CA2530485C - Spectral coding by fluorescent semiconductor nanocrystals for document identification and security applications - Google Patents

Spectral coding by fluorescent semiconductor nanocrystals for document identification and security applications Download PDF

Info

Publication number
CA2530485C
CA2530485C CA2530485A CA2530485A CA2530485C CA 2530485 C CA2530485 C CA 2530485C CA 2530485 A CA2530485 A CA 2530485A CA 2530485 A CA2530485 A CA 2530485A CA 2530485 C CA2530485 C CA 2530485C
Authority
CA
Canada
Prior art keywords
lambda
quantum dots
intensities
emission
spectral lines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA2530485A
Other languages
French (fr)
Other versions
CA2530485A1 (en
Inventor
Shoude Chang
Ming Zhou
Chander P. Grover
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Council of Canada
Original Assignee
National Research Council of Canada
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Council of Canada filed Critical National Research Council of Canada
Publication of CA2530485A1 publication Critical patent/CA2530485A1/en
Application granted granted Critical
Publication of CA2530485C publication Critical patent/CA2530485C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/14Security printing
    • B41M3/144Security printing using fluorescent, luminescent or iridescent effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/06009Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking
    • G06K19/06046Constructional details
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/12Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation using a selected wavelength, e.g. to sense red marks and ignore blue marks

Abstract

Methods of coding and retrieving information by using the unique emission properties of the semiconductor nanocrystals (quantum dots) for the identification of valuable documents, articles and objects are described. A
carrier medium is prepared containing quantum dots selected to give the carrier medium defined fluorescent emission characteristics encoding predetermined information. The carrier medium is then applied to the object, preferably in the form of an ink.

Description

Spectral Coding by Fluorescent Semiconductor Nanocrystals For Document Identification And Security Applications This invention relates generally to the field of information encoding, and in particular to a method of encoding information in a small area, such as the corner of a document, a tiny surface of an article, and a small area of human nail for the purpose of identifications.
The most prevalent technologies for the object identification are one- or two-dimensional bar codes. Because the barcode needs space to arrange the ordered data, either in a one-dimensional bar- sequence or two-dimensional image, the barcode reader has to scan the bar-sequence or register the image. These procedures make the system bulky and complicated. In addition, the visibility of the printed pattern of a barcode is vulnerable to counterfeiting, making barcodes useless in security applications.
Multiplexed optical coding technology has been reported for bioanalytical application. In :this technology, the spectral features, namely wavelength and intensity, of fluorescence generated from multiple fluorescent substances are employed for coding information.
Organic dyes and metal complexes are commonly used as fluorescent materials in various applications. In principle, they are applicable to the proposed multiplexed spectral coding technology (e.g., using multiple wavelengths and multiple intensities).
However, they generally have inadequate adsorption and emission properties. Different exciting light wavelengths are required to excite a mix of multiple fluorescent molecules and the emission spectra are either broad or asymmetrical, making the information retrieval difficult. Among other problems encountered are also the possible interactions between two different fluorescent molecules and the immiscibility of the multiple fluorescent molecules in a common matrix material. From technical point of view, an ideal set of =
-1- =

