CA2534429A1 - Recuperated gas turbine engine system and method employing catalytic combustion - Google Patents

Recuperated gas turbine engine system and method employing catalytic combustion Download PDF

Info

Publication number
CA2534429A1
CA2534429A1 CA002534429A CA2534429A CA2534429A1 CA 2534429 A1 CA2534429 A1 CA 2534429A1 CA 002534429 A CA002534429 A CA 002534429A CA 2534429 A CA2534429 A CA 2534429A CA 2534429 A1 CA2534429 A1 CA 2534429A1
Authority
CA
Canada
Prior art keywords
fuel
compressor
combustor
exhaust gases
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002534429A
Other languages
French (fr)
Inventor
Alexander A. Belokon
George L. Touchton, Iii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MES International Inc
Original Assignee
Mes International, Inc.
Alexander A. Belokon
George L. Touchton, Iii
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mes International, Inc., Alexander A. Belokon, George L. Touchton, Iii filed Critical Mes International, Inc.
Publication of CA2534429A1 publication Critical patent/CA2534429A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/40Continuous combustion chambers using liquid or gaseous fuel characterised by the use of catalytic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2202/00Fluegas recirculation
    • F23C2202/10Premixing fluegas with fuel and combustion air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/12Controlling catalytic burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2241/00Applications
    • F23N2241/20Gas turbines

Abstract

A recuperated gas turbine engine system and associated method employing catalytic combustion, wherein the combustor inlet temperature can be controlled to remain above the minimum required catalyst operating temperature at a wide range of operating conditions from full-load to part-load and from hot-day to cold-day conditions. The fuel is passed through the compressor along with the air and a portion of the exhaust gases from the turbine. The recirculated exhaust gas flow rate is controlled to control combustor inlet temperature.

Description

RECUPERATED GAS TURBINE ENGINE SYSTEM AND METHOD
EMPLOYING CATALYTIC COMBUSTION
FIELD OF THE INVENTION
The invention relates to recuperated gas turbine engine systems in which catalytic combustion is employed.
BACKGROUND OF THE INVENTION
The use of catalytic processes for combustion or oxidation is a well-known method for potentially reducing levels of nitrogen oxides (NOX) emissions from gas turbine engine systems. There are various processes for converting the chemical energy in a fuel to heat energy in the products of the conversion.
The primary processes are: 1) gas phase combustion, 2) catalytic combustion, and 3) catalytic oxidation. There are also combinations of these processes, such as processes having a first stage of catalytic oxidation followed by a gas phase combustion process (often referred to as cata-thermal). In catalytic oxidation, an air-fuel mixture is oxidized in the presence of a catalyst. In all catalytic processes the catalyst allows the temperature at which oxidation takes place to be reduced relative to non-catalytic combustion temperatures. Lower oxidation temperature leads to reduced NOX production. In catalytic oxidation all reactions talce place on the catalytic surface; there are no local high temperatures and therefore the lowest possible potential for NOX to be formed. In either catalytic combustion or catathermal combustion, some part of the reaction takes place in the gas phase, which increases local temperatures and leads to higher potential for NOX being formed. Using catalytic oxidation, NOX levels less than one part per million can be achieved under optimum catalytic oxidation conditions; such low levels in general AttyDktNo 046633/280750 cannot be achieved with conventional non-catalytic combustors, catalytic combustion, or cata-thermal combustion. In the present application, the term "catalytic combustor" is used to refer to any combustor utilizing catalysis, preferably one utilizing catalytic oxidation.
The catalyst employed in a catalytic combustor tends to operate best under certain temperature conditions. In particular, there is typically a minimum temperature below which a given catalyst will not function. For instance, palladium catalyst requires a combustor inlet temperature for the air-fuel mixture higher than 800 K when natural gas is the fuel. In addition, catalytic oxidation has the disadvantage that the physical reaction surface which must be supplied for complete oxidation of the hydrocarbon fttel increases exponentially with decreasing combustor inlet temperatures, which greatly increases the cost of the combustor and complicates the overall design. The need for a relatively high combustor inlet temperature is one of the chief reasons why catalytic combustion in general, and catalytic oxidation in particular, has not achieved widespread use in gas turbine engine systems. More specifically, such high combustor inlet temperatures generally cannot be achieved in gas turbines operating with compressor pressure ratios less than about 40 unless a recuperated cycle is employed. In a recuperated cycle, the air-fuel mixture is pre-heated, prior to combustion, by heat exchange with the turbine exhaust gases. Recuperation thus can help achieve the needed combustor inlet temperature for proper catalyst operation, at least under some conditions. However, there are often other operating conditions that will be encountered at which the minimum required combustor inlet temperature still cannot be achieved even with recuperation.
For instance, when recuperation is applied in small gas turbines, material temperature limitations in the recuperator can limit the maximum air or air-fuel mixture temperature. As an example, with conventional high-temperature materials in the recuperator, the maximum safe operating temperature of the recuperator may be about 900 K, and hence an air-fuel mixture temperature of about 800 to 850 K is about the highest that can be achieved. This temperature range is higher than the minimum catalyst operating temperature for some types of AttyDktNo 046633/280750 catalysts and therefore the catalytic combustor may operate properly at one particular operating condition such as 100 percent load and standard-day ambient conditions. At other operating conditions, however, such as part-load and/or cold ambient conditions, the combustor inlet temperature may fall below the minimum.
It would be desirable to be able to overcome such problems so that the low-NOX potential of catalytic oxidation could be realized in small gas turbine engine systems. Additionally, there are other benefits that can be achieved with catalytic processes. These processes extend the operating flammability limits of gaseous hydrocarbon fuels, including but not limited to landfill gases, anaerobic digester gases, natural gas, and methane. Thus, the process can take place at much more dilute (leaner) fuel/air ratios than conventional combustion. This allows the fuel gas to be mixed with the air prior to or during the compression process, resulting in a uniform fuel-air mixture entering the combustor. This in turn allows the elimination of a fuel gas compressor, which is very costly particularly for small gas turbines. Fuel gas compressors may add $60/kW or more to the cost of the engine, which is typically in the range of $600 - $900/kW. Furthermore, the fuel gas compressor detracts from the reliability and availability of the engine, since it must operate in order for the engine to operate, and adds to the cost of maintenance because of oil, filters, mechanical or electrical wear out, and the like.
SUMMARY OF THE INVENTION
The present invention addresses the above needs and achieves other advantages, by providing a recuperated gas turbine engine system and associated method employing catalytic oxidation or combustion or cata-thermal combustion, wherein the combustor inlet temperature can be controlled to remain above the minimum required catalyst operating temperature, and further optimized as a function of fuel/air ratio, at a wide range of operating conditions from full-load to part-load and from hot-day to cold-day conditions.
In accordance with a method aspect of the invention, a method for operating a gas turbine engine comprises steps of compressing air in a compressor, mixing fuel with compressed air from the compressor to produce an air-fuel AttyDktNo 046633/280750 mixture, burning the air-fuel mixture in a catalytic combustor to produce hot combustion gases, expanding the combustion gases in a turbine to produce mechanical power and using the mechanical power to drive the compressor, and passing exhaust gases from the turbine through a recuperator in which the air-fuel mixture is pre-heated by heat exchange with the exhaust gases. The method includes the further step of directing a portion of exhaust gases from the turbine into the compressor. The fuel is also passed through the compressor along with the air and the portion of exhaust gases. The recirculation of the exhaust gas raises the inlet temperature to the combustor above what it would be without the exhaust gas recirculation. TJltimately what enters the combustor is a mixture of the air, fuel, and exhaust gases optimized to meet power output, maximize efficiency, and minimize air pollution.
The mixing of the air, fuel, and exhaust gases can be accomplished in various ways. In one embodiment, mixing of the exhaust gases with the fuel is accomplished upstream of the compressor, and the mixed exhaust gases and fuel are directed into the compressor separately from the air. Alternatively, at least some mixing of the fuel with the air can be accomplished upstream of the compressor, and the mixed fuel and air can be directed into the compressor separately from the exhaust gases. As yet another alternative, the air, fuel, and exhaust gases are directed into the compressor separately from one another and mixing takes place in the compressor or pas ages associated with the compressor and other components.
In accordance with the invention, the flow rate of the exhaust gases directed into the compressor is controlled in response to one or more parameters associated with the engine, at least one of which is the fuel/air ratio. For instance, the controlling step can comprise controlling the flow rate in response to a measured combustor inlet temperature so as to maintain the combustor inlet temperature higher than a predetermined minimum temperature necessary for proper operation of the catalytic combustor at that fuel/air ratio. In this manner, the flow rate of the exhausts gases into the compressor can be optimized to compensate for changes in ambient temperature and/or relative engine load.

