CA2537735A1 - Injectable calcium phosphate solid rods and pastes for delivery of osteogenic proteins - Google Patents

Injectable calcium phosphate solid rods and pastes for delivery of osteogenic proteins Download PDF

Info

Publication number
CA2537735A1
CA2537735A1 CA002537735A CA2537735A CA2537735A1 CA 2537735 A1 CA2537735 A1 CA 2537735A1 CA 002537735 A CA002537735 A CA 002537735A CA 2537735 A CA2537735 A CA 2537735A CA 2537735 A1 CA2537735 A1 CA 2537735A1
Authority
CA
Canada
Prior art keywords
composition
bmp
calcium phosphate
osteogenic
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002537735A
Other languages
French (fr)
Other versions
CA2537735C (en
Inventor
Rebecca Li
Howard Seeherman
Hyun Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wyeth LLC
Etex Corp
Original Assignee
Wyeth
Etex Corporation
Rebecca Li
Howard Seeherman
Hyun Kim
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wyeth, Etex Corporation, Rebecca Li, Howard Seeherman, Hyun Kim filed Critical Wyeth
Publication of CA2537735A1 publication Critical patent/CA2537735A1/en
Application granted granted Critical
Publication of CA2537735C publication Critical patent/CA2537735C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • A61K38/1875Bone morphogenic factor; Osteogenins; Osteogenic factor; Bone-inducing factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/227Other specific proteins or polypeptides not covered by A61L27/222, A61L27/225 or A61L27/24
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/42Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having an inorganic matrix
    • A61L27/425Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having an inorganic matrix of phosphorus containing material, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/46Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with phosphorus-containing inorganic fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/06Flowable or injectable implant compositions

Abstract

Osteogenic proteins are delivered via an injectable solid rod or hardenable paste. The formulation comprises a calcium phosphate material, an osteogenic protein, and optional additives and active ingredients such as a bone resorption inhibitor. Methods of making injectable pharmaceutical compositions and methods of using the osteogenic compositions to treat bone defects are also disclosed.

Description

INJECTABLE CALCIUM PHOSPHATE SOLID RODS AND PASTES FOR
DELIVERY OF OSTEOGENIC PROTEINS
DESCRIPTION OF THE INVENTION
Related Applications [0001] This application claims priority to U.S. Provisional Application No.
60/502,493, filed September 12, 2003, which is incorporated herein ~by reference.
Field of the Invention
[0002] The subject invention relates to the field of osteogenic proteins and pharmaceutical formulations thereof.
Related Background Art
[0003] Idiopathic osteoporosis is a disease of unknown etiology characterized by progressive loss of bone mass and increased fragility, resulting in a marked increase in susceptibility to fractures. Osteoporosis is among the most prevalent of all musculoskeletal disorders, afflicting fifty six percent of women :over 45 years of age. Praemer et al., "Musculoskeletal Conditions in the United States", Amer. Acad. of Orthopaedic Surgeons, Park Ridge, IL (1992). Because its incidence increases with age and the percentage of elderly in the population is in~ereasing, osteoporosis will become more common with time. Osteoporosis is difficult to treat locally, and there is presently no known .cure. Finally, and most signi;icantly, osteoporosis is associated with a substantial morbidity and mortality. ~T he most serious fracture resulting from osteoporosis is that the of the proximal femur in the region of the hip joint. With an annual incidence of over 300,000, hip fray#ures arm currently the most common fracture in the elderly. One out of every six -Ca.uca~sian women will have a hip fracture during her lifetime (Cummings et al., Arch.
Intet-n.

Med., vol. 149, pp. 2455-2458 (1989)), and for those who attain the age of 9D, this figure becomes one in three.
[0004] In addition to treating osteoporotic bone, a need.exists for methods of treating or preventing osteoporosis related fractures, for~example, by local administration of osteogenic proteins. Osteogenic proteins are those proteins capable of inducing, or assisting in the induction of, cartilage and/or bone formation.
Many such osteogenic proteins have in recent years been isolated and characterized, and some have been produced by rAcombinant methods.
[0005] In addition, various formulations designed to deliver ost~eogenic proteins to a site where induction of bone formation is desired have been developed.
[0006] But despite substantial endeavors in this field, there remains a need for an effective method of repair and/or treatment of osteoporotic and osteopenic bone and for minimizing or reducing the incidence or severity of osteoporosis related fractures.
SUMMARY OF THE INVENTION
[0007] The present invention is directed to compo~siti~ons for injectable delivery of osteogenic proteins, i.e., osteogenic compositions. The compositions may take the form of a solid rod, preferably a cylindrical solid rid, or a hardenable paste. The compositions comprise an osteogenic protein and a calcium .phos~phatp material.
[0008] In certain preferred embodiments ofthe.pr~sent invention, the osteogenic protein is a member of the bone morphogenetic protein wfamily, more preferably one of BMP-2, BMP-4, BMP-5, BMP ~, BMP-7; AMP-10, BM'P-12, and BMP-13, most preferably BMP-2. The osteogenic protein is ~r~eferably~present in an amount ranging from about 1 % to about 90%, more preferably from about 1'S%
fio about 40%, by weight of the solid rods of the invention and in an amount ranging from about 0.01 % to about 2%, more preferably from about 0.03% to about 1 %, by weight of the paste of the invention.
[0009] In certain preferred embodiments of the present invention, the calcium phosphate material comprises a material selected from amorphous a~patitic calcium phosphate, poorly crystalline apatitic~calcium phosphate, hydroxyapatite, tricalcium phosphate, fluorapatite and combinations thereof. Most preferably, the calcium phosphate material is a poorly crystalline apatitic calcium phosphate.
3he~calcium phosphate material is preferably present in an amount ranging from about 10%
to about 99%, more preferably from about 40% to about GO%, by weight of the rod-shaped osteogenic composition and in an amount ranging from about 30% to about 70%, more preferably from a=bout 45% to about 55%, by weight of the hardenable paste osteogenic composition.
{0010] Additional embodiments of the present invention are dir-ected t~o osteogenic compositions which also comprise a bone resorption inhibitor. 'the bone resorption inhibitor is preferably a bisphos~phonate selected from alendronate, cimadronate, clodronate, ~~ 1053, etidronates, ibandronate, neridronate, olpadronate, pamidronate, risedronate, tiludronate, YH 529, zoledronate, and pharmaceutically acceptable salts, esters, acids, and mixtures thereof.
[0011] Additional embodiments of the present invention are directed to osteogenic compositions which also comprise an additive selected from pharmaceutically acceptable salts, polysaccharides, peptides, .proteins, amino acids, synthetic polymers, natural polymers, surfactants, and combinations thereof, more preferably selected from carboxym~thylcellulose, hydroxypropylmethylcellulose, methylcellulose, polylactide, polyethylene glycol, polyvinyfpyr-r.~lidone, polyoxyethylene oxide, carboxyvinyl polymer, polyvinyl alcflhol, dextran-sulfate and combinations thereof. The additive is preferably present in an amount ranging from about 1 % to about 90%, more preferably from about ~~0% to about 40%, by weight of the rod-shaped osteogenic composition and in an amount ranging from about 1 %
#o about 90%, more preferably about 10% to about ~0%, by weight of the hardena~ble paste osteogenic composition.
[fl01~] When the osteogenic composition of the present invention takes the form of a solid cylindrical rod, the diameter of the cylindrical rod is preferably between about 0.1 mm and 3.0 mm, more prefErably about 1.a mm, and the length of the cylindrical rod is preferably between about 0.5 cm and 5.0 cm.
[0013] An additional embodiment of the present invention is directed to a method for preparing a rod-shaped composition for injectable delivery of osteogenic proteins, said composition comprising an osteogenic protein and a calcium phosphate material, comprising the steps of (a) mixing a dry form of the osteogenic protein with a.dry form of the calcium phosphate material to produce a dry mix.,ture;
(b) reconstituting the dry mixture by adding an aqueous buffer to form a paste; (~c) molding the paste to form a rod shaped composition; and id) drying the rod shaped composition of step (c) to form a rod-shaped composition for injectable delivery of osteogenic proteins. In preferred embodiments , the aqueous buffer is selected from phosphate-buffered saline, saline, glycine- and glutamic acid-based buffers and combinations thereof. The volume to weight (mL:g) ratio of aqueous buffer to dry mixture ranges from about 0.5:1 to about 2:1. Molding is preferably accomplished -by molding, extruding, pressing, boring or combinations thereof. In certain preferred embodiments , the rod-shaped composition is cut befor~e.or of#er step ~d).

[0014] Yet another.embodiment of the present invention is ~dir~ected-zto a method for preparing a paste composition for injectable delivery~of.~ost~eogenic proteins, said composition comprising an osteogenic protein and a calcium phosphate material, comprising the step of mixing a dry form of the calcium phosphate material with an aqueous buffer containing an :osteogPnic protein to form a paste. In preferred embodiments of the .present invention, the aqueous.buffer is selected from phosphate-buffered saline, saline, glycine- and glutamic acid-based buffers and combinations thereof. The ratio of aqueous buffer to calcium phosphate material ranges from about 0.5:1 to about ~:1.
[0015] Still further embodiments of the present invention are ~directsd ~to methods of treating a mammal having a.bone.defect comprising administering t~o the site of the bone defect an effective amount of a composition for injectable delivery ~of ~osteogenic proteins claimed herein. Still further embodiments of the present invention are directed to methods of treating a mammal having a bone°defect comprising the steps of (a) administering to the site of the bone defect an efective amount of a composition for injectable delivery of osteogenic aprot~eins ~claitned herein and (b) administering to the site of the bone defect an effective amount of a ~b,~ne resorption inhibitor. The administration of a bone resor~ption inliibitflr~can~be performed prior to step (a), after°step ,(a) or simultaneously with step,(a).
RIEF DESCRIPTION OF TH~ DRAWIN°O~
[0016] Figure 1 is a graph showing the in vitro release kinetics of rhBM#'-2 from a-BSM rods using 1251-rhBMP-~ as a tracer.
[0017] Figure 2 is a graph showing the in vivo local retention of rhBM~P-~
from a-BSM rods using 1251-rhBMP-2 as a tracer.

DETAILED DESCRIPTION OF THE INVENTION
[001 ~] Generally, the methods and compositions of the present invention relate to the regeneration of bone tissue and concomitant increase of bone mass, bone density, and bone~strength. More particularly, th.e subject invention involves injectable solid rods and pastes comprising an osteogenic protein, a~calcium phosphate carrier and optional additives and active agents such as a bone resorption inhibitor, as well as methods of preparing such ost~ogenic compositions and methods of treating using such osteogenic compositions. The.calcium phosphate solid rods and hardenable pastes of the present invention are suitable for intraosseous delivery of osteogenic proteins. Through the ~~se of the present inventive methods and compositions, the' severity of osteoporosis or the incidence of osteoporotic lesions can be advantageously IessenAd, ultimately lessening the incidence of bone fractures. ~Oth~er clinical uses include fracture repair, .cartilage repair, non-union defect repair and spinal fusion. The injectable solid rods and hardenable pastes of the present invention may also be used to promote bone growth as needed when using joint replacement implants a°s described in provisional U.S. Application No. °80/502,526, ("Promotion of Bone Ingrowth in Joint °Replacement Implants Using Osteogenic Proteins; the subject matter of this provisional application is incorporated in its entirety by reference herein.
[0019] A first embodiment of the present invention is directed to a rod-shaped composition for injectable delivery of osteog.enic proteins comprising an osteogenic protein and a calcium phosphate material. A composition according to this first embodiment of the present invention may optionally include Other additives (binders, excipients) and/or active agents such as a bone resorption inhibitor.