luminescent substances should have the following properties in order to meet the multiplexed coding:
= Strong, single wavelength or mono-dispersed narrow.emission for each individual luminescent substance;
= Emission spectrum independent of the exciting light in certain range of exciting wavelength;
= Single light source for all luminescent substances;
= No interaction among different fluorescent molecules, i.e., each luminescent substance responds to the exciting light independently;
= No influence of matrix material on emission; and = Miscibility of all luminescent substances in the selected matrix materials The idea of using semiconductor nanocrystals for spectral coding of biomolecules has been proposed by Han et al. "Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules", Nature Biomtechnology, 2001, 19, 631-635.
The invention provides a hidden information carrier of tiny size that is invisible to the human eye. It potentially is of great importance for the security applications.
Since the information encoded inside the carrier is totally position-invariant, i.e. neither sequence nor pixel based, it greatly simplifies the decoder. The invention relates to the application of quantum dots and their unique spectral characteristics for document security.
According to the present invention there is provided a method of decoding information encoded by the positions and intensities of spectral lines in the emission spectrum of quantum dots in a
- 2 -carrier medium, wherein a set of codes in a code book is characterized by different combinations of said positions and intensities, comprising exciting the quantum dots in said carrier medium to initiate fluorescence, sensing the resulting emission spectrum of the quantum dots, performing a de-convolution operation to separate the spectral lines in said emission spectrum, processing the resulting data to find the positions and intensities of the spectral lines in said emission spectrum, extracting the decoded information by reference to said code book and wherein the de-convolution operation is represented by the equation E, ) = 8(2 - ) = IFT{ FT[f(A)] /
FT[p(A)J ), where 8(4 represent an impulse function, k(2i) is the intensity of a 8(4 at Ai, p(2) denotes the profile function of the spectrum of quantum dots.
In one embodiment an info-drop is made by formulating a composite (info-ink) of QDs (quantum dots), polymers and solvents based on the defined spectroscopic features and other requirements. The info-ink is then applied to the objects (by printing e.g.,) that need to be coded. If necessary, one or multiple protective layer(s) can be applied to the info-drop to prevent it from being damaged.
In accordance with another aspect of the invention there is provided a method of decoding information encoded by the emission characteristics of quantum dots in a carrier medium, comprising exciting the quantum dots in said carrier medium to initiate fluorescence; and processing the resulting emission spectra to extract said decoded information.
In accordance with yet another aspect of the invention there is provided an apparatus for decoding information encoded by the positions and intensities of spectral lines in the emission characteristics of quantum dots in a carrier medium, wherein a set of codes in a code book is characterized by different combinations of said positions and intensities, comprising a light source for exciting said quantum dots to emit light, a spectroscopic detector for sensing the
- 3 -emission spectrum of the emitted light, and a processor for extracting said encoded information from the emission characteristics of said quantum dots by performing a de-convolution operation to separate the spectral lines in said emission spectrum, processing the resulting data to find the positions and intensities of the spectral lines in said emission spectrum, extracting the decoded information by reference to said code book and wherein the de-convolution operation is represented by the equation E, lc-(2i) = 801. - Ai ) = IFT( R[f(')] / FT[p(A)]
), where 8(.) represents an impulse function, 44 is the intensity of a 80 at Ai, p(A) denotes the profile function of the spectrum of quantum dots.
Brief Description of the Drawings =
The invention will now be described in more detail, by way of example only, with reference to the accompanying drawings, in which;- -Figure 1 shows the an array of quantum dots encoding information;
Figure 2 is a simplified diagram showing a decoding system in accordance with one embodiment of the invention; and.

- 3a -
4 CA 02530485 2005-12-22 Figures 3a to 3c illustrate principle of spectral line separation.
Detailed Description of the Preferred Embodiments Recently available quantum dots (QDs) offer applicability to the multiplexed optical coding technology. QDs are semiconductor nanocrystals of 1-10 nm in size.
Materials of QDs are semiconducting materials often from the Group JIB and Group VIA in the periodic table of the elements. QDs can be made from a single compound, such as cadmium selenide (CdSe) and zinc sulfide, or from multiple compounds in a specific manner such as CdSe-ZnS core-shell. A mixture of QDs with different emission wavelength can emit the light with spectral feature that is dedicatedly designed to represent a set of data.
Since the information is coded in fluorescence spectrum, it needs a spectroscopic device rather than a scanner or camera to decode the information. In addition, its very small size and invisibility best serve the purpose of the security applications. Such a tiny, transparent information carrier, referred to by the inventor as an info-drop, can be easily applied to the surface of an object, including the passport, ID card and even a nail of human finger.
QDs are generally prepared via sophisticated solution chemical processes and stored in specific solvent to prevent the aggregation and precipitation. In order to use QDs for the spectral coding of non-biological objects such as banknotes, passports, certificates and other valuable documents, a paintable or printable QDs/polymer/solvent system (info-ink) is needed.
The commercial availability of QDs with different wavelengths provides a great number of combinations of wavelength and intensity. For example, an encoder using 6-wavelength / 10-intensity QD has a theoretical coding capacity of about one million disdimination code. The coding space can be even expanded by utilizing a third property that can be decoded (e.g., the geometry of the info-drop decoded by a CCD
camera).
In accordance with the principles of the invention, info-inks consisting of polymer, solvent, multiple QDs and other additive are prepared to make the info-drops on the objects that need to be coded. A hybrid optic-electronic-digital system is used to extract the data. The detailed description is given below.
The info-ink consists of fluorescent semiconductor nanocrystals or QDs, a polymer or blend of polymers, solvent and other additives.
QDs used in this invention are semiconducting materials, preferably but not limited to, those from selected from the Group JIB and Group VIA in the periodic table of the elements, such as cadmium selenide(CdSe), cadmium sulfide(CdS), zinc selenide(ZnS) and zinc sulfide (ZnS). For infrared emission, materials may be selected from other groups such as lead selenide (PbSe).
QDs in this invention have diameters ranging from one nanometer to one hundred nanometers. The emission of QDs can cover the whole visible range and near-infrared range (from 400 nm to 3000 urn). For the same material system, the smaller the QD, the shorter is the fluorescent wavelength. For example, CdSe QDs with a nominal diameter of 2.8 urn show the fluorescence at 535 urn, while QDs of 5.6 nm CdSe crystals have an emission centered at 640 urn. QDs of lead selenide of various diameters can emit fluorescence in the near-infrared range. QDs can be made from single semiconducting materials and from a pair of materials in the core-shell configuration. In one embodiment of the invention, the core composition can be CdSe and the shell composition can be ZnS.
- 5 -Such core-shell structured QDs have higher emission efficiency that the single composition QDs.

Polymers are used in the info-ink as a matrix material, in which the QDs with different emission wavelengths are distributed homogeneously. The polymers in the invention should not have a quenching effect on the fluorescence of the QDs. They also need to meet other requirements such as solubility in selected solvents, long-term environmental stability, good compatibility and miscibility with QDs.

Suitable examples of polymers which are employed in the invention are polystyrene(PS) and poly(methyl methacrylate)(PMMA).

Solvents used in the formulation of the info-ink include aqueous and non-aqueous solvents, preferably aqueous solvents. For example toluene can be employed as a solvent to make CdSe (mixture of different diameters)/PS info-ink. A mixture of solvents can be used to improve the properties such as solubility, viscosity, volatility, storage stability and adhesion etc.

Additives can be used in the info-ink to improve certain properties, such as viscosity and adhesion, without influencing the major fluorescent property.

An info-ink with a defined data coding is prepared by adjusting the concentration ratio of QDs with different fluorescent wavelengths. This procedure includes the following steps.

(1) Establishment of the relationship of fluorescent intensity (I) with QD
concentration (c) in a specific polymer matrix;

(2) Determination of the amounts of QDs based on the established I¨ c relationship of each individual QD;
- 6 -(3) Mixing the QDs with polymer(s), solvent and other additive if necessary.

The coded info-ink is then applied to objects to form info-drops. These info-drops with defined data coding are formed on the objects, such as, banknotes, passports and important certificates by printing, painting or other methods depending on the shape and surface conditions of the objects to be coded.

Figure 1 shows info-drops representing different codes achieved by varying the amount and type of quantum dots in the ink. For example, the code 100 is represented by a single type of quantum dot at a predetermined concentration. Code 200 is represented by the same type of quantum dot at double the concentration. Codes 010, and 001 are represented by respective different types of quantum dots. Code 111 is represented by an ink containing all three types in equal concentration.

In order to prevent the info-drop from being scratched or damaged by any way, a cover layer, may optionally be applied to the top of info-drop. The protective layer is made of a polymer material that is either the same as or different from the polymer matrix material.
An apparatus for retrieving the information hidden in an info-drop is shown in Figure 2.