AttyDktNo 046633/280750 The portion of exhaust gases directed into the compressor can be separated from the remainder of the exhaust gases at a point downstream of the recuperator.
In this case, the recirculated exhaust gases will be reduced in temperature by their passage through the recuperator. Alternatively, the portion of exhaust gases directed into the compressor can be separated from the remainder of the exhaust gases at a point upstream of the recuperator such that the recirculated exhaust gases bypass the recuperator. In such an arrangement, the temperature of the recirculated exhaust gases fed to the compressor will be higher and therefore the recirculated exhaust gas flow rate can be lower than in the previously described arrangement.
A recuperated gas turbine engine system employing catalytic combustion in accordance with the invention comprises a compressor arranged to receive air and to compress the air, a fuel system operable to supply fuel into the compressor such that a mixture of compressed air and fuel is discharged from the compressor, a catalytic combustor operable to combust the mixture to produce hot combustion gases, a turbine arranged to receive the combustion gases and expand the gases to produce mechanical power that drives the compressor, a recuperator arranged to receive exhaust gases from the turbine and the mixture discharged from the compressor and cause heat exchange therebetween such that the mixture is pre-heated before entering the catalytic combustor, and a recirculation system operable to direct a portion of turbine exhaust gases into the compressor, such that the mixture discharged from the compressor is raised in temperature by the exhaust gases, whereby an inlet temperature to the catalytic combustor is raised.
The recirculation system can include a valve that is controllable to variably adjust a flow rate of the exhaust gases into the compressor, and a control system operably connected to the valve. Sensors operable to measure parameters indicative of fuel/air ratio and combustor inlet temperature can be connected to the control system, and the control system can be operable to control the valve in a manner to cause the combustor inlet temperature to exceed a predetermined minimum temperature necessary for proper operation of the catalytic combustor and to match an optimal temperature for the measured fuel/air ratio. As noted, the valve can be upstream or downstream of the recuperator.

AttyDktNo 046633/280750 The recuperated engine system in accordance with the invention has utility in various applications, including small electrical power generation systems.
Thus, an electrical generator can be arranged to be driven by the turbine.
The system is not limited to single-spool turbine engines, but can also be applied to multiple-spool engines or ganged systems of single-spool engines.
The benefits of the present system and method will be greatest for catalytic oxidation processes, but all processes employing catalysis will benefit.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAW1NG(S) Having thus described the invention in general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
FIG. 1 is a diagrammatic depiction of a turbine engine system in accordance with the prior art;
FIG. 2 is a diagrammatic depiction of a turbine engine system in accordance with a first embodiment of the invention;
FIG. 3 is a diagrammatic depiction of a turbine engine system in accordance with a second embodiment of the invention;
FIG. 4 is a graph showing model calculations of turbine inlet temperature, combustor inlet temperature, efficiency, and compressor inlet temperature as a function of relative load, for both a prior-art turbine engine system without exhaust gas mixing at the compressor inlet, and a turbine engine system in accordance with the invention having exhaust gas mixing at the compressor inlet;
FIG. SA depicts another embodiment of the invention in which fuel and exhaust gas are mixed and fed into the compressor separate from the air, such that mixing with air takes place entirely in the compressor;

AttyDktNo 046633/280750 FIG. SB shows a further embodiment in which the air and fuel are mixed before being fed into the compressor, and the exhaust gas is separately fed into the compressor; and FIG. SC shows yet another embodiment in which the air, fuel, and exhaust gas are all separately fed into the compressor where they are mixed.
DETAILED DESCRIPTION OF THE INVENTION
The present inventions now will be described more fully hereinafter with reference to the accompanying drawings, in which some, but not all embodiments of the invention are shown. Indeed, these inventions may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Like numbers refer to like elements throughout.
A prior-art electrical generation system 10 driven by a recuperated gas turbine engine with catalytic combustion is shown in FIG. 1. The system includes a gas turbine engine 12 comprising a compressor 14 and a turbine 16 connected by a shaft 18 so as to drive the compressor, and a catalytic combustor 20. The system , also includes a heat exchanger or recuperator 22 having one or more passages for compressor discharge fluid, arranged in heat-transfer relationship with one or more passages 26 for turbine exhaust gas. The system further includes an arrangement 28 for bringing together and mixing air and fuel and feeding the mixture into the compressor 14.
The compressed air-fuel mixture is pre-heated in the recuperator 22 and is then fed into the catalytic combustor 20 where combustion takes place. The hot combustion gases are led from the combustor into the turbine 16, which expands the hot gases to produce mechanical power, which power is transmitted by the shaft 18 to the compressor 16. Also linked to the shaft is an electrical generator 30, which is driven to produce electrical current for supply to a load.
AttyDktNo 046633/280750 In a system such as shown in FIG. 1, it is possible to design the engine components such that at relatively high engine loads and standard-day conditions, the temperature of the air-fuel mixture fed into the catalytic combustor 20 is at or above the catalyst minimum temperature required for proper operation of the catalytic reaction. The most widely used palladium catalyst requires a combustor inlet temperature of at least 800 K. At low loads and/or cold ambient conditions, however, the combustor inlet temperature can fall below the catalyst minimum.
See the dashed lines in FIG. 4, representing model calculations of various thermodynamic variables as a function of relative load, for the prior-art type of cycle shown in FIG. 1. At a 100% load condition, the combustor inlet temperature is about 850 K, but drops to the catalyst minimum of 800 K at about 80% load.
At still lower loads, the combustor inlet temperature is too low to support proper operation of the catalytic combustor.
The present invention provides a gas turbine engine system and method that overcome this problem. FIG. 2 shows an electrical generator system driven by a turbine engine system in accordance with a first embodiment of the invention.
A
generator 30 is driven by a turbine engine 12 having a compressor 14, turbine 16, shaft 18, and catalytic combustor 20 as previously described. A recuperator 22 is employed for pre-heating the air-fuel mixture before its introduction into the combustor, as previously described.
However, the combustor inlet temperature is regulated by the introduction of a portion of the turbine exhaust gas into the compressor. The exhaust gas has a substantially higher temperature than the ambient air entering the compressor, and therefore serves to boost the temperature of the fluid passing through the compressor, which in turn boosts the combustor inlet temperature.
Thus, the system includes an actuatable valve 40 disposed downstream of the recuperator 22 for diverting a portion of the turbine exhaust gas through a line 42 to a mixer 44. The mixer 44 also receives at least two of air, fuel, and exhaust and mixes at least two of the three constituents at least partially. The mixture is then fed into the compressor 14, where further mixing may occur. Any third unmixed stream may be introduced into the compressor simultaneously with the _g_ AriyDktNo 046633/280750 other two and mixed therein or in subsequent passages before reaching the recuperator.
The valve 40 is operable to selectively vary the amount of turbine exhaust gas delivered through the line 42 to the mixer 44. Additionally, the valve is controllable by a control system 50 (which maybe a PC, a PLC, a neural network, or the like) that is responsive to a temperature signal from a temperature sensor 52 arranged for detecting the combustor inlet temperature. The control system can also be responsive to an airflow signal from an airflow sensor 54 arranged for detecting the air flow rate, and a fuel flow signal from a fuel flow sensor 56 arranged for detecting fuel flow rate. ~ Sensors 58 for detecting emissions, particularly unburned hydrocarbons, can also be arranged in the exhaust duct after the recuperator, if desired, and the measured emissions can be taken into account by the control system. Alternatively, the emissions may be calculated from the combustor inlet temperature and fuel/air ratio using models determined from theory and engine testing. Additionally, a sensor 60 for measuring recuperator inlet temperature can also be employed. Although the connecting lines between the sensors 54, 56, 58, and 60 and the control system 50 are not shown in FIGS. 2 and 3, it will be u~.zderstood that these sensors are connected to the control system.
The control system is suitably programmed to control the operation of the valve 40 so as to regulate the combustor inlet temperature as desired. In particular, the control system preferably includes logic for open-loop or closed-loop control of the valve 40 in such a manner that the combustor inlet temperature always equals or exceeds a predetermined minimum temperature necessary for proper catalytic reaction in the combustor. Advantageously, the control is also carried out so that the recuperator inlet temperature does not exceed the maximum allowable recuperator inlet temperature, preferably while simultaneously minimizing emissions (or maintaining them below desired limits) and maximizing efficiency.
Generally, as load drops, the proportion of turbine exhaust gas that must be fed back into the compressor will increase so as to maintain combustor inlet temperature above the predetermined minimum level.

