Inactive Ingredient (optional);
amount Bacillus coagularis; 800 MillionSorbitol, CFU

Methyl cellulose Fructan fiber; 4g Corn starch Formulation #15 (wafer) Active Ingredient(s); amount Inactive Ingredient (optional);
amount Bacillz~s coagulans; 400 MillionSorbitol, CFU

Methyl cellulose Fructan fiber; 4g Corn starch Formulation #16 (chewable tablet) Active Ingredient(s); amount Inactive Ingredient (optional);
amount Bacillus coagula~as; 100 MillionPartially-hydrogenated guar CFU gum; 6 g Compressed sugar Modified food starch Sucralose EXAMPLE 3. Alleviation of Irritable Bowel Syndrome (IBS) symutoms with a comLosftion containing Bacillus coa.~ulans bacteria The effect of Bacillus coagulates formulations listed above, e.g., Formulation #3, on patients who suffer from Irritable Bowel Syndrome (IBS) was investigated.
These patients were experiencing a signiftcant loss of quality of life due to varying degrees of severity from the symptoms of IBS.
Patient Population:
Both male and female patients, both Caucasian and African American, were randomly selected for this trial. Thirty patients were selected for this study. The female to male ration was three-to-one, with total enrollment in this ftrst study was 20 females and 6 males. The ages ranged from 18 to 32 years. The study was conducted over a period of 9 months. Patients' willingness to enter into the study was due to the fact that the quality of their daily lives was suffering due to the symptoms. Each patient reported experiencing symptoms including diarrhea, constipation, alternating diarrhea and constipation, and bloating, either alone or in combination with other symptoms.
Study Treatment:
One chewable tablet per day was administered. Each unit dose contained 810 million colony-forming units of Baeillus coagulafas bacteria. Once applicable participants were identified and selected, the participants were provided Formulation #3 tablets and were instructed to take one tablet per day at any time, day or night, with or without food. Patients were reviewed at two-, four-, and six-weeks and every month afterward over a period of nine months in total.
Results:
Following the treatment regimen, each patient completed a questionnaire.
Questions included rating their IBS symptoms and their overall quality of life on a day-to-day basis with answers to the study questions gauged on a scale of one-to-ten. The initial response from the patients was significant, in that 80% of those surveyed reported that their quality of life on a day-to-day basis had substantially improved (over 50%) with the elimination of the severity of the symptoms of diarrhea, constipation, and bloating. Over a period of four to six months, 70% of these patients maintained the significant reduction in symptoms and corresponding improvement in quality of life.
Of the remaining 20% of those surveyed, 10% showed between a 30% to 50%
improvement, while only 10% showed no improvement. The 10% of patients who showed a lesser improvement reported a satisfactory improvement in their lifestyle after four to six months.
EXAMPLE 4. Retrospective study of Irritable Bowel Syndrome (IBS) with a composition containing Bacillus coa~ulaus bacteria The effect of Formulation #3 on individuals who reported suffering from Irritable Bowel Syndrome (IBS) was investigated retrospectively. The retrospective survey was sent out to 3000 consumers, and 217 responded, of which 187 were female (86:2%) and 30 were male (13.8%). The median age was 54 years old with an overall range from 18 to 86 years.
The study participants were asked to rate severity of symptoms after taking Formulation #3 on a 0-5 scale, with "0" being no symptoms and "5" being severe symptoms. The symptoms surveyed were diarrhea, cramps, bloating, constipation, abdominal pain, nausea, and urgency. The mean responses of those answering are as follows.
Diarrhea 1.3 Cramps 1.3 Bloating 1.6 Constipation 1.4 Abdominal pain 1.4 Nausea 0.5 Urgency 1.1 EXAMPLE 5. Retrospective study of Lactose Intolerance with a composition containing Bacillus coa~ulahs bacteria and a supplemental lactase The effect of Formulation #1, a composition containing Bacillus coagularas bacteria and a supplemental lactase, on patients who suffer from lactose intolerance was investigated retrospectively. These patients were experiencing a significant loss of quality of life due to varying degrees of severity from the symptoms of lactose intolerance and other food intolerances.
The retrospective survey randomly selected 108 users of Formulation #1 from a population of over 1,000 users.

The study participants were asked to rate product satisfaction of Formulation #1 on a 1-5 scale, with "5" being "excellent, "4" being "very good", "3" being "good", "2" being "fair" and "1" being poor. The mean responses of those answering are as follows.
Rated 5 (Excellent)56.5% of users Rated 4 (Very Good)25.9% of users Rated 3 (Good) 12.1 % of users Rated 2 (fair) 3.7% of users Rated 1 (Poor) 1.8% of users Of note is that 94.4% of the users indicated that Formulation #1 was more effective than other lactose intolerance treatments, including lactase enzyme-containing products (e.g., Lactaid~, which contains 3000 1U of lactase per capsule or Lactaid Ultra~, which contains 90001T1 of lactase per capsule) bacteria-containing products (e.g., DairyCare~, which contains Lactobacillus acidophilus), or dairy products, such as cow's milk, pre-treated to remove lactose (e.g., Lactaid~ milk, DairyEase~). Moreover, 92.5%
of the users were using the product regularly when the study was performed. The mean duration of use of Formulation #1 was 14 months.
The study participants were asked to rate severity of symptoms before and after taking Formulation #1 on a 1-5 scale, with "1" being no symptoms and "5" being most severe symptoms. The symptoms surveyed were gas, bloating, diarrhea, abdominal pain, and constipation. Prior to using Formulation #1, the mean responses of participants after consumption of dairy products are as follows.
Gas: 2.9 Bloating 3.1 Diarrhea: 3.5 Abdominal pain 4.4 Constipation: 3.1 Other 2.4 After using Formulation #1 when consuming dairy products, those responding rated their change in symptoms as follows. The numbers in each category represent the number of individuals reporting.
Symptom worse Same Slightly Vastly No s m toms s m toms better im roved s m toms Gas 5 18 12 57 16 Bloating 3 19 14 51 22 Diarrhea 0 9 22 61 16 Abdominal 5 19 11 63 13 pain Constipation0 21 13 52 21 Other 3 6 8 19 23 Example 6: Bacillus coagulans metabolism of dietary carbohydrates Bacillus coagulans was analyzed using phenotypic assay (kinetic) with various carbohydrates as a carbon source. An Omnilog Phenotypic assay indicated that Bacillus coagulans bacteria have the innate ability to intracellularly metabolize many dietary carbohydrates. This activity was independent of digestion of the carbohydrate, e.g., lactose, by a bacterially secreted extracellular enzyme, such as lactase. For example, the enzymatic degradation of fructose by an extracellular secreted enzyme is a mufti-intermediate step process that is slow and inefficient. By contrast, the immediate metabolic utilization of fructose and similar sugars is fast and is not dependent on the amount of enzyme that is produced by a colonized microbial community. As shown in Figure 1, Bacillus coagulans bacteria contacted with various dietary sugars begin to metabolize these sugars within about 10-25 minutes, compared to a negative control sample. Bacillus coagulans bacteria efficiently metabolized lactose, fructose, sorbitol, maltose, sucrose, inulin, and mannan.
The rapid consumption and intracellular metabolism of dietary sugars by Bacillus coagulans bacteria prevents undigested sugars from reaching the large intestine, where they are subject to secondary fermentation by bacteria. This secondary fermentation results in Irritable Bowel Syndrome, lactose intolerance and other pathological states associated with carbohydrate malabsorption. When additional substrate is available (in the form of dietary sugars), the increased carbohydrate load slows down a strictly enzymatic process that is mediated by extracellular bacterially secreted enzymes. However, when the presence of an efficient microbial organism such as Bacillus coagulans bacteria utilizes these sugars, the biomass or number of organisms in the gut increases proportionally to the amount of digested carbohydrate and these bacteria metabolize the ingested dietary carbohydrates.
OTHER EMBODIMENTS

Although particular embodiments have been disclosed herein in detail, this has been done by way of example for purposes of illustration only, and is not intended to be limiting with respect to the scope of the appended claims, which follow. In particular, it is contemplated by the inventors that various substitutions, alterations, and modifications may be made to the invention without departing from the spirit and scope of the invention as defined by the claims. The choice of nucleic acid starting material, clone of interest, or library type is believed to be a matter of routine for a person of ordinary skill in the art with knowledge of the embodiments described herein. Other aspects, advantages, and modifications considered to be within the scope of the following claims.

