CA2522372C - Rotatable lead introducer - Google Patents

Rotatable lead introducer Download PDF

Info

Publication number
CA2522372C
CA2522372C CA2522372A CA2522372A CA2522372C CA 2522372 C CA2522372 C CA 2522372C CA 2522372 A CA2522372 A CA 2522372A CA 2522372 A CA2522372 A CA 2522372A CA 2522372 C CA2522372 C CA 2522372C
Authority
CA
Canada
Prior art keywords
distal
lead
collet
elongate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CA2522372A
Other languages
French (fr)
Other versions
CA2522372A1 (en
Inventor
Daniel N. Kelsch
James L. Mellor
Kenneth P. Rundle
Roger B. Fell
Scott E. Jahns
Dave S. Erickson
Vincent A. Fischer, Iii
Kent D. Anderson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Greatbatch Ltd
Original Assignee
Enpath Medical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enpath Medical Inc filed Critical Enpath Medical Inc
Priority to CA2777958A priority Critical patent/CA2777958C/en
Publication of CA2522372A1 publication Critical patent/CA2522372A1/en
Application granted granted Critical
Publication of CA2522372C publication Critical patent/CA2522372C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0587Epicardial electrode systems; Endocardial electrodes piercing the pericardium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/88Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
    • A61B17/8875Screwdrivers, spanners or wrenches
    • A61B17/8886Screwdrivers, spanners or wrenches holding the screw head
    • A61B17/8888Screwdrivers, spanners or wrenches holding the screw head at its central region
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B27/00Hand tools, specially adapted for fitting together or separating parts or objects whether or not involving some deformation, not otherwise provided for
    • B25B27/14Hand tools, specially adapted for fitting together or separating parts or objects whether or not involving some deformation, not otherwise provided for for assembling objects other than by press fit or detaching same
    • B25B27/143Hand tools, specially adapted for fitting together or separating parts or objects whether or not involving some deformation, not otherwise provided for for assembling objects other than by press fit or detaching same for installing wire thread inserts or tubular threaded inserts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00243Type of minimally invasive operation cardiac
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0409Instruments for applying suture anchors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/044Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors with a threaded shaft, e.g. screws
    • A61B2017/0441Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors with a threaded shaft, e.g. screws the shaft being a rigid coil or spiral
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2926Details of heads or jaws
    • A61B2017/2927Details of heads or jaws the angular position of the head being adjustable with respect to the shaft
    • A61B2017/2929Details of heads or jaws the angular position of the head being adjustable with respect to the shaft with a head rotatable about the longitudinal axis of the shaft
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2926Details of heads or jaws
    • A61B2017/2932Transmission of forces to jaw members
    • A61B2017/2933Transmission of forces to jaw members camming or guiding means
    • A61B2017/2937Transmission of forces to jaw members camming or guiding means with flexible part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/056Transvascular endocardial electrode systems
    • A61N1/057Anchoring means; Means for fixing the head inside the heart
    • A61N2001/0578Anchoring means; Means for fixing the head inside the heart having means for removal or extraction

Abstract

Minimally invasive introducers and methods that can be used for rotationally securing devices within the human body. Introducers can include a distal element (56) for releasably engaging a lead head controllable from a proximal control (54) located outside of the body. An inner stem (108) can extend between a proximal portion and a distal portion, and be pivotally and rotatably coupled to the distal lead engagement mechanism. An outer tube (118) can be rotatably disposed over the inner stem and be flexibly coupled over the pivot to rotationally drive the distal element. A helical epicardial-myocardial lead electrode can be secured and oriented straight ahead and introduced through a port or small incision with the introducer in a straight configuration. The introducer can then be bent and rotated to screw the helical electrode into the heart.

Description

ROTATABLE LEAD INTRODUCER
FIELD OF THE INVENTION
The present invention is related generally to medical devices. More specifically, the present invention is related to minimally invasive medical instruments for securing devices within the human body. One example of use is securing an epicardial-myocardial pacing lead to the heart.
BACKGROUND OF THE INVENTION
Several major CRM companies have developed special pacemakers "IPGs" that allow for the delivery of resynchronization therapy. This technology uses atrial synchronized, biventricular pacing and requires placement of a lead in or on the right atrium as well as the right and left ventricles. Placement of a lead inside the left ventricle has not been clinically feasible to date due to dislodgement and the risk of embolism formation potentially leading to a stroke.
To answer the challenge of placing the left ventricle (LV) lead, considerable effort has gone into the development of special leads and delivery systems for placing the LV lead in a coronary vein. These leads are often referred to as coronary sinus (CS) leads, since the lead passes through the CS. CS leads have been challenging for the electrophysiologist to place and often require considerably more time and increased fluoroscopy exposure than traditional endovascular right side leads. Following implantation, the CS
lead may dislodge in 10+% of patients leading to less than desirable performance. At least 10% of the target patients are not candidates for CS
leads due to the anatomical structure of their coronary veins.
An alternative to CS leads is the use of epicardial or myocardial leads.
Traditionally, these leads have been placed during open chest surgical procedures (sternotomy) or through a less traumatic subxiphiod or subcostal approach to the apex of the heart. The invasiveness of a full sternotomy would not be well tolerated by the CHF patients.
The placement of the lead on the apex of the heart is not desirable for resynchronization therapy. It is generally believed that the target location on the heart for resynchronization therapy is the lateral side of LV 2-3 cm apical of obtuse marginal and circumflex artery junction. Optimization of the target site may be achieved by ECG mapping of the heart to determine the location on the left ventricle that has the latest activation. ~ther epicardial locations that are normally accessible only with a sternotomy may be reached through the use of some embodiments the present invention in minimally invasive (MI) approaches.
To reach the target location through MI techniques, endoscopic ports and special endoscopic instruments may be employed. During a minimally invasive procedure it may be desirable to pass the device through a port. The port ID and length limit the amount of curvature that can preexist in an implant tool.
It is desirable for a lead to be implanted with the center axis of the helical electrode normal to the surface of the heart. The rigid prior art introducers often require a straight line between the point of entering the body and the implant position on the heart. This alignment is extremely challenging since the target spot is not directly visualized. Many or most traditional lead introducers are not suited for a MI approach due to their size and need for a straight-line approach. When leads must be placed on the superior portion of the left ventricle, as with resynchronization therapy, specialized tools and methods must be employed to reduce trauma to the patient and reach the appropriate location.
What would be desirable are devices and methods for placing epicardial-myocardial leads using minimally invasive techniques.

SUMMARY
The present invention includes a device for rotating and inserting an epicardial-myocardial lead including a helical electrode, an electrode head, and a lead body. The device can include means for releasably engaging the ~5 electrode head disposed in the device distal portion and means for controlling the releasable engaging means from the device proximal portion. The device can further include means for controllably bending the device distal portion and means for controlling the confirollable bending from fihe devise diets) portion. Devices can also include means for controllably rotating the releasable engaging means, and means for controlling the controllable rotating means from the device proximal portion.
Devices according to the present invention can be described in terms of three types of motions. The first type of motion is a bending or steering motion that can transform an introducer tool from a substantially straight configuration to a configuration having the distal portion bent to an orientation that maybe perpendicular to the straight body of the introducer, to present the introducer distal end normal to the heart or other organ surface. Bringing the distal end normal to the heart surface can also present the helical electrode normal to the heart surface. The bending motion can be accomplished by many mechanisms. In one device, an inner stem or stiffening element can have a distal pivot point for allowing a distal element to pivot between the straight ahead and perpendicular positions. The bending movement can be controlled by a push-pull rod forming a lever arm with the pivot point in some embodiments. The controllable bending of the present invention may be accomplished while the bendable portion is disposed within a patient, inserted through an incision or port. This may be contrasted with manually or otherwise bending a malleable shaft followed by inserting the bent shaft into the patient.
A second type of movement exhibited by devices according to the present invention is a release movement. The epicardial-myocardial lead typically has a lead head coupled to a lead body carrying a conductor, and a helical electrode also coupled to the lead head for penetrating into the epicardium and myocardium. The release mechanism can grasp the lead head firmly in a first configuration and release the lead head in a second configuration. Some devices have an externally grasping collet mechanism for grasping the outside of the lead head until release. The collet can release the lead head by transversely or radially moving the collet jaws outward.
~ther release mechanisms can be used with lead heads having a head cavity having outer walls. !n these mechanisms, a transversely movable release element can be firansversely or radially moved inward, to release the pressure on the inner walls of the lead head cavity, thereby releasing the lead head from the delivering device. In some devices, the release mechanism is actuated by a pull wire or cable.
A third type of movement found in the present invention is a rotation or torque movement for rotating the helical electrode into the myocardial tissue.
This rotation can be performed through multiple turns, The rotation can be supplied by the operator rotating a proximal control knob. The rotation is preferably delivered through an external, rotating outer tube that can be disposed over the inner stem. The torque can be transmitted over the bendable portion using a drive spring, helical coil, or other similar flexible sleeve that is capable of transmitting torque. The outer tube and coil functions may be served by a single integral outer tube or coil in some embodiments. The drive spring or other coupling can be coupled at its distal end to a portion of the introducer that is free to rotate and that is coupled to the electrode head. In some devices, a distal element is pivotally coupled at a proximal region to the inner stem, and has a distal element distal region that is free to rotate relative to the portion coupled to the pivot. In some devices, the pivot for bending is coupled to an inner portion of the distal element and the outer portion of the distal element is free to rotate. In still other devices, a hollow universal joint is employed to accomplish the combined pivoting and rotating motions.
Any suitable mechanism for rotatably and pivotally coupling the lead head engaging mechanism to the main shaft or stem of the device is within the scope of the invention.

The adjustable angle used in the present invention allows for numerous real time adjustments when approaching the heart. Some devices according to the present invention include one remotely steerable surgical t~~I with a single hinge point that is capable of a maximum range of motion of approximately 95°. It can consist ~f an internal hinged "skeleton" that can be used to support steering and an external tube structure that is used to transmit torque to the helical fixation device on the lead. Some embodiments of the invention allow for single-handed operation by the implanter.
The present invention also includes lead management features, including mechanisms for releasably securing a lead body along the rotating outer tube of the introducer device. Some devices according to the present invention include a friction safety clutch for limiting the rotational torque delivered to the helical electrode. Some devices further include impedance measuring circuitry for measuring the impedance across the bi-polar electrode while the electrode is being rotated and inserted into the myocardial tissue.
The present invention provides a surgical tool that can be used for implantation of epicardia! -myocardial cardiac pacing leads that require rotation for fixation. The tool can also be used for implanting other types of stimulation leads that require multiple turns for fixation; these applications may include gastrological stimulation leads for reflux disorders or for appetite suppression.
DESCRIPTION OF THE DRAWINGS
Figure 1 is a perspective view of a lead introducer having a proximal steering or bending knob, a lead head rotation or torque control knob, a lead release lever, a bendable distal portion, and a distal lead head engagement portion;
Figure 2A is a highly diagrammatic, side view of a lead introducer having a rotatable outer main tube, a fixed inner stem, a lead release pull wire, a push/pull steering rod, a distal lead engagement mechanism, a lead head, and a drive coupling disposed over the distal bend;
Figure 2B is a side view of the device of Figure 2A, having the push/pull rod proximally pulled to bend the distal bendable region;

Figure 2C is a side view of the device of Figure 2A, having the release wire retracted to open the distal lead head engagement mechanism to release the lead head;
Figure 2~ is a transverse, cross-sectional view of the device of Figure ~A, having the main outer tube rotated to rotate the drive coil over the bent distal region to rotate the distal lead engagement mechanism;
Figure 3 is a fragmentary, side, cutaway view of the bendable distal portion of the lead introducer of Figure 1 including a hinge, and a collet for grasping a lead head;
Figure 4 is a perspective view of the collet of Figure 3;
Figure 5 is another perspective view of the collet of Figure 3;
Figure 6A is a side, cross-sectional view of the hinge member of Figure 3;
Figure 6B is a top, perspective view of the hinge member of Figure 6A;
Figure 6C is a bottom-side, perspective view of the hinge member of Figures 6A and 6B;
Figure 7A is an exploded view of a distal portion of the lead introducer of Figure 1 including the hinge of Figure 6A, having a collet release wire extending therethrough and a push-pull rod to bend the hinge disposed alongside;
Figure 7B is an exploded view of the midsection of the lead introducer of Figure 1 including the inner stem, the outer rotatable tube, the collet, and the drive spring for disposing over the hinge of Figure 6A;
Figure 7C is an exploded view of the handle region of the lead introducer of Figure 1 including the release lever for actuating the pull wire, the knob for rotating the outer tube, and the wheel for actuating the push-pull rod to bend the hinge;
Figure 3 is a fragmentary, side, cutaway view of the handle mechanism of Figure 7C;
Figure 9 is a perspective view of the rotatable outer tube of Figure 1, having undercut lead management guides thereon;