AttyDktNo 046633/280750 The effect of exhaust gas mixing with the air and fuel is shown in solid lines on FIG. 4. As load drops, the compressor inlet temperature increases, reflecting the greater and greater proportion of exhaust gas being recirculated to the compressor. As a result, the combustor inlet temperature is maintained above 800 K for all load conditions. At the same time, in preferred embodiments, the recuperator inlet temperature is prevented from exceeding its maximum allowable value at all operating conditions, and the efficiency of the engine is optimized, via simultaneous control of the recirculated exhaust gas flow rate and fuel/air ratio.
It will be appreciated that the same system and method can compensate for changing ambient temperature. Thus, as ambient temperature decreases, the proportion of recirculated exhaust gas can be increased, if necessary, to maintain the needed combustor inlet temperature. The combined effects of changing load and ambient temperature can also be compensated for by the system and method of the invention.
FIG. 3 shows a second embodiment of the invention, generally similar to that of FIG. 2, except the valve 40 is located upstream of the recuperator 22 instead of downstream. The line 42 thus bypasses the recuperator, so the exhaust gas is not cooled in the recuperator before being recirculated. Because the temperature of the recirculated exhaust gas is higher, the relative proportion of exhaust gas that must be recirculated is lower than for the embodiment of FIG. 2, all other factors being equal. In other respects, the operation of this system is the same as that of FIG. 2.
The manner in which the exhaust gas is recirculated and mixed with the air and fuel can be varied in the practice of the invention. FIGS. SA-C show several possibilities, although they are not exhaustive, and other variations can be used.
All of these examples are based on the valve 40 being downstream of the recuperator 22, but they apply equally to systems in which the valve is upstream of the recuperator. In the embodiment of FIG. SA, the recirculated exhaust gas is mixed with fuel in the mixer 44, and ,the resulting mixture is fed into the compressor 14 separately from the air. This arrangement may be advantageous AttyDktNo 046633/280750 when the fuel is initially in liquid form (e.g., propane) in that the hot exhaust gas will vaporize at least part of the fuel before it is fed into the compressor.
In the arrangement of FIG. SB, air and fuel are mixed in the mixer 44 and the resulting mixture is fed into the compressor. The exhaust gas from the line 42 is fed into the compressor separately, and mixing with the air and fuel occurs in the compressor.
Yet another possibility is shown in FIG. SC, where the air, fuel, and exhaust gas are all fed separately into the compressor, and mixing between all three occurs in the compressor.
Many modifications and other embodiments of the inventions set forth herein will come to mind to one skilled in the art to which these inventions pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the inventions are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims.
Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.

AtiyDktNo 046633/280750

Claims (33)

1. A recuperated gas turbine engine system employing catalytic combustion, comprising:
a compressor arranged to receive air and to compress the air;
a fuel system operable to supply fuel into the compressor, such that a mixture of compressed air and fuel is discharged from the compressor;
a catalytic combustor operable to combust the mixture to produce hot combustion gases;
a turbine arranged to receive the combustion gases and expand the gases to produce mechanical power that drives the compressor;
a recuperator arranged to receive exhaust gases from the turbine and the mixture discharged from the compressor and cause heat exchange therebetween such that the mixture is pre-heated before entering the catalytic combustor;
and a system operable to direct a portion of turbine exhaust gases into the compressor, such that the mixture discharged from the compressor is raised in temperature by said exhaust gases, whereby an inlet temperature to the catalytic combustor is raised.
2. The recuperated gas turbine engine system of claim 1, wherein the system operable to direct a portion of turbine exhaust gases into the compressor includes a valve that is controllable to variably adjust a flow rate of the exhaust gases into the compressor, and a control system operably connected to the valve.
3. The recuperated gas turbine engine system of claim 2, wherein the control system includes a sensor operable to measure a parameter indicative of combustor inlet temperature, the control system being operable to control the valve in a manner to cause the combustor inlet temperature to exceed a predetermined minimum temperature necessary for proper operation of the catalytic combustor.
4. The recuperated gas turbine engine system of claim 3, wherein the control system further comprises a sensor operable to measure air flow rate and a sensor operable to measure fuel flow rate, and a sensor operable to measure recuperator inlet temperature, the control system operable to determine fuel/air ratio of the mixture entering the combustor based on the flow rates of air, fuel, and exhaust gases, and to control the flow rate of exhaust gases into the compressor so as to optimize the combustor inlet temperature for said fuel/air ratio in such a manner that a maximum allowable recuperator temperature is not exceeded.
5. The recuperated gas turbine engine system of claim 4, wherein the control system is further operable to control the combustor inlet temperature for said fuel/air ratio in such a manner that an efficiency of the engine is maximized.
6. The recuperated gas turbine engine system of claim 5, further comprising means for determining a level of emissions from the engine, and wherein the control system is operable to control the combustor inlet temperature for said fuel/air ratio in such a manner that a maximum allowable emissions limit is not exceeded.
7. The recuperated gas turbine engine system of claim 6, wherein the means for determining a level of emissions comprises an emissions sensor.
8. The recuperated gas turbine engine system of claim 5, further comprising means for determining a level of emissions from the engine, and wherein the control system is operable to control the combustor inlet temperature for said fuel/air ratio in such a manner that emissions are minimized.
9. The recuperated gas turbine engine system of claim 2, wherein the valve is located downstream of the recuperator such that the exhaust gases are cooled in the recuperator before being directed into the compressor.
10. The recuperated gas turbine engine system of claim 2, wherein the valve is located upstream of the recuperator such that the portion of exhaust gas bypasses the recuperator and is then directed into the compressor.
11. The recuperated gas turbine engine system of claim 1, further comprising an electrical generator arranged to be driven by the turbine.
12. A method for operating a gas turbine engine, comprising the steps of:
compressing air in a compressor;