.[0020] This solid rod-shaped composition is suitable for local int~raosseous delivery and may, therefore, be injected directly into an osteoporotic or osteopenic site to effectively induce the formation andlor maintenance of bone. further, the injectable rod-shaped composition exhibits a sustained-t~elease profile with regard to the osteogenic protein when delivered in this manner. Preferably the solid rods of the present invention are cylindrical and have a diameter ranging from about 0.1 mm to about 3.0 mm, more preferably about 1.0 mm so as to allow delivery -by a 16-gauge needle. In addition, the solid rods preferably have a length ranging from about 1.0 mm to about 5.0 cm.
[0021] Unlike existing injectable formulations, the osteogenic composition of this first embodiment of the present invention is administered in a solid form, thereby avoiding the deficiencies inherent in liquid or viscous formulations. For example, using liquid or gel formulations, the osteogenic agent may be prematurely diluted by the body fluids before the bone Apromoting effect can be achieved. The present invention obviates the dilution effect~by employing a solid carrier which degrades slowly in vivo, thereby providing delayed, sustained release of the active agents).
Furthermore, unlike liquid or viscous formulations which may migrate from the°site of administration, the solid compositions of the .present invention become lodged and persist at the site of desired bone growth to effect the bone growth -promoting activity. Also they allow a more precise injectable placement.of a solid rod in areas of low bone mass. Typically, the .composition should persist at the site for a period from about 5 days to about 2 months. If the composition is dispersed prematurely, the desired bone growth promotion effect either will not occur~or the formed bone will not have the desired strength. Finally, although the osteogenic composition of this embodiment of the present invention is administered as a solid, it is preferably formed as a cylindrical rod, thereby being suitable for either injection ~or implantation into the body. Of course, if desired, other rod shapes could be used, .e..g., hexagonal, square or semi-circular rod shapes. In addition, the well known surgical complication of inducing an embolism during an intraosseous injection procedure is considerably mitigated through the use of solid rods (vs. liquid or gel forms). The potential displacement of intraosseous bone fragments, fat or an embolism .caused by a pressurized injection of a large volume of liquid/gel carrier is reduced since the volume injected of highly concentrated solid rod is much less than that required if a similar dose was dispensed in a liquid or gel form. The composition may be a~p~plied to the site of desired bone growth in any convenient manner, including by introduction through a conventional hypodermic needle or syringe.
[0022] A second embodiment of the present invention is directed to a method for preparing the solid rod-shaped composition for injectable delivery of osteogenic proteins. In the first step, a dry form of~the osteogenic protein is mixed with a dry form of the calcium phosphate material to produce a dry mixture. In other words, powdered or dry forms of both the osteogenic protein and the calcium phosphate material are initially employed in order to form a dry mixture. When additives and/or additional active agents are included in the composition, these materials may also=be employed in a dry or powdered form and included in the dry mixture.
[0023] In the second step, the dry mixture is reconstituted by adding an aqueous buffer to form a paste. Suitable aqueous buffers include, without limitation, phosphate-buffered saline, saline, glycine-based buffers and combinations thereof.
When using BMP-2 as the osteogenic protein, a glycine-based buffer having a pH
of about 4.5 is preferred for use; more preferably, a glycine-basedbuffer having a composition of 5 mmol L-glutamic acid, 2.5% glycine, ~0.5% suc-rose, 5 mmol NaCI
and 0.01 % polysorbate 80 is used.
[0024] A volume to weight (mL:g) ratio of aqueous buffer to dry mixture ranges from about 0.5:1 to about 2:1. However, the lower limit of this weight ratio is limited only by the concern that enough liquid be added to the dry mixture so as t~o be sufficient to allow the formation of a paste which can be farmed through injection through a syringe or some other method. In addition, the upper limit of this weight ratio is limited only by the concern that not so much liquid be added to the dry mixture that, upon subsequent drying, the geometry achieved, i.e., rod shape, is disturbed; in other words, if too much liquid is used, then the rod shape formed in the third step of this method will ~be compromised upon drying the ~osteogenic compound.
[0025] This step is performed under conditions where °su~bstantially uniform mixing occurs. Mixing combines the ingredients and ,can be used to regulate the extent of inter-ingredient reactions. While all of the desired ingredients are preferably contained in the dry mixture, it is also possible to add an additive or an additional active agent immediately prior to the initiation of mixing .or prior to the completion of mixing. Such an additive or additional active agent is pref~era-bly in a dry form; however, a hydrated form of the additive or additional active agent may also be added to the paste.
[0026] !n the third step of the present inventive method, the paste is molded to form a rod shaped composition. Molding or shaping may be accomplished using any one of a number of known techniques such as molding, extruding, pressing, boring andlor cutting. In a preferred embodiment of this invention, the paste is packed into and extruded through the hub end of a hypodermic syringe. In this case, the plunger of the syringe is inserted and a sufficient amount of p~sssur~ is applied to extrude a continuous Length of paste onto a dry surface. ~Bections are then cut using a cutting tool such as a razor, scalpel, knife or the like, to form injectabie, rod-shaped compositions. Cutting may also take place after the drying step described below. Alternatively, the paste may be packed into a cylindrical mold, catheter, air or gas-permeable tubing (e.g., silastic or Teflor~~/~FEP), or any other extrusion-type apparatus.
[0027] In the final step, the rod shaped composition obtained in the -previous step is dried or hardened to form the rod-shaped composition for injectable delivery of osteogenic proteins of the present invention (first embodiment). Drying may be accomplished via air drying or incubation at elevated temperatures, i.e., at least 37°C. The drying temperature is limited only ~by a concern for osteogenic protein degradation, which typically occurs somewhere in the range of 5~°C and 60°C.
When drying is accomplished in a 37°C oven, drying takes approximately at least one hour, and preferably drying is carried out overnight. The rod-shaped .composition preferably has a residual moisture of Less than 10%.
[0028] A third embodiment of the present invention is directed to a hardenable paste composition for injectable delivery of osteogenic proteins comprising an osteogenic protein and a calciumphosphate material. A
composition according to this third embodiment of the present invention may optionally include other additives (binders, excipients) and/or active agents such as a bone resorption inhibitor.
[0029] This paste is suitable for local intraosseous delivery and may, therefore, be injected directly into an osteoporotic or osteopenic site whereu~ponahe paste hardens to a solid form and effectively induces the formation and/or maintenance of bone. Because the paste hardens upon injection into an at least io 37°C environment, i.e., into a mammal, many of the disadvantages associated with the use of liquid or gel compositions are avoided. Similar to the solid rod-shaped injectable composition described above, the hardened paste .composition exhibits a sustained-release profile with regard to the osteogenic protein. The injectable life of the hardenable paste may be prolonged by refrigerating the paste.
[0030] A fourth embodiment of the present invention is directed to a method for preparing the paste composition for injectable delivery of osteogenic.proteins. In this method, a dry form of the calcium phosphate material is mixed with an aqueous buffer containing an osteogenic protein to form a paste. When additives and/or additional active agents are included in the composition, these materials may ~be employed in either dry form to be pre-mixed with the dry form of calcium phosphate material or in a hydrated form to be mixed directly with the aqueous buffer and the calcium phosphate material. Mixing is performed under conditions where substantially uniform mixing occurs. Mixing combines the ingredients and can be used to regulate the extent of inter-ingredient reactions.
[0031] Suitable aqueous buffers include, without limitation, p~hosphat~e-buffered saline, saline, glycine-based buffers and combinations thereof. When using BMP-2 as the osteogenic .protein, a glycine-based buffer having a pH of about 4.5 is preferred for use; more preferably, a glycine-based buffer having a composition of mmol L-glutamic acid, 2.5% glycine, 0.5% sucrose, 5 mmol NaCI and O.fl1 polysorbate 80 is used. A weight ratio of aqueous buffer to dry calcium phosphate ranges from about 0.5:1 to about 2:1.
[0032] Alternatively, a dry form of the osteogenic-~protein is mixed with a dry form of the calcium phosphate material to produce a tlry mixture, and the dry mixture is then reconstituted by adding an aqueous buffer to form a.paste. These steps m would be identical to the first and second steps of the method of preparing the solid rod-shaped composition above .(second embodiment) except that a weight ratio of aqueous buffer to dry calcium phosphate ranges from about 0.5:1 to about 2:1.
[0033] Details regarding the active agent, carrier, additives and bone resorption inhibitors suitable for use in the present invention are given below.
ACTIVE AGENT
[0034 The active agent present in the osteogenic compositions of the present invention is preferably selected from the family of proteins known as the transforming growth factors beta (TGF-[i) superfamily of proteins. This family includes the activins, inhibins and bone morphogenetic proteins (BMPs). These BMPs_ include BMP-proteins BMP-2, BMP-3; BMP-4, BMP-5, BMP-6, and BMP-7, disclosed, for example, in U.S. Patent No. 5,108,922, 5,013,649, 5,116,738, 5,106,748, 5,187,076, and 5,141,905, BMP-8, disclosed in PCT WO 91/18098, ~MP-9, disclosed in PCT WO 93/00432, BMP-10, disclosed in PCT WO 94/26893, BM~P-11, disclosed in PCT WO 94/26892, BMP-12 and BMP-13, disclosed in PCT WO
95/16035, BMP-15, disclosed in U.S. Patent No. 5,635,372, and BMP-1~, disclosed in U.S. Patent No. 6,331,612. Other TGF-[~ proteins which may be useful as the active agent in the present invention include Vgr 2, Jones et al., Mol.
'Endocrinoi., vol. 6, pp. 1961 1968 (1992), and any of the growth and differentiation factors (GDFs) including those described in PCT WO 94/15965, WO 94/15949, WO
95/01801, WO 95/01802, WO 94/21681, WO 94/15966, WO 95/10539, WO
96/01845, WO 96/02559 and others. Also useful in the present invention may fee BIP, disclosed in WO 94/01557, HP00269, disclosed in JP 7 250688, and MP52, disclosed in PCT WO 93/16099. The disclosures of all of the above patenfis, journal i2 publications and published international applications are incorporated ~by preference herein.
[0035] Preferably, the active agent includes at I:east one protein selected from the subclass of proteins known generally as BMPs, which have been disclosed to have osteogenic activity, and other growth and differentiation type activities. A
subset of BMPs which are presently preferred for use in the ~prQSent invention include BMP-2, BMP-4, BMP-5, BMP-6, BMP-7, BMP-10, AMP-12, and BMP-13, most preferably BMP-2, the sequence of which is disclosed in U.S. Patent No.
5,013,649, the disclosure of which is incorporated by reference herein.
[0036) The active agent may be recombinantly produced or.purified from a protein composition. The active agent, if a TGF-[3 such as a BMP, or other dimeric protein, may be homodimeric or may be heterodimeric with other BM~Ps (e:g., a heterodimer composed of one monomer.each ~f BMP-2 and ~BMP-6) or with other members of the TGF ~i superfamily, such as activins, inhibins and TGF-[31 (e.r~., a heterodimer composed of one monomer each of a $M~P-and a related member of the T~GF-[3 superfamily). Examples of such heterodimeric prot~ein~ are described, for example, in PCT WO 93/09229, the disclosure of which is incorporated by ref~eren~ce herein. The active agent may comprise DNA encoding for $MPs and cells transduced or transfected with genes encoding BMP-proteins.
[0037] The active agent may further comprise additional agents such as the Hedgehog, Frazzled, Chordin, Noggin, Cerberus and Follistatin proteins. These families of proteins are generally described in Sasai .et al., Cell, vol. 79, ~pp. 779-790 (1994) (Chordin); PCT WO 94/05800 (Noggin); and Fukui et al., Dev. Biol., vol.
1'59, pp. 131-139 (1993) (Follistatin). Hedgehog proteins ar.e~des~cribed in~'CT WO
96/16668, WO 96/17924, and WO 95/188'56. The Frazzled family of proteins is a relatively recently discovered family of proteins with high homology to the extracellular binding domain of the receptor protein family known as Frizzled.
The Frizzled family of genes and proteins is described in Wang et al., J. Biol.
Chem., vol.
271, pp. 4468-4476 (1996). The active agent may also include other soluble receptors, such as the truncated soluble receptors disclosed in PCT WO
95/079.82.
From the teaching of WO 95!07982, one skilled in the art will recognize that truncated soluble receptors can be prepared for numerous other receptor proteins.
Such would also be encompassed within the present invention. The above publications are hereby incorporated by reference herein.
[0038] The amount of active agent useful herein is that amount effective to stimulate increased osteogenic activity of present or infiltrating progenitor (osfieoblast precursor cells) or other cells (hereinafter "effective amount") and will depend upon the size and nature of the defect being treated, as well as the composition of the calcium phosphate carrier being employed. .Generally, the amount of osteogenic protein present in a solid rod-shaped osteogenic~com~position of the present invention ranges from about 1 % to about 90%, more preferably from about 15%
to about 40%, by weight of the osteogenic.composition. ~Generaliy, the amount of osteogenic protein present in a hardenable paste osteogenic composition of the present invention ranges from about 0.01 % to about 2%, more preferably from about 0.03% to about 1 %, by weight of the oste.ogenic composition.
CARRIER
[0039) According to all embodiments of the present invention, a calcium phosphate material is employed as a carrier. As used herein, a "calcium phosphate material" means any synthetic bone substitute material .comprising ,calcium phosphate as the primary .component, i.e., having at least 90% by weight attributable to calcium and/or phosphate. The calcium phosphate material of the present invention may be any biocompatible, calcium phosphate material fcnown in the art.
Suitable calcium phosphate materials may be produced by any one ~of a variety of methods and using any suitable starting components or may be commercially available.
[0040] In certain preferred embodiments of the present invention, the calcium phosphate material is present in an amount ranging from about 10% to about 99%, more preferably from about 40% to about 60%, by weight of the solid rod-shaped osteogenic composition of the present invention. In certain other preferred embodiments of the present invention, the calcium phosphate material is present in an amount ranging from about 30% to about 7fl%, more preferably from about 45%
to about 55%, by weight of the hardenable paste osteogenic composition of the present invention. Preferably, the calcium phosphate material or carrier is used in dry, i.e., powdered, form.
[0041] Forms of calcium phosphate suitable for use in this invention include, without limitation, amorphous apatitic calcium phosphate (ACP), poorly crystalline apatitic calcium phosphate (PCA), hydroxyapatite (HA), tricalcium phosphate and fluorapatite. In a preferred embodiment, the calcium phosphate material is a poorly crystalline apatitic calcium phosphate solid having a calcium-to-phosphate (Ca/P) ratio comparable to naturally occurring bone minerals, more preferably a calcium-t~o-phosphate ratio of less than about 1:1.5, most preferably about 1:1.4.
[0042] Suitable PCA materials may be identified by~combining f'CA
precursors, hydrating with a limited amount of water (so that a paste or putty is formed), molding into a cylindrical rod shape, and allowing the molded material ~to harden into a PCA material. Desirable precursors are capable of hardening in a is moist environment, at or around body temperature in Less than 5 hours and preferably within 10-30 minutes.
[0043] According to the present invention, the calcium phosphate carrier may comprise any bone substitute material which contains one of the above forms of calcium phosphate as its primary component, i.e. having at least 90% by weight attribufiable to calcium and/or phosphate- The bone substitute material may comprise solely one of the above forms of calcium phosphate, with or without additional components; the bone substitute may comprise acombination ~of the above forms of calcium phosphate, with or without additional components. In addition, one or more of the above-noted forms of calcium phosphate may be used to prepare a calcium phosphate material suitable for use in the present invention.
Methods of making such materials are well known in the art. However, any method which results in obtaining a dry calcium phosphate material, i.e., powdered, is appropriate.
[fl044] As used herein, "amorphous" means a material with significant amorphous character. Significant amorphous character contemplates greater than 75% amorphous content, preferably greater than 90% amorphous content, and is characterized by a broad, featureless X-ray diffraction pattern.
[0045] "Poorly crystalline apatitic calcium phosphate," "SPCA calcium phosphate" and "PCA material," as those terms are used herein, describe a-synthetic poorly crystalline apatitic calcium phosphate. The poorly crystalline apatitic«(~P~CA) material is not necessarily restricted to a single calcium phos~phate.phase provided it has the characteristic X-ray diffraction (XRfl) and fourier transform infrared ~(~rTI~R) pattern. A PCA calcium phosphate has substantially the same XRD spectrum as bone. The XRD spectrum is generally characterized by only two.broadpeaks in the region of 20-35E with one centered at..26f and the~other.centered at 32~E. The FTIR
spectrum is characterized by peaks at 563 crri', 1034 crri', 1638 cm ~ and 3432 crri' (~2 cm'')'; sharp shoulders are observed at 603 crri' and 875 cm ~, with a doublet having maxima at 1422 cm' and 1457 cm ~. PCA materials preferred for use in the present invention are described in U.S. Patent Nos. 5,6'50,176, 5;683,461 and 6,214,368, each of which is incorporated by reference herein. Suitable materials are also described in a set of related applications, entitled "Delivery Vehicle,"
"Conversion of Amorphous Calcium Phosphate to Form a Novel $ioceramic,"
"Orthopedic and Dental Ceramic Implants," and "Bioactive Ceramic Composites,"
each of which was filed on October 16, 1997 and assigned to fT~EX Corporation (Cambridge, MA) and is incorporated by reference herein. In light of the breadth of disclosure in each of these above-noted patent documents, details of the production of suitable PCA materials will not be detailed here. A summary of PCA
characteristics will suffice. PCA material is characterized by its bior~esorbability and its minimal crystallinity. Its crystalline character is substantially the same as natural bone. PCA material also is biocompatible and not detrimental to the host.
[0046] Crystalline hydroxyapatite (HA) is described, for example, in U.S.
Patent Re. Nos. 33,221 and 33,161, both of which are incorporated by reference herein. These patents teach the preparation of calcium phosphate remineralization compositions and of a finely crystalline, non-ceramic, gradually resorbable hydroxyapatite carrier material based on the same ,calcium phosphate composition.
A similar calcium phosphate system, which consists ~of tetracalcium phosphaae (TTCP) and monocalcium phosphate (MCP) or its monohydrate form ~(MCPM); is described in U.S. Patent Nos. 5,053,212 and 5,129,905, both of which are incorporated by reference herein. Additional crystalline HA materials commonly m referred to as dahllite) are described in U.S. Patent No. 5,~962,~0~8, the disclosure of which is incorporated -by reference herein.
ADDITIVES
[0047] Additives may be useful in the osteogenic compositiflns of thepresent invention. Many such binders, which enhance cohesiveness, and exci~ient~, which stabilize and/or modulate release of active ingredients, are well known in the formulation art. Suitable additives include, without limitation, pharmaceutically acceptable salts, polysaccharides, peptides, proteins, amino acids, synthetic polymers, natural polymers, and/or surfactants. Useful polymers include, for example, those described in U.S. Patent No: 5,171,579 the entire disclosure of which is incorporated by reference herein. Preferred additives include .cellulosic materials such as carboxymethylcellulose (CMC), hydroxypropyime#~hyicellulose (HPMC), and methylcellulose (MC), synthetic polymers such as polylactides and polyethylene glycols, e.g., polylactide/polyethylene glycol, poiyvinylpyrrolidone (PVP), polyethylene glycol (PEG), polyoxyethylene oxide, carboxyvinyl polymer and polyvinyl alcohol (PVA), and ~dextran sulfate and combinations thereof. Other useful additives include, without limitation, sodium alginate, chitosan, .collagen, gelatin, hyaluronan, and various peptides, proteins, and amino acids. Additives which have an effervescent effect are not presently intended for use in the present invention.
[0048] In a preferred embodiment of the present invention, an additive is employed in a dry or powder form, which is mixed with the active agent~(s), carrier and aqueous liquid in order to prepare the injectable composition flf the present invention. In certain preferred embodiments of the present invention, additives) is present in an amount ranging from about 1 % to about 90%, more preferably from about 20% to about 40%, by weight ~of thesolid rod osteogenic.composition. In is certain preferred embodiments of the present invention, additives) is present in an amount ranging from about 1 % to about 90%, more preferak~ly from about 10% to about 20%, by weight of the hardenable paste osteogenic composition.
ADDITIONAL ACTIVE AGENTS
[0049] The injectable osteogenic compositions of the present invention may also include an additional active agent or additional active agents. Such additional active agents may be mixed, preferably in dry form though hydrated forms are also suitable for use, with the active agent, carrier and aqueous liquid in order to prepare the injectable osteogenic compositions of the present invention.
Alternatively, such additional active agents may be co-administered with the osteogenic compositions of the present invention, either in some sequential manner or simultaneously (hereinafter "co-administration scheme"). Additional active agents may b.e employed herein in order to achieve additional .desired effects or, in some cases, may ,be employed to counter potential undesirable effects, such as infection, inflammation and transient resorption.
[0050] For example, although much is known about the osteogenic potential of TGF-~i proteins, recent reports show that local administration of certain osteoinductive agents, such as SMP-2, stimulates transient osteoclastic activity (local areas of bone resorption) at the site of administration. This reaction, wlli.ch occasionally precedes new bone formation induced by the BMP, has been termed "transient resorption phenomenon." Agents known to inhibit bone resorption may, therefore, play an important role in delaying or reducing the initial bone resorption associated with local BMP-administration, without inhibiting subsequent bone formation.