Figure 10 is a fragmentary, highly diagrammatic, transverse cross-sectional view of a collet mechanism having an undercut distal jaw region for mechanically engaging a lead head;
Figures 11A and 11~ are fragmentary, highly diagrammatic views of a ~ellville washer or clover spring mechanism for expanding the jaws of a collet when the pull cable is retracted, to release the lead head;
Figures 12A and 1213 are fragmentary, side views of a four-link mechanism for expanding the jaws of a collet outward to release an engaged lead head;
Figure 13 is a fragmentary, side view of a mechanism for expanding apart the jaws of a collet by forcing a squashable polymer outward to force the jaws outward when the pull cable is retracted to foreshorten the polymer O-ring;
Figure 14 is a side view of a myocardial bipolar pacing lead;
Figure 15 is a fragmentary, perspective view of a hollow universal joinfi for forming the rotatable and bendable distal portion of a lead introducer;
Figure 16 is a superior to inferior view through a patient having the left lung deflated and a tool and a scope inserted into the chest;
Figure 17 is a highly diagrammatic front view of a patient having a tool and scope inserted to access the heart;
Figure 18 is a highly diagrammatic side view of an alternative lead introducer having a friction safety clutch;
Figure 19 is a side view of a mapping lead having a button electrode;
Figure 20 is a side view of a mapping lead having a needle electrode;
Figure 21 is a circuit diagram for measuring electrode contact resistance; and Figure 22 is a flow chart of a method for outputting an indication of contact quality for a human operator.
DETAILED DESCRIPTION
Figure 1 illustrates a lead introducer 50 including a handle 52, a proximal portion 54, a distal portion 56, and a bendable portion 58.
Introducer 50 further includes a rotation/torque knob or control 62, a steering or bending _$_ knob or control 64, and a release slider control 66. Knob 64 can be rotated to effect bending movement indicated at 65. Control 66 can be slid to effect head release indicated at 67. Knob 62 can be rotated to effect ~uter tube and collet rotation indicated at 63. Lead guides 236 may allow the lead to be rotatably carried with the rotating outer tube. The various elements introduced in Figure 1 will be described in detail elsewhere.
Figure 2A illustrates a highly diagrammatic lead introduces 100 including a proximal porti~n 102, a distal portion 104, and a bendable portion 106. Lead introduces 100 includes an inner stem or stiffener 108 which may be a solid shaft or tube that does not rotate and may be fixedly secured to the handle in some embodiments. Introduces 100 also includes an inner stem distal end or terminus 110 and a hinge point 112 coupled to inner stem 108.
Introduces 100 includes a distal portion proximal region 114 that can be rotatably fixed and pivotally coupled to inner stem hinge point 112. A
distal portion distal region 116 may be seen, that can be free to rotate and be rotatably coupled to distal portion proximal region 114, which is preferably not free to rotate. Lead introduces 100 also includes a distal portion distal release mechanism 117 for releasabiy engaging a lead head. Introduces 100 further includes an outer tube 118 that is rotatable and is coupled to a rotation coupling member, sleeve, or drive spring 120 that extends over the bendable portion 106. Rotation coupling member or drive spring 120 acts to transmit the rotation force over the bendable portion, even when the bendable portion is bent.
A pull wire, cable, or release wire 122, which can release a lead head 132 having helix electrode 134, may be seen coupled to release mechanism 117. Pull wire 122 may be controlled from proximal portion 128, which may be similar to slider 66 of Figure 1. A push/pull rod 124, to bend portion 106, can be coupled distally to an attachment point on distal portion proximal region at 125. Push/pull rod 124 can be proximally coupled to a bending or steering proximal control element 130. Element 130 may be a rotatable knob, such as wheel 64 in Figure 1. A rotation or torque control knob 126 can be coupled to an outer tube 118. In some embodiments, rotation or torque _g_ control knob 126 can be proximally slid to engage a pull wire coupled to transverse release member 128 by proximally translating pull wire 122. Lead head 132 may also be seen coupled to lead electrode 134 and a lead body or wire portion 136.
Figure 2S illustrafies introduces 100 of Figure 2A after steering or bending control element 130 has been proximally retracted to pull rod 124 to bend bendable steerable portion 106 to dispose distal region 116 at an angle to outer tube 118. Rotation coupling or drive spring member 120 can still transmit a rotational force over the bend, for example, for screwing a helical lead into the myocardium.
Figure 2C illustrates introduces 100 of Figure 2A after control 128 has been proximally retracted to pull on pull wire 122 to control the action of release mechanism 117. This can be done when the introduces is bent as well. As will be discussed further, release mechanism 217 can include forcing the jaws of a collet mechanism outward to release a mechanically engaged lead head. Some devices use a camming surface to open the collet jaws responsive to a pushing or pulling action on the camming surface.
Figure 2D illustrates outer tube 118 of Figure 2A being rotated about inner stem 108 which in this example includes pull or release wire 122 and push/pull rod 124 slideably disposed within. Rotating outer tube 118 can cause drive spring 120 to rotate and also force distal portion distal region to rotate, thereby rotating lead head 132.
The present invention can utilize many different mechanisms for achieving the different movements illustrated in Figures 2A-2D, and the various movements discussed elsewhere in the present application. The bending movement can be achieved using pushing, pulling, electrical, mechanical, magnetic, pneumatic, and hydraulic components. Various devices can be biased to be bent or straight, with the bias overcome with various mechanisms. Siasing can utilize any of these components as well.
In one example, bellows can be used to extend over one side of the hinge and/or retract of the other side of the hinge. Electromagnetic force can be used to bend as well. Electroactive polymers can be used to achieve the bending. The rotation and release movement of the distal end can be achieved using any of the above mechanisms, forces, and components. For example suction can be used to hold the lead head and/or positive pressure used to release the lead head. The distal end lead head gripping can be biased t~ grip or release, depending on the embodiment.
Figure 3 illustrafies lead introducer 50 of Figure 1 in greafier detail for bendable distal portion 58. Figure 3 includes generally distal portion 58 and distal end 56. Some components of Figure 3 will be described in greater detail later. Beginning with the outer regions, an outer tube 202 extends rightward and distally, having a coil spring 204 secured to outer tube 202.
Spring 204 extends rightward and distally to engage the proximal portion of a collet 206. Any suitable flexible, torque transmitting coupling can be used in place of spring 204. Collet 206 includes jaws 207 for engaging a lead head.
A sleeve may be seen covering coil spring 204. This sleeve, in the embodiment illustrated, includes a piece of tubing 208 bound on either end by heat shrink tubing 210. In some embodiments, tubing 208 is formed of silicone tubing. When outer tube 202 rotates, this forces coil spring 204 and collet 206 to rotate as well.
The torque flex member may be a spring. Other designs for transferring torque through an articulating joinfi include the use of a polymer tube, braided mesh tube made of a polymer of metal strands or the "hollow universal joint" illustrated in Fig. 15. The spring and braided tube designs can t incorporate a thin highly flexible sheath that may include bellows. The sheath reduces the risk of trapping tissue in the joint during implantation. The sheath also reduces the risk that the surgical team could pinch them selves or damage their surgical glove during handling. The sheath may be made of silicone, polyurethane, latex, or other suitable biocompatible flexible polymer.
A hinge 212 is shown generally in Figure 3, to be further discussed later. Hinge 212 is secured at the proximal end to an inner stem 203. In this example, stem 203 is a tube. In other examples, the stem is a solid shaft, having any release wires and rods extending along side. Hinge 212 pivots about a hinge pin 214. This pivoting can be caused by a push/pull rod 234, which in this embodiment has a distal protrusion for engaging part of the hinge at 280. Thus, pulling on push/pull rod 234 causes collet 206 to bend downward, while pushing on push/pull rod 234 causes collet 206 to again become more axially aligned with stem 203 and outer tube 202.
Collet 206 includes inner wedges 216. Wedges 215 can be engaged by a wedge ring 220 having a wedge ring leading edge 218. A spring 228 may bear against wedge ring 220, urging leading edge 218 against the inside of wedges 216, thereby urging collet jaws 207 to close about a lead head.
Hinge 212 may be seen to have a proximal channel 231 and a distal channel 230 for accepting a pull wire 232, shown above channels 230 and 231 in order to make the channels visible. Pull wire 232 can ride over a cylinder rotating about a pin 235, to aid in releasing the lead head when the hinge is bent., Pull wire 232 extends further distally through compression spring 228, through a wedge ring channel 226, and further through a crimp slug channel 224 formed in a crimp slug 222.
Thus, when no tension is being applied to pull wire 232, compression spring 228 forces wedge ring against wedges 216 to urge jaws 207 to a closed position. When tension is applied to pull wire 232, the force of compression spring 228 is relieved and wedge ring 220 travels proximally, away from wedges 216 to allow collet jaws 207 to open and release the engaged lead head. Hinge 212 may be seen to have a distal portion distal of hinge pin 214 that pivots but does not rotate relative to inner stem 203.
Collet 206 does rotate relative to inner stem 203. Collet 206 is allowed to rotate, in some embodiments, through the use of a collet clip ring 207 which allows rotational movement of collet 206 about hinge 212, but prevents axial movement of collet 206 with respect to hinge 212.
Figure 4 shows collet 206 in greater detail. Collet 206 includes jaws 207, having slots or cutouts 252 therebetween and a generally open distal area 258 for receiving a lead head. Teeth 209 may be seen protruding radially inward and forming an inside diameter or profile less than the outside diameter of the lead head to be grasped, In some devices, the jaws and collet are dimensioned to compress the lead head with the teeth. A distal lip or ledge 256 may be seen for abutting the lead head. One inner wedge 216 may be seen, having a proximal cavity 217 for receiving the wedge ring. Collet 206 also includes a proximal region 250 including a slot 254 for receiving the collet clip ring. ~ollet 206 can thus receive the wedge ring within for bearing against wedges 216 and also receive spring 228 (not shown in this figure) for urging fibs wedge ring against the wedges.
Figure 5 also shows collet 206, again having jaws 207, teeth 209, slots 252, lip 256, clip ring receptacle 254, and wedge 216. In various embodiments of the invention, the number of teeth are configured so that the lead head is surrounded, having an angle no greater than about 120, 100, 90, or 80 degrees, depending on the embodiment, between the edges of adjacent teeth. The collet illustrated has an angle of less than about 80 degrees between adjacent teeth sides. The~collet incorporates engagement features that provide for mechanical engagement with the outside perimeter of the pacing lead head. The collet can encompass 360° of the pacing lead head with multiple cut outs that provide for routing of the lead body and release motion. The mechanical engagement features of the collet may interlock with design features in the head. A pulling, tension force can be applied to the lead head when it is loaded in the lead engagement mechanism, and the force can put the engagement features in shear. Engagement of the lead head may also be accomplished by providing sufficient force to the collet engagement features so that they deform the material (e.g. low durometer silicone) of the lead head around the collet features. The deformed material would oppose a tension force applied to the lead head through material shear.
The collet can be retained on the forward hinge portion by a snap ring /
retainer that bears against the set of the smallest distal ID of fibs forward hinge portion.
Figure 6A illustrates hinge 212 in greater detail. Hinge 212 includes forward central channel 230 and rear central channel 231, as previously described, for receiving the pull wire to release the collet engagement mechanism. Hinge 212 also includes hinge pin 214 and a second rear channel or slot 288 for receiving the push-pull wire to bend hinge 212. The push-pull wire can be accessed from within slot or recess 280, and may also have the end of the push-pull wire received within an orifice in the opposing side of the hinge. Pin 235 and cylinder 237 are shown. Hinge 212, in the embodiment illustrated, also includes a distal face 282 which can be used to urge the compression spring against the collet mechanism. Hinge 212 can also include a distal lip 286 bounding an annular channel or recess 284 followed proximally by a more proximal lip 287. Annular channel 284 can be used to secure the collet to hinge 212 through use of the collet clip ring, previously described. The collet can thus rotate about annular recess 284, with travel in the axial direction limited by lips 282 and 287.
Figure 6B illustrates hinge 212 in a top, perspective view. Annular recess 284 is further illustrated, as is the proximal extent of rear channel for receiving the pull wire. Figure 6C illustrates hinge 212 from the side and bottom, better illustrating slot or channel 288 for the push-pull rod. Channel 288 can guide the push-pull rod, and may have a hole 281 for receiving the bent end of the push-pull rod.
An alternative articulating joint design utilizes a "living hinge"
configuration. A living hinge reties on the plastic properties of a material for the movement in the joint. Living hinges are commonly made in plastic products for attaching a cover to a housing. Polypropylene and polyethylene are common materials used for plastic living hinges. A thin metal strap could also be utilized to join the distal and proximal components of fihe joint. The use of a metal strap would require design modifications to the rear hinge and the forward hinge, If utilizing a plastic living hinge it may be possible to incorporate the rear hinge, forward hinge, and hinge itself into one molded component. The use of a living hinge may allow the diameter of the hinge to be decreased; this would allow the overall diameter of the shaft of the device to decrease.
Figure 7A illusfirates hinge 212 in conjunction with other components, in an exploded view of introducer 50. Pull wire 232 may be seen extending through hinge 212, having wire proximal portion 233 that is wider than the more distal regions in some embodiments. Pull wire 232 may be seen extending through compression spring 228 that has wedge ring 220 in front of the compression spring, followed by crimp slug 222 for binding the wire. The assembling of these components may be visualized with respect t~ this figure by distally advancing pull wire 232 through spring 228 and further thr~ugh wedge ring 220. Crimp slug 222 can then, be disposed about pull wire 232 and crimped. Pull wire 232 can then be proximately retracted, thereby urging wedge ring 220 against compression spring 228, which in turn is urged against hinge 212. Push-pull wire 234 may also be seen, having both a distal hook or protrusion 236 and a more proximal, wider portion 235. The assembling of push-pull wire or rod 234 may be visualized by moving push pull rod 234 toward hinge 212 until distal hook 236 engages hinge aperture 281 (illustrated in Figure 6A).
Figure 7B illustrates the mid-region of lead introduces 50 in greater detail. Inner stem or tube 203 is illustrated, as is collet 206 and outer coil spring 204 which can be eventually disposed over fihe hinge. Collet clip ring 207 is shown for securing collet 206 to hinge 212. The outer sleeve o.r tubing 208 is illustrated; together with the proximal and distal heat shrink sections 210 which can be used to fix the flexible sleeve over coil spring 204 and bendable hinge 212.
a The introduces stem 203 can be the "back bone" of the "stationary skeleton" in some devices and can provide sufficient rigidity to support the distal lead engagement mechanism and the related forces during manipulation of the device. Typically the stem will be constructed out of a medical grade stainless steel; reinforced polymers or other metals may be used. When the stem or shaft is tubular, the lumen of the tube provides passage for the push/pull rod and the pull cable. The proximal end of the introduces stem can be inserted into the handle.
Outer tube 202 is illustrated, having lead management devices in lead retainers or guides 236. Lead retainers 236 can allow the lead to be carried about the rotating outer tube 202 while yet allowing for the carried lead to be slid axially, caused by the bending movement of the hinge and the lead head carried at the distal end of the hinge.