mixing fuel with compressed air from the compressor to produce an air-fuel mixture;
burning the air-fuel mixture in a catalytic combustor to produce hot combustion gases;
expanding the combustion gases in a turbine to produce mechanical power, and using the mechanical power to drive the compressor;
passing exhaust gases from the turbine through a recuperator and passing the air-fuel mixture through the recuperator to pre-heat the mixture by heat exchange with the exhaust gases;
directing a portion of exhaust gases from the turbine into the compressor to raise an inlet temperature to the combustor; and wherein the fuel is passed through the compressor along with the air and the portion of exhaust gases.
13. The method of claim 12, wherein mixing of the exhaust gases with the fuel is accomplished upstream of the compressor.
14. The method of claim 13, wherein the mixed exhaust gases and fuel are directed into the compressor separately from the air.
15. The method of claim 12, wherein at least some mixing of the fuel with the air is accomplished upstream of the compressor.
16. The method of claim 15, wherein the mixed fuel and air are directed into the compressor separately from the exhaust gases.
17. The method of claim 12, wherein the air, fuel, and exhaust gases are directed into the compressor separately from one another and mixing takes place in the compressor.
18. The method of claim 12, further comprising the step of controlling a flow rate of the exhaust gases directed into the compressor.
19. The method of claim 18, wherein the controlling step comprises controlling the flow rate in response to a parameter associated with the engine.
20. The method of claim 19, wherein the controlling step comprises controlling the flow rate in response to a measured combustor inlet temperature.
21. The method of claim 20, wherein the flow rate is controlled so as to always maintain the combustor inlet temperature higher than a predetermined minimum temperature necessary for proper operation of the catalytic combustor.
22. The method of claim 21, further comprising the step of deducing fuel/air ratio of the mixture entering the combustor, and controlling the combustor inlet temperature so as to optimize the combustor inlet temperature for said fuel/air ratio in such a manner that at all times a maximum allowable recuperator temperature is not exceeded.
23. The method of claim 21, further comprising the step of deducing fuel/air ratio of the mixture entering the combustor, and controlling the combustor inlet temperature so as to optimize the combustor inlet temperature for said fuel/air ratio in such a manner that a maximum allowable emissions limit is not exceeded.
24. The method of claim 23, further comprising the step of deducing fuel/air ratio of the mixture entering the combustor, and controlling the combustor inlet temperature so as to optimize the combustor inlet temperature for said fuel/air ratio in such a manner that an efficiency of the engine is maximized.
25. The method of claim 21, further comprising the step of deducing fuel/air ratio of the mixture entering the combustor, and controlling the combustor inlet temperature so as to optimize the combustor inlet temperature for said fuel/air ratio in such a manner that emissions are minimized.
26. The method of claim 25, further comprising the step of deducing fuel/air ratio of the mixture entering the combustor, and controlling the combustor inlet temperature so as to optimize the combustor inlet temperature for said fuel/air ratio in such a manner that efficiency is maximized.
27. The method of claim 19, wherein the controlling step comprises controlling the flow rate to compensate for changes in ambient temperature.
28. The method of claim 27, wherein a relative portion of the exhaust gases directed into the compressor is increased when there is a decrease in ambient temperature.
29. The method of claim 19, wherein the controlling step comprises controlling the flow rate to compensate for changes in relative engine load.
30. The method of claim 29, wherein a relative proportion of the exhaust gases directed into the compressor is increased when there is a decrease in relative engine load.
31. The method of claim 12, wherein the portion of exhaust gases directed into the compressor is separated from the remainder of the exhaust gases at a point downstream of the recuperator.
32. The method of claim 12, wherein the portion of exhaust gases directed into the compressor is separated from the remainder of the exhaust gases at a point upstream of the recuperator such that said portion bypasses the recuperator.
33. The method of claim 12, further comprising the step of driving an electrical generator with the turbine.
CA002534429A 2003-07-31 2004-07-23 Recuperated gas turbine engine system and method employing catalytic combustion Abandoned CA2534429A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/631,977 US7007487B2 (en) 2003-07-31 2003-07-31 Recuperated gas turbine engine system and method employing catalytic combustion
US10/631,977 2003-07-31
PCT/US2004/023589 WO2005012793A1 (en) 2003-07-31 2004-07-23 Recuperated gas turbine engine system and method employing catalytic combustion

Publications (1)

Publication Number Publication Date
CA2534429A1 true CA2534429A1 (en) 2005-02-10

Family

ID=34104237

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002534429A Abandoned CA2534429A1 (en) 2003-07-31 2004-07-23 Recuperated gas turbine engine system and method employing catalytic combustion

Country Status (8)

Country Link
US (1) US7007487B2 (en)
EP (1) EP1658464A1 (en)
JP (1) JP2007500815A (en)
KR (1) KR20060125677A (en)
CN (1) CN100432536C (en)
CA (1) CA2534429A1 (en)
RU (1) RU2347143C2 (en)
WO (1) WO2005012793A1 (en)