[0051] Thus, in preferred embodiments of thepresent invention, a bone resorption inhibitor is employed as an additional active agent present in the injectable osteogenic composition or is cc administered with the injectable osteogenic composition in order to prevent or minimize the initial bone resorption associated with intraosseous delivery of an active agent such a~ BMP. As used herein, the term "inhibition of bone resorption" refers to prevention of bone loss, especially the inhibition of removal of existing bone through direct or indirect alteration of osteoclast formation or activity. Thus, the term "bone resorption inhibitor" as used herein refers to agents that prevent-or inhibit bone loss by the direct or indirect alteration of osteoclast formation or activity.
[0052] In certain preferred embodiments, the bone resor~ption inhibitor is a biphosphonate. As used herein, the term "bisphosphonate" refers to the related bisphosphonic acids and salts, and various crystalline and amorphous forms of bisphosphonate. Clinically, bisphosphonate therapy has been shown to dramatically reduce indices of bone turnover, increase bone mineral density, and, in osteopenic women, reduce hip and spine fracture risk.~see, for example, H. Fleiscf~, Bisphosphonates in Bone Disease, from the Laboratory to the patient, 3rd ed., Parthenon Publishing (1997), which is incorporated by reference herein).
[0053] Biphosphonates suitable for use in the present invention include, without limitation, alendronate, cimadronate, clodronate, ~EB 1053, etidronatps, ibandronate, neridronate, olpadronate, pamidronate, risedronat~e, tiludronate, YH
529, zoledronate, and pharmaceutically acceptable salts, esters, acids, and mixtures thereof. The amount of biphosphonate, and indeed the amount of .any bone resorption inhibitor, useful is that amount effective to ~prevent~or inhibit the transient bone loss occasionally associated with the local administt~ation of an ost~eogenic protein such as BMP-(hereinafter "effective amount"), by the direct or indirect alteration of osteoclast formation or activity. The precise dosage necessary will depend upon the size and nature of the bone defect being treated, as well as the amount of osteogenic agent being delivered. Generally, the amount of biphosphonate to be delivered is preferably in a range of from about ~0.1 to about 3000 mg, more preferably about 10 to about 1000 mg, and most preferably about to about 500 mg per cubic centimeter of material.
[0054] When the co-administration scheme of the present invention is employed, the bone resorption inhibitor is typically delivered in a suitable .carrier.
The carrier may be any pharmaceutically acceptable carrier, a wide variety of which are well known and readily available in th.e art (see, for example, Martin, E.W., Remington's Pharmaceutical 'Sciences (Mack Pub. Co., current edition), which is hereby incorporated ~by reference herein). Presently preferred carriers are formed into solid rods or pastes, as described elsewhere herein.
[0055] In the co-administration scheme, the bone resorption inhibitor may be administered sequentially, either before or after, or concurrently with the injectable solid rod or paste compositions of the present invention. In addition, the~~bone resorption inhibitor may be applied locally (intraosseous), but may be applied to other parenteral sites such as intramuscular or subcutaneous or ingested orally or injected intravenously for systemic delivery. Preferably the bone resorption inhibitor, e.g., a bisphosphonate, is delivered systemically, i.e., orally or intravenously, .either before or concurrently with the injectable solid rod or paste,composition of the present invention. Further, the bone resorption inhibitor may ~be implanted at the site to be treated by surgical implantation. It should be noted, however, that~uespite their therapeutic benefit, bisphosphonates are poorly absorbed in the gastrointestinal tract 2i when taken orally. To overcome this poor bioavailability issue, intravenous administration has been used; however, this modality is seen as costly and inconvenient due to the duration and frequency of dosing. The present invention, therefore, can overcome this deficiency by incorporating the ~bisphosphonate within the injectable osteogenic compositions of the present invention and delivering it locally directly to the site of desired action.
[0056] The above description related to the administration of a bone resorption inhibitor relates generally to the administration of any additional active agent. Other suitable additional active agents include, without limitation, other osteogenic proteins, antibiotics, anti-inflammatory agents, growth factors, peptides, proteins, cytokines, oligonucleotldes, antisense oligonucleotides, DNA
and.polymers.
These compounds may be added, .preferably in dry form, by mixing them to form the paste in the preparation methods of the present invention.
ADMINISTRATION
[0057] According to the present invention, methods and compositions are provided for treatment of patients who exhibit bone defects. As used herein, "bone defects" include osteoporotic bone, osteopenic bone, bone fracture, cartilage.d.efect, and any other bone- or cartilage-related condition which would be improved ur corrected with stimulated bone or~artilage growth. Therefore, a fifth embodiment of the present invention is directed to a method of treating a mammal having a-bone defect by administering to the site of the bone defect an effective amount of an injectable rod or paste composition of the present invention.
[0058] A related sixth embodiment of the present invention is directed to a method of treating a mammal having a =bone defect by administering to the site ~of the bone defect an effective amount of an injectable rod or paste composition ~of the present invention and by administering an effective amount of a bone resorption inhibitor. The bone resorption inhibitor may also be administered t~o the site of the bone defect, but can be administered by some other route, i.e., parenteral, surgical implantation, oral, intravenous. In addition, the administration of the bone re~sor~ption inhibitor may occur prior to, concurrent with or after the administration of the injectable rod or paste composition of the present invention.
[0059] Most commonly, the methods and compositions of the ~reseot invention are provided for the treatment of patients who exhibit signs of ostAopor~osis or osteopenic conditions, including osteoporotic bone lesions. The identification-of such patients may be accomplished by procedures which are well known in the art.
Such procedures provide the clinician with information on the location and severity~of osteoporotic or osteopenic bone lesions. In addition to locating the lesions) to be treated, the clinician can use this information to select the appropriate mode of administration and dose of osteoinductive agent for the patient. ~.Jseful diagnostic procedures include measurement of bone mass/density using dual energy X ray absorptiometry (DEXA), Kilgus, et al., J. done & Joint Surgery, vol. 75 B, app. 279-287 (1992); Markel, et al., Acta Orthop. Scand., vol. 61, pp. 487 498 (1990);
aid quantitative computed tomography (QCT), Laval Jeantet, et al., J. Com~put.
Assist.
Tomogr., vol. 17, pp. 915-921 (1993); Markel, Calcif. Tissue Int., vol. 49, ~pp. 4..27=43?
(1991 ); single photon absorptiometry, Markel, et al.-.Calcif. Tissue Int., vol. 4S, .p~p.
392-399 (1991 ); ultrasound transmission velocity (UTV); Heaney, .et al., JAMA, vol.
261, pp. 2986-2990 (1989); Langton, et al., Clin. Phys. Physiol. Meas., vol.
11, pp.
243-249 (1990); and radiographic assessment, Gluer, .et al., J. Bone Min.
Pees., vol.
9, pp. 671-677 (1994). Other methods of identification of patients at risk of ~bot~e fracture include assessment of age related factors, such as cognisance, as well as prior occurrence of osteoporosis related fractures. Porter, et al., BMJ, vol.
301, pp.
636-641 (1990); Hui, et al., J. Clin. Invest., vol. ~81, pp. 18fl4-1809 (1988). The above publications are hereby incorporated ~by reference herein.
[0060] Particular dosage regimens will be determined by the clinical indication being addressed, as well as by various patient variables (e:g.
weight, age, sex) and clinical presentation (e.g. extent of injury, site of injury, etc.).
[0061] The injectable osteogenic compositions of thepresent invention may be administered in any clinically acceptable manner of injection. A number of comrriercially available syringes may be suitable for use in thepresent invention, and for administration of the compositions of the present invention. 'Such syringes include, without limitation, the Calasept~ syringe (JS Dental Manufacturing, Ridgefield CT); the Henke-Ject~ aspirating syringe and Hypo~ dental syringes/needles (Smith & Nephew MPL, Frankain Park, IL); int~-aosseous needles from MPL, Inc., Chicago IL; and Luer-Lok~ Syringes ~(~ecton Dickinson, Franklin Lakes, NJ). Any syringe capable of holding and delivering a paste or an injectable rod and/or enabling extrusion with an obdurator is appropriate #or use.
[0062] In one embodiment of the invention, the solid rod shaped compositions are delivered intraosseously using an appropriate sire and type hypodermic needle percutaneously or surgically preplaced into theselected anatomic location. Percutaneous placement of the hypodermic needle may-~be accomplished using manual palpation of known anatomic landmarks, with or without the use of fluoroscopy for visualize placement. Fluoroscopy may also ~he used in conjunction with surgical implantation prior to and/or concurrent with placement of the hypodermic needle.