The assembling of the mid-region may be visualized with respect to Figure 713, together with the end result of the previous assembly previously described with respect to Figure 7A. Pull wire 232 having proximal region 233, and push pull rod 234 having proximal region 235, may be inserted through tube 203. As previously discussed, pall wire 232 may have been secured through hinge 212, and push pull rod 234 secured to hinge 212. This assembly method, and other assembly methods described herein may be varied of course depending on the embodiments and methods used. Collet 206 may be abutted to wedge ring 220 and secured to hinge 212 using wedge ring retainer clip 207 (illustrated in Figure 7A). Inner tube 203 may be inserted into outer rotatable tube 202. Coil 204, then sleeve 208 and heat shrink portions 210 may be slid over stem 203 to cover hinge 212 and heat shrunk into place.
Figure 7C illustrates the handle portion of introducer 50, including a knob ring 302 for being disposed over outer tube 202 and a release lever 304 which will ultimately be secured to the pull wire. Release lever 304 includes the release or gripping head 66, as previously illustrated.
Pull wire 232 proximal region 233 can be entirely slid through outer tube 202 as can pull wire 234 proximal region 235. With knob ring 302 slid over the proximal end of outer tube 202, release lever 304 can be moved to receive proximal region 233 within the lower portion of the release (ever. Nut 306 can then be threadably secured over proximal region 233, securing pull wire 232 to lever 304. Another nut can be slid within rod linkage 308, the rod linkage advanced, and push-pull rod proximal region 235 threadably secured to the nut within rod linkage 308. Rod linkage 308 can ultimately have proximal region 309 controlled by the deflection wheel 64, illustrated in Figure 1.
The deflection wheel 64 includes a left half 318 and a right half 320.
Similarly, handle 52 includes a left half 314 and a right half 316. Left wheel half 318 can be disposed about an axial nub within handle left half 314. Rod linkage proximal region 309 can then be secured to wheel left half 318. A
protrusion on the rod linkage can be received within a slot in wheel 64 in some devices. This can bring release lever 304 release head 66 within a handle aperture 315. Rotafiion knob 62, illustrated in Figure 1, can be formed by bringing fiogether knob top half 310 and knob bottom half 312. Vllheel right half 320 can be secured to wheel left half 318 and handle righf half 316 secured t~ the wheel and handle left hand side 314. The knob top half and bottom half can be secured fiogefiher and knob ring 306 moved proximally over the now complete rotation knob 62. Release handle 66 thus can be used fio move the pull wire, wheel 64 can be used to move~the push pull rod through rod linkage 308, and knob 62 can be used to rotate outer tube 202.
Figure 8 further illustrates the handle portion, having elements as previously numbered and described. A protrusion 237 on rod linkage proximal region 309 can be received within an arcuate slot 236 in wheel 64 for transforming a wheel rotation into a linear actuating motion for the push-pull rod to effect bending.
Figure 9 illustrates lead guides 236 on outer tube 202. In the example illustrated, lead guides 236 are undercut, having a narrower top opening and a wider opening away from the top. The lead guides in some embodiments act as elastic jaws, being elasfiically displaceable to allow a lead body to be formed into the guide, with the jaw then closing to inhibit radial movement of the lead out of the guide. In other embodiments, the lead guides are not very elastic, but the lead body deforms elastically when passed through the narrow jaws. In one example, the lead body is formed of silicone or polyurethane, and the jaws are formed of Lexan ~ polycarbonate. Axial movement of the lead is still allowed, due to the lead guide opening being larger fihan fihe lead outer diameter in the guide center but not further away from the tube. In the example, illustrated, the guide jaws are a distance "D3" apart, while the main portion of the guide has a larger inside diameter, indicated at "D4."
Figure 10 illustrates a collet 450 coupled to a pull wire or cable 452. A
collet wall 454 may be seen including a collet undercufi region 462. A
~ellville washer 456 may be seen coupled to pull wire or cable 452. A lead head 458 may be seen having a tapered sidewall 460. In some embodiments, lead head 458 has straight sidewalls, formed of a polymeric material, that are engaged by collet undercut region 454. A lead electrode, a helical electrode 464 may be seen.
Figures 11A and 11 B illustrate a collet release mechanism 700 including collet jaws 702 having an annular grove 703 in the sidewalk. A
release cable or wire 704 is seen coupled t~ a Bellville washer 706. Washer 706 may be seen in a first, closed position 708 and a second, radially expanded position 709 for forcing apart collet jaws 702.
Figures 11A and 11B illustrate an alternative design that utilizes a clover spring or Bellville washer that is positioned with the concave side facing away from the distal tip. When the pull cable is placed in tension the springlwasher is flattened leading to an increase in effective diameter of the spring/washer that opens the "collet". Figure 11A illustrates the closed or lead engaged position while Figure 11 B shows the open or lead released position.
In Figure 11 A the diameter (D1 ) is less than the diameter in 11 B (D2). The normal position for this design is closed. The force to "close" the collet comes from the plastic properties of the washer material. A wide range of polymers may be utilized in addition to appropriate metal alloys.
Figures 12A and 12B illustrate a collet release mechanism 720 including collet jaws 722. Four linkages 724 may be seen coupled to collet jaws 722 through pins 726. A link header 728 may be seen joining the four links. A spring 730 may be seen for distally biasing links 724 to bias collet jaws 722 closed. A pull cable 729 may be seen coupled to link header 728 for proximally retracting header 728 to force links 724 against jaws 722 to open the collet mechanism and release the electrode head.
Figure 13 illustrates yet another collet release mechanism 730 including collet jaws 732 forming a radially free wall portion 732. Rigid walls 734, not being freed to radially expand outward, may also be seen. A pull wire 736 is slideably received within rigid walls or tube 734 and is coupled to a washer 739. An ~-ring 738 may be seen disposed between washer 739 and the distal end of rigid walls 734. When pull wire 736 is proximally retracted, O-ring 738 expands regularly outward, to force the collet jaws or free walls 732 outward which can act to release a retained lead head. Figure 13 thus _18_ illustrates an alternative mechanism that utilizes the polymer's Poisson's ratio.
When tension is placed on the cable/rod the washer compresses the toroidally , configured polymer park, which is captured by rigid members on two sides.
The outside or free wall of the collet is pushed outward by the "hydraulic"
lilee action of the compressed polymer.
Figure 14 illustrates a bipolar pacing lead 740 comprised of three main portions: a distal electrode end 747, a midsection or lead body 742, and two proximal connectors 744 and 745. It is common for the lead body of myocardial/epicardial electrodes to enter a distal head 746 perpendicular to the axis of helical electrode 748. During implantation it is not normally desirable to maintain the lead in the perpendicular orientation because it would require substantial room during rotation. With commercially available rigid lead implant tools (BIOMEC 100449001 and Medtronic 10626) the lead is gently bent proximally from the head allowing the lead body to be positioned parallel with the center axis of the helix. In this arrangement the entire implant tool is rotated and the orientation of the lead body to the head is maintained.
The perpendicular orientation of the body to the head becomes a challenge when an articulated joint is used in the design of the implant tool.
When an angle of articulation is instituted during the implant procedure rotation of the entire implant tool would require swinging a substantial radial , path with the proximal end of the tool. This is often not feasible because of the limited space in the thoracic cavity, through a port, or through an intercostals or subxiphiod incision. .
Figure 15 illustrates a hollow universal joint mechanism 830 including a distal hinge portion 832 and a proximal hinge portion 834. A pull wire may be received through the U joint and may ride over pulleys. Pins, or other guides within the joint. Hollow universal joint mechanism 830 can be used to implement the distal, bendable region of the lead introduces in some embodiments.
Figure 16 is a superior to inferior view of a person 900 having a left lung 912 that has been deflated and a right lung 914. Heart 910 may be seen as well. A port 902 for admitting a scope may be seen, as may a second port 904 for admitting tools. The lead introduces according to the present invention can be admitted through port 904, which may have a 15 mm ID.
Figure 17 further illustrates ports 902 and 904 of the present invention.
As may be seen from inspection of Figure 17, the lead introduces may be admitted through port 904 in a straight approach, followed by bending the distal bendable portion fio present the lead helical electrode directly toward or normal to the epicardial surface. Even a relatively long, straight portion of the port presents no problem for admitting the straight, lead introduces that can be bent or curved after passage into the body.
Figure 18 illustrates a lead introduces 750 having a friction safety clutch 751. During the implantation of a screw-in epicardial/myocardial pacing lead 753 the implanter prevents over turning the lead by counting the number of turns. During a minimally invasive procedure the implanter may not be able to tell when the helical electrode engages the cardiac tissues, so it is, difficult to know what the correct number of turns is. If the helix is turned too many times, this could possibly lead to poor lead fixation and higher impedance or poor pacing parameters.
The integration of the "torque limiter" into the drive shaft of the implant tool would limit the amount of torque applied to the screw-in pacing lead. The implanter would not have to rely on counting the number of turns to know when he has fully seated the lead. The implanter would continue to rotate the torque knob until a friction plate 754 slips with respect to a friction plate 755.
A visual indicator or marking could be incorporated into the two plates to make the "slippage" obvious to the implanter.
The implant tool with integrated "torque limiter" could be used for implant of other screw in stimulation leads such as in gastric stimulation, neuro stimulation, etc. The concept could also be applied to other surgical implants that require screwing in fixation devices; this could include bone anchors, hernia repair patch anchors, etc.
Figure 18 illustrates an introduces stem or drive shaft 756 split into two portions with a distal portion 757 encompassing friction plate 754, a length of the introducer stem/drive shaft 758, components of an articulation joint 759, and the lead engagement mechanism 760. The distal portion of the drive shaft passes thr~ugh and is supported kay the distal handle journal 762. The proximal portion 763 of the drive shaft encompasses friction plate 755, pressure spring 754, and torque knob 767. The proximal portion passes through and is supported by a mid-handle journal 769 and may also make use of a proximal handle journal 768.
The screw in style myocardial pacing lead is held by the lead engagement mechanism at the distal end of the implant tool. The user rotating the torque knob located in upper portion of the handle rotates the screw electrode/lead. The rotation of the torque knob 767 is transmitted by the proximal portion of the introducer stem to friction plate 755. The spring applies a force to the back of friction plate 755 to cause sufficient friction between friction plate 755 and friction plate 754. The torque transfers from friction plate 754 through the distal portion of the drive shaft through any articulation joint that is used to the lead engagement mechanism. The lead engagemenfi mechanism thereby rotates the helical screw electrode into the tissue.
Figures 19 and 20 illustrate mapping leads 800 and 820 that can be used with lead introducers. The use of a permanent pacing lead such as the BIOMEC 511210 requires screwing the helical electrode into the myocardium.
If the selected implant site does not produce the target pacing performance may require removal of the lead. Removal of the lead may lead to some bleeding or undesirable tissue trauma. To avoid implantation of a screw in epicardial/myocardial and the potential that it may need to be removed, the implanter may at times wish to test the pacing characteristics of a implant site prior to implanting a permanent pacing lead.
The two designs (button electrode lead 800 in Figure 19 and needle electrode lead 820 in Figure20) are designed to map the EP parameters of the heart with less trauma to the heart than a screw in pacing lead. The button electrode can be used on areas of the heart where there isn't fat. The needle electrode may be used in areas where fat exists because it will penetrate through the fat.
The mapping electrode and implant tool could be used for mapping and or temporary stimulation studies prior to implantafiion of other screw in stimulation leads such as in gastric stimulation, neuro stimulation, etc.
Referring again to Figures 19 and 20, two temporary mapping and stimulation electrodes for use with a remotely steerable lead introduces are illustrated. The distal portion of the temporary lead is comprised of the heads 806 and 826 and electrodes 808 and 828. Load 800 includes a lead body 802, connector pin 804, conductor 803, lead head 806, and button electrode 808. Alternate lead head profiles are indicated at 810, having an undercut profile and button electrode 812, and at 814, having a grooved profile and button electrode 816. Lead 820 has a lead body 824, a conductor 825, a lead head 826, and a needle electrode 828. The head can have a similar diameter and geometric configuration to the BI~MEC 511210 with a general diameter of 0.280-0.300". The head can be made from any number of biocompatible polymers that are acceptable for short-term blood and tissue contact;
examples include silicone, polyurethanes, polysulphones, etc. The head can serve three functions in some embodiments: (1 ) provide a means for mechanical engagement with the implant tool; (2) mechanically hold and maintain the orientation of the electrode in relation to the lead body an:d implant tool; and (3) act as a stop to prevent the electrode from penetrating the tissue too deeply.
The design intent for the electrode is to effectively, with little or no tissue damage, transmit electrical signals form the heart to a pacing system analyzer and or send stimulation signals from a pulse generator or system analyzer to the tissue. The best performing electrodes are made from platinum/iridium, fiitanium, etc. with any number of coatings including porous platinum, titanium nitride, etc. Electrode surface area, along wifih surface finish, also have an impact on the performance parameters of the electrode.
The long flexible mid-section is called the lead body and can range from 20-55 cm long. The lead comprises a conductor that is surrounded by _22_ an insulator. Since this application is short term, a savings can be realized by the use of inexpensive conductor materials and shapes. A single strand of annealed copper may perform satisfactorily in this application. The lead oufier body can be made from any number of biocompatible polymers that are accepfiable for short-term blood and tissue contact; examples include silicone, polyurethanes, polysulphones, etc.
The distal end of the lead contains a pin connector for easy connection to a pacing system analyzer/programmer. Generally a 2 mm or 4 mm solid pin is utilized for these applications.
These mapping electrodes are designed for a single procedure and as such would be manufactured from materials and processes that would keep their cost to a minimum. This may include the use of a single solid conductor, non-implantable grade polymer insulation and or simple pin connector.
During a procedure where a minimally invasive remotely steerable lead implant tool is being employed the use of this mapping electrode may eliminate the need for additional surgical instrumentation and reduce procedural time while adding to a successful outcome.
Electrode impedance Indication A surgeon placing an epicardial pacing lead that is being placed using mini-thoracotomy techniques is faced with three disadvantages when compared to open surgery.
1. The visualization of the insertion area is displayed on a 2D monitor that does not provide depth perception.
2. The use of remote introducer tools reduces or eliminates tactile feedback.
3. The scope is typically deployed at an angle that does not provide a profile view of the helical fixation electrode.
These factors preclude a surgeon from determining when the helical fixation device has initiated engagement and so precludes counting turns as the sole means to determine proper fixation without over turning.
Figure 21 illustrates a circuit 840 that would essentially measure the impedance of the contact between the helical electrode 841 and the ring electrode 843 and the cardiac muscle into which it has been installed. This electrical circuit can be embodied as a low cost circuit that is sold as part of a single use introduces tool or a more refined reusable module that connects to the wire leads of the bipolar electrode.
The electrical circuit measures electrical impedance by applying an AC
excitation voltage to the electrode wires and measuring the induced current.
Electrical impedance is calculated from the ratio of excitation voltage to induced current. Compared to DC methods, this AC technique offers several benefits. The circuit avoids measurement errors caused by electrolysis and electrode polarization. Also, by using excitation frequencies of 10kHz or above, it precludes undesired muscular responses. In addition, by observing the phase shift between voltage and current, the impedance measurement can be resolved into reactive and resistive components, corresponding to respective values for capacitance and resistance.
Electrical safety is enhanced several ways. Both the applied excitation voltage and the induced current measurement are transformer isolated by excitation current sense isolation transformer 842 and excitation voltage source 844. . There are no electrical energy sources on the isolated side of either transformer. The maximum excitation voltage (corresponding to an open-circuited electrode) and the maximum induced current (short-circuited electrode) are independently limited to safe values by passive failsafe components within the circuit.
The circuit includes a quadrature oscillator 846 with two sine wave outputs. These outputs have a 90° phase difference. When resistance measurements are taken, a single sine wave drives the excitation transformer and fihe synchronous detector. To make reactance measurements, one sine wave drives the excitation transformer while the other sine wave drives the synchronous detector 848. In addition the quadrature oscillator provides the analog-to-digital converter with a DC voltage input that is proportional to sine wave Amplitude.
The excitation transformer secondary ties an AC voltage to a series-connected circuit consisting of the primary winding of the current-sensing transformer, the pacer leads, and the unknown impedance that terminates the pacer electrodes. The secondary of the current-sensing transformer connects to the input of the synchronous detector. This input i~
maintained at wound potential by active circuifiry within the detector. 4~s a result of this, the primary winding of the current-sense transformer presents zero impedance to fihe excitation current, and the full excitation voltage a is applied to the pacer leads. This approach allows a direct means of calculating the impedance of the pacer leads and their termination. It is proportional to the ratio of amplitudes of two AC signals on the non-isolated side of the circuit, the quadrature oscillator voltage output and synchronous detector input current.
The synchronous detector 848 demodulates the AC input current and converts it to a proportional DC voltage. The demodulator is driven by one of the sine wave outputs from the quadrature oscillator (selected according to whether a resistance or reactance measurement is being taken).
Current-to-voltage scaling within the synchronous detector is set by a range resistor 850, the value of which is determined by the range of actual impedance measurements.
A ratiometric analog-to-digital converter (A/D) 854 can calculate the resistance (or reactance component of the unknown electrode termination impedance. To maximize noise rejection, an integrating A/D is used. The A/D signal-input is the DC output from the quadrature oscillator that proportional to the AC excitation of the unknown electrode termination. The reference-input for the AlD is the DC output from the synchronous detector representing the current induced in the termination.
Digital output from the A/D can be displayed on a low-power liquid-crystal display (LCD). This choice of readout makes battery operation practicable. A single 3-volt lithium cell or a low-cost 9-volt battery 860 could power the entire circuit.
Low-cost product version could eliminate the A/D and LCD. The integrity of electrode placement could be indicated by light-emitting diodes (LED) that flash at a variable rate. A high flash rate could indicate a high impedance condition. A low flash rate, or constant LED illumination, could indicate satisfactory placement of the pacer electrode.
This device can provide a visual indication of when a bipolar lead with helical fixation has been adequately (but not excessively) r~tated f~r installation.
The device above can be used to indicate that a bipolar epicardial pacing lead with a helical fixation device plate/ring pole has been properly insfialled and has been screwed in adequately but not beyond what is required so as to avoid cardiac tissue damage. Such an indicator would be especially useful during minimally invasive procedures where tactile feedback through steerable remote insertion tools and visualization of the procedure is limited.
Figure 22 show one algorithm for determining fixation. The steps below may be performed to practice one aspect of the present invention. (1 ) Place helical fixation point on the selected sight. Rotate two full turns clockwise. (2) Allow the introducer to rest on the myocardium in an unstressed condition. Take a first reading with the indicator circuit (shown at step 860);
(3) Apply gentle tension to the introducer in a direction substantially normal to the myocardium. Take a second reading with the indicator circuit (step 872) and take the difference ImpDiff at step 874; (4) Circuit compares the value of the first and second reading to preprogrammed values for impedance and to each other. The value lmpDelta in step 876 can be an empirically predetermined minimum acceptable impedance difference a bipolar electrode contact in a free and tensioned condition, The circuit can determine if proper fixation has been achieved or if additional torquing is required. If the value is too large, poor contact can be indicated at 878 In step 880, empirically predetermined values ImpLow and ImpHi can be used, for the minimum and maximum acceptable impedance values for a bipolar electrode in free and tensioned condition, respectively. Poor contact can be indicated at 882. At step 884, if Imp2 is between ImpLow and ImpHi, the acceptable contact can be indicated at 888, otherwise poor contact can be indicated at 886.