An exciting light source 10 is provided by a Light Emitting Diode (LED) laser or mercury lamp, which has the broad-band in the near-UV range (330-385 nm). A bunch of optical fibers 12 guides the exciting light to an info-drop 14 bonded on the surface of an object 18, such as an ID card, to be identified. The fluorescent light emitted by the quantum dot is fed to a spectrum sensor 20 by a detecting fiber 22. The spectral data created by the sensor is further delivered to an intelligent instrument, e.g. a micro-processor or a PC, which eventually extracts the information originally coded in the info-drop.
- 7 -In order to obtain an even exciting light, the exciting fibers 13 are arranged to surround the detecting fiber 22 evenly to form a fiber optics bundle 12, as shown in Figure 2. A
rubber cup 24 is connected at the end of the fiber bundle to ensure that only the excited fluorescent light can enter the sensor.
The task of the intelligent instrument 26, typically a PC, consists of two steps.
1) Preprocessing step: removing the noise by a digital filter, and separating the spectral lines in the spectrum by a de-convolution operation.
2) Decoding step: finding the positions and intensities of all the spectral lines, and decoding the original data according to a known prior code book. .
Because the spectrum of quantum dots has a Gaussian type profile, the neighboring spectral lines may mutually affect the intensity of each other, i.e. introduce spectral alias, as shown in Figure 3a. This effect will eventually result in a decoding error.
A spectrum function of quantum dots can be described as f(%) = 4 k(2i) = 5(27 21) p(2) , (1) where 8(2) represent an impulse function, physically, a spectral line, k(1) is the intensity of a J(2) at Ai, p(2) denotes the profile function of the spectrum of quantum dots, and 0 represents a convolution operation. The broad profile is the main reason causing the spectrum alias. To remove the alias effect, a de-convolution operation is required, and it can be easily done in the Fourier domain. The Fourier transform, FT[], of Equation (1) is given by FT[f(2)] = 4 k(2i) = FTRY(A, - 21)] = FT[p(2) (2)
- 8 -Because of the fact that thef(2) is the measured input data and p(2) is a known function, the accurate non-profile spectral lines can be restored in accordance with the equation 4 kOti) - J(A,-Al) = IFT{ FT ff(A)J / FT[p(2)] }.
(3) Equation (3) is a de-convolution operation performed in spectrum domain. The principle of this procedure is illustrated in Figure 3. Figure 3a shows the input dataf(A)]; 3b is the known profile function of a spectral line p(A); 3c gives the solved spectral lines, 4 ) =

), which are peeled off their profiles.

In Figure 3a, the intensities of the shorter spectral lines are increased due to the spectrum alias. The spectral lines with their accurate intensities are restored by de-convolution, as shown in Figure 3c. The restored intensities guarantee the correctness of information decoded from the info-drop.

Numerous other embodiments may be envisaged without departing from the spirit and scope of the invention.

=
-9-

Claims (11)

Claims
1. A method of decoding information encoded by the positions and intensities of spectral lines in the emission spectrum of quantum dots in a carrier medium, wherein a set of codes in a code book is characterized by different combinations of said positions and intensities, comprising:

exciting the quantum dots in said carrier medium to initiate fluorescence, sensing the resulting emission spectrum of the quantum dots;

performing a deconvolution operation to separate the spectral lines in said emission spectrum;

processing the resulting data to find the positions and intensities of the spectral lines in said emission spectrum;

extracting the decoded information by reference to said code book ; and where .delta.(.lambda.) represent an impulse function, k(.lambda.i) is the intensity of a .delta.(.lambda.) at.lambda.i, p(.lambda.) wherein the de-convolution operation is represented by the equation .SIGMA. l k (.lambda.l ) .cndot. .delta.(.lambda.

denotes the profile function of the spectrum of quantum dots.

-
2. A method as claimed in claim 1, wherein said emission spectra are pre-processed .lambda.i ) = IFT{ FT[.function.(.lambda.)] / FT [p(.lambda.)] ), to remove noise
3. A method as claimed in claim 2, wherein said noise is removed with a digital filter.
4. A method as claimed in any one of claims 1 to 3, wherein said de-convolution operation is performed in the Fourier domain
An apparatus for decoding information encoded by the positions and intensities of spectral lines in the emission characteristics of quantum dots in a carrier medium, wherein a set of codes in a code book is characterized by different combinations of said positions and intensities, comprising:

a light source for exciting said quantum dots to emit light;

a spectroscopic detector for sensing the emission spectrum of the emitted light;

and a processor for extracting said encoded information from the emission characteristics of said quantum dots by performing a de-convolution operation to separate the spectral lines in said emission spectrum;

processing the resulting data to find the positions and intensities of the spectral lines in said emission spectrum;

extracting the decoded information by reference to said code book; and .lambda. i ) = IFT{ FT[.function.(.lambda.)] / FT[p(.lambda.)]}, where .delta.(.lambda.) represent an impulse function, k(.lambda. i) is the intensity of a .delta.(.lambda.) at .lambda.i, p(.lambda.) wherein the de-convolution operation is represented by the equation .SIGMA.
i(.lambda. i ) .delta.(.lambda.

denotes the profile function of the spectrum of quantum dots.
6. An apparatus as claimed in claim 5, wherein said processor is responsive to the intensity and emission spectra of said quantum dots to extract said encoded information.
7. An apparatus as claimed in claim 6, wherein said processor includes a digital filter for removing noise.
8. An apparatus as claimed in any one of claims 5 to 7, wherein said detector is coupled to said light source by a first optical fiber surrounded by a bundle of optical fibers connected to said light source.
9. An apparatus as claimed in claim 8, wherein said bundle of optical fibers terminates in an inverted funnel.
10. An apparatus as claimed in any one of claims 5 to 9, wherein said processor is a computer connected to said spectroscopic detector.
11. An apparatus as claimed in any one of claims 5 to 10, wherein said de-convolution operation is performed in the Fourier domain.
CA2530485A 2003-06-24 2004-05-19 Spectral coding by fluorescent semiconductor nanocrystals for document identification and security applications Expired - Fee Related CA2530485C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/601,547 US7077329B2 (en) 2003-06-24 2003-06-24 Spectral coding by fluorescent semiconductor nanocrystals for document identification and security applications
US10/601,547 2003-06-24
PCT/CA2004/000749 WO2004114204A1 (en) 2003-06-24 2004-05-19 Spectral coding by fluorescent semiconductor nanocrystals for document identification and security applications

Publications (2)

Publication Number Publication Date
CA2530485A1 CA2530485A1 (en) 2004-12-29
CA2530485C true CA2530485C (en) 2013-06-18

Family

ID=33539443

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2530485A Expired - Fee Related CA2530485C (en) 2003-06-24 2004-05-19 Spectral coding by fluorescent semiconductor nanocrystals for document identification and security applications

Country Status (3)

Country Link
US (1) US7077329B2 (en)
CA (1) CA2530485C (en)
WO (1) WO2004114204A1 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8224018B2 (en) * 2006-01-23 2012-07-17 Digimarc Corporation Sensing data from physical objects
US8077905B2 (en) * 2006-01-23 2011-12-13 Digimarc Corporation Capturing physical feature data
KR100744351B1 (en) 2006-03-24 2007-07-30 삼성전자주식회사 Ultraviolet luminescence ink and security apparatus using the same
WO2007137292A2 (en) * 2006-05-23 2007-11-29 Evident Technologies, Inc. Quantum dot fluorescent inks
US7811470B2 (en) 2006-10-04 2010-10-12 Evident Technologies Water based colorants comprising semiconductor nanocrystals and methods of making and using the same
US8215553B2 (en) * 2006-11-15 2012-07-10 Digimarc Corporation Physical credentials and related methods
US8036415B2 (en) * 2007-01-03 2011-10-11 International Business Machines Corporation Method and system for nano-encoding and decoding information related to printed texts and images on paper and other surfaces
WO2008100885A1 (en) * 2007-02-12 2008-08-21 Evident Technologies Semiconductor nanocrystals as marking devices
US20090045360A1 (en) * 2007-08-13 2009-02-19 Xerox Corporation Quantum dot-based luminescent marking material
GB0801479D0 (en) 2008-01-26 2008-03-05 Smartwater Res Ltd Improvements to methods of in field analysis
WO2010012046A1 (en) * 2008-08-01 2010-02-04 Encryption Technologies Corporation Pty Ltd A code carrier and an apparatus for reading a code carrier
US20100050793A1 (en) * 2008-08-28 2010-03-04 Dong June Ahn Flexible chemical sensors
WO2010071137A1 (en) * 2008-12-16 2010-06-24 メトロ電気株式会社 Optical reading method
DE102009038356A1 (en) 2009-08-21 2011-03-24 Bundesdruckerei Gmbh Security element with color change
FR2968667B1 (en) * 2010-12-13 2013-01-11 Areva NUCLEAR CENTER COMPONENT WITH LUMINESCENT NANOPARTICLE MARKING, METHOD AND CORRESPONDING READING ASSEMBLY
US8705805B2 (en) 2011-01-10 2014-04-22 Peter Alexander Forrest Secure portable token and systems and methods for identification and authentication of the same
US9652703B1 (en) * 2011-05-24 2017-05-16 Sandia Corporation Tag and seal employing a micromachine artifact
CN102693679A (en) * 2012-05-30 2012-09-26 广东普加福光电科技有限公司 Anti-counterfeiting identification method by aid of quantum points
FR2992970B1 (en) * 2012-07-09 2014-07-04 Commissariat Energie Atomique USE OF LANTHANIDE COMPLEXES FOR THE OPTICAL MARKING OF PRODUCTS
EP2912453B1 (en) 2012-10-23 2016-06-29 KOC Universitesi A method and an apparatus for the detection of a tagging material in fluids
DE102013016121A1 (en) 2013-09-27 2015-04-02 Giesecke & Devrient Gmbh Value document and method for checking the existence of the same
GB201406002D0 (en) 2014-04-03 2014-05-21 Univ Lancaster Unique identifier
US9810632B2 (en) 2014-07-17 2017-11-07 Kuantag Nanoteknolojiler Gelistirme vs Uretim A.S. Fluorescent substance detection system
US20160371704A1 (en) 2015-06-18 2016-12-22 Kuantag Nanoteknolojiler Gelistirme Ve Uretim A.S. Integrated fuel tracking system
US9382432B1 (en) * 2015-09-21 2016-07-05 Ubiqd, Llc Quantum dot security inks
US10347364B2 (en) 2016-09-14 2019-07-09 International Business Machines Corporation Encoding data from genetic traits relevant to illness diagnosis and heritage
CN106905497B (en) * 2017-03-22 2021-01-12 京东方科技集团股份有限公司 Quantum dot composite, intermediate, preparation method and application thereof
US10402610B2 (en) * 2017-06-13 2019-09-03 Nthdegree Technologies Worldwide Inc. Printed LEDs embedded in objects to provide optical security feature

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6617583B1 (en) * 1998-09-18 2003-09-09 Massachusetts Institute Of Technology Inventory control
US6576155B1 (en) * 1998-11-10 2003-06-10 Biocrystal, Ltd. Fluorescent ink compositions comprising functionalized fluorescent nanocrystals
US6692031B2 (en) * 1998-12-31 2004-02-17 Mcgrew Stephen P. Quantum dot security device and method
US6721471B2 (en) * 2000-03-10 2004-04-13 Tidal Photonics, Inc. Apparatus and methods relating to fluorescent optical switches
EP1145851A1 (en) * 2000-04-11 2001-10-17 De La Rue Giori S.A. Method for continuously checking the production of security printing machines, application of said method and device for performing the method

Also Published As

Publication number Publication date
US7077329B2 (en) 2006-07-18
CA2530485A1 (en) 2004-12-29
WO2004114204A1 (en) 2004-12-29
US20040262400A1 (en) 2004-12-30

Similar Documents

Publication Publication Date Title
CA2530485C (en) Spectral coding by fluorescent semiconductor nanocrystals for document identification and security applications
US10533133B2 (en) Rare earth spatial/spectral microparticle barcodes for labeling of objects and tissues
DE102014207323B4 (en) Method for identifying an object
DE102014207318B4 (en) Identification feature with several identification elements arranged in a defined, limited area for identifying an object
DE102015219400B4 (en) Method for checking the identity and / or authenticity of an object
Chang et al. Information coding and retrieving using fluorescent semiconductor nanocrystals for object identification
CN111695658B (en) Anti-counterfeiting method based on PUF, PUF anti-counterfeiting label and preparation method thereof
CN110628434A (en) Application of near-infrared luminescent material in coding
Abdolahi et al. Structural colour QR codes for multichannel information storage with enhanced optical security and life expectancy
RU2232422C2 (en) Important document
RU2436157C2 (en) Method of encoding and decoding data
DE10252628A1 (en) Procedure to encode information using fluorescent colors to print encoded data
Zhou et al. Cryptography based on the absorption/emission features of multicolor semiconductor nanocrystal quantum dots
DE102015219395A1 (en) Identification feature with at least two arranged in a defined limited area identification elements for the identification of an object
DE102015219399B4 (en) Identification feature for identifying an object
DE102015219396B4 (en) Object with an identification feature arranged for its identification
CN1141680C (en) Guantum dot safety device and method
Chang et al. Passive illumination info retrieval used for status identification
EP3201006B1 (en) Identification feature for identification of an object
Chang et al. Advanced secure information retrieval technology for multilayer information extraction
DE102020131382A1 (en) Method for marking products with an optical security feature with a time dimension
FR3102245A1 (en) Marking product with rapid identification removable by aerosols and its manufacturing process, process for using such a product
DE102015219397A1 (en) Object with an identification feature arranged for its identification

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20150519