[0063] In a preferred embodiment, a guide wire (commonly referred to as a "k wire") is first inserted percutaneously into the desired anatomic location to serve as a guide for the hypodermic needle. The hypodermic needle is inserted over the guide wire, which is subsequently removed leaving Only the hypodermic needle in place. The solid rod shaped composition is then inserted into the hub end of the hypodermic needle. Following loading of the composition, a second guide wire is inserted into the needle, which is used to advance the solid composition to the tip of the needle. The needle is then removed leaving the guide wire to anchor the composition within the bone at the desired location. Finally, the guide wire is removed leaving the solid composition in .place. In another embodiment, the solid rod shaped composition of the invention is preplaced within the needle barrel.
After placement into the desired anatomic site, the plunger of the syringe is advanced into the needle barrel as the device is withdrawn, leaving the solid rod shaped composition at the desired location.
[0064] The compositions of the subject invention allow therapeutically effective amounts of osteogenic protein to be delivered to an injury site where cartilage and/or bone formation is desired. The formulations may be used as a substitute for autologous bone graft in fresh and non-union fractures, spinal fusions, and bone defect repair in the orthopaedic field, in cranio/maxillofacial reconstructions, in osteomyelitis for bone regeneration, and in the dental field for augmentation of the alveolar ridge and periodontal defects and tooth extraction sockets.
[0065] The following examples are illustrative -of the present invention and are not limiting in any manner. Modifications, variations and .minor enhancements are contemplated and are within the scope of the present invention.
2s EXAMPLES
[0066] All materials utilized in these examples are pharmaceutical grade.
The calcium phosphate material was the commercially available bone substitute material (hereinafter "a-BSM") sold under the tradename Cff~EDEXT"" ~by-Etex Corporation, 38 Sydney Street, Cambridge, MA 02139 and described in detail in U.S.
Patent Nos. 5,683,461, 6,117,456 and 6,214,368 and PCT WO 98/16209. The osteogenic protein utilized as an active agent was recombinant human bone morphogenetic protein-2 (rhBMP-2). The production and,.characterization of rhBMP-2 is well known. Wang, et al., Proc. Nat'I Acad. Sci. U.S.A., vol. 87, pp.

(1990).
Example 1 - Formulation =(0067] [66] Various injectable solid rods (A-E) of a-BSM, rhBMP-2, and one of carboxymethylcellulose (CMC), polyvinylpyrrolidone ~PVP) and dextran sulfate were prepared. Dry powders of each component were combined in a sterile mixing bulb and reconstituted into a stiff putty by the addition of a a glycine-based aqueous buffer having a pH of about 4.5 and comprising 5 mmol L-glutamic acid, 2:'S%
glycine, 0.5% sucrose, 5 mmol NaCI and 0.01 % polysorbate 80 at a specified liquid (ml) to powder (g) ratio (LIP) and kneaded for 1 minute to form a paste. The amounts of each ingredient, as well as the particular L/P ratios employed, wet~e as set forth in Table 1 below.

Table 1.
ROD d-BSM RH$MP-2 ~WT%)L/P RATIO
(WT%) CMC (wT%) A 68 17 15 I.O

B 56 2J I 5 I .2 C 45 4Z~ 15 1.5 PVP (wr%>

D 45 40 15 ~.6 DEXTRAN SULFATE
(WT%) E 45 40 I 5 O.6 [0068] Each paste was loaded into a syringe and extruded to form .cylindrical rods having a diameter of about 1 mm and a length of about 5 cm. These ~ c-m rods were then cut to desired lengths for testing below.
[0069] Following molding, the rods were hardened into a solid maps under simulated in vivo conditions, i.e., 37° incubator, overnight. The hardening process could be delayed for several hours by storing the rods at a cooler temperature, i.e., about 4° C.
[0070] The theoretical rhBMP-~ dose of each of rods A-f was 1~0 micrograms rhBMP-2 per milligram rod. All rods appeared to be~mooth, dense, cohesive and non-brittle and were injectable through a 1-6-gauge needle.
2~

Example 2 - In Vitro Characterization [0071] A correlation was observed between additive content and particle formation. Upon submersion in the glycine-k~ased aqueous buffer described in Example 1 for 14 days, rods containing higher % additive (40% CMC, 40% PVP, or 40% dextran sulfate, i.e., rods C-E, respectively) dispersed into smaller particles faster, i.e., within 1 day, than those with medium (29% CMC, i.e., rod ~) and low (17% CMC, i.e., rod A) additive contents. Rods containing low additive contents (17% CMC, i.e., rod A) maintained their rod-like structure much longer, i.e., on the order of days to weeks, than their higher CMC counterparts.
[0072] In addition, in vitro release kinetics of rhBMP-2 from or,-BSM rods containing either 17 % (rod A), 29 % (rod B), or 40 % (rod C) CMC was performed using 1251-rhBMP-2 as a tracer. Similar to gross observations, rods~~containing higher % CMC released rhBM~P-2 faster than those with I~wer % CMC as shown in Figure 1.
Example 3 - Rat Biocompatibili~ and Efficacy Study [0'073] Injectable rod-shaped calcium phosphate-based compositions (prepared as described in Example 1 ) were evaluated for biocompatibility and efficacy, both intraosseous and ectopic, in a rat model.
[0074] Intraosseous core defects were surgically established in the disfal femurs of six male CD rafts. The rats were divided into two groups (A and B) of three. .One limb from each rat received a 2 mm segment test rod (calcium ~phosphate/rhBMP-2/excipient), while the contralateral limb received a 2 mm segment control rod (calcium phosphate/excipient). 'the rats of=Group A
received rod A (68/17/15 (w/w) % ACP/CMC/rhBMP-2) of Ezcample 1 as .the test rod, while the rats of Group B received rod B (~5EI~9/15 (w/w) % ACi~ICMC/rh~BMP-2) of ~xam~ple 1 2s as the test rod. In addition, one 1fl mm rod was implanted subcutaneously lateralao the midline of the ventral thorax region, with one side receiving a test rod and tf~e other side receiving a control rod. Here again, the rats ofaGroup A received rod A
(68/17/15 {w/w) % ACP/CMCIrhBMP-~) of example 1 as the test rod, while the rats of Group B received rod B {56/29115 (w/w) % ACP/CMC/rhBMP-2) of Example 1 as the test rod.
[0075] Animals were sacrificed at 2 weeks for outcome assessments consisting of faxitron radiographs and histomorphometry. Radiographs and histology of the 2 week distal femur explants indicated an overall increased bony callus formation in the rhBMP-2 treated side compared to placebo. In particular, higher CMC containing rods (B) formed medium to large bony calluses com~pare.d to lower CMC containing rods (A) which formed small to medium sire calluses.
Radiographs and histology of the subcutaneous implants also indicated bone formation in the rhBMP-2 treated side compared to placebo. In particular, higher CMC containing rods (B) formed a more robust ectopic bone response .compared Hto lower CMi, containing rods (A). Good biocompatibility was observed in all groups with no inflammatory response to the implants.
Example 4 - Rabbit Intraosseous Local Biodistribution Study [0076] Rods A-D from Example 1 were injected percutaneously into rabbit distal femur intraosseous spaces (n=4 sites per group) using a 14-gauge cathe#er with a 16-gauge needle). In particular, 10 mm rods A-D containing approximately ~Ci 1251-rhBMP-2 were employed. The amount of radioactivity in the synthetic rods was measured before injection using a Capintec dose calibrator. Local rhBMP-2 retention was monitored over 4 weeks using gamma scintigraphy. Local in-vivo biodistribution dafia suggested a sustained release of rhBMP-2 from the rods anal that higher % additive containing rods exhibited a faster in vivo release than their lower % additive counterparts as shown in figure 2.
Example 5 - Formulation [0077] Hardenable pastes containing either 1 mg rhBMP-2 ~psr mL of paste or 4.5 mg rhBMP-2 per mL of paste were formulated by adding 2 mL of appropriately concentrated solutions of rhBMP-~ in the glycine-based aqueous buffer of~Exam~le 1 to 2.5 g a-BSM. The mixtures were kneaded in sterile bulbs for 1 minute to form hardenable paste.
Example 6 - Cynomoloaous Monkey- Intraosseous IrJection of Paste [0078] The 1 mg per mL and 4.5 mg per mL hardenable pastes of .Example 5 were extracted from the sterile bulbs using a 3 mL syringe fitted with an 1~-gaug.e needle and then injected under fluoroscopic control into various intraosseous sites of cynomologous monkeys. Sites included distal femur, -proximal femur, distal radius, proximal tibia. After 1 month, significant new bone was observed at the local sites where the rhBMP-2 was injected.
[0079] While the invention has been described in terms of preferred embodiments and specific examples, those skilled in the art wiH recognize through routine experimentation that various changes and modifications can "be made without departing from the spirit and scope of the invention. Thus, the invention should ~be understood as not being limited by the foregoing detailed description, but as being defined by the appended claims and their equivalents.

Claims (123)