Families Citing this family (189)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003036064A1 (en) * 2001-10-26 2003-05-01 Alstom Technology Ltd Gas turbine_adapted to operatoe with a high exhaust gas recirculation rate and a method for operation thereof
EP1512855A1 (en) * 2003-09-04 2005-03-09 ALSTOM Technology Ltd Power plant and method for operation
WO2006101987A2 (en) * 2005-03-17 2006-09-28 Southwest Research Institute Use of recirculated exhaust gas in a burner-based exhaust generation system for reduced fuel consumption and for cooling
US20060219227A1 (en) * 2005-04-05 2006-10-05 Eric Ingersoll Toroidal intersecting vane supercharger
US7765810B2 (en) * 2005-11-15 2010-08-03 Precision Combustion, Inc. Method for obtaining ultra-low NOx emissions from gas turbines operating at high turbine inlet temperatures
US20080078178A1 (en) * 2006-07-20 2008-04-03 Jay Johnson Use of exhaust in thermal devices
US7997077B2 (en) * 2006-11-06 2011-08-16 Harlequin Motor Works, Inc. Energy retriever system
CN100422639C (en) * 2006-12-08 2008-10-01 北京建筑工程学院 Control system for catalytic combustion
GB2446810C (en) * 2007-02-22 2016-01-20 Bowman Power Group Ltd An auxiliary power generation apparatus
US8671658B2 (en) * 2007-10-23 2014-03-18 Ener-Core Power, Inc. Oxidizing fuel
US8393160B2 (en) 2007-10-23 2013-03-12 Flex Power Generation, Inc. Managing leaks in a gas turbine system
US8056318B2 (en) * 2007-11-08 2011-11-15 General Electric Company System for reducing the sulfur oxides emissions generated by a turbomachine
US8572944B2 (en) * 2007-12-19 2013-11-05 General Electric Company Prime mover for an exhaust gas recirculation system
WO2009082275A1 (en) * 2007-12-20 2009-07-02 Volvo Aero Corporation A gas turbine engine
CN104098070B (en) * 2008-03-28 2016-04-13 埃克森美孚上游研究公司 Low emission power generation and hydrocarbon recovery system and method
CN101981272B (en) 2008-03-28 2014-06-11 埃克森美孚上游研究公司 Low emission power generation and hydrocarbon recovery systems and methods
US7997076B2 (en) * 2008-03-31 2011-08-16 Cummins, Inc. Rankine cycle load limiting through use of a recuperator bypass
DE102008021450A1 (en) * 2008-04-29 2009-11-05 Rolls-Royce Deutschland Ltd & Co Kg Thermoelectric generator with concentration element
US7866157B2 (en) 2008-05-12 2011-01-11 Cummins Inc. Waste heat recovery system with constant power output
US8397482B2 (en) * 2008-05-15 2013-03-19 General Electric Company Dry 3-way catalytic reduction of gas turbine NOx
US8015793B2 (en) * 2008-07-18 2011-09-13 Siemens Energy, Inc. Fuel heating via exhaust gas extraction
KR101369102B1 (en) * 2008-10-01 2014-02-28 미츠비시 쥬고교 가부시키가이샤 Gas turbine device
EA026915B1 (en) 2008-10-14 2017-05-31 Эксонмобил Апстрим Рисерч Компани Methods and systems for controlling the products of combustion
US8534073B2 (en) 2008-10-27 2013-09-17 General Electric Company System and method for heating a fuel using an exhaust gas recirculation system
US7926256B2 (en) * 2008-10-27 2011-04-19 General Electric Company Inlet system for an EGR system
US8701413B2 (en) 2008-12-08 2014-04-22 Ener-Core Power, Inc. Oxidizing fuel in multiple operating modes
EP2248999A1 (en) * 2008-12-24 2010-11-10 Alstom Technology Ltd Power plant with CO2 capture
CH700310A1 (en) * 2009-01-23 2010-07-30 Alstom Technology Ltd Processes for CO2 capture from a combined cycle power plant and combined cycle power plant with a gas turbine with flow separation and recirculation.
US20100326084A1 (en) * 2009-03-04 2010-12-30 Anderson Roger E Methods of oxy-combustion power generation using low heating value fuel
US20100275611A1 (en) * 2009-05-01 2010-11-04 Edan Prabhu Distributing Fuel Flow in a Reaction Chamber
US8621869B2 (en) 2009-05-01 2014-01-07 Ener-Core Power, Inc. Heating a reaction chamber
US8510013B2 (en) * 2009-05-04 2013-08-13 General Electric Company Gas turbine shutdown
US9354618B2 (en) 2009-05-08 2016-05-31 Gas Turbine Efficiency Sweden Ab Automated tuning of multiple fuel gas turbine combustion systems
US9267443B2 (en) 2009-05-08 2016-02-23 Gas Turbine Efficiency Sweden Ab Automated tuning of gas turbine combustion systems
US8437941B2 (en) 2009-05-08 2013-05-07 Gas Turbine Efficiency Sweden Ab Automated tuning of gas turbine combustion systems
US9671797B2 (en) 2009-05-08 2017-06-06 Gas Turbine Efficiency Sweden Ab Optimization of gas turbine combustion systems low load performance on simple cycle and heat recovery steam generator applications
EP2438281B1 (en) 2009-06-05 2016-11-02 Exxonmobil Upstream Research Company Combustor system
US8544274B2 (en) * 2009-07-23 2013-10-01 Cummins Intellectual Properties, Inc. Energy recovery system using an organic rankine cycle
US8627663B2 (en) * 2009-09-02 2014-01-14 Cummins Intellectual Properties, Inc. Energy recovery system and method using an organic rankine cycle with condenser pressure regulation
JP5920727B2 (en) 2009-11-12 2016-05-18 エクソンモービル アップストリーム リサーチ カンパニー Low emission power generation and hydrocarbon recovery system and method
EP2547888A4 (en) 2010-03-15 2016-03-16 Ener Core Power Inc Processing fuel and water
DE102011102720B4 (en) * 2010-05-26 2021-10-28 Ansaldo Energia Switzerland AG Combined cycle power plant with exhaust gas recirculation
CH703218A1 (en) * 2010-05-26 2011-11-30 Alstom Technology Ltd Method of operating a combined cycle with flue gas recirculation and power plant.
US20110302925A1 (en) * 2010-06-14 2011-12-15 Vykson Limited Method and Apparatus for Controlling the Operation of a Gas Turbine
AU2011271633B2 (en) * 2010-07-02 2015-06-11 Exxonmobil Upstream Research Company Low emission triple-cycle power generation systems and methods
PL2588727T3 (en) 2010-07-02 2019-05-31 Exxonmobil Upstream Res Co Stoichiometric combustion with exhaust gas recirculation and direct contact cooler
MY156099A (en) 2010-07-02 2016-01-15 Exxonmobil Upstream Res Co Systems and methods for controlling combustion of a fuel
AU2011271635B2 (en) 2010-07-02 2015-10-08 Exxonmobil Upstream Research Company Stoichiometric combustion of enriched air with exhaust gas recirculation
MY165945A (en) 2010-07-02 2018-05-18 Exxonmobil Upstream Res Co Low emission power generation systems and methods
WO2012019161A1 (en) 2010-08-05 2012-02-09 Cummins Intellectual Properties, Inc. Emissions-critical charge cooling using an organic rankine cycle
WO2012018458A1 (en) 2010-08-06 2012-02-09 Exxonmobil Upstream Research Company System and method for exhaust gas extraction
CA2805089C (en) 2010-08-06 2018-04-03 Exxonmobil Upstream Research Company Systems and methods for optimizing stoichiometric combustion
CN103180553B (en) 2010-08-09 2015-11-25 康明斯知识产权公司 Comprise Waste Heat Recovery System (WHRS) and the internal-combustion engine system of rankine cycle RC subtense angle
WO2012021757A2 (en) 2010-08-11 2012-02-16 Cummins Intellectual Property, Inc. Split radiator design for heat rejection optimization for a waste heat recovery system
US8683801B2 (en) 2010-08-13 2014-04-01 Cummins Intellectual Properties, Inc. Rankine cycle condenser pressure control using an energy conversion device bypass valve
WO2012088532A1 (en) 2010-12-23 2012-06-28 Cummins Intellectual Property, Inc. System and method for regulating egr cooling using a rankine cycle
US8826662B2 (en) 2010-12-23 2014-09-09 Cummins Intellectual Property, Inc. Rankine cycle system and method
DE102012000100A1 (en) 2011-01-06 2012-07-12 Cummins Intellectual Property, Inc. Rankine cycle-HEAT USE SYSTEM
WO2012096958A1 (en) 2011-01-10 2012-07-19 Cummins Intellectual Property, Inc. Rankine cycle waste heat recovery system
US9074530B2 (en) * 2011-01-13 2015-07-07 General Electric Company Stoichiometric exhaust gas recirculation and related combustion control
EP3214296B1 (en) 2011-01-20 2018-09-12 Cummins Intellectual Properties, Inc. Rankine cycle waste heat recovery system and method with improved egr temperature control
US8707914B2 (en) 2011-02-28 2014-04-29 Cummins Intellectual Property, Inc. Engine having integrated waste heat recovery
TWI564474B (en) 2011-03-22 2017-01-01 艾克頌美孚上游研究公司 Integrated systems for controlling stoichiometric combustion in turbine systems and methods of generating power using the same
TWI563166B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Integrated generation systems and methods for generating power
TWI563165B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Power generation system and method for generating power
TWI563164B (en) * 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Integrated systems incorporating inlet compressor oxidant control apparatus and related methods of generating power
TWI593872B (en) 2011-03-22 2017-08-01 艾克頌美孚上游研究公司 Integrated system and methods of generating power
US9057028B2 (en) 2011-05-25 2015-06-16 Ener-Core Power, Inc. Gasifier power plant and management of wastes
US8713947B2 (en) 2011-08-25 2014-05-06 General Electric Company Power plant with gas separation system
US8245493B2 (en) * 2011-08-25 2012-08-21 General Electric Company Power plant and control method
US8266883B2 (en) 2011-08-25 2012-09-18 General Electric Company Power plant start-up method and method of venting the power plant
US8347600B2 (en) 2011-08-25 2013-01-08 General Electric Company Power plant and method of operation
US8266913B2 (en) 2011-08-25 2012-09-18 General Electric Company Power plant and method of use
US8453462B2 (en) 2011-08-25 2013-06-04 General Electric Company Method of operating a stoichiometric exhaust gas recirculation power plant
US8245492B2 (en) 2011-08-25 2012-08-21 General Electric Company Power plant and method of operation
US9127598B2 (en) 2011-08-25 2015-09-08 General Electric Company Control method for stoichiometric exhaust gas recirculation power plant
US8453461B2 (en) 2011-08-25 2013-06-04 General Electric Company Power plant and method of operation
US8205455B2 (en) 2011-08-25 2012-06-26 General Electric Company Power plant and method of operation
US9273606B2 (en) 2011-11-04 2016-03-01 Ener-Core Power, Inc. Controls for multi-combustor turbine
US9279364B2 (en) 2011-11-04 2016-03-08 Ener-Core Power, Inc. Multi-combustor turbine
JP5183795B1 (en) * 2011-12-05 2013-04-17 川崎重工業株式会社 Lean fuel intake gas turbine
US9810050B2 (en) 2011-12-20 2017-11-07 Exxonmobil Upstream Research Company Enhanced coal-bed methane production
CN102562304A (en) * 2012-02-09 2012-07-11 中煤科工集团重庆研究院 Power generator of catalytic combustion gas turbine
US9353946B2 (en) 2012-03-09 2016-05-31 Ener-Core Power, Inc. Gradual oxidation with heat transfer
US8844473B2 (en) 2012-03-09 2014-09-30 Ener-Core Power, Inc. Gradual oxidation with reciprocating engine
US8671917B2 (en) 2012-03-09 2014-03-18 Ener-Core Power, Inc. Gradual oxidation with reciprocating engine
US9273608B2 (en) 2012-03-09 2016-03-01 Ener-Core Power, Inc. Gradual oxidation and autoignition temperature controls
US9359948B2 (en) 2012-03-09 2016-06-07 Ener-Core Power, Inc. Gradual oxidation with heat control
US9194584B2 (en) 2012-03-09 2015-11-24 Ener-Core Power, Inc. Gradual oxidation with gradual oxidizer warmer
US9328916B2 (en) 2012-03-09 2016-05-03 Ener-Core Power, Inc. Gradual oxidation with heat control
US9371993B2 (en) 2012-03-09 2016-06-21 Ener-Core Power, Inc. Gradual oxidation below flameout temperature
US8980193B2 (en) 2012-03-09 2015-03-17 Ener-Core Power, Inc. Gradual oxidation and multiple flow paths