Claims (76)

1. A method of reducing a symptom of irritable bowel syndrome, comprising identifying a patient suffering from or at risk of developing irritable bowel syndrome, and administering to said patient a composition comprising Bacillus coagulans bacteria.
2. The method of claim 1, wherein said bacteria is Bacillus coagulans hammer.
3. The method of claim 2, wherein said bacteria is derived from Bacillus coagulans hammer strain Accession No. ATCC 31284.
4. The method of claim 1, wherein said composition further comprises a supplementary enzyme, wherein said enzyme is selected from the group consisting of a lactase, a fructase, a lipase, an amylase and a protease.
5. The method of claim 1, wherein said symptom is diarrhea or constipation.
6. The method of claim 1, wherein said symptom is alternating diarrhea and constipation.
7. The method of claim 1, wherein said symptom is selected from the group consisting of gas, bloating and intestinal discomfort.
8. The method of claim 1, wherein said composition further comprises an anti-gas agent.
9. The method of claim 8, wherein said anti-gas agent is selected from the group of .alpha.-galactosidase enzyme, simethicone, calcium carbonate, aluminum hydroxide and magnesium hydroxide.
10. The method of claim 1, wherein said Bacillus coagulans bacteria are provided at a concentration of from about 1×10 8 to about 1×10 10 viable bacteria.
11. The method of claim 1, wherein the Bacillus coagulans bacteria are in the form of spores.
12. The method of claim 1, wherein the Bacillus coagulans bacteria are in the form of vegetative cells.
13. The method of claim 1, wherein said composition further comprises an anti-diarrheal agent.
14. The method of claim 13, wherein said anti-diarrheal agent is selected from the group consisting of loperamide, attapulgite, Croton Lechleri Extract, and calcium polycarbophil.
15. The method of claim 1, wherein said composition further comprises a laxative agent.
16. The method of claim 15, wherein said laxative agent is selected from the group consisting of a sennoside, docusate sodium, magnesium hydroxide, and a dietary fiber.
17. A method of reducing a symptom of irritable bowel syndrome (IBS), comprising identifying a patient suffering from or at risk of developing irritable bowel syndrome, and administering to said patient a composition comprising an effective IBS-inhibiting amount of Bacillus coagulans bacteria prior to or concomitant with the onset of one or more IBS
symptoms.
18. The method of claim 17, wherein said bacteria is Bacillus coagulans hammer.
19. The method of claim 18, wherein said bacteria is derived from Bacillus coagulans hammer strain Accession No. ATCC 31284.
20. The method of claim 17, wherein said composition further comprises a supplementary enzyme, wherein said enzyme is selected from the group consisting of a lactase, a fructase, a lipase, an amylase, and a protease.
21. The method of claim 17, wherein said Bacillus coagulans bacteria are provided at a concentration of from about 1×10 8 to about 1×10 10 viable bacteria.
22. A method of reducing a symptom of irritable bowel syndrome, comprising identifying a patient suffering from or at risk of developing irritable bowel syndrome, and administering to said patient a composition comprising a fructase and a lactase.
23. The method of claim 22, wherein said fructase is provided at a dose of from about 1000IU to about 12,000IU, and wherein said lactase is provided at a dose of from about 1000IU to about 12,000IU.
24. The method of claim 22, wherein said composition further comprises an anti-diarrheal agent.
25. The method of claim 24, wherein said anti-diarrheal agent is selected from the group consisting of loperamide, attapulgite, Croton Lechleri Extract, and calcium polycarbophil.
26. The method of claim 22, wherein said composition further comprises a laxative agent.
27. The method of claim 26, wherein said laxative agent is selected from the group consisting of a sennoside, docusate sodium, magnesium hydroxide, and a dietary fiber.
28. The method of claim 22, wherein said composition further comprises an anti-gas agent.
29. The method of claim 28, wherein said anti-gas agent is selected from the group of .alpha.-galactosidase enzyme, simethicone, calcium carbonate, aluminum hydroxide and magnesium hydroxide.
30. A method of diagnosing irritable bowel syndrome in a patient, comprising the steps of:
providing a patient-derived biological sample from said identified patient;
determining an amount of a product of a gastrointestinal enzyme in said patient-derived sample; and comparing said amount in said patient-derived sample with a reference amount of a product of a gastrointestinal enzyme, whereby an alteration in the test amount relative to the reference amount indicates that said patient has irritable bowel syndrome.
31. The method of claim 30, wherein said symptom is selected from the group consisting of diarrhea, constipation, and alternating diarrhea and constipation.
32. The method of claim 30, wherein said gastrointestinal enzyme is selected from the group consisting of a lactase, a fructase, a lipase and a protease.
33. A method of improving stool consistency in a patient afflicted with non-constipated irritable bowel syndrome, comprising administering an effective amount of a Bacillus coagulans bacteria, wherein said bacteria are provided at a concentration of from about 1×10 8 to about 1×10 10 viable bacteria, wherein stool consistency is improved following said administration.
34. A method of decreasing urgency in a subject afflicted with irritable bowel syndrome, comprising administering an effective amount of a Bacillus coagulans bacteria, wherein said bacteria are provided at a concentration of from about 1×10 8 to about 1×10 10 viable bacteria wherein urgency is decreased following said administration.
35. A composition comprising Bacillus coagulans bacteria, a supplementary lactase, and a supplementary fructase.
36. The composition of claim 35, wherein said lactase is a .beta.-galactosidase.
37. The composition of claim 35, wherein said lactase is provided in a concentration from about 1000 IU to about 12,000 IU, and wherein said fructase is provided in a concentration from about 1000 IU to about 12,000 IU.
38. The composition of claim 35, wherein said lactase is provided in a concentration of about 3000 IU, and wherein said fructase is provided in a concentration of about 3000 IU.
39. The composition of claim 35, further comprising one or more components selected from the group consisting of an anti-diarrheal agent, an anti-gas agent, a laxative, a vitamin, a mineral, an isolated amino acid, a source of dietary fiber, and an antibiotic.
40. The composition of claim 35, further comprising an isolated amino acid.
41. The composition of claim 39, wherein said component is manganese stearate.
42. The composition of claim 39, wherein said source of dietary fiber is selected from the group consisting of psyllium husk, soy fiber, citrus fiber, beet fiber, pumpkin seed meal, ground flax, black walnut hull, rice fiber, hydrocollodial polysaccharides, pecan husks, and peanut husks.
43. The composition of claim 35, further comprising a pharmaceutically-acceptable carrier, wherein said carrier comprises silicone.
44. The composition of claim 35, wherein said Bacillus coagulans bacteria is provided at a concentration of from about 1×10 8 to about 1×10 10 viable bacteria.
45. The composition of claim 35, wherein said composition is in the form of a capsule, tablet, powder, or liquid.
46. The method of claim 35, wherein said Bacillus coagulans bacteria is derived from Bacillus coagulans hammer strain Accession No. ATCC 31284.
47. A composition comprising from about 1×10 8 to about 1×10 10 Bacillus coagulans bacteria, a supplemental lactase provided in a concentration of about 3000 IU, a supplemental fructase provided in a concentration of about 3000 IU, and manganese stearate.
48. A composition comprising an isolated lactase and an isolated fructase, wherein said isolated lactase is provided in a concentration from about 1000 IU to about 12,000 IU, and wherein said isolated fructase is provided in a concentration from about 1000 IU to about 12,000 IU.
49. The composition of claim 48, further comprising one or more components selected from the group consisting of an anti-diarrheal agent, an anti-gas agent, a laxative, a vitamin, a mineral, an isolated amino acid, a source of dietary fiber, and an antibiotic.
50. The composition of claim 49, wherein said anti-diarrheal agent is selected from the group consisting of loperamide, attapulgite, Croton Lechleri Extract, and calcium polycarbophil.
51. The composition of claim 49, wherein said laxative agent is selected from the group consisting of a sennoside, docusate sodium, magnesium hydroxide, and a dietary fiber.
52. The composition of claim 49, wherein said anti-gas agent is selected from the group of simethicone, calcium carbonate, aluminum hydroxide and magnesium hydroxide.
53. A method for increasing carbohydrate absorption in a mammal, comprising administering to a mammal a composition comprising Bacillus coagulans bacteria, a supplementary lactase, and a supplementary fructase, wherein carbohydrate absorption is increased following said administration.
54. The method of claim 53, wherein said mammal is diagnosed as suffering from ,or being at risk of developing a disorder associated with carbohydrate malabsorption.
55. The method of claim 54, wherein said disorder associated with carbohydrate malabsorption is selected from the group consisting of: lactose intolerance, fructose intolerance, glucose-galactose intolerance, sorbitol intolerance, irritable bowel syndrome, short bowel syndrome, stagnant loop syndrome, celiac disease, chronic malnutrition, chronic persistent diarrhea, immunoproliferative small intestinal disease, intractable diarrhea of infancy, postenteritis syndrome, tropical sprue, Whipple's disease, Wolman disease, Crohn's disease and ulcerative colitis.
56. The method of claim 53, wherein the mammal is human.
57. The method of claim 53, wherein said lactase is provided in a concentration from about 1000 IU to about 12,000 IU, and wherein said fructase is provided in a concentration from about 1000 IU to about 12,000 IU.
58. The method of claim 53, wherein said composition further comprises one or more components selected from the group consisting of an anti-diarrheal agent, an anti-gas agent, a laxative, a vitamin, a mineral, an isolated amino acid, a source of dietary fiber, and an antibiotic.
59. A method for increasing lactose digestion, comprising identifying a patient suffering from or at risk of developing lactose intolerance, and administering to said patient a composition comprising Bacillus coagulans bacteria and a supplemental lactase, whereby lactose digestion is increased following said administration.
60. The method of claim 59, wherein the patient is human.
61. The method of claim 59, wherein said lactase is provided in a concentration from about 1000 IU to about 12,000 IU.
62. A composition comprising a Bacillus coagulans bacteria and a supplementary fructase.
63. The composition of claim 62, wherein said fructase is provided in a concentration from about 1000 IU to about 12,000 IU.
64. The composition of claim 62, wherein said fructase is provided in a concentration of about 3000 IU.
65. The composition of claim 62, further comprising an isolated amino acid.
66. The composition of claim 62, wherein said composition is in the form of a capsule, tablet, powder, or liquid.
67. The composition of claim 62, wherein said Bacillus coagulans bacteria are derived from Bacillus coagulans hammer strain Accession No. ATCC 31284.
68. A medical food for the management of irritable bowel syndrome, comprising Bacillus coagulans bacteria and L-lysine, wherein said medical food is formulated to provide at least about 1×10 6 viable Bacillus coagulans bacteria in the gastrointestinal tract of a mammal per day, based on a serving size of about 1 gram to about 2 grams of said medical food taken up to twice a day.
69. The medical food of claim 68, further comprising a supplemental enzyme selected from the group consisting of a lactase, a fructase, a lipase and a protease.
70. The medical food of claim 68, further comprising one or more components selected from the group consisting of an anti-diarrheal agent, an anti-gas agent, a laxative, a vitamin, a mineral, an isolated amino acid, a source of dietary fiber, and an antibiotic.
71. A method of dietary management of a subject's carbohydrate absorption, comprising the steps of:
identifying a patient having a symptom of carbohydrate malabsorption; and providing a composition comprising Bacillus coagulans bacteria to said subject, wherein said bacteria colonize said subject's gastrointestinal tract, whereby carbohydrate absorption by said subject is modulated, such that the subject's carbohydrate absorption is managed.
72. A method of dietary management of a subject's carbohydrate absorption, comprising the steps of:
identifying a patient having a symptom of carbohydrate malabsorption;
providing a patient-derived biological sample from said identified patient;
determining an amount of a product of a gastrointestinal enzyme in said patient-derived sample;
comparing said amount in said patient-derived sample with a reference amount of a product of a gastrointestinal enzyme; and providing a composition comprising Bacillus coagulans bacteria, whereby the subject's carbohydrate absorption is managed.
73. A method for increasing carbohydrate absorption in a patient diagnosed as suffering from or being at risk of developing celiac disease, comprising administering to said patient a composition comprising Bacillus coagulans bacteria, wherein carbohydrate absorption in said patient is increased following said administration.
74. A method of reducing a symptom of irritable bowel syndrome, wherein said symptom comprises alternating diarrhea and constipation, comprising identifying a patient suffering from or at risk of developing irritable bowel syndrome, and administering to said patient a composition comprising Bacillus coagulans bacteria.
75. A composition comprising a Bacillus coagulans bacterium and a supplementary enzyme provided in a formulation with a food product.
76. The composition of claim 75, wherein said food product is a dairy product.
CA2548149A 2003-12-05 2004-12-03 Methods for the dietary management of irritable bowel syndrome and carbohydrate malabsorption Active CA2548149C (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US52807403P 2003-12-05 2003-12-05
US60/528,074 2003-12-05
US10/915,030 US7767203B2 (en) 1998-08-07 2004-08-09 Methods for the dietary management of irritable bowel syndrome and carbohydrate malabsorption
US10/915,030 2004-08-09
PCT/US2004/040513 WO2005055934A2 (en) 2003-12-05 2004-12-03 Methods for the dietary management of irritable bowel syndrome and carbohydrate malabsorption