1. A composition for injectable delivery of osteogenic proteins comprising an osteogenic protein and a calcium phosphate material, wherein said composition is in the form of a solid rod.
2. The composition of claim 1, wherein the osteogenic protein is selected from the group consisting of members of the bone morphogenetic protein (BMP) family.
3. The composition of claim 1, wherein the osteogenic protein is selected from the group consisting of BMP-2, BMP-4, BMP-5, BMP-6, BMP-7, BMP-10, BMP-12, BMP-13, and MP52.
4. The composition of claim 1, wherein the osteogenic protein is BMP-2.
5. The composition of claim 1, wherein the osteogenic protein is BMP-12.
6. The composition of claim 1, wherein the osteogenic protein is BMP-13.
7. The composition of claim 1, wherein the osteogenic protein is MP52.
3. The composition of claim 1, wherein the osteogenic protein is present in an amount ranging from about 1% to about 90% by weight of the composition.
9. The composition of claim 1, wherein the osteogenic protein is present in an amount ranging from about 15% to about 40% by weight of the composition.
10. The composition of claim 1, further comprising a bone resorption inhibitor.
11. The composition of claim 10, wherein the bone resorption inhibitor is a bisphosphonate.
12. The composition of claim 11, wherein the bisphosphonate is selected from the group consisting of alendronate, cimadronate, clodronate, EB
1053, etidronates, ibandronate, neridronate, olpadronate, pamidronate, risedronate, tiludronate, YH 529, zoledronate, and pharmaceutically acceptable salts, esters, acids, and mixtures thereof.
13. The composition of claim 1, wherein the calcium phosphate material comprises a material selected from the group consisting of amorphous apatitic calcium phosphate, poorly crystalline apatitic calcium phosphate, hydroxyapatite, tricalcium phosphate, fluorapatite and combinations thereof.
14. The composition of claim 13, wherein the calcium phosphate material comprises poorly crystalline apatitic calcium phosphate.
15. The composition of claim 14, wherein the poorly crystalline apatitic calcium phosphate has a calcium-to-phosphate ratio of less than 1:1.5.
16. The composition of claim 14, wherein the poorly crystalline apatitic calcium phosphate has a calcium-to-phosphate ratio of about 1:1.4.
17. The composition of claim 1, wherein the calcium phosphate material is present in an amount ranging from about 10% to about 99% by weight of the composition.
13. The composition of claim 17, wherein the calcium phosphate material is present in an amount ranging from about 40% to about 60% by weight of the composition.
19. The composition of claim 1 further comprising an additive selected from the group consisting of pharmaceutically acceptable salts, polysaccharides, peptides, proteins, amino acids, synthetic polymers, natural polymers, surfactants, and combinations thereof.
20. The composition of claim 19, wherein the additive is selected from the group consisting of carboxymethylcellulose, hydroxypropylmethylcellulose, methylcellulose, polylactide, polyethylene glycol, polyvinylpyrrolidone, polyoxyethylene oxide, carboxyvinyl polymer, polyvinyl alcohol, dextran sulfate and combinations thereof.
21. The composition of claim 19, wherein the additive is present in an amount ranging from about 1% to about 90% by weight of the composition.
22. The composition of claim 21, wherein the additive is present in an amount ranging from about 20% to about 40% by weight of the composition.
23. The composition of claim 1 further comprising a bone resorption inhibitor and an additive selected from the group consisting of pharmaceutically acceptable salts, polysaccharides, peptides, proteins, amino acids, synthetic polymers, natural polymers, surfactants, and combinations thereof.
24. The composition of claim 1, wherein said rod is cylindrical and a diameter of said cylindrical rod is between about 0.1 mm and 3.0 mm.
25. The composition of claim 1, wherein the length of said rod is between about 1.0 mm and 5.0 cm.
26. A composition for injectable delivery of osteogenic proteins comprising an osteogenic protein and a calcium phosphate material, wherein said composition is in the form of a hardenable paste.
27. The composition of claim 26, wherein the osteogenic protein is selected from the group consisting of members of the bone morphogenetic protein (BMP) family.
28. The composition of claim 26, wherein the osteogenic protein is selected from the group consisting of BMP-2, BMP-4, BMP-5, BMP-6, BMP-7, BMP-10, BMP-12, BMP-13, and MP52.
29. The composition of claim 26, wherein the osteogenic protein is BMP-2.
30. The composition of claim 26, wherein the osteogenic protein is BMP-12.
31. The composition of claim 26, wherein the osteogenic protein is BMP-13.
32. The composition of claim 26, wherein the osteogenic protein is MP52.
33. The composition of claim 26, wherein the osteogenic protein is present in an amount ranging from about 0.01% to about 2% by weight of the composition.
34. The composition of claim 26, wherein the osteogenic protein is present in an amount ranging from about 0.03% to about 1% by weight of the composition.
35. The composition of claim 26, further comprising a bone resorption inhibitor.
36. The composition of claim 35, wherein the bone resorption inhibitor is a bisphosphonate.
37. The composition of claim 36, wherein the bisphosphonate is selected from the group consisting of alendronate, cimadronate, clodronate, EB
1053, etidronates, ibandronate, neridronate, olpadronate, pamidronate, risedronate, tiludronate, YH 529, zoledronate, and pharmaceutically acceptable salts, esters, acids, and mixtures thereof.
38. The composition of claim 26, wherein the calcium phosphate material comprises a material selected from the group consisting of amorphous apatitic calcium phosphate, poorly crystalline apatitic calcium phosphate, hydroxyapatite, tricalcium phosphate, fluorapatite and combinations thereof.
39. The composition of claim 26, wherein the calcium phosphate material comprises poorly crystalline apatitic calcium phosphate.
40. The composition of claim 39, wherein the poorly crystalline apatitic calcium phosphate has a calcium-to-phosphate ratio of less than 1:1.5.
41. The composition of claim 40, wherein the poorly crystalline apatitic calcium phosphate has a calcium-to-phosphate ratio of about 1:1.4.
42. The composition of claim 26, wherein the calcium phosphate material is present in an amount ranging from about 30% to about 70% by weight of the composition.
43. The composition of claim 42, wherein the calcium phosphate material is present in an amount ranging from about 45% to about 55% by weight of the composition.
44. The composition of claim 26 further comprising an additive selected from the group consisting of pharmaceutically acceptable salts, polysaccharides, peptides, proteins, amino acids, synthetic polymers, natural polymers, surfactants, and combinations thereof.
45. The composition of claim 44, wherein the additive is selected from the group consisting of carboxymethylcellulose, hydroxypropylmethylcellulose, methylcellulose, polylactide, polyethylene glycol, polyvinylpyrrolidone, polyoxyethylene oxide, carboxyvinyl polymer, polyvinyl alcohol, dextran sulfate and combinations thereof.
46. The composition of claim 44, wherein the additive is present in an amount ranging from about 1% to about 90% by weight of the composition.
47. The composition of claim 44, wherein the additive is present in an amount ranging from about 10% to about 20% by weight of the composition.
48. The composition of claim 26 further comprising a bone resorption inhibitor and an additive selected from the group consisting of pharmaceutically acceptable salts, polysaccharides, peptides, proteins, amino acids, synthetic polymers, natural polymers, surfactants, and combinations thereof.
49. A method for preparing a composition for injectable delivery of osteogenic proteins comprising the steps of:
(a) mixing a dry form of an osteogenic protein with a dry form of a calcium phosphate material to produce a dry mixture;
(b) reconstituting the dry mixture by adding an aqueous buffer to form a paste;
(c) molding the paste to form a rod shaped composition; and (d) drying the rod shaped composition of step (c) to form a rod-shaped composition for injectable delivery of osteogenic proteins.
50. The method of claim 49, wherein the osteogenic protein is selected from the group consisting of members of the bone morphogenetic protein family.
51. The method of claim 49, wherein the osteogenic protein is selected from the group consisting of BMP-2, BMP-4, BMP-5, BMP-6, BMP-7, BMP-10, BMP-12, BMP-13, and MP52.
52. The method of claim 49, wherein the osteogenic protein is BMP-2.
53. The method of claim 49, wherein the osteogenic protein is BMP-12.
54. The method of claim 49, wherein the osteogenic protein is BMP-13.
55. The method of claim 49, wherein the osteogenic protein is MP52.
56. The method of claim 49, wherein an amount of osteogenic protein ranging from about 1% to about 90% by weight of the composition is mixed with the calcium phosphate carrier.
57. The method of claim 56, wherein an amount of osteogenic protein ranging from about 15% to about 40% by weight of the composition is mixed with the calcium phosphate carrier.
58. The method of claim 49, wherein the composition further comprises a bone resorption inhibitor and wherein a dry form of the bone resorption inhibitor is mixed in the dry mixture.
59. The method of claim 58, wherein the bone resorption inhibitor is a bisphosphonate.
60. The method of claim 59, wherein the bisphosphonate is selected from the group consisting of alendronate, cimadronate, clodronate, EB 1053, etidronates, ibandronate, neridronate, olpadronate, pamidronate, risedronate, tiludronate, YH 529, zoledronate, and pharmaceutically acceptable salts, esters, acids, and mixtures thereof.
61. The method of claim 49, wherein the calcium phosphate material comprises a material selected from the group consisting of amorphous apatitic calcium phosphate, poorly crystalline apatitic calcium phosphate, hydroxyapatite, tricalcium phosphate, fluorapatite and combinations thereof.
62. The method of claim 49, wherein the calcium phosphate material comprises a poorly crystalline apatitic calcium phosphate.
63. The method of claim 62, wherein the poorly crystalline apatitic calcium phosphate has a calcium-to-phosphate ratio of less than 1:1.5.
64. The method of claim 63, wherein the poorly crystalline apatitic calcium phosphate has a calcium-to-phosphate ratio of about 1:1.4.
65. The method of claim 49, wherein an amount of calcium phosphate material ranging from about 10% to about 99% by weight of the composition is mixed with the osteogenic protein.
66. The method of claim 65, wherein an amount of calcium phosphate material ranging from about 40% to about 60% by weight of the composition is mixed with the osteogenic protein.
67. The method of claim 49, wherein the composition further comprises an additive selected from the group consisting of pharmaceutically acceptable salts, polysaccharides, peptides, proteins, amino acids, synthetic polymers, natural polymers, surfactants, and combinations thereof and wherein a dry form of the additive is mixed in the dry mixture.
68. The method of claim 67, wherein the additive is selected from the group consisting of carboxymethylcellulose, hydroxypropylmethylcellulose, methylcellulose, polylactide, polyethylene glycol, polyvinylpyrrolidone, polyoxyethylene oxide, carboxyvinyl polymer, polyvinyl alcohol, dextran sulfate and combinations thereof.
69. The method of claim 67, wherein an amount of additive ranging from about 1% to about 90% by weight of the composition is mixed in the dry mixture.
70. The method of claim 69, wherein an amount of additive ranging from about 20% to about 40% by weight of the composition is mixed in the dry mixture.
71. The method of claim 49, wherein the composition further comprises a bone resorption inhibitor and an additive selected from the group consisting of pharmaceutically acceptable salts, polysaccharides, peptides, proteins, amino acids, synthetic polymers, natural polymers, surfactants, and combinations thereof.
72. The method of claim 49, wherein the aqueous buffer is selected from the group consisting of phosphate-buffered saline, saline, glycine-based buffers and combinations thereof.
73. The method of claim 49, wherein the ratio of aqueous buffer to dry mixture ranges from about 0.5:1 to about 2:1.
74. The method of claim 49, wherein the molding is accomplished using a method selected from the group consisting of molding, extruding, pressing, boring and combinations thereof.
75. The method of claim 49 further comprising a step of cutting the rod-shaped composition before or after step (d).
76. The method of claim 49, wherein said rod-shaped composition is cylindrical and a diameter of said cylindrical rod-shaped composition is between about 0.1 mm and 3.0 mm.
77. The method of claim 49, wherein the length of said rod-shaped composition is between about 1.0 mm and 5.0 cm.
78. A method for preparing a composition for injectable delivery of osteogenic proteins comprising mixing a dry form of the calcium phosphate material with an aqueous buffer containing an osteogenic protein to form a paste.
79. The method of claim 78, wherein the osteogenic protein is selected from the group consisting of members of the bone morphogenetic protein family.
80. The method of claim 78, wherein the osteogenic protein is selected from the group consisting of BMP-2, BMP-4, BMP-5, BMP-6, BMP-7, BMP-10, BMP-12, BMP-13, and MP52.
81. The method of claim 78, wherein the osteogenic protein is BMP-2.
82. The method of claim 78, wherein the osteogenic protein is BMP-12.
83. The method of claim 78, wherein the osteogenic protein is BMP-13.
84. The method of claim 78, wherein the osteogenic protein is MP52.
85. The method of claim 78, wherein the osteogenic protein is present in the paste in an amount ranging from about 0.01% to about 2% by weight of the paste.
86. The method of claim 85, wherein the osteogenic protein is present in the paste in an amount ranging from about 0.03% to about 1% by weight of the paste.
87. The method of claim 78, wherein the composition further comprises a bone resorption inhibitor and wherein a dry form of the bone resorption inhibitor is mixed in the paste.
88. The method of claim 87, wherein the bone resorption inhibitor is a bisphosphonate.
89. The method of claim 88, wherein the bisphosphonate is selected from the group consisting of alendronate, cimadronate, clodronate, EB 1053, etidronates, ibandronate, neridronate, olpadronate, pamidronate, risedronate, tiludronate, YH 529, zoledronate, and pharmaceutically acceptable salts, esters, acids, and mixtures thereof.
90. The method of claim 78, wherein the calcium phosphate material comprises a material selected from the group consisting of amorphous apatitic calcium phosphate, poorly crystalline apatitic calcium phosphate, hydroxyapatite, tricalcium phosphate, fluorapatite and combinations thereof.
91. The method of claim 78, wherein the calcium phosphate material comprises a poorly crystalline apatitic calcium phosphate.
92. The method of claim 91, wherein the poorly crystalline apatitic calcium phosphate has a calcium-to-phosphate ratio of less than 1:1.5.
93. The method of claim 92, wherein the poorly crystalline apatitic calcium phosphate has a calcium-to-phosphate ratio of about 1:1.4.
94. The method of claim 78, wherein an amount of calcium phosphate material ranging from about 30% to about 70% by weight of the composition is mixed with the aqueous buffer.
95. The method of claim 94, wherein an amount of calcium phosphate material ranging from about 45% to about 55% by weight of the composition is mixed with the aqueous buffer.
96. The method of claim 78, wherein the composition further comprises an additive selected from the group consisting of pharmaceutically acceptable salts, polysaccharides, peptides, proteins, amino acids, synthetic polymers, natural polymers, surfactants, and combinations thereof and wherein a dry form of the additive is mixed in the paste.
97. The method of claim 96, wherein the additive is selected from the group consisting of carboxymethylcellulose, hydroxypropylmethylcellulose, methylcellulose, polylactide, polyethylene glycol, polyvinylpyrrolidone, polyoxyethylene oxide, carboxyvinyl polymer, polyvinyl alcohol, dextran sulfate and combinations thereof.
98. The method of claim 96, wherein an amount of additive ranging from about 1% to about 90% by weight of the composition is mixed in the paste.
99. The method of claim 98, wherein an amount of additive ranging from about 10% to about 20% by weight of the composition is mixed in the paste.
100. The method of claim 78, wherein the composition further comprises a bone resorption inhibitor and an additive selected from the group consisting of pharmaceutically acceptable salts, polysaccharides, peptides, proteins, amino acids, synthetic polymers, natural polymers, surfactants, and combinations thereof.
101. The method of claim 78, wherein the aqueous buffer is selected from the group consisting of phosphate-buffered saline, saline, glycine-based buffers and combinations thereof.
102. The method of claim 78, wherein the ratio of aqueous buffer to calcium phosphate material ranges from about 0.5:1 to about 2:1.
103. A method of treating a mammal having a bone defect comprising administering to the site of the bone defect an effective amount of the composition for injectable delivery of osteogenic proteins of claim 1.
104. The method of claim 103, wherein the bone defect is osteoporotic bone.
105. A method of treating a mammal having a bone defect comprising the steps of:
(a) administering to the site of the bone defect an effective amount of the composition for injectable delivery of osteogenic proteins of claim 1;
and (b) administering to the site of the bone defect an effective amount of a bone resorption inhibitor.
106. The method of claim 105, wherein step (a) is performed prior to step (b).
107. The method of claim 105, wherein step (b) is performed prior to step (a).
108. The method of claim 105, wherein step (a) and step (b) are performed simultaneously.
109. A method of treating a mammal having a bone defect comprising administering to the site of the bone defect an effective amount of the composition for injectable delivery of osteogenic proteins of claim 26.
110. A method of treating a mammal having a bone defect comprising the steps of:
(a) administering to the site of the bone defect an effective amount of the composition for injectable delivery of osteogenic proteins of claim 26; and (b) administering to the site of the bone defect an effective amount of a bone resorption inhibitor.
111. The method of claim 110, wherein step (a) is performed prior to step (b).
112. The method of claim 110, wherein step (b) is performed prior to step (a).
113. The method of claim 110, wherein step (a) and step (b) are performed simultaneously.
114. Use of an effective amount of a composition of claim 1 for preparation of a medicament for treating a mammal having a bone defect, wherein the use comprises administering to the site of the bone defect an effective amount of the composition for injectable delivery of osteogenic proteins of claim 1.
115. Use of an effective amount of a composition of claim 1 for preparation of a medicament for treating a mammal having a bone defect, wherein the use comprises the steps of:

(a) administering to the site of the bone defect an effective amount of the composition for injectable delivery of osteogenic proteins of claim 1;
and (b) administering to the site of the bone defect an effective amount of a bone resorption inhibitor.
116. The use of claim 115, wherein step (a) is performed prior to step (b).
117. The use of claim 115, wherein step (b) is performed prior to step (a).
118. The use of claim 115, wherein step (a) and step (b) are performed simultaneously.
119. Use of an effective amount of a composition of claim 26 for preparation of a medicament for treating a mammal having a bone defect, wherein the use comprises administering to the site of the bone defect an effective amount of the composition for injectable delivery of osteogenic proteins of claim 26.
120. Use of an effective amount of a composition of claim 26 for preparation of a medicament for treating a mammal having a bone defect, wherein the use comprises the steps of:
(a) administering to the site of the bone defect an effective amount of the composition for injectable delivery of osteogenic proteins of claim 26; and (b) administering to the site of the bone defect an effective amount of a bone resorption inhibitor.
121. The use of claim 120, wherein step (a) is performed prior to step (b).
122. The use of claim 120, wherein step (b) is performed prior to step (a).
123. The use of claim 120, wherein step (a) and step (b) are performed simultaneously.
CA2537735A 2003-09-12 2004-09-10 Injectable calcium phosphate solid rods and pastes for delivery of osteogenic proteins Active CA2537735C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US50249303P 2003-09-12 2003-09-12
US60/502,493 2003-09-12
PCT/US2004/029560 WO2005025595A2 (en) 2003-09-12 2004-09-10 Injectable calcium phosphate solid rods and pastes for delivery of osteogenic proteins

Publications (2)

Publication Number Publication Date
CA2537735A1 true CA2537735A1 (en) 2005-03-24
CA2537735C CA2537735C (en) 2018-07-24

Family

ID=34312397

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2537735A Active CA2537735C (en) 2003-09-12 2004-09-10 Injectable calcium phosphate solid rods and pastes for delivery of osteogenic proteins

Country Status (29)

Country Link
US (2) US7771755B2 (en)
EP (3) EP2374471A1 (en)
JP (1) JP5392981B2 (en)
KR (1) KR20060133961A (en)
CN (2) CN1878565B (en)
AR (1) AR045935A1 (en)
AT (1) ATE357244T1 (en)
AU (1) AU2004272072B2 (en)
BR (1) BRPI0413720A (en)
CA (1) CA2537735C (en)
CO (1) CO5680451A2 (en)
CR (1) CR8299A (en)
CY (1) CY1108012T1 (en)
DE (1) DE602004005477T2 (en)
DK (1) DK1675608T3 (en)
EC (1) ECSP066500A (en)
ES (1) ES2282904T3 (en)
HK (1) HK1086199A1 (en)
IL (1) IL174198A (en)
NO (1) NO20061547L (en)
NZ (1) NZ546438A (en)
PL (1) PL1675608T3 (en)
PT (1) PT1675608E (en)
RU (1) RU2363478C2 (en)
SI (1) SI1675608T1 (en)
TW (1) TW200518767A (en)
UA (1) UA88275C2 (en)
WO (1) WO2005025595A2 (en)
ZA (1) ZA200602079B (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3273773B2 (en) 1999-08-12 2002-04-15 イビデン株式会社 Ceramic heater for semiconductor manufacturing / inspection equipment, electrostatic chuck for semiconductor manufacturing / inspection equipment and chuck top for wafer prober
US20020114795A1 (en) 2000-12-22 2002-08-22 Thorne Kevin J. Composition and process for bone growth and repair
ES2282904T3 (en) * 2003-09-12 2007-10-16 Wyeth SOLID BARS OF INJECTABLE CALCIUM PHOSPHATE FOR THE SUPPLY OF OSTEOGENIC PROTEINS.
US7955616B2 (en) 2003-09-23 2011-06-07 Orthocon, Inc. Absorbable implants and methods for their use in hemostasis and in the treatment of osseous defects
ITTO20050549A1 (en) * 2005-08-03 2007-02-04 Consiglio Nazionale Ricerche COMPOSITE MATERIAL INJECTABLE TO BE USED AS A BONUS SUBSTITUTE
KR101105890B1 (en) * 2005-12-14 2012-01-16 에스씨아이엘 테크놀로지 게엠베하 A moldable biomaterial for bone regeneration
KR100829452B1 (en) * 2006-06-13 2008-05-15 (주)코리아 본 뱅크 Bioactive Protein-Calcium Phosphate Composite and the Manufacturing Method of the same
US20100015068A1 (en) * 2006-07-06 2010-01-21 Massachusetts Institute Of Technology Methods and Compositions For Altering Biological Surfaces
DE102006042142A1 (en) * 2006-09-06 2008-03-27 Curasan Ag Phase- and sedimentation-stable, plastically deformable preparation with intrinsic pore formation, for example for filling bone defects or for use as a bone substitute material, and method for their preparation
US8048857B2 (en) * 2006-12-19 2011-11-01 Warsaw Orthopedic, Inc. Flowable carrier compositions and methods of use
US7718616B2 (en) 2006-12-21 2010-05-18 Zimmer Orthobiologics, Inc. Bone growth particles and osteoinductive composition thereof
EP1958649A1 (en) 2007-02-14 2008-08-20 Graftys Injectable calcium-phosphate cement releasing a bone resorption inhibitor
US20080241256A1 (en) * 2007-03-30 2008-10-02 Liisa Kuhn Targeted active agent delivery system based on calcium phosphate nanoparticles
FR2948573B1 (en) * 2009-07-31 2011-11-18 Adocia NEW FORM OF ADMINISTRATION OF OSTEOGENIC PROTEIN COMPLEXES
US20110307074A1 (en) * 2010-05-24 2011-12-15 University Of The Witwatersrand, Johannesburg Biomaterials for use in methods of bone replacement therapy
WO2012068135A1 (en) 2010-11-15 2012-05-24 Zimmer Orthobiologics, Inc. Bone void fillers
US8551525B2 (en) 2010-12-23 2013-10-08 Biostructures, Llc Bone graft materials and methods
US20160038555A1 (en) * 2011-03-31 2016-02-11 Kang Yell Choi Composition Containing Extracts of the Fruit of Hovenia Dulcis THUNB as an Active Ingredient for Preventing and Treating Bone Diseases
RU2015128609A (en) * 2012-12-19 2017-01-25 КАШИВ ФАРМА, ЭлЭлСи Oversaturated Stabilized Nanoparticles for Weakly Soluble Drugs
KR101443814B1 (en) * 2013-03-28 2014-09-30 주식회사 바이오알파 An injectable composition for bone defects and a preparation method therof
AU2015374114B2 (en) 2014-12-29 2018-07-26 Bioventus, Llc Systems and methods for improved delivery of osteoinductive molecules in bone repair
GB2559761A (en) * 2017-02-16 2018-08-22 Corthotec Ltd Composition for improved bone fracture healing
AU2019339920A1 (en) * 2018-09-14 2021-04-29 Orthocell Limited Artificial periosteum
EP3936165A1 (en) * 2020-07-10 2022-01-12 MedPark Co., Ltd. Method for preparing bone graft composition and bone graft composition

Family Cites Families (206)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2465357A (en) * 1944-08-14 1949-03-29 Upjohn Co Therapeutic sponge and method of making
CH563767A5 (en) * 1973-01-30 1975-07-15 Pheulpin Jean
US4468464A (en) 1974-11-04 1984-08-28 The Board Of Trustees Of The Leland Stanford Junior University Biologically functional molecular chimeras
DE2657370C2 (en) * 1976-12-17 1982-11-11 Hans Dr.med. Dr.med.dent. 8000 München Scheicher Means for covering and / or filling in bone defects
DE2732848A1 (en) * 1977-07-18 1979-02-08 Schering Ag DIURETHANE, HERBICIDAL AGENTS CONTAINING THESE COMPOUNDS AND THE PROCESS FOR THEIR PRODUCTION
US4399216A (en) 1980-02-25 1983-08-16 The Trustees Of Columbia University Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials
US4619989A (en) 1981-05-05 1986-10-28 The Regents Of The University Of Cal. Bone morphogenetic protein composition
US4455256A (en) * 1981-05-05 1984-06-19 The Regents Of The University Of California Bone morphogenetic protein
US4789732A (en) 1980-08-04 1988-12-06 Regents Of The University Of California Bone morphogenetic protein composition
US4761471A (en) 1980-08-04 1988-08-02 The Regents Of The University Of California Bone morphogenetic protein composition
US4294753A (en) 1980-08-04 1981-10-13 The Regents Of The University Of California Bone morphogenetic protein process
PH19942A (en) 1980-11-18 1986-08-14 Sintex Inc Microencapsulation of water soluble polypeptides
US4419446A (en) 1980-12-31 1983-12-06 The United States Of America As Represented By The Department Of Health And Human Services Recombinant DNA process utilizing a papilloma virus DNA as a vector
IE52535B1 (en) 1981-02-16 1987-12-09 Ici Plc Continuous release pharmaceutical compositions
US4727028A (en) * 1981-06-22 1988-02-23 Eli Lilly And Company Recombinant DNA cloning vectors and the eukaryotic and prokaryotic transformants thereof
US4394370A (en) * 1981-09-21 1983-07-19 Jefferies Steven R Bone graft material for osseous defects and method of making same
US4472840A (en) 1981-09-21 1984-09-25 Jefferies Steven R Method of inducing osseous formation by implanting bone graft material
US4474181A (en) 1982-02-18 1984-10-02 Schenck Robert R Method and apparatus for anastomosing small blood vessels
USRE33161E (en) 1982-04-29 1990-02-06 American Dental Association Health Foundation Combinations of sparingly soluble calcium phosphates in slurries and pastes as mineralizers and cements
USRE33221E (en) 1982-04-29 1990-05-22 American Dental Association Health Foundation Dental restorative cement pastes
IL68218A (en) * 1983-03-23 1985-12-31 Univ Ramot Compositions for cartilage repair comprising embryonal chondrocytes
US4434094A (en) * 1983-04-12 1984-02-28 Collagen Corporation Partially purified osteogenic factor and process for preparing same from demineralized bone
EP0128041A3 (en) 1983-06-06 1986-12-03 David Jeston Baylink Polypeptides exhibiting skeletal growth factor activity
US4795804A (en) * 1983-08-16 1989-01-03 The Regents Of The University Of California Bone morphogenetic agents
US4923805A (en) * 1983-11-02 1990-05-08 Integrated Genetics, Inc. Fsh
US4703008A (en) 1983-12-13 1987-10-27 Kiren-Amgen, Inc. DNA sequences encoding erythropoietin
GB8334498D0 (en) * 1983-12-24 1984-02-01 Beecham Group Plc Compounds
NZ210699A (en) 1984-01-04 1989-06-28 Int Genetic Eng Isolation of an osteogenic protein of the p3 immunologically related family
US4804744A (en) * 1984-01-04 1989-02-14 International Genetic Engineering, Inc. Osteogenic factors
DK518384A (en) 1984-01-31 1985-07-01 Idaho Res Found VECTOR FOR THE MANUFACTURE OF A GENE PRODUCT IN INSECT CELLS, PROCEDURE FOR ITS MANUFACTURING AND ITS USE
US4608199A (en) 1984-03-20 1986-08-26 Arnold Caplan Bone protein purification process
US4662884A (en) * 1984-04-25 1987-05-05 University Of Utah Research Foundation Prostheses and methods for promoting nerve regeneration
US4596574A (en) * 1984-05-14 1986-06-24 The Regents Of The University Of California Biodegradable porous ceramic delivery system for bone morphogenetic protein
CA1341617C (en) * 1984-06-08 2011-06-28 Henry George Burger Inhibin isolated from ovarian follicular fluid
US4868161A (en) 1984-06-29 1989-09-19 City Of Hope Method for promoting nerve regeneration
US4843063A (en) * 1984-07-16 1989-06-27 Collagen Corporation Polypeptide cartilage-inducing factors found in bone
US4627982A (en) 1984-07-16 1986-12-09 Collagen Corporation Partially purified bone-inducing factor
DE3588058T3 (en) * 1984-07-16 2005-04-07 Celtrix Pharmaceuticals, Inc., Palo Alto Cartilage-inducing polypeptide factors from bone
ATE78515T1 (en) 1984-10-05 1992-08-15 Genentech Inc DNA, CELL CULTURES AND METHODS FOR HETEROLOGOUS PROTEIN SECRETION AND PERIPLASMIC PROTEIN RECOVERY.
US4769328A (en) 1984-10-12 1988-09-06 Zymogenetics Inc. Expression of biologically active PDGF analogs in yeast
US5187263A (en) * 1984-10-12 1993-02-16 Zymogenetics, Inc. Expression of biologically active PDGE analogs in eucaryotic cells
US4563350A (en) * 1984-10-24 1986-01-07 Collagen Corporation Inductive collagen based bone repair preparations
KR930007429B1 (en) * 1984-12-27 1993-08-10 산도리 가부시기가이샤 Method for purifying interferon
US4886747A (en) 1985-03-22 1989-12-12 Genentech, Inc. Nucleic acid encoding TGF-β and its uses
US4766067A (en) 1985-05-31 1988-08-23 President And Fellows Of Harvard College Gene amplification
US4681763A (en) * 1985-06-11 1987-07-21 University Of Medicine And Dentistry Of New Jersey Composition for stimulating bone growth
US4851521A (en) * 1985-07-08 1989-07-25 Fidia, S.P.A. Esters of hyaluronic acid
US5215893A (en) * 1985-10-03 1993-06-01 Genentech, Inc. Nucleic acid encoding the ba chain prodomains of inhibin and method for synthesizing polypeptides using such nucleic acid
US5089396A (en) * 1985-10-03 1992-02-18 Genentech, Inc. Nucleic acid encoding β chain prodomains of inhibin and method for synthesizing polypeptides using such nucleic acid
US4798885A (en) * 1986-02-07 1989-01-17 Genentech, Inc. Compositions of hormonally active human and porcine inhibin containing an α chain and 62 chain
NZ231899A (en) 1985-10-03 1991-07-26 Genentech Inc Human or porcine inhibin peptide compositions and dna encoding them
US4737578A (en) * 1986-02-10 1988-04-12 The Salk Institute For Biological Studies Human inhibin
DE3764144D1 (en) 1986-04-16 1990-09-13 Asta Pharma Ag SYNERGISTIC COMBINATION OF AMANTADINE AND SELEGILINE.
US4758233A (en) * 1986-04-22 1988-07-19 N.J. Phillips TPY. Limited Cream applicator
NL8601328A (en) 1986-05-23 1987-12-16 Langen Research DEVICE FOR INJECTING MEAT WITH A MASS, PARTICULARLY PASTY MASS.
US6432919B1 (en) * 1986-07-01 2002-08-13 Genetics Institute, Inc. Bone morphogenetic protein-3 and compositions
IL83003A (en) 1986-07-01 1995-07-31 Genetics Inst Osteoinductive factors
US5013649A (en) * 1986-07-01 1991-05-07 Genetics Institute, Inc. DNA sequences encoding osteoinductive products
US5459047A (en) 1986-07-01 1995-10-17 Genetics Institute, Inc. BMP-6 proteins
US5631142A (en) * 1986-07-01 1997-05-20 Genetics Institute, Inc. Compositions comprising bone morphogenetic protein-2 (BMP-2)
US5106748A (en) 1986-07-01 1992-04-21 Genetics Institute, Inc. Dna sequences encoding 5 proteins
ZA874681B (en) 1986-07-01 1988-04-27 Genetics Inst Novel osteoinductive factors
US6150328A (en) * 1986-07-01 2000-11-21 Genetics Institute, Inc. BMP products
US5366875A (en) 1986-07-01 1994-11-22 Genetics Institute, Inc. Methods for producing BMP-7 proteins
US5543394A (en) 1986-07-01 1996-08-06 Genetics Institute, Inc. Bone morphogenetic protein 5(BMP-5) compositions
US5187076A (en) 1986-07-01 1993-02-16 Genetics Institute, Inc. DNA sequences encoding BMP-6 proteins
US5939388A (en) 1986-07-01 1999-08-17 Rosen; Vicki A. Methods of administering BMP-5 compositions
US4877864A (en) 1987-03-26 1989-10-31 Genetics Institute, Inc. Osteoinductive factors
US5108922A (en) * 1986-07-01 1992-04-28 Genetics Institute, Inc. DNA sequences encoding BMP-1 products
US5019087A (en) * 1986-10-06 1991-05-28 American Biomaterials Corporation Nerve regeneration conduit
US5124316A (en) * 1986-11-14 1992-06-23 President And Fellows Of Harvard College Method for periodontal regeneration
US5457092A (en) 1987-07-30 1995-10-10 Gesellschaft Fur Biotechnologische Forschung Mbh (Gbf) Methods of promoting bone growth in mammals comprising administration of modified parathyroid hormone
US5041538A (en) 1987-08-28 1991-08-20 The Salk Institute For Biological Studies Mammalian follistatin
US5202120A (en) * 1987-09-11 1993-04-13 Case Western Reserve University Methods of reducing glial scar formation and promoting axon and blood vessel growth and/or regeneration through the use of activated immature astrocytes
US5147399A (en) 1988-02-01 1992-09-15 Dellon Arnold L Method of treating nerve defects through use of a bioabsorbable surgical device
IT1215881B (en) 1988-02-16 1990-02-22 Giancarlo Foresti OSTEOTROPIC ACTION SURGICAL AID.
IL89869A0 (en) 1988-04-06 1989-12-15 Collagen Corp Bone-inducing protein
US4968590A (en) 1988-04-08 1990-11-06 Stryker Corporation Osteogenic proteins and polypeptides
US5258494A (en) 1988-04-08 1993-11-02 Stryker Corporation Osteogenic proteins
US5266683A (en) 1988-04-08 1993-11-30 Stryker Corporation Osteogenic proteins
US5108753A (en) * 1988-04-08 1992-04-28 Creative Biomolecules Osteogenic devices
US6586388B2 (en) 1988-04-08 2003-07-01 Stryker Corporation Method of using recombinant osteogenic protein to repair bone or cartilage defects
US5354557A (en) 1988-04-08 1994-10-11 Stryker Corporation Osteogenic devices
US5011691A (en) * 1988-08-15 1991-04-30 Stryker Corporation Osteogenic devices
US5053212A (en) 1988-04-20 1991-10-01 Norian Corporation Intimate mixture of calcium and phosphate sources as precursor to hydroxyapatite
US5962028A (en) 1988-04-20 1999-10-05 Norian Corporation Carbonated hydroxyapatite compositions and uses
US5129905A (en) 1988-04-20 1992-07-14 Norian Corporation Methods for in situ prepared calcium phosphate minerals
US5024841A (en) * 1988-06-30 1991-06-18 Collagen Corporation Collagen wound healing matrices and process for their production
US5071834A (en) 1988-09-16 1991-12-10 Genentech, Inc. Purified activin B composition
US5284756A (en) * 1988-10-11 1994-02-08 Lynn Grinna Heterodimeric osteogenic factor
US5106626A (en) 1988-10-11 1992-04-21 International Genetic Engineering, Inc. Osteogenic factors
US4955892A (en) 1988-10-24 1990-09-11 Louisiana State University Neural cell adhesion protein nerve prosthesis
US5457038A (en) * 1988-11-10 1995-10-10 Genetics Institute, Inc. Natural killer stimulatory factor
US5011486A (en) * 1988-11-18 1991-04-30 Brown University Research Foundation Composite nerve guidance channels
US5162430A (en) * 1988-11-21 1992-11-10 Collagen Corporation Collagen-polymer conjugates
US4920962A (en) * 1988-11-23 1990-05-01 Claude Proulx Splint-like element for use in end-to-end nerve suture
US5217867A (en) * 1988-11-30 1993-06-08 The Salk Institute For Biological Studies Receptors: their identification, characterization, preparation and use
WO1990010067A1 (en) 1989-02-23 1990-09-07 GESELLSCHAFT FüR BIOTECHNOLOGISCHE FORSCHUNG MBH (GBF) Dna sequences coding for pth variants, pth variants, expression vector, bacterial host, use and therapeutic composition
ATE162223T1 (en) 1989-03-28 1998-01-15 Genetics Inst OSTEOINDUCTIVE COMPOSITIONS
US4963146A (en) 1989-04-20 1990-10-16 Colla-Tec Incorporated Multi-layered, semi-permeable conduit for nerve regeneration
US5026381A (en) * 1989-04-20 1991-06-25 Colla-Tec, Incorporated Multi-layered, semi-permeable conduit for nerve regeneration comprised of type 1 collagen, its method of manufacture and a method of nerve regeneration using said conduit
US5166322A (en) 1989-04-21 1992-11-24 Genetics Institute Cysteine added variants of interleukin-3 and chemical modifications thereof
JPH03151877A (en) 1989-06-02 1991-06-28 Chiron Corp Bone calcium precipitation factor
US5399346A (en) * 1989-06-14 1995-03-21 The United States Of America As Represented By The Department Of Health And Human Services Gene therapy
AU5958090A (en) * 1989-06-29 1991-01-17 United States of America, as represented by the Secretary, U.S. Department of Commerce, The Method for protecting bone marrow against chemotherapeutic drugs and radiation therapy using transforming growth factor beta 1
CA2020729A1 (en) 1989-07-19 1991-01-20 Michael C. Kiefer Bone morphogenetic protein
US5324519A (en) * 1989-07-24 1994-06-28 Atrix Laboratories, Inc. Biodegradable polymer composition
US5422340A (en) * 1989-09-01 1995-06-06 Ammann; Arthur J. TGF-βformulation for inducing bone growth
JP3045398B2 (en) 1989-09-06 2000-05-29 武田薬品工業株式会社 Proteins, DNAs and their uses
US5236456A (en) * 1989-11-09 1993-08-17 Osteotech, Inc. Osteogenic composition and implant containing same
US5215895A (en) 1989-11-22 1993-06-01 Genetics Institute, Inc. Dna encoding a mammalian cytokine, interleukin-11
GB8927546D0 (en) 1989-12-06 1990-02-07 Ciba Geigy Process for the production of biologically active tgf-beta
US5166190A (en) 1990-01-08 1992-11-24 Genentech, Inc. Method for increasing fertility in males
US5256418A (en) 1990-04-06 1993-10-26 Organogenesis, Inc. Collagen constructs
US5290271A (en) * 1990-05-14 1994-03-01 Jernberg Gary R Surgical implant and method for controlled release of chemotherapeutic agents
US5688678A (en) 1990-05-16 1997-11-18 Genetics Institute, Inc. DNA encoding and methods for producing BMP-8 proteins
DE69132823T2 (en) 1990-05-16 2002-07-18 Genetics Inst BONE AND Cartilage Formation Proton Proteins
US5168050A (en) 1990-05-24 1992-12-01 Genentech, Inc. Mammalian expression of the bone morphogenetic protein-2b using bmp2a/bmp2b fusion
US5218090A (en) * 1990-06-12 1993-06-08 Warner-Lambert Company EGF receptor truncates
US5364839A (en) 1990-06-18 1994-11-15 Genetics Institute, Inc. Osteoinductive pharmaceutical formulations
US5206028A (en) * 1991-02-11 1993-04-27 Li Shu Tung Dense collagen membrane matrices for medical uses
US5208219A (en) * 1991-02-14 1993-05-04 Celtrix Pharmaceuticals Inc. Method for inducing bone growth
US5318898A (en) * 1991-04-02 1994-06-07 Genetics Institute, Inc. Production of recombinant bone-inducing proteins
US5118667A (en) * 1991-05-03 1992-06-02 Celtrix Pharmaceuticals, Inc. Bone growth factors and inhibitors of bone resorption for promoting bone formation
CA2102808A1 (en) 1991-05-10 1992-11-11 Hanne Bentz Targeted delivery of bone growth factors
US5229495A (en) * 1991-06-18 1993-07-20 Ludwig Institute For Cancer Research Substantially pure receptor like TGF-β 1 binding molecules and uses thereof
US5216126A (en) * 1991-06-19 1993-06-01 Genentech, Inc. Receptor polypeptides and their production and uses
US6287816B1 (en) * 1991-06-25 2001-09-11 Genetics Institute, Inc. BMP-9 compositions
AU652472B2 (en) 1991-06-25 1994-08-25 Genetics Institute, Llc BMP-9 compositions
US5356629A (en) 1991-07-12 1994-10-18 United States Surgical Corporation Composition for effecting bone repair
US5306307A (en) * 1991-07-22 1994-04-26 Calcitek, Inc. Spinal disk implant
US5270300A (en) 1991-09-06 1993-12-14 Robert Francis Shaw Methods and compositions for the treatment and repair of defects or lesions in cartilage or bone
US5171579A (en) 1991-10-11 1992-12-15 Genetics Institute, Inc. Formulations of blood clot-polymer matrix for delivery of osteogenic proteins
ATE238417T1 (en) 1991-11-04 2003-05-15 Inst Genetics Llc RECOMBINANT BONE MORPHOGENETIC PROTEIN HETERODIMERS, COMPOSITIONS AND METHODS OF USE
SE469653B (en) 1992-01-13 1993-08-16 Lucocer Ab POROEST IMPLANT
KR0172186B1 (en) 1992-02-12 1999-02-01 미하엘 파울리스타 Dna sequences encoding novel growth/differentiation factors
JPH07504106A (en) 1992-02-28 1995-05-11 コラーゲン コーポレイション Injectable ceramic compositions and methods for their manufacture and use
WO1993019177A1 (en) * 1992-03-18 1993-09-30 The General Hospital Corporation FOUR NOVEL RECEPTORS OF THE TGF-β RECEPTOR FAMILY
IT1259100B (en) * 1992-05-20 1996-03-11 Lanfranco Callegaro USE OF HYDROGELS FOR THE LOCKING OF PROSTHETIC SYSTEMS
IL106278A0 (en) 1992-07-13 1993-11-15 Sumitomo Metal Ind Bone formation-inducing protein
PT662146E (en) 1992-09-03 2000-12-29 Univ California FACTOR THAT AFFECTS DORSAL FABRIC AND COMPOSITIONS
US6221958B1 (en) * 1993-01-06 2001-04-24 Societe De Conseils De Recherches Et D'applications Scientifiques, Sas Ionic molecular conjugates of biodegradable polyesters and bioactive polypeptides
CA2153653C (en) 1993-01-12 2010-12-07 Se-Jin Lee Growth differentiation factor-9
WO1994015949A1 (en) 1993-01-12 1994-07-21 Johns Hopkins University School Of Medicine Growth differentiation factor-5
CA2153652A1 (en) 1993-01-12 1994-07-21 Se-Jin Lee Growth differentiation factor-3
US5420243A (en) * 1993-01-26 1995-05-30 Celtrix Pharmaceuticals, Inc. Biologically active TGF-β2 peptides
EP0690873B1 (en) 1993-03-19 2003-06-11 The Johns Hopkins University School Of Medicine Growth differentiation factor-8
GB9308060D0 (en) 1993-04-19 1993-06-02 Cancer Res Campaign Tech Stem cell inhibitor
KR100227406B1 (en) * 1993-05-12 1999-12-01 브루스 엠. 에이센 Bmp-11 composition
WO1994026893A1 (en) 1993-05-12 1994-11-24 Genetics Institute, Inc. Bmp-10 compositions
US5637480A (en) 1993-05-12 1997-06-10 Genetics Institute, Inc. DNA molecules encoding bone morphogenetic protein-10
EP0626451A3 (en) 1993-05-27 1997-11-05 Takeda Chemical Industries, Ltd. Heterodimers of a TGF-beta superfamily
US5447725A (en) 1993-06-11 1995-09-05 The Procter & Gamble Company Methods for aiding periodontal tissue regeneration
JPH09503903A (en) 1993-07-09 1997-04-22 ザ ジョーンズ ホプキンス ユニバーシティー スクール オブ メディシン Growth differentiation factor-6
EP0717633A4 (en) 1993-07-09 1998-05-20 Univ Johns Hopkins Med Growth differentiation factor-7
KR100329409B1 (en) * 1993-08-26 2002-03-20 브루스 엠. 에이센, 토마스 제이 데스로저 Neural regeneration using human bone morphogenetic proteins
US5455041A (en) 1993-09-13 1995-10-03 Research Foundation Of State University Of New York At Buffalo Method for inducing periodontal tissue regeneration
US6291206B1 (en) 1993-09-17 2001-09-18 Genetics Institute, Inc. BMP receptor proteins
EP0725796A4 (en) 1993-10-08 1999-12-01 Univ Johns Hopkins Growth differentiation factor-10
CA2175049A1 (en) 1993-10-28 1995-05-04 Timothy Ringeisen Improved process and device for treating and healing a bone void
US5399677A (en) * 1993-12-07 1995-03-21 Genetics Institute, Inc. Mutants of bone morphogenetic proteins
US6027919A (en) * 1993-12-07 2000-02-22 Genetics Institute, Inc. BMP-12 and BMP-13 proteins and DNA encoding them
PT733109E (en) 1993-12-07 2006-07-31 Genetics Inst Llc MORPHOGENETIC PROTEINS OF 0SS0S PMO-12 AND PMO-13 AND THEIR COMPOSITIONS FOR TENDAO INDUCTION
US5556767A (en) 1993-12-22 1996-09-17 Human Genome Sciences, Inc. Polynucleotide encoding macrophage inflammatory protein γ
EP0741783B1 (en) 1993-12-30 2009-03-18 President And Fellows Of Harvard College Vertebrate embryonic pattern-inducing hedgehog-like proteins
JPH07250688A (en) 1994-01-28 1995-10-03 Sagami Chem Res Center New human c-dna coding tgf-beta superfamily protein
US5723331A (en) 1994-05-05 1998-03-03 Genzyme Corporation Methods and compositions for the repair of articular cartilage defects in mammals
WO1996001845A1 (en) 1994-07-08 1996-01-25 The Johns Hopkins University School Of Medicine Growth differentiation factor-11
ATE196147T1 (en) 1994-07-13 2000-09-15 Univ Johns Hopkins Med GROWTH DIFFERENTIATION FACTOR-12
US5520923A (en) * 1994-09-19 1996-05-28 Genetics Institute, Inc. Formulations for delivery of osteogenic proteins
US5545616A (en) 1994-09-22 1996-08-13 Genentech, Inc. Method for predicting and/or preventing preterm labor
US5693779A (en) 1994-11-08 1997-12-02 The United States Of America As Represented By The Department Of Health And Human Services Production and use of anti-dorsalizing morphogenetic protein
US6281332B1 (en) 1994-12-02 2001-08-28 The Johns Hopkins University School Of Medicine Hedgehog-derived polypeptides
ES2093593T1 (en) 1995-05-05 1997-01-01 Hoffmann La Roche RECOMBINANT OBESE PROTEINS (OB).
US5635372A (en) * 1995-05-18 1997-06-03 Genetics Institute, Inc. BMP-15 compositions
US6117456A (en) 1995-05-19 2000-09-12 Etex Corporation Methods and products related to the physical conversion of reactive amorphous calcium phosphate
US8333996B2 (en) * 1995-05-19 2012-12-18 Etex Corporation Calcium phosphate delivery vehicle and adjuvant
US5676976A (en) 1995-05-19 1997-10-14 Etex Corporation Synthesis of reactive amorphous calcium phosphates
ES2440441T3 (en) * 1995-06-05 2014-01-29 Genetics Institute, Llc Use of bone morphogenetic proteins for healing and repair of connective tissue junctions
US5674292A (en) * 1995-06-07 1997-10-07 Stryker Corporation Terminally sterilized osteogenic devices and preparation thereof
US5752974A (en) * 1995-12-18 1998-05-19 Collagen Corporation Injectable or implantable biomaterials for filling or blocking lumens and voids of the body
WO1997022308A1 (en) 1995-12-18 1997-06-26 Degussa Aktiengesellschaft Medical implant
US5700774A (en) 1996-03-26 1997-12-23 Genetics Institute, Inc. Compositions comprising bone morphogenic proteins and truncated parathyroid hormone related peptide, and methods of inducing cartilage by administration of same
EP0907721A1 (en) 1996-05-28 1999-04-14 Brown University Research Foundation Hyaluronan based biodegradable scaffolds for tissue repair
US5813411A (en) 1996-08-20 1998-09-29 Menlo Care, Inc. Method of deforming tissue with a swollen hydrogel
US5965403A (en) 1996-09-18 1999-10-12 Genetics Institute, Inc. Nucleic acids encoding bone morphogenic protein-16 (BMP-16)
EP0941079B1 (en) * 1996-10-16 2007-12-19 Etex Corporation Bioceramic compositions
JPH10151188A (en) * 1996-11-21 1998-06-09 Yamanouchi Pharmaceut Co Ltd Implant for ossification
AU6245898A (en) * 1997-01-21 1998-08-07 Genetics Institute Inc. Injectable formulations for treatment of osteoporotic bone
US20020098222A1 (en) * 1997-03-13 2002-07-25 John F. Wironen Bone paste
US6034062A (en) * 1997-03-13 2000-03-07 Genetics Institute, Inc. Bone morphogenetic protein (BMP)-9 compositions and their uses
US6001352A (en) 1997-03-31 1999-12-14 Osteobiologics, Inc. Resurfacing cartilage defects with chondrocytes proliferated without differentiation using platelet-derived growth factor
US5972368A (en) 1997-06-11 1999-10-26 Sdgi Holdings, Inc. Bone graft composites and spacers
US6015801A (en) * 1997-07-22 2000-01-18 Merck & Co., Inc. Method for inhibiting bone resorption
US6004937A (en) 1998-03-09 1999-12-21 Genetics Institute, Inc. Use of follistatin to modulate growth and differentiation factor 8 [GDF-8] and bone morphogenic protein 11 [BMP-11]
IT1302534B1 (en) * 1998-12-21 2000-09-05 Fidia Advanced Biopolymers Srl INJECTABLE, BIOCOMPATIBLE AND BIODEGRADABLE COMPOSITIONS INCLUDING AT LEAST A DERIVATIVE OF HYALURONIC ACID, CHONDROGENIC CELLS, FOR
JP4211108B2 (en) 1999-01-13 2009-01-21 生化学工業株式会社 High viscoelastic injection device
SE9900454D0 (en) * 1999-02-10 1999-02-10 Safe Conduct Ab trocar
DE29914313U1 (en) * 1999-08-14 2000-02-24 Augmen Tech Gmbh Reaction systems for implantation in the human and animal body as a bone replacement Contain calcium and phosphorus
DE19938704C1 (en) * 1999-08-14 2001-10-31 Ivoclar Vivadent Ag Process for the production of reaction systems for implantation in the human and animal body as a bone substitute, which i.a. Contain calcium and phosphorus
DE60012557T2 (en) * 1999-10-15 2005-08-04 Genetics Institute, LLC, Cambridge HYALURONIC ACID COMPOSITIONS FOR THE DISPOSAL OF OSTEOGENIC PROTEINS
EP1220693B1 (en) * 1999-10-15 2004-12-08 Genetics Institute, LLC Formulations for delivery of osteogenic proteins
US6599516B1 (en) * 2000-09-14 2003-07-29 Etex Corporation Malleable implant containing solid element that resorbs or fractures to provide access channels
TWI267378B (en) * 2001-06-08 2006-12-01 Wyeth Corp Calcium phosphate delivery vehicles for osteoinductive proteins
EA008354B1 (en) * 2002-05-17 2007-04-27 Уайз Injectable solid hyaluronic acid carriers for delivery of osteogenic proteins
ES2282904T3 (en) * 2003-09-12 2007-10-16 Wyeth SOLID BARS OF INJECTABLE CALCIUM PHOSPHATE FOR THE SUPPLY OF OSTEOGENIC PROTEINS.

Also Published As

Publication number Publication date
KR20060133961A (en) 2006-12-27
WO2005025595A2 (en) 2005-03-24
EP1772154A2 (en) 2007-04-11
EP2374471A1 (en) 2011-10-12
DK1675608T3 (en) 2007-07-09
CY1108012T1 (en) 2013-09-04
CN1878565A (en) 2006-12-13
PL1675608T3 (en) 2007-11-30
NZ546438A (en) 2010-07-30
CN101897974A (en) 2010-12-01
CN1878565B (en) 2011-01-12
CR8299A (en) 2008-11-26
EP1675608B1 (en) 2007-03-21
JP5392981B2 (en) 2014-01-22
DE602004005477D1 (en) 2007-05-03
CO5680451A2 (en) 2006-09-29
EP1675608A2 (en) 2006-07-05
DE602004005477T2 (en) 2007-12-13
TW200518767A (en) 2005-06-16
AU2004272072A1 (en) 2005-03-24
US8507008B2 (en) 2013-08-13
ECSP066500A (en) 2006-10-10
ES2282904T3 (en) 2007-10-16
NO20061547L (en) 2006-06-01
UA88275C2 (en) 2009-10-12
RU2006105911A (en) 2007-10-20
AU2004272072B2 (en) 2010-07-08
ATE357244T1 (en) 2007-04-15
IL174198A (en) 2010-05-31
BRPI0413720A (en) 2006-10-17
WO2005025595A3 (en) 2005-10-13
IL174198A0 (en) 2006-08-01
US7771755B2 (en) 2010-08-10
AR045935A1 (en) 2005-11-16
SI1675608T1 (en) 2007-08-31
US20100273706A1 (en) 2010-10-28
ZA200602079B (en) 2008-11-26
RU2363478C2 (en) 2009-08-10
US20050089579A1 (en) 2005-04-28
WO2005025595B1 (en) 2005-11-17
PT1675608E (en) 2007-05-31
JP2007505133A (en) 2007-03-08
EP1772154A3 (en) 2011-09-07
CN101897974B (en) 2013-09-25
CA2537735C (en) 2018-07-24
HK1086199A1 (en) 2006-09-15
AU2004272072A8 (en) 2010-06-03

Similar Documents

Publication Publication Date Title
US8507008B2 (en) Injectable calcium phosphate solid rods and pastes for delivery of osteogenic proteins
US7875590B2 (en) Injectable solid hyaluronic acid carriers for delivery of osteogenic proteins
Komaki et al. Repair of segmental bone defects in rabbit tibiae using a complex of β-tricalcium phosphate, type I collagen, and fibroblast growth factor-2
EP0830149A1 (en) Biocompatible hydroxyapatite formulations and uses therefor
JPH10151188A (en) Implant for ossification
MXPA06002384A (en) Injectable calcium phosphate solid rods and pastes for delivery of osteogenic proteins
KR20050019075A (en) Injectable solid hyaluronic acid carriers for delivery of osteogenic proteins
MXPA97009904A (en) Biocompatible hydroxiapatita formulations and uses of mis

Legal Events

Date Code Title Description
EEER Examination request