US8980192B2 (en) 2012-03-09 2015-03-17 Ener-Core Power, Inc. Gradual oxidation below flameout temperature
US9381484B2 (en) 2012-03-09 2016-07-05 Ener-Core Power, Inc. Gradual oxidation with adiabatic temperature above flameout temperature
US9328660B2 (en) 2012-03-09 2016-05-03 Ener-Core Power, Inc. Gradual oxidation and multiple flow paths
US9234660B2 (en) 2012-03-09 2016-01-12 Ener-Core Power, Inc. Gradual oxidation with heat transfer
US8807989B2 (en) 2012-03-09 2014-08-19 Ener-Core Power, Inc. Staged gradual oxidation
US9347664B2 (en) 2012-03-09 2016-05-24 Ener-Core Power, Inc. Gradual oxidation with heat control
US8926917B2 (en) 2012-03-09 2015-01-06 Ener-Core Power, Inc. Gradual oxidation with adiabatic temperature above flameout temperature
US9567903B2 (en) 2012-03-09 2017-02-14 Ener-Core Power, Inc. Gradual oxidation with heat transfer
CA2866824A1 (en) * 2012-03-09 2013-09-12 Ener-Core Power, Inc. Gradual oxidation with heat transfer
US9726374B2 (en) 2012-03-09 2017-08-08 Ener-Core Power, Inc. Gradual oxidation with flue gas
US9206980B2 (en) 2012-03-09 2015-12-08 Ener-Core Power, Inc. Gradual oxidation and autoignition temperature controls
US9267432B2 (en) 2012-03-09 2016-02-23 Ener-Core Power, Inc. Staged gradual oxidation
US9534780B2 (en) 2012-03-09 2017-01-03 Ener-Core Power, Inc. Hybrid gradual oxidation
US9359947B2 (en) 2012-03-09 2016-06-07 Ener-Core Power, Inc. Gradual oxidation with heat control
US9017618B2 (en) 2012-03-09 2015-04-28 Ener-Core Power, Inc. Gradual oxidation with heat exchange media
US9068506B2 (en) 2012-03-30 2015-06-30 Pratt & Whitney Canada Corp. Turbine engine heat recuperator system
US20130269356A1 (en) * 2012-04-12 2013-10-17 General Electric Company Method and system for controlling a stoichiometric egr system on a regenerative reheat system
US9353682B2 (en) 2012-04-12 2016-05-31 General Electric Company Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation
US20130269355A1 (en) * 2012-04-12 2013-10-17 General Electric Company Method and system for controlling an extraction pressure and temperature of a stoichiometric egr system
US20130269357A1 (en) * 2012-04-12 2013-10-17 General Electric Company Method and system for controlling a secondary flow system
US20130269360A1 (en) * 2012-04-12 2013-10-17 General Electric Company Method and system for controlling a powerplant during low-load operations
US9784185B2 (en) 2012-04-26 2017-10-10 General Electric Company System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine
US10273880B2 (en) 2012-04-26 2019-04-30 General Electric Company System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine
KR101915196B1 (en) * 2012-05-18 2018-11-05 한화에어로스페이스 주식회사 Gas turbine system
US8893495B2 (en) 2012-07-16 2014-11-25 Cummins Intellectual Property, Inc. Reversible waste heat recovery system and method
US9435258B2 (en) * 2012-10-15 2016-09-06 General Electric Company System and method for heating combustor fuel
US9470145B2 (en) 2012-10-15 2016-10-18 General Electric Company System and method for heating fuel in a combined cycle gas turbine
US10215412B2 (en) 2012-11-02 2019-02-26 General Electric Company System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US9869279B2 (en) 2012-11-02 2018-01-16 General Electric Company System and method for a multi-wall turbine combustor
US10107495B2 (en) 2012-11-02 2018-10-23 General Electric Company Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent
US10161312B2 (en) 2012-11-02 2018-12-25 General Electric Company System and method for diffusion combustion with fuel-diluent mixing in a stoichiometric exhaust gas recirculation gas turbine system
US9708977B2 (en) 2012-12-28 2017-07-18 General Electric Company System and method for reheat in gas turbine with exhaust gas recirculation
US9631815B2 (en) 2012-12-28 2017-04-25 General Electric Company System and method for a turbine combustor
US9803865B2 (en) 2012-12-28 2017-10-31 General Electric Company System and method for a turbine combustor
US9599070B2 (en) 2012-11-02 2017-03-21 General Electric Company System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system
US9611756B2 (en) 2012-11-02 2017-04-04 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9574496B2 (en) 2012-12-28 2017-02-21 General Electric Company System and method for a turbine combustor
US9140209B2 (en) 2012-11-16 2015-09-22 Cummins Inc. Rankine cycle waste heat recovery system
US9188285B2 (en) * 2012-12-24 2015-11-17 General Electric Company Systems and methods for oxidation of boil-off gas
US10208677B2 (en) 2012-12-31 2019-02-19 General Electric Company Gas turbine load control system
US9581081B2 (en) 2013-01-13 2017-02-28 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9512759B2 (en) 2013-02-06 2016-12-06 General Electric Company System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation
RU2523510C1 (en) * 2013-02-19 2014-07-20 Николай Евгеньевич Староверов Method of gas turbine engine afterburning
US9938861B2 (en) 2013-02-21 2018-04-10 Exxonmobil Upstream Research Company Fuel combusting method
TW201502356A (en) 2013-02-21 2015-01-16 Exxonmobil Upstream Res Co Reducing oxygen in a gas turbine exhaust
RU2637609C2 (en) 2013-02-28 2017-12-05 Эксонмобил Апстрим Рисерч Компани System and method for turbine combustion chamber
TW201500635A (en) 2013-03-08 2015-01-01 Exxonmobil Upstream Res Co Processing exhaust for use in enhanced oil recovery
US20140250945A1 (en) 2013-03-08 2014-09-11 Richard A. Huntington Carbon Dioxide Recovery
CN105008499A (en) 2013-03-08 2015-10-28 埃克森美孚上游研究公司 Power generation and methane recovery from methane hydrates
US9618261B2 (en) 2013-03-08 2017-04-11 Exxonmobil Upstream Research Company Power generation and LNG production
US9845711B2 (en) 2013-05-24 2017-12-19 Cummins Inc. Waste heat recovery system
US9587520B2 (en) 2013-05-30 2017-03-07 General Electric Company System and method of waste heat recovery
US9593597B2 (en) 2013-05-30 2017-03-14 General Electric Company System and method of waste heat recovery
US9145795B2 (en) 2013-05-30 2015-09-29 General Electric Company System and method of waste heat recovery
US9835089B2 (en) 2013-06-28 2017-12-05 General Electric Company System and method for a fuel nozzle
US9617914B2 (en) 2013-06-28 2017-04-11 General Electric Company Systems and methods for monitoring gas turbine systems having exhaust gas recirculation
TWI654368B (en) 2013-06-28 2019-03-21 美商艾克頌美孚上游研究公司 System, method and media for controlling exhaust gas flow in an exhaust gas recirculation gas turbine system
US9631542B2 (en) 2013-06-28 2017-04-25 General Electric Company System and method for exhausting combustion gases from gas turbine engines
US9903588B2 (en) 2013-07-30 2018-02-27 General Electric Company System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation
US9587510B2 (en) 2013-07-30 2017-03-07 General Electric Company System and method for a gas turbine engine sensor
US9951658B2 (en) 2013-07-31 2018-04-24 General Electric Company System and method for an oxidant heating system
US9869495B2 (en) 2013-08-02 2018-01-16 Martin Gordon Gill Multi-cycle power generator
US9371776B2 (en) * 2013-08-20 2016-06-21 Darren Levine Dual flow air injection intraturbine engine and method of operating same
US10030588B2 (en) 2013-12-04 2018-07-24 General Electric Company Gas turbine combustor diagnostic system and method
US9752458B2 (en) 2013-12-04 2017-09-05 General Electric Company System and method for a gas turbine engine
US10227920B2 (en) 2014-01-15 2019-03-12 General Electric Company Gas turbine oxidant separation system
US9863267B2 (en) 2014-01-21 2018-01-09 General Electric Company System and method of control for a gas turbine engine
US9915200B2 (en) 2014-01-21 2018-03-13 General Electric Company System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation
US10079564B2 (en) 2014-01-27 2018-09-18 General Electric Company System and method for a stoichiometric exhaust gas recirculation gas turbine system
US10047633B2 (en) 2014-05-16 2018-08-14 General Electric Company Bearing housing
US9885290B2 (en) 2014-06-30 2018-02-06 General Electric Company Erosion suppression system and method in an exhaust gas recirculation gas turbine system
US10655542B2 (en) 2014-06-30 2020-05-19 General Electric Company Method and system for startup of gas turbine system drive trains with exhaust gas recirculation
US10060359B2 (en) 2014-06-30 2018-08-28 General Electric Company Method and system for combustion control for gas turbine system with exhaust gas recirculation
JP6384916B2 (en) * 2014-09-30 2018-09-05 東芝エネルギーシステムズ株式会社 Gas turbine equipment
MA40950A (en) * 2014-11-12 2017-09-19 8 Rivers Capital Llc SUITABLE CONTROL SYSTEMS AND PROCEDURES FOR USE WITH POWER GENERATION SYSTEMS AND PROCESSES
US9819292B2 (en) 2014-12-31 2017-11-14 General Electric Company Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine
US9869247B2 (en) 2014-12-31 2018-01-16 General Electric Company Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation
US10788212B2 (en) 2015-01-12 2020-09-29 General Electric Company System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation
US10094566B2 (en) 2015-02-04 2018-10-09 General Electric Company Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation
US10253690B2 (en) 2015-02-04 2019-04-09 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10316746B2 (en) 2015-02-04 2019-06-11 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10267270B2 (en) 2015-02-06 2019-04-23 General Electric Company Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation
US10145269B2 (en) 2015-03-04 2018-12-04 General Electric Company System and method for cooling discharge flow
US10480792B2 (en) 2015-03-06 2019-11-19 General Electric Company Fuel staging in a gas turbine engine
CN105240132B (en) * 2015-09-15 2017-05-03 广州粤能电力科技开发有限公司 Load coordinated control method and system for multiple gas turbine generator units
US10578307B2 (en) * 2015-10-09 2020-03-03 Dresser-Rand Company System and method for operating a gas turbine assembly including heating a reaction/oxidation chamber
KR102086876B1 (en) * 2015-11-27 2020-03-10 현대중공업 주식회사 Engine having Controlling Temperature of Exhaust Gas Function
CN107514306B (en) * 2016-06-16 2020-01-21 上海汽车集团股份有限公司 Engine, temperature control system and heat exchange assembly thereof
US10033316B2 (en) * 2016-09-30 2018-07-24 General Electric Company System and method for model based turbine shaft power predictor
CN106621702B (en) * 2017-03-23 2023-05-09 合肥工业大学 Organic waste gas concentration treatment device
CN107917433A (en) * 2017-11-22 2018-04-17 苏州克兰茨环境科技有限公司 A kind of Microturbine organic waste gas treatment device
US11022035B2 (en) * 2017-12-22 2021-06-01 Giovanni D'ARIENZO Cogeneration system for a boiler
EP3561269A1 (en) 2018-04-23 2019-10-30 Siemens Aktiengesellschaft Combustion system control
US11873994B2 (en) 2018-11-13 2024-01-16 Johnson Matthey Public Limited Company Electrically heated catalytic combustor
RU195793U1 (en) * 2019-11-21 2020-02-05 Хайдер Ибрагим Куса Mobile charger
CN110966059B (en) * 2019-12-04 2022-04-26 中国船舶重工集团公司第七一九研究所 Coal-fired power generation system and method
RU2766496C2 (en) * 2019-12-24 2022-03-15 Фролова Татьяна Марковна Vortex gas compressor device for combined air-jet engine