The lead introducer can be composed of several different types of stainless steel and resins. The handle, outer tube, rod linkage, wheel, release lever and rotation knob can be injection molded from a polycarbonate resin in some embodimenfis of the invenfiion. ROSS or similar rigid-type plastics may be used in some devices. additionally, the wheel, release lever and rotation knob can be overmolded with a thermoplastic elastomer such as Santoprene (ExxonMobile Chemical) or PeSax (Elf Atochem). This can supply a tactile grip at important user interface sites.
In some devices according to the present invention, the collet can be machined from a 400 series stainless steel that is heat-f~rardenable. The hardened collet is able to recover from much higher strains and allows for opening/closing during lead head grasping/regrasping. Other components may be made from 300 series stainless steels. The lead release wire may be a cable for improved flexibility and may have a protective coating, for example, a Nylon, which can prevent damage to the filaments. The lower hinge and wedge ring may have a lubricious coating such as Dicronite to facilitate free rotation of the collet during lead implantation.
Some devices according to the present invention are approximately 45 cm from the butt of the handle to the tip of the collet. The shaft length may be approximately 22cm, with a maximum OD of 14.2mm in some devices. This particular embodiment OD constraint is to allow insertion through a 15mm port, which is currently the standard of care. In some devices, the device length is less than about 50 cm, the outer tube has an OD of less than about 15 mm or 25 MM, and the collet jaws have a minimum ID of less than about 0.4 inches.
Mapping electrodes can be made of the similar materials that pacing leads are manufactured from. The external body and head can be made from polyurethane or silicone. The conducfior may be made from a stainless steel, MP35N, or a precious metal alloy. Some configurations include solid wire, braided/stranded cable, or coil. Electrodes may be fashioned from platinum or platinum alloy and may have a platinized surFace. The pin connectors can be stainless steel or MP35N, and may be fashioned in such a way as to prevent accidents( insertion into a pacemaker.
~verall length of some devices can be 35-60 cm, with a body ~D of about 0.035 inch to 0.095 inch. The head can mimic the dimensions of current pacing leads, which have an ~D of approximately 0.95 inch and a depth of 0.157 inch. The button electrode can protrude appr~ximately 1 mm and the needle electrode approximately 3.5mm. Some mapping electrodes have an ~D of less than about 0.4 inch and a depth of less than about 0.3 inch. ~ther mapping electrodes have a head ~D of about 0.3 inch and a depth of about 0.2 inch.
The invention has been described with reference to various specific and preferred embodiments and techniques. However, it should be understood that many variations and modifications may be made while remaining within the spirit and scope of the invention.

Claims (17)

1. A device for rotating and inserting an electrode of a lead into body tissue to be stimulated, the device comprising:

a) an elongate shaft having a proximal portion and a distal portion;
b) a first distal member pivotally coupled to the elongate shaft distal portion;

c) a second distal member rotatably coupled to the first distal member;

d) wherein the second distal member includes a portion for releasably engaging the electrode;

e) a rotatable tube having a proximal portion and a distal portion, the tube disposed around the elongate shaft and rotatably flexibly coupled over the first distal member pivotal coupling to the second distal member;

g) a first elongate member having a distal region operably coupled to the second distal member portion for releasably engaging the electrode and having a proximal portion actuable from the proximal portion of the elongate shaft to release the electrode; and h) a second elongate member having a distal region operably coupled to the first or second distal member for causing the first distal member to pivot relative to the elongate shaft, and having a proximal portion actuable from the proximal portion of the elongate shaft.
2. The device as in claim 1, wherein the elongate shaft is a tube having the first and second elongate members disposed within.
3. The device as in claim 2, wherein the first and second elongate members are slidably disposed within the elongate shaft.
4. The device as in claim 1, wherein the second elongate member operable coupling to the first or second distal member forms a lever arm with respect to the pivotal coupling of the elongate shaft to the first distal member.
5. The device as in claim 4, wherein the second elongate member actuates in both compression and in tension.
6. The device as in claim 1, in which the release engagement portion is reversibly transversely moveable relative to a central longitudinal axis of the engagement portion, wherein the first elongate member operable coupling is coupled to urge the releasable engagement portion transversely outward to release the lead head.
7. The device as in claim 6, in which the second distal member includes a collet having jaws, in which the first elongate member is operably coupled to an element for urging the jaws apart when the first elongate member is proximally retracted.
8. The device as in claim 7, wherein the first elongate member operably coupling releases a camming force on the jaws, allowing the jaws to open when the first elongate member is proximally retracted.
9. The device as in claim 1, wherein the first elongate member acts only in tension.
10. The device as in claim 1, wherein the second elongate member is operably coupled to the second distal member.
11. The device as in claim 1, further comprising a manually operable rotatable portion coupled to the tube, wherein the manually rotatable portion has a larger radius then the tube and is coupled to effect rotation of the tube.
12. The device as in claim 1, wherein the first elongate member proximal portion is actuatable through a slider element.
13. The device as in claim 1, further comprising at least one guide along an external surface of the tube to secure a lead body to the tube.
14. The device as in claim 13, in which the guide allows for axial movement of the lead body within the guide.
15. The device as in claim 1, in which the first distal member is a distal portion of a hinge and in which the second distal member includes a collet rotatably disposed about the hinge distal portion.
16. The device as in claim 1, in which the second distal member includes a collet and in which the collet includes jaws that can be urged apart through a camming action actuated from the device proximal portion using the first elongate member.
17. The device as in claim 16, in which the collet includes a plurality of inwardly protruding teeth.
CA2522372A 2003-05-06 2004-05-06 Rotatable lead introducer Active CA2522372C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA2777958A CA2777958C (en) 2003-05-06 2004-05-06 Rotatable lead introducer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US46835203P 2003-05-06 2003-05-06
US60/468,352 2003-05-06
PCT/US2004/014111 WO2004098701A1 (en) 2003-05-06 2004-05-06 Rotatable lead introducer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CA2777958A Division CA2777958C (en) 2003-05-06 2004-05-06 Rotatable lead introducer

Publications (2)

Publication Number Publication Date
CA2522372A1 CA2522372A1 (en) 2004-11-18
CA2522372C true CA2522372C (en) 2012-08-07

Family

ID=33435176

Family Applications (2)

Application Number Title Priority Date Filing Date
CA2522372A Active CA2522372C (en) 2003-05-06 2004-05-06 Rotatable lead introducer
CA2777958A Active CA2777958C (en) 2003-05-06 2004-05-06 Rotatable lead introducer

Family Applications After (1)

Application Number Title Priority Date Filing Date
CA2777958A Active CA2777958C (en) 2003-05-06 2004-05-06 Rotatable lead introducer

Country Status (6)

Country Link
US (3) US7544197B2 (en)
EP (1) EP1620164B1 (en)
AT (1) ATE359101T1 (en)
CA (2) CA2522372C (en)
DE (1) DE602004005845T2 (en)
WO (1) WO2004098701A1 (en)

Families Citing this family (606)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10129912A1 (en) * 2001-06-21 2003-01-02 Efmt Entwicklungs Und Forschun needle electrode
US8150519B2 (en) 2002-04-08 2012-04-03 Ardian, Inc. Methods and apparatus for bilateral renal neuromodulation
US7653438B2 (en) 2002-04-08 2010-01-26 Ardian, Inc. Methods and apparatus for renal neuromodulation
US8979923B2 (en) 2002-10-21 2015-03-17 Mitralign, Inc. Tissue fastening systems and methods utilizing magnetic guidance
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US8026729B2 (en) 2003-09-16 2011-09-27 Cardiomems, Inc. System and apparatus for in-vivo assessment of relative position of an implant
CA2539261C (en) 2003-09-16 2011-05-17 Cardiomems, Inc. Implantable wireless sensor
US7369901B1 (en) 2004-02-11 2008-05-06 Pacesetter, Inc. Myocardial lead and lead system
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US11896225B2 (en) 2004-07-28 2024-02-13 Cilag Gmbh International Staple cartridge comprising a pan
EP1893080A2 (en) 2005-06-21 2008-03-05 CardioMems, Inc. Method of manufacturing implantable wireless sensor for in vivo pressure measurement
US7621036B2 (en) * 2005-06-21 2009-11-24 Cardiomems, Inc. Method of manufacturing implantable wireless sensor for in vivo pressure measurement
US7532939B2 (en) 2005-07-21 2009-05-12 Medtronic, Inc. Active fixation medical lead
US7844348B2 (en) * 2005-08-09 2010-11-30 Greatbatch Ltd. Fiber optic assisted medical lead
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US7328071B1 (en) * 2005-10-12 2008-02-05 Pacesetter, Inc. Lead placement device
SE0502371L (en) * 2005-10-27 2006-09-19 Xerex Ab Ejector with mounting sleeve, as well as mounting procedure
WO2007055521A1 (en) * 2005-11-09 2007-05-18 Korea University Industrial & Academic Collaboration Foundation Radio frequency ablation electrode for selected tissue removal
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US20110290856A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
CN2910138Y (en) * 2006-05-18 2007-06-13 雷伟 Universal expanding screw for pedicle of vertebral arch
WO2007136754A2 (en) * 2006-05-19 2007-11-29 Boston Scientific Limited Control mechanism for steerable medical device
WO2007139457A1 (en) * 2006-05-31 2007-12-06 St. Jude Medical Ab A steerable stylet for a medical implantable lead and a method for manufacturing of the same
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US8485412B2 (en) 2006-09-29 2013-07-16 Ethicon Endo-Surgery, Inc. Surgical staples having attached drivers and stapling instruments for deploying the same
US9028520B2 (en) * 2006-12-22 2015-05-12 The Spectranetics Corporation Tissue separating systems and methods
US8961551B2 (en) 2006-12-22 2015-02-24 The Spectranetics Corporation Retractable separating systems and methods
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8701958B2 (en) 2007-01-11 2014-04-22 Ethicon Endo-Surgery, Inc. Curved end effector for a surgical stapling device
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US11660190B2 (en) 2007-03-13 2023-05-30 Edwards Lifesciences Corporation Tissue anchors, systems and methods, and devices
US8727197B2 (en) 2007-03-15 2014-05-20 Ethicon Endo-Surgery, Inc. Staple cartridge cavity configuration with cooperative surgical staple
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US9561053B2 (en) * 2007-04-25 2017-02-07 Medtronic, Inc. Implant tool to facilitate medical device implantation
US9399130B2 (en) 2007-04-25 2016-07-26 Medtronic, Inc. Cannula configured to deliver test stimulation
US7991484B1 (en) * 2007-05-15 2011-08-02 Pacesetter, Inc. Active fixation medical lead and related method and system
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US11672531B2 (en) 2007-06-04 2023-06-13 Cilag Gmbh International Rotary drive systems for surgical instruments
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US7957817B1 (en) * 2007-09-04 2011-06-07 Pacesetter, Inc. Medical electrode and tool for delivering the electrode
US8257386B2 (en) * 2007-09-11 2012-09-04 Cambridge Endoscopic Devices, Inc. Surgical instrument
US9707003B2 (en) * 2007-10-02 2017-07-18 Covidien Lp Articulating surgical instrument
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
BRPI0901282A2 (en) 2008-02-14 2009-11-17 Ethicon Endo Surgery Inc surgical cutting and fixation instrument with rf electrodes
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US9615826B2 (en) 2010-09-30 2017-04-11 Ethicon Endo-Surgery, Llc Multiple thickness implantable layers for surgical stapling devices
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
WO2009117069A2 (en) * 2008-03-17 2009-09-24 Surgivision, Inc. Low profile medical devices with internal drive shafts that cooperate with releasably engageable drive tools and related methods
US9474546B1 (en) 2008-04-18 2016-10-25 Advanced Bionics Ag Pre-curved electrode array insertion tools
US9420962B2 (en) 2008-04-30 2016-08-23 Medtronic, Inc. Remote lead implant testing
US8700177B2 (en) 2008-08-01 2014-04-15 Ndi Medical, Llc Systems and methods for providing percutaneous electrical stimulation
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
WO2010047463A1 (en) * 2008-10-24 2010-04-29 Meerecompany Laparoscope and setting method thereof
US20100168739A1 (en) * 2008-12-31 2010-07-01 Ardian, Inc. Apparatus, systems, and methods for achieving intravascular, thermally-induced renal neuromodulation
US8808345B2 (en) * 2008-12-31 2014-08-19 Medtronic Ardian Luxembourg S.A.R.L. Handle assemblies for intravascular treatment devices and associated systems and methods
US8652129B2 (en) 2008-12-31 2014-02-18 Medtronic Ardian Luxembourg S.A.R.L. Apparatus, systems, and methods for achieving intravascular, thermally-induced renal neuromodulation
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
JP2012517287A (en) 2009-02-06 2012-08-02 エシコン・エンド−サージェリィ・インコーポレイテッド Improvement of driven surgical stapler
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
US8747417B2 (en) 2009-02-25 2014-06-10 Pacesetter, Inc. Device and method for the implantation of active fixation medical leads
US8444549B2 (en) * 2009-04-16 2013-05-21 Covidien Lp Self-steering endoscopic device
US8132706B2 (en) * 2009-06-05 2012-03-13 Tyco Healthcare Group Lp Surgical stapling apparatus having articulation mechanism
US8452421B2 (en) * 2009-07-08 2013-05-28 Advanced Bionics, Llc Lead insertion tools
US10058319B2 (en) 2009-07-17 2018-08-28 Pivot Medical, Inc. Method and apparatus for attaching tissue to bone, including the provision and use of a novel knotless suture anchor system, including a novel locking element
US11197663B2 (en) 2009-07-17 2021-12-14 Stryker Puerto Rico Limited Method and apparatus for attaching tissue to bone, including the provision and use of a novel knotless suture anchor system
US10426456B2 (en) 2009-07-17 2019-10-01 Pivot Medical, Inc. Method and apparatus for re-attaching the labrum to the acetabulum, including the provision and use of a novel suture anchor system
US10136884B2 (en) 2009-07-17 2018-11-27 Pivot Medical, Inc. Method and apparatus for attaching tissue to bone, including the provision and use of a novel knotless suture anchor system, including a retractable sheath
US9179905B2 (en) 2009-07-17 2015-11-10 Pivot Medical, Inc. Method and apparatus for re-attaching the labrum to the acetabulum, including the provision and use of a novel suture anchor system
US9149268B2 (en) 2009-07-17 2015-10-06 Pivot Medical, Inc. Method and apparatus for attaching tissue to bone, including the provision and use of a novel knotless suture anchor system
US10238379B2 (en) 2009-07-17 2019-03-26 Pivot Medical, Inc. Method and apparatus for attaching tissue to bone, including the provision and use of a novel knotless suture anchor system
US11246585B2 (en) 2009-07-17 2022-02-15 Stryker Puerto Rico Limited Method and apparatus for attaching tissue to bone, including the provision and use of a novel knotless suture anchor system
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8449569B2 (en) * 2009-12-30 2013-05-28 MiT Capital Partners, LLC Apparatus for manipulation of implantable medical device and associated method
EP2542163B1 (en) * 2010-03-03 2016-09-14 Basel S. Hassoun Surgical instrument
US20110218602A1 (en) * 2010-03-03 2011-09-08 Pacesetter, Inc. Braided implantable medical lead and method of making same
ES2387255T3 (en) * 2010-04-14 2012-09-19 Tuebingen Scientific Medical Gmbh Surgical instrument with elastically movable instrument head
US8870863B2 (en) 2010-04-26 2014-10-28 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses, systems, and methods for renal neuromodulation
US8753352B2 (en) 2010-06-25 2014-06-17 Advanced Bionics Ag Tools, systems, and methods for inserting a pre-curved electrode array portion of a lead into a bodily orifice
US8753353B2 (en) 2010-06-25 2014-06-17 Advanced Bionics Ag Tools, systems, and methods for inserting an electrode array portion of a lead into a bodily orifice
US8774944B2 (en) 2010-06-25 2014-07-08 Advanced Bionics Ag Tools, systems, and methods for inserting an electrode array portion of a lead into a bodily orifice
US8790362B1 (en) 2010-07-16 2014-07-29 Greatbatch Ltd. Catheter for positioning a lead in the vasculature
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US9700317B2 (en) 2010-09-30 2017-07-11 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a releasable tissue thickness compensator
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US11925354B2 (en) 2010-09-30 2024-03-12 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US9113865B2 (en) 2010-09-30 2015-08-25 Ethicon Endo-Surgery, Inc. Staple cartridge comprising a layer
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US9351730B2 (en) 2011-04-29 2016-05-31 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising channels
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
EP2627268B8 (en) 2010-10-11 2017-07-26 Cook Medical Technologies LLC Medical devices with detachable pivotable jaws
TWI556849B (en) 2010-10-21 2016-11-11 美敦力阿福盧森堡公司 Catheter apparatus for renal neuromodulation
US8968335B2 (en) 2010-10-27 2015-03-03 Mitralign, Inc. Hand operated device for controlled deployment of a tissue anchor and method of using the same
CN103298521B (en) * 2010-10-29 2015-09-16 Cvrx有限公司 For the implanting instrument of Wicresoft's program and the electrode design of improvement
US8079865B1 (en) 2010-12-01 2011-12-20 Ndi Medical, Llc Systems and methods of coupling electrical conductors
EP2667771A2 (en) * 2010-12-30 2013-12-04 Vectorious Medical Technologies Ltd. Method and systems for delivering and deploying a sensory implant in situ
AU2012250197B2 (en) 2011-04-29 2017-08-10 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
CA2839629A1 (en) 2011-06-29 2013-01-03 Pivot Medical, Inc. Method and apparatus for re-attaching the labrum to the acetabulum, including the provision and use of a novel suture anchor system
US9192766B2 (en) 2011-12-02 2015-11-24 Medtronic Ardian Luxembourg S.A.R.L. Renal neuromodulation methods and devices for treatment of polycystic kidney disease
DE102012200529A1 (en) * 2012-01-16 2013-07-18 Universität Rostock Device for electrical impedance analysis at remote locations of e.g. bone, has measuring head that is connected via distal joint to connecting piece which is connected to handle at side opposite to joint
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
AU2013230781B2 (en) 2012-03-08 2015-12-03 Medtronic Af Luxembourg S.A.R.L. Ovarian neuromodulation and associated systems and methods
WO2013134541A2 (en) 2012-03-08 2013-09-12 Medtronic Ardian Luxembourg Sarl Gastrointestinal neuromodulation and associated systems and methods
JP6305979B2 (en) 2012-03-28 2018-04-04 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Tissue thickness compensator with multiple layers
RU2644272C2 (en) 2012-03-28 2018-02-08 Этикон Эндо-Серджери, Инк. Limitation node with tissue thickness compensator
BR112014024098B1 (en) 2012-03-28 2021-05-25 Ethicon Endo-Surgery, Inc. staple cartridge
US8755909B2 (en) 2012-06-01 2014-06-17 Medtronic, Inc. Active fixation medical electrical lead
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US9408606B2 (en) 2012-06-28 2016-08-09 Ethicon Endo-Surgery, Llc Robotically powered surgical device with manually-actuatable reversing system
US11202631B2 (en) 2012-06-28 2021-12-21 Cilag Gmbh International Stapling assembly comprising a firing lockout
JP6290201B2 (en) 2012-06-28 2018-03-07 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Lockout for empty clip cartridge
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
US9724122B2 (en) 2012-09-14 2017-08-08 The Spectranetics Corporation Expandable lead jacket
WO2014052818A1 (en) 2012-09-29 2014-04-03 Mitralign, Inc. Plication lock delivery system and method of use thereof
US10687716B2 (en) 2012-11-14 2020-06-23 Vectorious Medical Technologies Ltd. Drift compensation for implanted capacitance-based pressure transducer
BR112015021098B1 (en) 2013-03-01 2022-02-15 Ethicon Endo-Surgery, Inc COVERAGE FOR A JOINT JOINT AND SURGICAL INSTRUMENT
RU2669463C2 (en) 2013-03-01 2018-10-11 Этикон Эндо-Серджери, Инк. Surgical instrument with soft stop
US9370655B1 (en) 2013-03-07 2016-06-21 Subhajit Datta Lead and conduit placement device and method
US9883885B2 (en) 2013-03-13 2018-02-06 The Spectranetics Corporation System and method of ablative cutting and pulsed vacuum aspiration
US9456872B2 (en) 2013-03-13 2016-10-04 The Spectranetics Corporation Laser ablation catheter
US9291663B2 (en) 2013-03-13 2016-03-22 The Spectranetics Corporation Alarm for lead insulation abnormality
US9283040B2 (en) 2013-03-13 2016-03-15 The Spectranetics Corporation Device and method of ablative cutting with helical tip
US10383691B2 (en) 2013-03-13 2019-08-20 The Spectranetics Corporation Last catheter with helical internal lumen
US9883860B2 (en) 2013-03-14 2018-02-06 Ethicon Llc Interchangeable shaft assemblies for use with a surgical instrument
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US10835279B2 (en) 2013-03-14 2020-11-17 Spectranetics Llc Distal end supported tissue slitting apparatus
WO2014151814A1 (en) 2013-03-15 2014-09-25 The Spectranetics Corporation Surgical instrument for removing an implanted object
US9724195B2 (en) 2013-03-15 2017-08-08 Mitralign, Inc. Translation catheters and systems
US10842532B2 (en) 2013-03-15 2020-11-24 Spectranetics Llc Medical device for removing an implanted object
US9668765B2 (en) 2013-03-15 2017-06-06 The Spectranetics Corporation Retractable blade for lead removal device
US10448999B2 (en) 2013-03-15 2019-10-22 The Spectranetics Corporation Surgical instrument for removing an implanted object
US10136913B2 (en) 2013-03-15 2018-11-27 The Spectranetics Corporation Multiple configuration surgical cutting device
WO2017048486A1 (en) 2013-03-15 2017-03-23 The Spectranetics Corporation Medical device for removing an implanted object using laser cut hypotubes
US9603618B2 (en) 2013-03-15 2017-03-28 The Spectranetics Corporation Medical device for removing an implanted object
US10136887B2 (en) 2013-04-16 2018-11-27 Ethicon Llc Drive system decoupling arrangement for a surgical instrument
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
WO2017115112A1 (en) 2015-12-30 2017-07-06 Vectorious Medical Technologies Ltd. Power-efficient pressure-sensor implant
US10105103B2 (en) 2013-04-18 2018-10-23 Vectorious Medical Technologies Ltd. Remotely powered sensory implant
US10205488B2 (en) 2013-04-18 2019-02-12 Vectorious Medical Technologies Ltd. Low-power high-accuracy clock harvesting in inductive coupling systems
US10292694B2 (en) 2013-04-22 2019-05-21 Pivot Medical, Inc. Method and apparatus for attaching tissue to bone
US20140330287A1 (en) 2013-05-06 2014-11-06 Medtronic, Inc. Devices and techniques for anchoring an implantable medical device
US9717923B2 (en) 2013-05-06 2017-08-01 Medtronic, Inc. Implantable medical device system having implantable cardioverter-defibrillator (ICD) system and substernal leadless pacing device
US9220913B2 (en) 2013-05-06 2015-12-29 Medtronics, Inc. Multi-mode implantable medical device
US10556117B2 (en) 2013-05-06 2020-02-11 Medtronic, Inc. Implantable cardioverter-defibrillator (ICD) system including substernal pacing lead
US10532203B2 (en) 2013-05-06 2020-01-14 Medtronic, Inc. Substernal electrical stimulation system
US10933230B2 (en) 2013-05-06 2021-03-02 Medtronic, Inc. Systems and methods for implanting a medical electrical lead
US10471267B2 (en) 2013-05-06 2019-11-12 Medtronic, Inc. Implantable cardioverter-defibrillator (ICD) system including substernal lead
MX369362B (en) 2013-08-23 2019-11-06 Ethicon Endo Surgery Llc Firing member retraction devices for powered surgical instruments.
US9924942B2 (en) 2013-08-23 2018-03-27 Ethicon Llc Motor-powered articulatable surgical instruments
US10070857B2 (en) 2013-08-31 2018-09-11 Mitralign, Inc. Devices and methods for locating and implanting tissue anchors at mitral valve commissure
US10434307B2 (en) 2013-10-15 2019-10-08 Medtronic, Inc. Methods and devices for subcutaneous lead implantation
US10792490B2 (en) 2013-11-12 2020-10-06 Medtronic, Inc. Open channel implant tools and implant techniques utilizing such tools
US9610436B2 (en) 2013-11-12 2017-04-04 Medtronic, Inc. Implant tools with attachment feature and multi-positional sheath and implant techniques utilizing such tools
DE102013224283A1 (en) 2013-11-27 2015-06-11 Deutsches Herzzentrum Berlin Device for transcutaneous implantation of epicardial pacemaker electrodes
AU2014362199B2 (en) 2013-12-12 2019-07-11 Stryker Puerto Rico Limited Method and apparatus for attaching tissue to bone, including the provision and use of a novel knotless suture anchor system
WO2015106015A1 (en) 2014-01-10 2015-07-16 Cardiac Pacemakers, Inc. Systems and methods for detecting cardiac arrhythmias
EP3308833B1 (en) 2014-01-10 2019-06-26 Cardiac Pacemakers, Inc. Methods and systems for improved communication between medical devices
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
CN106232029B (en) 2014-02-24 2019-04-12 伊西康内外科有限责任公司 Fastening system including firing member locking piece
US9511219B1 (en) 2014-03-24 2016-12-06 Subhajit Datta Dual vacuum device for medical fixture placement including for thoracoscopic left ventricular lead placement
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
US20150272580A1 (en) 2014-03-26 2015-10-01 Ethicon Endo-Surgery, Inc. Verification of number of battery exchanges/procedure count
US9804618B2 (en) 2014-03-26 2017-10-31 Ethicon Llc Systems and methods for controlling a segmented circuit
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
BR112016023825B1 (en) 2014-04-16 2022-08-02 Ethicon Endo-Surgery, Llc STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPLER AND STAPLE CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT
CN106456176B (en) 2014-04-16 2019-06-28 伊西康内外科有限责任公司 Fastener cartridge including the extension with various configuration
JP6532889B2 (en) 2014-04-16 2019-06-19 エシコン エルエルシーEthicon LLC Fastener cartridge assembly and staple holder cover arrangement
US11185330B2 (en) 2014-04-16 2021-11-30 Cilag Gmbh International Fastener cartridge assemblies and staple retainer cover arrangements
US20150297222A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
US9801628B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
US10556091B2 (en) 2014-05-07 2020-02-11 St. Jude Medical, Cardiology Division, Inc. Threaded, locking handle mechanism for attaching to shaft
US10405924B2 (en) 2014-05-30 2019-09-10 The Spectranetics Corporation System and method of ablative cutting and vacuum aspiration through primary orifice and auxiliary side port
EP2987529B1 (en) 2014-08-19 2016-12-14 BIOTRONIK SE & Co. KG Implant comprising a fixing device, and insertion apparatus comprising an implant
US10478620B2 (en) 2014-08-26 2019-11-19 Medtronic, Inc. Interventional medical systems, devices, and methods of use
US9675798B2 (en) * 2014-08-26 2017-06-13 Medtronic, Inc. Interventional medical systems, devices, and components thereof
EP3185952B1 (en) 2014-08-28 2018-07-25 Cardiac Pacemakers, Inc. Implantable cardiac rhythm system and an associated method for triggering a blanking period through a second device
US10328268B2 (en) 2014-09-04 2019-06-25 AtaCor Medical, Inc. Cardiac pacing
CA2959177C (en) 2014-09-04 2023-10-10 AtaCor Medical, Inc. Cardiac pacing lead delivery system
US10743960B2 (en) 2014-09-04 2020-08-18 AtaCor Medical, Inc. Cardiac arrhythmia treatment devices and delivery
US9636505B2 (en) 2014-11-24 2017-05-02 AtaCor Medical, Inc. Cardiac pacing sensing and control
US10135242B2 (en) 2014-09-05 2018-11-20 Ethicon Llc Smart cartridge wake up operation and data retention
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
MX2017003960A (en) 2014-09-26 2017-12-04 Ethicon Llc Surgical stapling buttresses and adjunct materials.
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US9636512B2 (en) 2014-11-05 2017-05-02 Medtronic, Inc. Implantable cardioverter-defibrillator (ICD) system having multiple common polarity extravascular defibrillation electrodes
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US20160135862A1 (en) * 2014-11-17 2016-05-19 Spinal Elements, Inc. Curved surgical tools
US11097109B2 (en) 2014-11-24 2021-08-24 AtaCor Medical, Inc. Cardiac pacing sensing and control
WO2016090360A1 (en) * 2014-12-05 2016-06-09 Vquad Medical Epicardial heart rhythm management devices, systems and methods
US11083491B2 (en) 2014-12-09 2021-08-10 Medtronic, Inc. Extravascular implant tools utilizing a bore-in mechanism and implant techniques using such tools
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US10729456B2 (en) 2014-12-18 2020-08-04 Medtronic, Inc. Systems and methods for deploying an implantable medical electrical lead
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US10349978B2 (en) 2014-12-18 2019-07-16 Medtronic, Inc. Open channel implant tool with additional lumen and implant techniques utilizing such tools
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10004501B2 (en) 2014-12-18 2018-06-26 Ethicon Llc Surgical instruments with improved closure arrangements
RU2703684C2 (en) 2014-12-18 2019-10-21 ЭТИКОН ЭНДО-СЕРДЖЕРИ, ЭлЭлСи Surgical instrument with anvil which is selectively movable relative to staple cartridge around discrete fixed axis
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
WO2016126968A1 (en) 2015-02-06 2016-08-11 Cardiac Pacemakers, Inc. Systems and methods for safe delivery of electrical stimulation therapy
WO2016126613A1 (en) 2015-02-06 2016-08-11 Cardiac Pacemakers, Inc. Systems and methods for treating cardiac arrhythmias
US10046167B2 (en) 2015-02-09 2018-08-14 Cardiac Pacemakers, Inc. Implantable medical device with radiopaque ID tag
USD765243S1 (en) 2015-02-20 2016-08-30 The Spectranetics Corporation Medical device handle
USD770616S1 (en) 2015-02-20 2016-11-01 The Spectranetics Corporation Medical device handle
WO2016137562A1 (en) * 2015-02-25 2016-09-01 Cook Medical Technologies Llc Articulating surgical hand instrument
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US10321907B2 (en) 2015-02-27 2019-06-18 Ethicon Llc System for monitoring whether a surgical instrument needs to be serviced
CN107530002B (en) 2015-03-04 2021-04-30 心脏起搏器股份公司 System and method for treating cardiac arrhythmias
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US10052044B2 (en) 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US10050700B2 (en) 2015-03-18 2018-08-14 Cardiac Pacemakers, Inc. Communications in a medical device system with temporal optimization
CN107427222B (en) 2015-03-18 2021-02-09 心脏起搏器股份公司 Communication in a medical device system using link quality assessment
US9993648B2 (en) * 2015-03-27 2018-06-12 Medtronic, Inc. Medical device delivery system
US10390825B2 (en) 2015-03-31 2019-08-27 Ethicon Llc Surgical instrument with progressive rotary drive systems
US10143399B2 (en) * 2015-04-02 2018-12-04 Medtronic Ablation Frontiers Llc Tissue contact sensing with a multi electrode ablation catheter
US10182742B2 (en) * 2015-04-02 2019-01-22 Medtronic Ablation Frontiers Llc Tissue contact sensing with a multi electrode ablation catheter
US10130821B2 (en) * 2015-04-24 2018-11-20 Medtronic, Inc. Interventional medical systems and associated tethering assemblies and methods
US20180110468A1 (en) 2015-05-07 2018-04-26 Vectorious Medical Technologies Ltd. Heart implant with septum gripper
US11058425B2 (en) 2015-08-17 2021-07-13 Ethicon Llc Implantable layers for a surgical instrument
EP3337559B1 (en) 2015-08-20 2019-10-16 Cardiac Pacemakers, Inc. Systems and methods for communication between medical devices
CN108136186B (en) 2015-08-20 2021-09-17 心脏起搏器股份公司 System and method for communication between medical devices
US9956414B2 (en) 2015-08-27 2018-05-01 Cardiac Pacemakers, Inc. Temporal configuration of a motion sensor in an implantable medical device
US9968787B2 (en) 2015-08-27 2018-05-15 Cardiac Pacemakers, Inc. Spatial configuration of a motion sensor in an implantable medical device
WO2017040115A1 (en) 2015-08-28 2017-03-09 Cardiac Pacemakers, Inc. System for detecting tamponade
US10226631B2 (en) 2015-08-28 2019-03-12 Cardiac Pacemakers, Inc. Systems and methods for infarct detection
EP3341076B1 (en) 2015-08-28 2022-05-11 Cardiac Pacemakers, Inc. Systems and methods for behaviorally responsive signal detection and therapy delivery
WO2017044389A1 (en) 2015-09-11 2017-03-16 Cardiac Pacemakers, Inc. Arrhythmia detection and confirmation
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10561420B2 (en) 2015-09-30 2020-02-18 Ethicon Llc Tubular absorbable constructs
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10285699B2 (en) 2015-09-30 2019-05-14 Ethicon Llc Compressible adjunct
EP3359251B1 (en) 2015-10-08 2019-08-07 Cardiac Pacemakers, Inc. Adjusting pacing rates in an implantable medical device
US10328271B2 (en) 2015-11-12 2019-06-25 Medtronic, Inc. Implantable electrical stimulator with deflecting tip lead
US10183170B2 (en) 2015-12-17 2019-01-22 Cardiac Pacemakers, Inc. Conducted communication in a medical device system
US10905886B2 (en) 2015-12-28 2021-02-02 Cardiac Pacemakers, Inc. Implantable medical device for deployment across the atrioventricular septum
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
WO2017127548A1 (en) 2016-01-19 2017-07-27 Cardiac Pacemakers, Inc. Devices for wirelessly recharging a rechargeable battery of an implantable medical device
EP3411113B1 (en) 2016-02-04 2019-11-27 Cardiac Pacemakers, Inc. Delivery system with force sensor for leadless cardiac device
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
BR112018016098B1 (en) 2016-02-09 2023-02-23 Ethicon Llc SURGICAL INSTRUMENT
US10433837B2 (en) 2016-02-09 2019-10-08 Ethicon Llc Surgical instruments with multiple link articulation arrangements
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
CN108883286B (en) 2016-03-31 2021-12-07 心脏起搏器股份公司 Implantable medical device with rechargeable battery
US10485542B2 (en) 2016-04-01 2019-11-26 Ethicon Llc Surgical stapling instrument comprising multiple lockouts
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US10478181B2 (en) 2016-04-18 2019-11-19 Ethicon Llc Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US10668294B2 (en) 2016-05-10 2020-06-02 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker configured for over the wire delivery
US10328272B2 (en) 2016-05-10 2019-06-25 Cardiac Pacemakers, Inc. Retrievability for implantable medical devices
EP3471819B1 (en) * 2016-06-16 2021-07-21 Datta, Subhajit Lead and conduit placement device and method
US10512784B2 (en) 2016-06-27 2019-12-24 Cardiac Pacemakers, Inc. Cardiac therapy system using subcutaneously sensed P-waves for resynchronization pacing management
US11207527B2 (en) 2016-07-06 2021-12-28 Cardiac Pacemakers, Inc. Method and system for determining an atrial contraction timing fiducial in a leadless cardiac pacemaker system
US10426962B2 (en) 2016-07-07 2019-10-01 Cardiac Pacemakers, Inc. Leadless pacemaker using pressure measurements for pacing capture verification
WO2018017226A1 (en) 2016-07-20 2018-01-25 Cardiac Pacemakers, Inc. System for utilizing an atrial contraction timing fiducial in a leadless cardiac pacemaker system
EP3500342B1 (en) 2016-08-19 2020-05-13 Cardiac Pacemakers, Inc. Trans-septal implantable medical device
CN109640809B (en) 2016-08-24 2021-08-17 心脏起搏器股份公司 Integrated multi-device cardiac resynchronization therapy using P-wave to pacing timing
WO2018039322A1 (en) 2016-08-24 2018-03-01 Cardiac Pacemakers, Inc. Cardiac resynchronization using fusion promotion for timing management
WO2018057626A1 (en) 2016-09-21 2018-03-29 Cardiac Pacemakers, Inc. Implantable cardiac monitor
US10758737B2 (en) 2016-09-21 2020-09-01 Cardiac Pacemakers, Inc. Using sensor data from an intracardially implanted medical device to influence operation of an extracardially implantable cardioverter
CN109803720B (en) 2016-09-21 2023-08-15 心脏起搏器股份公司 Leadless stimulation device having a housing containing its internal components and functioning as a terminal for a battery case and an internal battery
US10434314B2 (en) 2016-10-27 2019-10-08 Cardiac Pacemakers, Inc. Use of a separate device in managing the pace pulse energy of a cardiac pacemaker
JP7038115B2 (en) 2016-10-27 2022-03-17 カーディアック ペースメイカーズ, インコーポレイテッド Implantable medical device with pressure sensor
US10413733B2 (en) 2016-10-27 2019-09-17 Cardiac Pacemakers, Inc. Implantable medical device with gyroscope
US10561330B2 (en) 2016-10-27 2020-02-18 Cardiac Pacemakers, Inc. Implantable medical device having a sense channel with performance adjustment
US10463305B2 (en) 2016-10-27 2019-11-05 Cardiac Pacemakers, Inc. Multi-device cardiac resynchronization therapy with timing enhancements
WO2018081225A1 (en) 2016-10-27 2018-05-03 Cardiac Pacemakers, Inc. Implantable medical device delivery system with integrated sensor
US10617874B2 (en) 2016-10-31 2020-04-14 Cardiac Pacemakers, Inc. Systems and methods for activity level pacing
US10434317B2 (en) 2016-10-31 2019-10-08 Cardiac Pacemakers, Inc. Systems and methods for activity level pacing
WO2018089311A1 (en) 2016-11-08 2018-05-17 Cardiac Pacemakers, Inc Implantable medical device for atrial deployment
EP3538213B1 (en) 2016-11-09 2023-04-12 Cardiac Pacemakers, Inc. Systems and devices for setting cardiac pacing pulse parameters for a cardiac pacing device
US10881863B2 (en) 2016-11-21 2021-01-05 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with multimode communication
US11147979B2 (en) 2016-11-21 2021-10-19 Cardiac Pacemakers, Inc. Implantable medical device with a magnetically permeable housing and an inductive coil disposed about the housing
US10881869B2 (en) 2016-11-21 2021-01-05 Cardiac Pacemakers, Inc. Wireless re-charge of an implantable medical device
US10894163B2 (en) 2016-11-21 2021-01-19 Cardiac Pacemakers, Inc. LCP based predictive timing for cardiac resynchronization
US10639486B2 (en) 2016-11-21 2020-05-05 Cardiac Pacemakers, Inc. Implantable medical device with recharge coil
US10588632B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical end effectors and firing members thereof
US10588630B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical tool assemblies with closure stroke reduction features
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US10675026B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Methods of stapling tissue
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US10675025B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Shaft assembly comprising separately actuatable and retractable systems
US10758229B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument comprising improved jaw control
US10617414B2 (en) 2016-12-21 2020-04-14 Ethicon Llc Closure member arrangements for surgical instruments
CN110099619B (en) 2016-12-21 2022-07-15 爱惜康有限责任公司 Lockout device for surgical end effector and replaceable tool assembly
US20180168608A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical instrument system comprising an end effector lockout and a firing assembly lockout
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
BR112019011947A2 (en) 2016-12-21 2019-10-29 Ethicon Llc surgical stapling systems
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10517595B2 (en) 2016-12-21 2019-12-31 Ethicon Llc Jaw actuated lock arrangements for preventing advancement of a firing member in a surgical end effector unless an unfired cartridge is installed in the end effector
US10682138B2 (en) 2016-12-21 2020-06-16 Ethicon Llc Bilaterally asymmetric staple forming pocket pairs
US10893864B2 (en) 2016-12-21 2021-01-19 Ethicon Staple cartridges and arrangements of staples and staple cavities therein
US10856868B2 (en) 2016-12-21 2020-12-08 Ethicon Llc Firing member pin configurations
US11207532B2 (en) 2017-01-04 2021-12-28 Cardiac Pacemakers, Inc. Dynamic sensing updates using postural input in a multiple device cardiac rhythm management system
WO2018140623A1 (en) 2017-01-26 2018-08-02 Cardiac Pacemakers, Inc. Leadless device with overmolded components
EP3573706A1 (en) 2017-01-26 2019-12-04 Cardiac Pacemakers, Inc. Intra-body device communication with redundant message transmission
US10737102B2 (en) 2017-01-26 2020-08-11 Cardiac Pacemakers, Inc. Leadless implantable device with detachable fixation
US10905872B2 (en) 2017-04-03 2021-02-02 Cardiac Pacemakers, Inc. Implantable medical device with a movable electrode biased toward an extended position
US10821288B2 (en) 2017-04-03 2020-11-03 Cardiac Pacemakers, Inc. Cardiac pacemaker with pacing pulse energy adjustment based on sensed heart rate
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US20180368844A1 (en) 2017-06-27 2018-12-27 Ethicon Llc Staple forming pocket arrangements
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US11020114B2 (en) 2017-06-28 2021-06-01 Cilag Gmbh International Surgical instruments with articulatable end effector with axially shortened articulation joint configurations
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
EP3420947B1 (en) 2017-06-28 2022-05-25 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US11678880B2 (en) 2017-06-28 2023-06-20 Cilag Gmbh International Surgical instrument comprising a shaft including a housing arrangement
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
WO2019036600A1 (en) 2017-08-18 2019-02-21 Cardiac Pacemakers, Inc. Implantable medical device with pressure sensor
US10918875B2 (en) 2017-08-18 2021-02-16 Cardiac Pacemakers, Inc. Implantable medical device with a flux concentrator and a receiving coil disposed about the flux concentrator
CN111107899B (en) 2017-09-20 2024-04-02 心脏起搏器股份公司 Implantable medical device with multiple modes of operation
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US11185703B2 (en) 2017-11-07 2021-11-30 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker for bundle of his pacing
EP3717059A1 (en) 2017-12-01 2020-10-07 Cardiac Pacemakers, Inc. Methods and systems for detecting atrial contraction timing fiducials within a search window from a ventricularly implanted leadless cardiac pacemaker
WO2019108830A1 (en) 2017-12-01 2019-06-06 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with reversionary behavior
EP3717063B1 (en) 2017-12-01 2023-12-27 Cardiac Pacemakers, Inc. Systems for detecting atrial contraction timing fiducials and determining a cardiac interval from a ventricularly implanted leadless cardiac pacemaker
US11260216B2 (en) 2017-12-01 2022-03-01 Cardiac Pacemakers, Inc. Methods and systems for detecting atrial contraction timing fiducials during ventricular filling from a ventricularly implanted leadless cardiac pacemaker
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US11045270B2 (en) * 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US11179151B2 (en) 2017-12-21 2021-11-23 Cilag Gmbh International Surgical instrument comprising a display
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US10874861B2 (en) 2018-01-04 2020-12-29 Cardiac Pacemakers, Inc. Dual chamber pacing without beat-to-beat communication
US11529523B2 (en) 2018-01-04 2022-12-20 Cardiac Pacemakers, Inc. Handheld bridge device for providing a communication bridge between an implanted medical device and a smartphone
WO2019183514A1 (en) 2018-03-23 2019-09-26 Medtronic, Inc. Vfa cardiac therapy for tachycardia
CN111902187A (en) 2018-03-23 2020-11-06 美敦力公司 VFA cardiac resynchronization therapy
EP3768369A1 (en) 2018-03-23 2021-01-27 Medtronic, Inc. Av synchronous vfa cardiac therapy
DE202018101753U1 (en) * 2018-03-28 2018-05-08 Tuebingen Scientific Medical Gmbh Electrode application instrument
CN108577917A (en) * 2018-05-17 2018-09-28 南京微创医学科技股份有限公司 The self-service anastomosis clamp of alimentary canal and its release device
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
EP3856331A1 (en) 2018-09-26 2021-08-04 Medtronic, Inc. Capture in ventricle-from-atrium cardiac therapy
US11679265B2 (en) 2019-02-14 2023-06-20 Medtronic, Inc. Lead-in-lead systems and methods for cardiac therapy
US11272956B2 (en) 2019-03-17 2022-03-15 Ripple, LLC Systems and methods for implanting electrode leads
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11697025B2 (en) 2019-03-29 2023-07-11 Medtronic, Inc. Cardiac conduction system capture
US11213676B2 (en) 2019-04-01 2022-01-04 Medtronic, Inc. Delivery systems for VfA cardiac therapy
US10756518B1 (en) 2019-04-24 2020-08-25 Chester Gordon Cable securing device
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11712188B2 (en) 2019-05-07 2023-08-01 Medtronic, Inc. Posterior left bundle branch engagement
US20200398044A1 (en) 2019-05-29 2020-12-24 AtaCor Medical, Inc. Implantable electrical leads and electrodes
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11229437B2 (en) 2019-06-28 2022-01-25 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11305127B2 (en) 2019-08-26 2022-04-19 Medtronic Inc. VfA delivery and implant region detection
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11813466B2 (en) 2020-01-27 2023-11-14 Medtronic, Inc. Atrioventricular nodal stimulation
JP7411817B2 (en) * 2020-02-03 2024-01-11 ボストン サイエンティフィック サイムド,インコーポレイテッド Maneuverable rotating hemostatic clip
US11911168B2 (en) 2020-04-03 2024-02-27 Medtronic, Inc. Cardiac conduction system therapy benefit determination
US11666771B2 (en) 2020-05-29 2023-06-06 AtaCor Medical, Inc. Implantable electrical leads and associated delivery systems
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
US20220031350A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with double pivot articulation joint arrangements
US11813464B2 (en) 2020-07-31 2023-11-14 Medtronic, Inc. Cardiac conduction system evaluation
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
DE102021105314B3 (en) 2021-03-05 2022-07-07 Universität Rostock, Körperschaft des öffentlichen Rechts Implantable stimulation electrode
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US20220378426A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising a mounted shaft orientation sensor
DE102021119534B4 (en) 2021-07-28 2023-07-06 Karl Storz Se & Co. Kg Surgical instrument and operating device therefor
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2775912A (en) * 1955-07-27 1957-01-01 Gen Electric Double socket wrench having universal joint drives
US3890859A (en) * 1974-08-09 1975-06-24 Cons Devices Torque driver tool
US4552150A (en) * 1983-06-14 1985-11-12 Fred Zacouto Method and apparatus to assist cardiac muscle functioning
US5040545A (en) * 1989-11-02 1991-08-20 Possis Medical, Inc. Releasable lock assembly
US5143090A (en) * 1989-11-02 1992-09-01 Possis Medical, Inc. Cardiac lead
US4972847A (en) * 1989-11-02 1990-11-27 Dutcher Robert G Pacing lead and introducer therefor
US5217028A (en) * 1989-11-02 1993-06-08 Possis Medical, Inc. Bipolar cardiac lead with drug eluting device
US5255693A (en) * 1989-11-02 1993-10-26 Possis Medical, Inc. Cardiac lead
US5036854A (en) * 1990-02-15 1991-08-06 Angeion Corporation Lead insertion tool
US5549637A (en) * 1994-11-10 1996-08-27 Crainich; Lawrence Articulated medical instrument
US5814088A (en) * 1997-03-26 1998-09-29 Sulzer Intermedics Inc. Cardiac stimulator with lead failure detector and warning system
US6010526A (en) * 1998-09-18 2000-01-04 Medtronic, Inc. Epicardial lead implant tool and method of use
EP1066836A1 (en) 1999-06-11 2001-01-10 Sensus, part of Coöperatie COSUN U.A. Filler/binder hollow particles for tablets
FR2795301B1 (en) * 1999-06-25 2001-08-31 Prec ENDOSCOPIC SURGERY INSTRUMENT
US7092765B2 (en) * 2002-09-23 2006-08-15 Medtronic, Inc. Non-sheath based medical device delivery system
US7328071B1 (en) 2005-10-12 2008-02-05 Pacesetter, Inc. Lead placement device

Also Published As

Publication number Publication date
US7544197B2 (en) 2009-06-09
CA2777958A1 (en) 2004-11-18
US7930040B1 (en) 2011-04-19
WO2004098701A1 (en) 2004-11-18
US20050004644A1 (en) 2005-01-06
CA2522372A1 (en) 2004-11-18
EP1620164A1 (en) 2006-02-01
ATE359101T1 (en) 2007-05-15
DE602004005845D1 (en) 2007-05-24
CA2777958C (en) 2015-01-20
EP1620164B1 (en) 2007-04-11
US7890192B1 (en) 2011-02-15
DE602004005845T2 (en) 2007-12-20

Similar Documents

Publication Publication Date Title
CA2522372C (en) Rotatable lead introducer
US8868210B2 (en) Fiber optic assisted medical lead
US5871532A (en) Epicardial lead for minimally invasive implantation
US7328071B1 (en) Lead placement device
US9526891B2 (en) Intracardiac medical device
US6185464B1 (en) Arrangement for planting an endocardial cardiac lead
EP2121120B1 (en) Lead anchoring assembly
JP6023720B2 (en) Pacemaker takeout system and takeout method
US10525262B1 (en) Dual vacuum device for medical fixture placement including for thoracoscopic left ventricular lead placement
US20210045878A1 (en) Epicardial Valve Repair System
US8105337B2 (en) Medical electrical lead implant tool
EP4324510A1 (en) Biostimulator transport system having drive belt
US20220023621A1 (en) Implantable medical lead
EP3471607B1 (en) Dual vacuum device for medical fixture placement including thoracoscopic left ventricular lead placement

Legal Events

Date Code Title Description
EEER Examination request