Publications (2)

Publication Number Publication Date
CA2548149A1 true CA2548149A1 (en) 2005-06-23
CA2548149C CA2548149C (en) 2014-06-03

Family

ID=34681545

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2548149A Active CA2548149C (en) 2003-12-05 2004-12-03 Methods for the dietary management of irritable bowel syndrome and carbohydrate malabsorption

Country Status (13)

Country Link
US (8) US7767203B2 (en)
EP (1) EP1694273B1 (en)
AU (1) AU2004296815B2 (en)
CA (1) CA2548149C (en)
CY (1) CY1123296T1 (en)
DK (1) DK1694273T3 (en)
ES (1) ES2806098T3 (en)
HU (1) HUE051079T2 (en)
LT (1) LT1694273T (en)
PL (1) PL1694273T3 (en)
PT (1) PT1694273T (en)
SI (1) SI1694273T1 (en)
WO (1) WO2005055934A2 (en)

Families Citing this family (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7374753B1 (en) * 1997-06-03 2008-05-20 Ganeden Biotech, Inc. Probiotic lactic acid bacterium to treat bacterial infections associated with SIDS
US7029702B2 (en) * 1998-07-07 2006-04-18 Ritter Natural Sciences Llc Method for increasing lactose tolerance in mammals exhibiting lactose intolerance
US7767203B2 (en) * 1998-08-07 2010-08-03 Ganeden Biotech, Inc. Methods for the dietary management of irritable bowel syndrome and carbohydrate malabsorption
US6461607B1 (en) 1998-08-24 2002-10-08 Ganeden Biotech, Inc. Probiotic, lactic acid-producing bacteria and uses thereof
US6849256B1 (en) * 1999-11-08 2005-02-01 Ganeden Biotech Incorporated Inhibition of pathogens by probiotic bacteria
CA2441192C (en) * 2001-03-23 2009-05-19 Ajinomoto Co., Inc. The use of lysine for the prevention or treatment of stress-induced diseases
CA2491797A1 (en) * 2002-07-10 2004-01-22 Warner-Lambert Company Llc Gastrointestinal compositions
US7611480B2 (en) * 2003-04-24 2009-11-03 Levy Mark M Gastrointestinal bioreactor
US7276115B1 (en) * 2003-07-17 2007-10-02 Cathey Timothy D Conformable coating
US7759105B2 (en) * 2003-08-29 2010-07-20 Cobb & Company, Llp Probiotic composition useful for dietary augmentation and/or combating disease states and adverse physiological conditions
US7731976B2 (en) * 2003-08-29 2010-06-08 Cobb And Company, Llp Treatment of irritable bowel syndrome using probiotic composition
US8192733B2 (en) 2003-08-29 2012-06-05 Cobb & Associates Probiotic composition useful for dietary augmentation and/or combating disease states and adverse physiological conditions
US7749509B2 (en) * 2003-08-29 2010-07-06 Cobb And Company, Llp Treatment of autism using probiotic composition
US7854927B2 (en) * 2004-05-11 2010-12-21 Ganeden Biotech, Inc. Methods and compositions for the dietary management of autoimmune disorders
WO2006012536A2 (en) * 2004-07-22 2006-02-02 Ritter Andrew J Methods and compositions for treating lactose intolerance
CN100569243C (en) * 2004-12-15 2009-12-16 北京天施康医药科技发展有限公司 A kind of manufacture method and application for the treatment of the coagulated bacillus living formulation of ulcerative colitis
US8092793B2 (en) * 2004-12-15 2012-01-10 Qingdao East Sea Pharmaceuticals, Ltd. Treating inflammatory bowel disease with live bacteria
WO2007038466A2 (en) * 2005-09-27 2007-04-05 Cobb & Company Treatment of bipolar disorder utilizing anti-fungal compositions
KR20080068014A (en) * 2005-10-07 2008-07-22 콜로캡스 피와이티 리미티드 Preparation for the treatment of diarrehoea
ITRM20050531A1 (en) 2005-10-26 2007-04-27 D M G Italia S R L MEDICAL DEVICE INCLUDING LACTOBACILLI AND SIMETICONE FOR THE TREATMENT OF GASTROINTESTINAL DISORDERS.
DE102006012244A1 (en) * 2005-11-16 2007-05-31 Pro Natura Gesellschaft für gesunde Ernährung mbH New 5-D-fructose dehydrogenase, optionally in combination with invertase, maltase and/or glucose isomerase, useful in therapy or diagnosis of disorders of fructose metabolism, including fructose intolerance
DE102006013624B4 (en) * 2005-11-23 2012-03-15 Pro Natura Gesellschaft für gesunde Ernährung mbH Means for use in fructose intolerance
CA2669431C (en) * 2005-11-16 2019-04-23 Pro Natura Gesellschaft Fuer Gesunde Ernaehrung Mbh Agent for use in the case of fructose intolerance
KR101252635B1 (en) * 2006-04-20 2013-04-10 (주)아모레퍼시픽 Pharmaceutical composition comprising a lipase inhibitor and a lipophilic oil absorbant and oral formulation prepared therefrom
ES2660551T3 (en) 2006-05-01 2018-03-22 Napo Pharmaceuticals, Inc. Compositions and methods to treat or prevent colon cancer
US7556831B2 (en) 2006-05-01 2009-07-07 Napo Pharmaceuticals, Inc. Method for treatment of constipation-predominant irritable bowel syndrome
US20070254050A1 (en) 2006-05-01 2007-11-01 Quart Barry D Method for treatment of diarrhea-predominant irritable bowel syndrome
US7556832B2 (en) * 2006-05-09 2009-07-07 Kracke Donald R Process and formula for treating irritable bowel syndrome
CN101095698B (en) * 2006-06-26 2010-12-01 青岛东海药业有限公司 Use of Clostridium Butyricum for preventing and treating foetid faeces toxin syndrome and disease
CN101134052A (en) * 2006-11-17 2008-03-05 青岛东海药业有限公司 Application of clostridium butyricum, condensate bacillus and bifidobacteria in the preparation of medicament for preventing and treating mouth ulcer
DE102007008664B4 (en) 2007-02-20 2021-07-29 Vitacare Gmbh & Co. Kg Means for use in fructose intolerance
ITMI20070649A1 (en) * 2007-03-30 2008-09-30 Farmaceutici S R L COMPOSITIONS FOR THE RIEQULIBRIO OF THE INTESTINAL BACTERIAL FLORA WITH ANTI-INFLAMMATORY ANTI-DIARARIC ACTIVITY AND SOOTHING OF THE INTOLERANCES TO LACTOSE AND ITS DERIVATIVES
US9420807B2 (en) * 2007-04-02 2016-08-23 Purina Animal Nutrition Llc Method of feeding young monogastric mammals and composition fed to young monogastric mammals
US7803165B2 (en) * 2007-04-04 2010-09-28 Ethicon Endo-Surgery, Inc. Device for plicating and fastening gastric tissue
US7951159B2 (en) * 2007-04-04 2011-05-31 Ethicon Endo-Surgery, Inc. Method for plicating and fastening gastric tissue
US7722628B2 (en) * 2007-04-04 2010-05-25 Ethicon Endo-Surgery, Inc. Device for plicating and fastening gastric tissue
WO2009029267A1 (en) * 2007-08-29 2009-03-05 Ganeden Biotech, Inc. Baked goods
US20090191609A1 (en) * 2007-08-29 2009-07-30 Lefkowitz Andrew R Compositions and methods for enhancing paper product degradation
AU2015200006B2 (en) * 2007-08-29 2016-12-01 Ganeden Biotech, Inc. Baked Goods
WO2009036906A1 (en) * 2007-09-22 2009-03-26 Bayer Consumer Care Ag Composition with laxative/antifoam active ingredient combination for the treatment of constipation
US8236297B2 (en) * 2007-10-11 2012-08-07 Kenneth Manzo Method of treating lactose intolerance using genetically engineered bacteria
AU2008311932B2 (en) * 2007-10-16 2014-05-29 Ganeden Biotech, Inc. Beverage compositions
US20110223248A1 (en) * 2007-12-12 2011-09-15 Ritter Pharmaceuticals, Inc. Methods and compositions for treating lactose intolerance
WO2010008491A2 (en) * 2008-06-25 2010-01-21 Ritter Natural Sciences, Llc Lactose compositions with decreased lactose content
CA2740423C (en) 2008-10-16 2020-09-08 Ganeden Biotech, Inc. Probiotic grain-based compositions
DE202008015430U1 (en) * 2008-11-20 2009-12-24 Maria Clementine Martin Klosterfrau Vertriebsgesellschaft Mbh Composition for the treatment of indigestion
SG173832A1 (en) 2009-02-24 2011-09-29 Ritter Pharmaceuticals Inc Prebiotic formulations and methods of use
US8568743B2 (en) 2009-04-29 2013-10-29 Ganeden Biotech, Inc. Inactivated bacterial cell formulation
WO2011003062A2 (en) * 2009-07-03 2011-01-06 James Madison University Probiotic compositions and processes thereof
DE102010009582A1 (en) 2010-02-05 2011-08-11 Vitacare GmbH & Co. KG, 60318 Agent for use in lactase deficiency and lactose intolerance
WO2011130487A1 (en) 2010-04-14 2011-10-20 Ganeden Biotech, Inc. Probiotic confection and lipid compositions
EP3202406A1 (en) 2010-04-28 2017-08-09 Ritter Pharmaceuticals, Inc. Prebiotic formulations and methods of use
EP2422627A1 (en) 2010-08-26 2012-02-29 Unilever N.V. An ice cream composition and process of preparation thereof
WO2015179751A1 (en) * 2012-03-14 2015-11-26 Anastasia Rigas Breath analyzer and breath test methods
US20120237968A1 (en) * 2011-03-14 2012-09-20 Anastasia Rigas Detector and Method for Detection of H. Pylori
US11235008B2 (en) 2011-03-31 2022-02-01 Ganeden Biotech, Inc. Probiotic sports nutrition compositions
RU2508793C1 (en) * 2012-11-26 2014-03-10 Олег Иванович Квасенков Method for production of preserves "riga sausages with cabbages"
RU2508768C1 (en) * 2012-11-26 2014-03-10 Олег Иванович Квасенков Method for production of preserves "fresh cabbage vegetable solyanka with smoked pork products"
RU2508740C1 (en) * 2012-11-26 2014-03-10 Олег Иванович Квасенков Method for production of "fresh cabbage vegetable-and-mushroom solyanka" enriched preserves
RU2508732C1 (en) * 2012-11-26 2014-03-10 Олег Иванович Квасенков Method for production of preserves "fresh cabbage vegetable solyanka"
RU2508742C1 (en) * 2012-11-26 2014-03-10 Олег Иванович Квасенков Method for production of preserved product "fermented cabbage vegetable-and-mushroom solyanka"
RU2508728C1 (en) * 2012-11-26 2014-03-10 Олег Иванович Квасенков Method for production of preserves "fresh cabbage with mushrooms"
RU2508741C1 (en) * 2012-11-26 2014-03-10 Олег Иванович Квасенков Method for production of preserved product "fermented cabbage vegetable-and-mushroom solyanka"
RU2508821C1 (en) * 2012-11-27 2014-03-10 Олег Иванович Квасенков Method for production of preserves "fried cutlets in chilean sauce"
RU2508822C1 (en) * 2012-12-04 2014-03-10 Олег Иванович Квасенков Method for production of preserves "fried cutlets in chilean sauce"
RU2514562C1 (en) * 2013-04-22 2014-04-27 Олег Иванович Квасенков Method for production of preserves "meat with garnish"
RU2514565C1 (en) * 2013-04-29 2014-04-27 Олег Иванович Квасенков Method for production of preserves "heart in main red sauce with stewed cabbages"
RU2514564C1 (en) * 2013-04-29 2014-04-27 Олег Иванович Квасенков Method for production of preserved appetisers "swallow's nest"
US9402885B2 (en) * 2013-07-15 2016-08-02 Alfa Wassermann S.P.A. Method of treating GERD with alpha and beta galactosidases
EP3185877B1 (en) * 2014-08-29 2020-04-01 Muhammed Majeed Process for enhancing the viable counts of lactic acid bacteria and useful compositions thereof
CN113730442A (en) * 2014-10-31 2021-12-03 潘德勒姆治疗公司 Methods and compositions relating to microbial treatment and diagnosis of disorders
US9579352B2 (en) * 2014-11-10 2017-02-28 Sami Labs Limited Process for the therapeutic management of diarrhea predominant irritable bowel syndrome using Bacillus coagulans SBC-37-01, MTCC 5856
JP6629875B2 (en) * 2016-01-07 2020-01-15 サミ ラブズ リミテッド Method of managing the treatment of irritable bowel syndrome with diarrhea using Bacillus coagulans SBC37-01, MTCC5856
CA3018865A1 (en) 2016-03-31 2017-10-05 Gojo Industries, Inc. Antimicrobial peptide stimulating cleansing composition
EP3436041B1 (en) 2016-03-31 2023-05-24 Gojo Industries, Inc. Sanitizer composition with probiotic/prebiotic active ingredient
US10166261B2 (en) * 2016-06-30 2019-01-01 Sami Labs Limited Bacillus coagulans MTCC 5856 for the management of major depressive disorder
CA3043748A1 (en) 2016-11-23 2018-05-31 Gojo Industries, Inc. Sanitizer composition with probiotic/prebiotic active ingredient
US10269116B2 (en) * 2016-12-26 2019-04-23 Intel Corporation Proprioception training method and apparatus
JOP20190276A1 (en) * 2017-05-31 2019-11-27 Napo Pharmaceuticals Inc Methods and compositions for treating bile acid diarrhea, diarrhea associated with small intestine resection or gallbladder removal, and short bowel syndrome
JOP20190275A1 (en) 2017-05-31 2019-11-27 Napo Pharmaceuticals Inc Methods and compositions for treating congenital diarrhea disorder
EP3635092A4 (en) * 2017-06-09 2021-02-24 Sami Labs Limited Compositions and methods for reducing flatulence
US11344585B2 (en) * 2017-08-29 2022-05-31 Flaask, Llc Compositions and methods for diagnosing susceptibility to autism spectrum disorder (ASD), reducing the likelihood of developing ASD, and/or treating ASD
CA3073838A1 (en) 2017-08-30 2019-03-07 Pendulum Therapeutics, Inc. Methods and compositions for treatment of microbiome-associated disorders
US11278578B2 (en) * 2018-09-02 2022-03-22 Sanzyme Biologics Private Limited Combination probiotic compositions and uses thereof
WO2020168306A1 (en) * 2019-02-14 2020-08-20 Gutsybio Inc. Live biotherapeutics for the treatment of carbohydrate disorders
JP7390398B2 (en) * 2019-04-02 2023-12-01 サミ-サビンサ グループ リミテッド Methods and compositions for therapeutic management of gluten intolerance
WO2020204910A1 (en) * 2019-04-02 2020-10-08 Muhammed Majeed Stable probiotic composition for the management of lactose intolerance
US11202810B2 (en) * 2019-04-02 2021-12-21 Sami-Sabinsa Group Limited Stable probiotic composition for the management of lactose intolerance
JP2022536252A (en) * 2019-05-13 2022-08-15 サミ-サビンサ グループ リミテッド Fructophilic lactic acid-producing bacteria
WO2022223430A1 (en) * 2021-04-19 2022-10-27 Dsm Ip Assets B.V. A composition of enzymes and human milk oligosaccharides
CN115322931B (en) * 2022-08-19 2023-04-25 华南农业大学 Bacillus coagulans Wei Ciman capable of inhibiting activity of alpha-glucosidase and/or alpha-amylase and application thereof

Family Cites Families (156)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3091572A (en) 1962-07-16 1963-05-28 Schering Corp Gentamycin and method of production
GB1040278A (en) 1963-10-15 1966-08-24 Analyses Et De Rech S Biolog M Bacterial compositions for the regeneration of the intestinal microflora
US3629073A (en) 1969-04-01 1971-12-21 Baxter Laboratories Inc Acid-active lactose
US3840684A (en) 1970-03-13 1974-10-08 Gen Foods Corp Decaffeinated coffee
US3718739A (en) 1971-06-15 1973-02-27 Baxter Laboratories Inc Treating lactase deficiency with an active lactase
US3919049A (en) 1974-06-27 1975-11-11 Tokyo Tanabe Co Process for preparing {62 -galactosidase
US4179335A (en) * 1974-12-04 1979-12-18 R. J. Reynolds Tobacco Company Thermostable lactase derived from Bacillus coagulans
US4323651A (en) 1974-12-04 1982-04-06 R. J. Reynolds Tobacco Company Thermostable lactase derived from bacillus
US4210672A (en) 1976-04-02 1980-07-01 Seikenkai Preparation of yogurt
US4144346A (en) 1977-01-31 1979-03-13 Janssen Pharmaceutica N.V. Novel 1-(1,3-dioxolan-2-ylmethyl)-1H-imidazoles
US4110477A (en) 1977-05-13 1978-08-29 Kabushiki Kaisha Naruse Fermentation Laboratory Method for producing natto containing lactic acid bacteria
US4321258A (en) 1980-08-13 1982-03-23 Dunlap Dorsey S Non-toxic insecticide
CA1206108A (en) 1981-03-06 1986-06-17 Shuichi Aiba Process for transforming microorganism by means of plasmid introduction
US4751085A (en) 1984-08-29 1988-06-14 Gaull Gerald E Human nutritional compositions containing taurine and vitamins and/or minerals
US4834974A (en) 1986-01-13 1989-05-30 Protein Technologies, Inc. Immunologically active whey fraction and recovery process
US4816252A (en) 1985-04-15 1989-03-28 Protein Technology, Inc. Product and process for transferring passive immunity to newborn domestic animals using ultrafiltered whey containing immunoglobulins
US5066491A (en) 1985-04-15 1991-11-19 Protein Technology, Inc. Method of disease treatment utilizing an immunologically active whey fraction
JPS6261572A (en) 1985-09-12 1987-03-18 Nippon Oil & Fats Co Ltd Spread and production thereof
US4756913A (en) 1985-09-30 1988-07-12 Khorkova Evgenia A Sour milk product
US4956177A (en) 1985-11-04 1990-09-11 Microlife Technics, Inc. Method for inhibiting fungi
US5413960A (en) 1987-05-01 1995-05-09 Biogaia Ab Antibiotic reuterin
ES2007350A6 (en) 1987-05-29 1989-06-16 Ganadera Union Ind Agro Food products enriched with nucleosides and/or nucleotides and preparation thereof.
JP2806522B2 (en) 1987-09-04 1998-09-30 日本食品化工株式会社 Method for producing branched fructooligosaccharide
US4806368A (en) * 1987-09-16 1989-02-21 Reddy Malireddy S Shelf life and subsequent growth of lactobacillus acidophilus, propionibacterium shermanii and leuconostoc citrovorum in dietary fiber based supplement preparation
JPS6483025A (en) 1987-09-24 1989-03-28 Fujio Hayashi Blended preparation of drug-resistant live bacterium agent for controlling intestinal function and antibacterial agent
DK686187D0 (en) 1987-12-23 1987-12-23 Hansens Chr Bio Syst VETERINATED PREPARATION
JPH01199575A (en) 1988-02-04 1989-08-10 Rikagaku Kenkyusho Novel cyclomaltodextrin-glucano transferase and production thereof
US5443826A (en) 1988-08-02 1995-08-22 Borody; Thomas J. Treatment of gastro-intestinal disorders with a fecal composition or a composition of bacteroides and E. Coli
IT1227154B (en) 1988-08-05 1991-03-19 A Tosi Farmaceutici S R L Nova PHARMACEUTICAL COMPOSITIONS FOR GYNECOLOGICAL USE BASED ON LATTOBACILLI
GB8825814D0 (en) 1988-11-04 1988-12-07 Ici Plc Polyester polymers & aqueous dispersions thereof
AT391323B (en) 1989-03-10 1990-09-25 Jungbunzlauer Ag MICROORGANISM OF THE SPECIES BACILLUS COAGULANS AND A METHOD FOR THE PRODUCTION OF OPTICALLY PURE L (+) - LACTIC ACID
FR2656314B1 (en) 1989-12-22 1992-04-17 Bp Chemicals Snc ZIRCONIUM CATALYST SUPPORTED ON MAGNESIUM CHLORIDE, PROCESS FOR THE PREPARATION AND USE OF THE CATALYST IN OLEFIN POLYMERIZATION.
DE4001611C1 (en) 1990-01-20 1991-02-28 Skw Trostberg Ag, 8223 Trostberg, De
US5266315A (en) 1990-05-07 1993-11-30 Kabushiki Kaisha Miyarisan Seibutsu Igaku Kenkyusho Composite for Clostridium difficile diarrhea and pseudomembranous colitis
JPH0678367B2 (en) 1990-05-15 1994-10-05 呉羽化学工業株式会社 Dietary fiber, method for producing the same, and bioactive agent containing the dietary fiber
US5200336A (en) 1990-07-02 1993-04-06 New England Biolabs, Inc. Restriction endonuclease obtainable foam bacillus coagulans and a process for producing the same
WO1992006701A1 (en) 1990-10-18 1992-04-30 Huffstutler, M., Conrad, Jr. Preparation of concentrated fluid symphytum extracts, therapeutic forms and methods of use
FR2677038B1 (en) 1991-06-03 1994-08-12 Bel Fromageries FOOD ADDITIVE FOR HUMAN AND ANIMAL FEEDING AND FOOD CONTAINING THE SAME.
DE4132296C1 (en) 1991-09-27 1992-12-17 Karl Heinz 8081 Schoengeising De Hoelzel Enzymic metabolic prod. prepn. for intestinal disorders etc. - obtd. from pathogenic lacto- and bifido- bacteria from the gut
GB2261372A (en) 1991-11-15 1993-05-19 Gregor Reid Lactobacillus and skim milk compositions for prevention of urogenital infection
IT1262927B (en) 1992-01-14 1996-07-22 Consiglio Nazionale Ricerche EXTENDING BACTERIA AND THEIR USE AS PROBIOTICS
CA2063499C (en) 1992-03-19 1996-06-18 Leon Edward St. Pierre Ingestible polymeric phosphonium salts for the lowering of blood cholesterol
JP3459837B2 (en) 1992-05-12 2003-10-27 太陽化学株式会社 Live bacteria powder
US5902617A (en) * 1992-05-19 1999-05-11 Pabst; Patrea L. Enzyme supplemented baby formula
WO1994011492A1 (en) 1992-11-12 1994-05-26 Chr. Hansen's Laboratory, Inc. Method of favorably modifying poultry intestinal microflora
US5413785A (en) 1993-01-27 1995-05-09 New England Deaconess Hospital Corp. Methodology employing lactobacillus GG for reduction of plasma endotoxin levels circulating in-vivo
US5449523A (en) 1993-04-20 1995-09-12 The Ohio State University Research Foundation Process for the manufacture of a calcium fortified yogurt with improved heat stability
US5607669A (en) 1994-06-10 1997-03-04 Geltex Pharmaceuticals, Inc. Amine polymer sequestrant and method of cholesterol depletion
US6103246A (en) 1993-06-03 2000-08-15 Tisdale; Carrie J. Creams and lotions containing emu oil
JP2510943B2 (en) 1993-06-07 1996-06-26 株式会社ドクターマインツ Slimming food
WO1995002321A1 (en) * 1993-07-14 1995-01-26 Wisconsin Alumni Research Foundation Low cholesterol eggs
US6428786B1 (en) 1993-09-28 2002-08-06 Mcneil-Ppc, Inc. Composition and method for lactose hydrolysis
DE4336050C2 (en) 1993-10-22 1995-11-16 Onken Gmbh Animal feed, especially complete feed for cats and dogs
JP3381010B2 (en) 1994-05-10 2003-02-24 株式会社林原生物化学研究所 Fermented product containing propolis extract, production method and use thereof
US5589381A (en) 1994-06-30 1996-12-31 Rutgers, The State University Of New Jersey Bacillus licheniformis producing antifungal agents and uses thereof for control of phytopathogenic fungi
AUPM864894A0 (en) 1994-10-07 1994-11-03 Borody, Thomas Julius Treatment of bowel-dependent neurological disorders
US5531988A (en) 1994-10-28 1996-07-02 Metagenics, Inc. Bacteria and immunoglobulin-containing composition for human gastrointestinal health
US5531989A (en) 1994-10-28 1996-07-02 Metagenics, Inc. Immunoglobulin and fiber-containing composition for human gastrointestinal health
JPH08175921A (en) 1994-12-22 1996-07-09 Idemitsu Kosan Co Ltd Agricultural and horticultural germicidal composition
US5534253A (en) 1995-06-07 1996-07-09 Biogaia Ab Method of treating enteropathogenic bacterial infections in poultry
US5785990A (en) 1995-07-10 1998-07-28 Merrick's, Inc. Feed fortifier and enhancer for preruminant calves and method of using same
JPH09194384A (en) 1996-01-19 1997-07-29 Snow Brand Milk Prod Co Ltd Mineral absorption accelerating agent
AU1758197A (en) 1996-02-14 1997-09-02 Procter & Gamble Company, The Urogenital and intestinal compositions
AUPN881396A0 (en) 1996-03-20 1996-04-18 Arnott's Biscuits Limited Enhancement of microbial colonization of the gastrointestinal tract
ATE206873T1 (en) 1997-01-09 2001-11-15 Nestle Sa CEREAL PRODUCT CONTAINING PROBIOTICS
US6132710A (en) 1997-03-17 2000-10-17 Probiotix, Inc. Preventing/treating neonatal NEC by administering lactobacillus salivarius and lactobacillus plantarum or a combination thereof
US7507402B1 (en) 1997-04-18 2009-03-24 Ganeden Biotech, Inc. Topical use of probiotic Bacillus spores to prevent or control microbial infections
US6645506B1 (en) 1997-04-18 2003-11-11 Ganeden Biotech, Inc. Topical compositions containing extracellular products of Pseudomonas lindbergii and Emu oil
ES2255730T3 (en) 1997-04-18 2006-07-01 Ganeden Biotech, Inc. TOPICAL USE OF SPORTS OF PROBIOTIC BACLES TO PREVENT OR TREAT MICROBIAL INFECTIONS.
US7374753B1 (en) 1997-06-03 2008-05-20 Ganeden Biotech, Inc. Probiotic lactic acid bacterium to treat bacterial infections associated with SIDS
JP2002502430A (en) 1997-06-03 2002-01-22 ガネデン バイオテック,インコーポレイテッド Symbiotic lactic acid bacteria for treating bacterial infections associated with SIDS
US20010006644A1 (en) 1997-07-31 2001-07-05 David J. Bova Combinations of hmg-coa reductase inhibitors and nicotinic acid and methods for treating hyperlipidemia once a day at night
JP3768694B2 (en) 1997-08-18 2006-04-19 コーア株式会社 Method for producing Bacillussp metabolite-containing material
GB9721139D0 (en) 1997-10-07 1997-12-03 Glaxo Group Ltd Medicaments
JP3652866B2 (en) 1997-12-18 2005-05-25 花王株式会社 Beverages containing spore lactic acid bacteria
US6107291A (en) 1997-12-19 2000-08-22 Amgen Inc. Azepine or larger medium ring derivatives and methods of use
US5895672A (en) 1998-01-13 1999-04-20 Cooper; Barry Patrick Wesley Product and process for preparing a tea extract
US5928664A (en) 1998-02-11 1999-07-27 Fuisz Technologies Ltd. Consumable gummy delivery system
JP3324979B2 (en) 1998-02-17 2002-09-17 浅田商事株式会社 Bacillus for decomposing turfgrass cuttings and thatch, and microbial material containing the bacillus
CA2326874C (en) 1998-04-01 2010-05-25 Ganeden Biotech, Inc. Methods for reducing cholesterol using bacillus coagulans spores, systems and compositions
US6811786B1 (en) 1999-04-01 2004-11-02 Ganeden Biotech, Inc. Methods for reducing cholesterol using Bacillus coagulans spores, systems and compositions
JPH11335285A (en) 1998-05-25 1999-12-07 Toyotama Koryo Kk Intestinal controlling and constipation improving medicine and food and drink, and animal feed containing the same
AT407008B (en) * 1998-08-06 2000-11-27 Viernstein Helmut Dr FORMULATIONS WITH PROBIOTALLY EFFECTIVE MICROORGANISMS
US7767203B2 (en) 1998-08-07 2010-08-03 Ganeden Biotech, Inc. Methods for the dietary management of irritable bowel syndrome and carbohydrate malabsorption
EP1102595A2 (en) 1998-08-07 2001-05-30 Ganeden Biotech, Inc. Methods for increasing the solubility of nutritional materials using probiotic lactic acid-producing bacteria
US6461607B1 (en) 1998-08-24 2002-10-08 Ganeden Biotech, Inc. Probiotic, lactic acid-producing bacteria and uses thereof
JP2000093162A (en) 1998-09-24 2000-04-04 Kao Corp Culture of sporogenous lactic acid bacterium
US6080401A (en) 1998-11-19 2000-06-27 Reddy; Malireddy S. Herbal and pharmaceutical drugs enhanced with probiotics
IT1306201B1 (en) 1999-01-14 2001-05-30 Giuliani Spa SUITABLE COMPOSITION AS A FOOD SUPPLEMENT AND FOR THERAPEUTIC TREATMENT OF INTESTINAL DISORDERS AND FLORA ALTERATIONS
EP1020123A1 (en) 1999-01-18 2000-07-19 Sitia-Yomo S.p.A. Beverages containing live lactic bacteria
CA2368509A1 (en) 1999-04-14 2000-10-19 Ganeden Biotech, Inc. Methods for inhibiting microbial infections associated with sanitary products
US20040161422A1 (en) 1999-04-30 2004-08-19 Natarajan Ranganathan Nutritional compositions comprising probiotics
ATE270558T1 (en) 1999-08-26 2004-07-15 Ganeden Biotech Inc USE OF EMU OIL AS A CARRIER FOR FUNGICIDES, ANTIBACTERIAL AND ANTIVIRAL MEDICATIONS
JP4082827B2 (en) 1999-09-13 2008-04-30 日東電工株式会社 Substrate removal device
US6849256B1 (en) 1999-11-08 2005-02-01 Ganeden Biotech Incorporated Inhibition of pathogens by probiotic bacteria
JP2003513649A (en) 1999-11-08 2003-04-15 ガネデン バイオテック, インコーポレイテッド Inhibition of pathogens by Bacilluscoagulans
EP1112693B1 (en) 1999-12-30 2006-03-22 Kerry Group Services Ltd Composition comprising carbohydrate and peptide material and its use as an energy supplement after or during physical exercise or as a metabolic nutrient for oral consumption
JP2001252012A (en) 2000-03-15 2001-09-18 Otsuka Shokuhin Kk Lactic acid bacterium beverage capable of being subjected to long-term chilled storage and method for producing the same
JP3363438B2 (en) 2000-05-02 2003-01-08 ビオフェルミン製薬株式会社 Dried bacterial cells by spray drying
JP2004504064A (en) 2000-06-22 2004-02-12 アムジエン・インコーポレーテツド IL-17 molecule and its use
US20020150594A1 (en) 2000-06-26 2002-10-17 Maxygen, Inc. Methods and compositions for developing spore display systems for medicinal and industrial applications
US6632028B1 (en) 2000-08-25 2003-10-14 Vtr Optoelectronics, Inc. Apparatus and method for aligning an optical fiber with an optical device
US7024497B1 (en) 2000-09-07 2006-04-04 Adaptec, Inc. Methods for accessing remotely located devices
US9292516B2 (en) 2005-02-16 2016-03-22 Sonic Solutions Llc Generation, organization and/or playing back of content based on incorporated parameter identifiers
JP2002085009A (en) 2000-09-14 2002-03-26 Unicafe Inc Enteral activating food using natto powder
JP2002114671A (en) 2000-10-04 2002-04-16 Taisho Pharmaceut Co Ltd Cytokine production inhibitor
JP3733896B2 (en) * 2001-01-30 2006-01-11 株式会社デンソー Vibration welding method
US20030185811A1 (en) 2001-02-06 2003-10-02 Steve Teasdale Herbal extract and preparation thereof
US20030044406A1 (en) 2001-03-02 2003-03-06 Christine Dingivan Methods of preventing or treating inflammatory or autoimmune disorders by administering CD2 antagonists in combination with other prophylactic or therapeutic agents
US6599555B2 (en) 2001-03-08 2003-07-29 Bocabear Foods, Inc. Process for making a reduced-calorie fruit and/or vegetable spread
EP1450610A4 (en) 2001-11-05 2006-03-29 Ganeden Biotech Inc Probiotic compositions
NZ532074A (en) 2001-11-06 2006-02-24 Maxim Pharm Inc Compositions for the treatment of infectious diseases
EP1344458A1 (en) 2002-03-12 2003-09-17 Société des Produits Nestlé S.A. Probiotic delivery system
WO2004004747A1 (en) 2002-07-09 2004-01-15 Decentwork Inc. Antiflatulent composition, antiflatulent healthy drink and large intestine inside wash fluid
US20040010510A1 (en) 2002-07-10 2004-01-15 Timo Hotti Method and system for database synchronization
JP2005536994A (en) 2002-07-19 2005-12-08 ズートツッカー アクチェンゲゼルシャフト マンハイム/オクセンフルト Instant beverage powder containing isomaltulose
TWI228974B (en) 2002-09-04 2005-03-11 Genmont Biotech Inc Beverage containing lactobacillus and the manufacturing method thereof
US20040071685A1 (en) 2002-10-09 2004-04-15 Devin Houston Compositions and methods for increasing the bioavailability of plant polyphenols
CN1221187C (en) 2002-12-13 2005-10-05 景岳生物科技股份有限公司 Beverage containing lactic acid bacteria and manufacturing method thereof
US20040175459A1 (en) 2003-03-06 2004-09-09 Te-Chih Ting Method for producing an aqueous beverage containing sporogenous lactic bacteria
ES2320920T3 (en) 2003-03-13 2009-05-29 Kirin Holdings Kabushiki Kaisha PROBIOTIC COMPOSITION.
JP2004337125A (en) 2003-05-19 2004-12-02 Ajinomoto Co Inc Instant soup containing sporolactobacillus spore
US20070059400A1 (en) 2003-07-18 2007-03-15 Toyo R & D Inc Composition containing ground lotus and/or lotus extract and lactic acid bacterium
AU2004267383A1 (en) 2003-08-14 2005-03-03 The Bio Balance Corporation Bacterial strains, compositions including same and probiotic use thereof
JP2007516667A (en) 2003-11-14 2007-06-21 ソニック・ソリューションズ Secure and secure transfer of content to writable media
US7483583B2 (en) 2003-12-16 2009-01-27 Infocus Corporation System and method for processing image data
JP2007082403A (en) 2004-03-26 2007-04-05 Nippon Medicine:Kk Food and drink containing complex composition comprising yucca extract, quillaia extract and lactobacillus, and method for producing the same
US7854927B2 (en) 2004-05-11 2010-12-21 Ganeden Biotech, Inc. Methods and compositions for the dietary management of autoimmune disorders
JP2007308373A (en) 2004-06-03 2007-11-29 Toyo Shinyaku:Kk Ameliorating agent for intestinal bacterial flora
JP4296133B2 (en) 2004-07-12 2009-07-15 カゴメ株式会社 Chilled beverage and method for producing the same
KR20070086482A (en) 2004-11-29 2007-08-27 알로에콥, 인크 Dehydration of food combinations
JP4158771B2 (en) 2005-01-07 2008-10-01 ブラザー工業株式会社 Communication terminal device
EP1854363B8 (en) 2005-02-23 2011-02-23 Otsuka Pharmaceutical Co., Ltd. Fermented tea beverage and tea beverage
JP2006254837A (en) 2005-03-18 2006-09-28 Kyoto Institute Of Technology Lactic acid bacterium functional tea, lactic acid bacterium functional tea extract and dried product of lactic acid bacterium functional tea leaf
ITBG20050025A1 (en) 2005-05-13 2006-11-14 Abb Service Srl SWITCH WITH IMPROVED INTERCHANGEABILITY CHARACTERISTICS OF THE COMMAND.
JP2007000140A (en) 2005-05-25 2007-01-11 Suntory Ltd Processing method of coffee raw bean using lactic acid bacterium
JP4332743B2 (en) 2005-08-12 2009-09-16 天野実業株式会社 Dried food containing sporic lactic acid bacteria derived from fermented food
US7555715B2 (en) 2005-10-25 2009-06-30 Sonic Solutions Methods and systems for use in maintaining media data quality upon conversion to a different data format
US20090257995A1 (en) 2005-11-18 2009-10-15 Idemitsu Kosan Co., Ltd. Harmful bacterium control agent containing bacillus thuringiensis
US7758906B2 (en) 2006-01-20 2010-07-20 Kraft Foods Global Brands Llc Thickening system for products prepared with milk
JP5232404B2 (en) 2006-06-07 2013-07-10 第一三共ヘルスケア株式会社 Anti-cold virus or anti-influenza virus composition containing sporic lactic acid bacteria
US7553486B2 (en) 2006-11-13 2009-06-30 Paul Theodore Finger Anti-VEGF treatment for radiation-induced vasculopathy
US20080166449A1 (en) 2006-11-29 2008-07-10 Cadbury Adams Usa Llc Confectionery compositions including an elastomeric component and a saccharide component
CN101636172A (en) 2007-02-28 2010-01-27 美赞臣营养品公司 Product containing inactivated probiotic for children or infants
US20100098806A1 (en) 2007-03-13 2010-04-22 Vdf Futureceuticals, Inc. Compositions and Methods of Dehydrated Food Fortification
US20080305096A1 (en) 2007-06-07 2008-12-11 Unicity International, Inc. Method and composition for providing controlled delivery of biologically active substances
WO2009029267A1 (en) 2007-08-29 2009-03-05 Ganeden Biotech, Inc. Baked goods
AU2008311932B2 (en) 2007-10-16 2014-05-29 Ganeden Biotech, Inc. Beverage compositions
US20090202683A1 (en) 2008-02-11 2009-08-13 Jennyfer Reed Matteson Confections with chewy, sour and creamy attributes, and methods to make and use the same
CA2740423C (en) 2008-10-16 2020-09-08 Ganeden Biotech, Inc. Probiotic grain-based compositions
US8568743B2 (en) 2009-04-29 2013-10-29 Ganeden Biotech, Inc. Inactivated bacterial cell formulation
WO2011130487A1 (en) 2010-04-14 2011-10-20 Ganeden Biotech, Inc. Probiotic confection and lipid compositions
US11235008B2 (en) 2011-03-31 2022-02-01 Ganeden Biotech, Inc. Probiotic sports nutrition compositions
US20130251695A1 (en) 2012-02-28 2013-09-26 Ganeden Biotech, Inc. Cosmetic Compositions
US20150044317A1 (en) 2012-02-28 2015-02-12 Ganeden Biotech, Inc. Topical Compositions for Reducing Visible Signs of Aging and Methods of Use Thereof
US20150313951A1 (en) 2014-05-01 2015-11-05 Ganeden Biotech, Inc. Functional foods containing bacillus coagulans and non-dairy milk-like compositions

Also Published As

Publication number Publication date
WO2005055934A3 (en) 2009-04-16
EP1694273A4 (en) 2012-05-23
US8343484B2 (en) 2013-01-01
EP1694273B1 (en) 2020-06-03
US20170035813A1 (en) 2017-02-09
SI1694273T1 (en) 2020-10-30
ES2806098T3 (en) 2021-02-16
PT1694273T (en) 2020-07-21
US8273346B2 (en) 2012-09-25
HUE051079T2 (en) 2021-03-01
US20050100535A1 (en) 2005-05-12
US20190060378A1 (en) 2019-02-28
US11439672B2 (en) 2022-09-13
US20090181000A1 (en) 2009-07-16
US9220736B2 (en) 2015-12-29
US7767203B2 (en) 2010-08-03
EP1694273A2 (en) 2006-08-30
AU2004296815A1 (en) 2005-06-23
US20090142315A1 (en) 2009-06-04
PL1694273T3 (en) 2020-11-16
CA2548149C (en) 2014-06-03
US7700093B2 (en) 2010-04-20
WO2005055934A2 (en) 2005-06-23
US20080112942A1 (en) 2008-05-15
AU2004296815B2 (en) 2011-06-30
US20130344046A1 (en) 2013-12-26
US20080038240A1 (en) 2008-02-14
LT1694273T (en) 2020-07-27
CY1123296T1 (en) 2021-12-31
DK1694273T3 (en) 2020-08-10
US10111916B2 (en) 2018-10-30

Similar Documents

Publication Publication Date Title
US11439672B2 (en) Methods for the dietary management of irritable bowel syndrome and carbohydrate malabsorption
US8066986B2 (en) Formulations including digestive enzymes and polysorbate surfactants that enhance the colonization of administered probiotics microoganisms
KR20170053733A (en) Prebiotic formulations and methods of use
JP2019516775A (en) Composition of probiotics and digestive enzymes, method of preparation and use thereof
CA2675729C (en) Prophylactic and/or therapeutic agent for functional gastrointestinal disorders
AU2014210581A1 (en) Probiotics for use in relieving symptoms associated with gastrointestinal disorders
DE102010009582A1 (en) Agent for use in lactase deficiency and lactose intolerance
AU2011204886A1 (en) Methods for the Dietary Management of Irritable Bowel Syndrome and Carbohydrate Malabsorption
Arora et al. Therapeutic potential of probiotics: A ray of hope or nightmare?
Lyra et al. Gastrointestinal benefits of probiotics: clinical evidence
US20190091270A1 (en) Probiotics for use in relieving symptoms associated with gastrointestinal disorders
ES2763874A1 (en) PHASCOLARCTOBACTERIUM FAECIUM FOR USE IN THE PREVENTION AND TREATMENT OF OBESITY AND ITS COMORBIDITIES (Machine-translation by Google Translate, not legally binding)
Unger et al. Probiotics and Health Claims Related to OTC Products and Pharmaceutical Preparations

Legal Events

Date Code Title Description
EEER Examination request