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3785145A (en) 1971-11-10 1974-01-15 Gen Motors Corp Gas turbine power plant
US3977182A (en) * 1975-06-20 1976-08-31 General Motors Corporation Gas turbine control
IT1063699B (en) 1975-09-16 1985-02-11 Westinghouse Electric Corp STARTING METHOD OF A HIGH-POWER GAS TURBINE WITH A CATALYTIC COMBUSTOR
US4204401A (en) 1976-07-19 1980-05-27 The Hydragon Corporation Turbine engine with exhaust gas recirculation
US4133171A (en) 1977-03-07 1979-01-09 Hydragon Corporation Temperature stratified turbine compressors
US4271664A (en) 1977-07-21 1981-06-09 Hydragon Corporation Turbine engine with exhaust gas recirculation
NL8001472A (en) * 1980-03-12 1981-10-01 Tno INSTALLATION FOR HEAT RECOVERY ON COMBUSTION MACHINE.
US4754607A (en) 1986-12-12 1988-07-05 Allied-Signal Inc. Power generating system
JPH05346207A (en) * 1992-06-12 1993-12-27 Honda Motor Co Ltd Catalytic combustion device
JPH06108879A (en) 1992-09-30 1994-04-19 Toyota Motor Corp Gas turbine utilizing catalyst combustor
AU681271B2 (en) * 1994-06-07 1997-08-21 Westinghouse Electric Corporation Method and apparatus for sequentially staged combustion using a catalyst
JP3030689B2 (en) * 1995-09-08 2000-04-10 本田技研工業株式会社 Gas turbine engine
US5826429A (en) 1995-12-22 1998-10-27 General Electric Co. Catalytic combustor with lean direct injection of gas fuel for low emissions combustion and methods of operation
US6065957A (en) 1996-03-21 2000-05-23 Denso Corporation Catalyst combustion apparatus
GB9611235D0 (en) 1996-05-30 1996-07-31 Rolls Royce Plc A gas turbine engine combustion chamber and a method of operation thereof
SE9602688L (en) * 1996-07-08 1998-01-09 Volvo Ab Catalytic combustion chamber, and method for igniting and controlling the catalytic combustion chamber
JPH1082306A (en) * 1996-09-06 1998-03-31 Ishikawajima Harima Heavy Ind Co Ltd Gasification compound power generating installation
JP3794168B2 (en) * 1997-06-27 2006-07-05 株式会社日立製作所 Exhaust gas recirculation combined plant
US6107693A (en) * 1997-09-19 2000-08-22 Solo Energy Corporation Self-contained energy center for producing mechanical, electrical, and heat energy
US6141953A (en) 1998-03-04 2000-11-07 Solo Energy Corporation Multi-shaft reheat turbine mechanism for generating power
US20040119291A1 (en) * 1998-04-02 2004-06-24 Capstone Turbine Corporation Method and apparatus for indirect catalytic combustor preheating
US6095793A (en) * 1998-09-18 2000-08-01 Woodward Governor Company Dynamic control system and method for catalytic combustion process and gas turbine engine utilizing same
US6205768B1 (en) 1999-05-05 2001-03-27 Solo Energy Corporation Catalytic arrangement for gas turbine combustor
US6513318B1 (en) * 2000-11-29 2003-02-04 Hybrid Power Generation Systems Llc Low emissions gas turbine engine with inlet air heating
US6606864B2 (en) 2001-02-13 2003-08-19 Robin Mackay Advanced multi pressure mode gas turbine
US6526757B2 (en) 2001-02-13 2003-03-04 Robin Mackay Multi pressure mode gas turbine
US6981360B2 (en) * 2001-04-09 2006-01-03 Hitachi, Ltd. Gas turbine power generator having humidifying and cooling means
JP3936160B2 (en) * 2001-09-17 2007-06-27 株式会社タクマ Gas turbine power generator and mixed gas combustion apparatus used therefor
CH695793A5 (en) * 2001-10-01 2006-08-31 Alstom Technology Ltd Combustion method, in particular for methods of generation of electric power and / or heat.
WO2003036064A1 (en) 2001-10-26 2003-05-01 Alstom Technology Ltd Gas turbine_adapted to operatoe with a high exhaust gas recirculation rate and a method for operation thereof

Also Published As

Publication number Publication date
KR20060125677A (en) 2006-12-06
RU2347143C2 (en) 2009-02-20
US20050022499A1 (en) 2005-02-03
US7007487B2 (en) 2006-03-07
JP2007500815A (en) 2007-01-18
CN1864032A (en) 2006-11-15
WO2005012793A1 (en) 2005-02-10
EP1658464A1 (en) 2006-05-24
RU2006106186A (en) 2006-08-27
CN100432536C (en) 2008-11-12

Similar Documents

Publication Publication Date Title
US7007487B2 (en) Recuperated gas turbine engine system and method employing catalytic combustion
US6595003B2 (en) Process and apparatus for control of NOx in catalytic combustion systems
US8240152B2 (en) Control systems and method for controlling a load point of a gas turbine engine
US5634327A (en) Method of operating a gas-turbine group
US5729967A (en) Method of operating a gas turbine on reformed fuel
US6906432B2 (en) Electrical power generation system and method
US8117823B2 (en) Method and system for increasing modified wobbe index control range
US20100175386A1 (en) Premixed partial oxidation syngas generation and gas turbine system
KR101555500B1 (en) Method for operating a gas turbine with sequential combusiton and gas turbine for conducting said method
JP2002525490A (en) Dynamic control systems and methods for catalytic combustion processes and gas turbine engines utilizing the same
US7421843B2 (en) Catalytic combustor having fuel flow control responsive to measured combustion parameters
KR20060118433A (en) Multi-spool turbogenerator system and control method
US6202402B1 (en) Gas-turbine construction
KR20150023516A (en) Method for a part load co reduction operation for a sequential gas turbine
JPH0544537B2 (en)
EP1485593A1 (en) Catalytically piloted combustion system and methods of operation
US20070256425A1 (en) Method for the operation of a gas turbo group
US9360214B2 (en) Catalytic combustion air heating system
MXPA06001199A (en) Recuperated gas turbine engine system and method employing catalytic combustion
Hoshino et al. Preliminary tests of catalytic combustion in a small gas turbine
Baird et al. Ultra low NOX using rich catalytic/lean-burn catalytic pilots: gas turbine engine test

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued