CA2520554A1 - Conductive frequency selective surface utilizing arc and line elements - Google Patents

Conductive frequency selective surface utilizing arc and line elements Download PDF

Info

Publication number
CA2520554A1
CA2520554A1 CA002520554A CA2520554A CA2520554A1 CA 2520554 A1 CA2520554 A1 CA 2520554A1 CA 002520554 A CA002520554 A CA 002520554A CA 2520554 A CA2520554 A CA 2520554A CA 2520554 A1 CA2520554 A1 CA 2520554A1
Authority
CA
Canada
Prior art keywords
break
lines
break lines
article according
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002520554A
Other languages
French (fr)
Other versions
CA2520554C (en
Inventor
Charles S. Voeltzel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vitro Flat Glass LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=33130614&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CA2520554(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Publication of CA2520554A1 publication Critical patent/CA2520554A1/en
Application granted granted Critical
Publication of CA2520554C publication Critical patent/CA2520554C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3644Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3668Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties
    • C03C17/3673Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties specially adapted for use in heating devices for rear window of vehicles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • C03C27/10Joining glass to glass by processes other than fusing with the aid of adhesive specially adapted for that purpose
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1271Supports; Mounting means for mounting on windscreens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/84Heating arrangements specially adapted for transparent or reflecting areas, e.g. for demisting or de-icing windows, mirrors or vehicle windshields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/84Heating arrangements specially adapted for transparent or reflecting areas, e.g. for demisting or de-icing windows, mirrors or vehicle windshields
    • H05B3/86Heating arrangements specially adapted for transparent or reflecting areas, e.g. for demisting or de-icing windows, mirrors or vehicle windshields the heating conductors being embedded in the transparent or reflecting material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/90Other aspects of coatings
    • C03C2217/94Transparent conductive oxide layers [TCO] being part of a multilayer coating
    • C03C2217/944Layers comprising zinc oxide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • C03C2218/328Partly or completely removing a coating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • H05B2203/008Heaters using a particular layout for the resistive material or resistive elements with layout including a portion free of resistive material, e.g. communication window
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings

Abstract

An electrically conductive coating of an automotive heatable windshield has a communication window having an enhanced frequency selective surface having arranged passing areas (uncoated areas) and blocking areas (coated areas) to pass and block, respectively, predetermined wavelengths of the electromagnetic spectrum. In one nonlimiting embodiment, the frequency selective surface includes a pattern having a first plurality of arcuate break lines on one side of a dividing break line and a second plurality of arcuate break lines on the other side of the dividing break line. An elongated continuous blocking area is between adjacent break lines. The arcuate break lines of a group are nested within one another with the arcuate break line having the largest radius of curvature adjacent the dividing break line. The break lines each have alternating blocking and passing areas. In another embodiment, the enhanced frequency selective surface has a plurality columns spaced from one another by a continuous elongated blocking area. Each of the columns includes passing areas with each of the passing areas have a perimeter with a blocking area in the perimeter spaced from the perimeter. The perimeters of the passing areas contact one another with the blocking area of adjacent passing areas spaced from one another. The elongated blocking area between the break lines and columns extend to the perimeter of the communication window. In this manner current passing through the coating, passes through the communication window to eliminate hot and cold spots around and within the perimeter of the communication window.

Claims (27)

1. An article having a communication window comprising:
a substrate having a major surface, the major surface having a first portion to block out at least one predetermined wavelength of an electromagnetic spectrum and a second portion outlined by an imaginary boundary defined as an aperture, a frequency selective surface pattern within the aperture, the pattern defined by arrangement of at least one area that passes the at least one predetermined wavelength of the electromagnetic spectrum, defined as a passing area, and at least one area that blocks out the at least one predetermined wavelength of the electromagnetic spectrum, defined as a blocking area, wherein the frequency selective surface pattern comprises:
a plurality of spaced arcuate break lines each break line having at least one passing area and at least one of the break lines having a different curvature than another one of the break lines, the break lines nested within one another with the break line having the largest curvature as the outermost break line of the plurality of break lines and the break line having the smallest curvature as the innermost break line of the plurality of arcuate break lines, wherein the plurality of break lines are arranged by decreasing curvature in a direction away from the outermost break line toward the innermost break line; and an area between adjacent arcuate break lines of the plurality of arcuate break lines forming the blocking area.
2. The article according to claim 1, wherein the plurality of spaced arcuate break lines is a first plurality of spaced arcuate break lines, the passing area is a first plurality of passing areas and the blocking area is a first plurality of blocking areas and wherein the frequency selective surface further comprises:
a second plurality of spaced arcuate break lines, each break line of the second plurality of spaced arcuate break lines having at least one passing area forming a second plurality of passing areas and at least one of the second plurality of break lines having a different curvature than another one of the second plurality of break lines, the break lines of the second plurality of break lines nested within one another with the break line having the largest curvature as the outermost break line of the second plurality of break lines and the break line having the smallest curvature as the innermost break line of the second plurality of arcuate break lines, wherein the second plurality of break lines are arranged by decreasing curvature in a direction away from the outermost break line toward the innermost break line of the second plurality of break lines, .and areas between adjacent arcuate break lines of the second plurality of arcuate break lines forming a second plurality of blocking areas.
3. The article according to claim 2 wherein the outermost break lines of the first and second plurality of break lines face one another and at least one of the first or second plurality of blocking areas is continuous from a first location on the imaginary boundary and in contact with the portion of the major surface to block out the at least one predetermined wavelength of the electromagnetic spectrum to a second location on the imaginary boundary and in contact with the portion of the surface to block out the at least one predetermined wavelength of the electromagnetic spectrum with the first location spaced from the second location.
4. The article according to claim 3, wherein the portion of the major surface of the substrate to block out at least one predetermined wavelength of the electromagnetic spectrum and the first and second plurality of blocking areas are a coating over the major surface of the substrate.
5. The article according to claim 4 wherein the coating comprises a metal film, with the first and second plurality of passing areas being voids in the metal film.
6. The article according to claim 5 further including a dividing break line having a passing area extending through the aperture, wherein the first plurality of arcuate break lines is positioned on one side of the dividing break line with the break line of the first plurality of arcuate break lines with the largest radius of curvature adjacent the dividing break line and the second plurality of arcuate break lines is positioned on the other side of the dividing break line with the break line of the second plurality of arcuate break lines with the largest radius of curvature adjacent the dividing break line and the coating between the adjacent break lines of the first and second plurality of arcuate break lines has a continuous transition from within to without the aperture.
7. The article according to claim 6, wherein the at least one passing area of along the arcuate break lines of the first and second plurality of arcuate break lines extends along the length of the arcuate break lines
8. The article according to claim 6, wherein the at least one passing area of along the arcuate break lines of the first and second plurality of arcuate break lines is a plurality of passing areas separated by blocking areas along the length of the arcuate break lines
9. The article according to claim 6, wherein the metal film of the coating is a silver film and the coating is selected from a solar control coating, electrically heatable coating and combinations thereof, and the passing areas extend at least through the metal film of the coating.
10. The article according to claim 6, wherein the arcuate break lines of at least one of the first and second plurality of arcuate break lines are equally spaced from one another.
11. The article according to claim 6, wherein the minimum distance between adjacent arcuate break lines of at least one of the first and second plurality of arcuate break lines decreases as the distance from the dividing break line decreases.
12. The article according to claim 6, wherein the minimum distance between adjacent arcuate break lines of at least one of the first and second plurality of arcuate break lines increases as the distance from the dividing break line decreases:
13. The article according to claim 9, wherein the article is a transparency for use on an enclosure of the type selected from a residential home, a commercial building, a space vehicle, an air vehicle, a land vehicle, an over the water vehicle, an under the water vehicle, a refrigerator door having a window, an oven door having a window, a microwave door having a window, and combinations thereof.
14. The article according to claim 13, wherein the article is a transparency for an automobile selected from a windshield, a side window, a back window, a moon roof and combinations thereof, and the coating includes the metal film and at least one dielectric film.
15. The article according to claim 14, wherein the article is an automotive windshield.
16. The article according to claim 15, wherein the substrate is a first glass sheet and the coating is on a major surface of the first glass sheet and the aperture is in a predetermined location in the coating and further including a second glass sheet having a major surface and a plastic interlayer between the major surface of the first sheet and the major surface of the second sheet, securing the first and second sheet together.
17. The article according to claim 16, wherein the coating includes a dielectric film above and below the silver film.
18. The article according to claim 17, wherein the silver film is a first silver film and further including a second silver film with a dielectric film between the first and second silver films, under the first silver film and over the second silver film.
19. The article according to claim 16, wherein the passing areas along the arcuate break lines are spaced passing areas separated by blocking areas.
20. The article according to claim 16 further including a pair of spaced bus bars between the sheets and in electrical contact with the coating and a first lead contacting one of the bus bars and extending out from a peripheral edge of the windshield and a second lead contacting the other bus bar and extending out from the peripheral edge of the windshield to provide external electrical contact to the bus bars.
21. The article according to claim 20, wherein the blocking area between the break lines is oriented in the direction of current flow between the bus bars.
22. The article according to claim 21, wherein the communication window has a rectangular shape having a length of 150 mm and a height of 100 mm, the dividing break line is between and spaced from short sides of the communication window and extends from one side to the other side of the communication window and the frequency selective surface is selected from one of the groups:
Group 1. the break line of the first and second plurality of break lines farthest from the dividing break line has a radius of curvature of 35 mm, and the break line of the first and second plurality of break lines closest to the dividing break line has a radius of curvature of 125 mm; a minimum distance between the dividing break line and the break line of the first and second plurality of break lines closest to the dividing break line is 1 mm; a minimum distance between adjacent break lines of the first and second plurality of break lines farthest from the dividing break line is 1.7 mm with a change in the minimum distance between adjacent break lines of the first and second plurality of break lines as they approach the dividing line based on a Gaussian distribution, and the passing area of the first and second plurality of break lines and the dividing line have a width of 100 microns;
Group 2. the break line of the first and second plurality of break lines farthest from the dividing break line has a radius of curvature of 280 mm, and the break line of the first and second plurality of break lines closest to the dividing break line has a radius of curvature of 1250 mm; a minimum distance between the dividing break line and the break line of the first and second plurality of break lines closest to the dividing break line is 1 mm; a minimum distance between adjacent break lines of the first and second plurality of break lines farthest from the dividing break line is 2.4 mm with a change in the minimum distance between adjacent break lines of the first and second plurality of break lines as they approach the dividing line based on a Gaussian distribution, and the passing area of the first and second plurality of break lines and the dividing line have a width of 100 microns, and Group 3. the break line of the first and second plurality of break lines farthest from the dividing break line has a radius of curvature of 35 mm, and the break line of the first and second plurality of break lines closest to the dividing break line has a radius of curvature of 125 mm; a minimum distance between the dividing break line and the break line of the first and second plurality of break lines closest to the dividing break line is 1 mm; a minimum distance between adjacent break lines of the first and second plurality of break lines farthest from the dividing break line is 1.5 mm with a change in the minimum distance between adjacent break lines of the first and second plurality of break lines as they approach the dividing line based on a Gaussian distribution, and the passing area of the first and second plurality of break lines and the dividing line have a width of 100 microns.
23. The article according to claim 21, further including:

a first plurality of deletion lines in the coating spaced from one another and extending from one bus bar defined as a first bus bar toward the aperture;
a second plurality of deletion lines in the coating spaced from one another and extending from the other bus bar defined as a second bus bar toward the aperture with the first and second plurality of deletion lines generally aligned with one another; wherein selected ones of the first plurality of deletion lines and selected ones of the second plurality of deletion lines have a path around one side of the aperture defined as the first side and are in contact with one another to provide continuous spaced current paths from the first bus bar to the second bus bar around the first side of the aperture and selected ones of the first plurality of deletion lines and selected ones of the second plurality of deletion lines have a path around opposite side of the aperture defined as the second side and are in contact with one another to provide continuous spaced current paths from the first bus bar to the second bus bar around the second side of the aperture.
24. The article according to claim 16, wherein an outer major surface of one of the glass sheets includes a hydrophobic coating.
25. The article according to claim 16, wherein an outer major surface of one of the glass sheets has a photocatalytic coating.
26. The article according to claim 16, wherein the plastic sheet is selected from polyvinyl butyral, polyvinyl chloride, polyethylene and combinations thereof.
27. The article according to claim 26, wherein at least one of the glass sheets or the plastic sheet has a portion in cross section having a wedged shape.

29. The article according to claim 19, wherein each of the passing areas has a perimeter and a blocking area within and spaced from the perimeter such that the blocking area within the perimeter is surrounded by a passing area.
30. An article having a communication window comprising:
a substrate having a major surface, the major surface having a portion to block out at least one predetermined wavelength of an electromagnetic spectrum and a portion of the major surface outlined by an imaginary boundary defined as an aperture, the aperture having a frequency selective surface pattern defined by an area that passes the at least one predetermined wavelength of the electromagnetic spectrum, defined as a passing area, and an area that blocks out the at least one predetermined wavelength of the electromagnetic spectrum, defined as a blocking area, wherein the frequency selective surface pattern comprises:
a plurality of columns, each column having a plurality of passing areas separated by blocking areas, each passing area having a perimeter with a blocking area within the perimeter, and each of the columns are separated by a blocking area.
31. The article according to claim 30, wherein the blocking area between columns is continuous from a first location on the imaginary boundary and in contact with the portion of the major surface to block out the at least one predetermined wavelength of the electromagnetic spectrum to a second location on the imaginary boundary and in contact with the portion of the surface to block out the at least one predetermined wavelength of the electromagnetic spectrum, with the first location spaced from the second location.
32. The article according to claim 30, wherein at least one column includes at least two subcolumns, each subcolumn having a plurality of passing areas separated by blocking areas, with the blocking areas and passing areas of adjacent subcolumns in contact with one another and the blocking areas within the perimeter of the passing areas spaced from one another.

33. The article according to claim 30, wherein the article is a transparency for use on an enclosure of the type selected from a residential home, a commercial building, a space vehicle, an air vehicle, a land vehicle, an over the water vehicle, an under the water vehicle, a refrigerator door having a window, an oven door having a window, a microwave door having a window, and combinations thereof.
34. The article according to claim 33 wherein the article is a transparency for an automobile selected from a windshield, a side window, a back window, a moon roof, and combinations thereof, and the coating includes a metal film and at least one dielectric film.
35. The article according to claim 34 wherein the article is an automotive windshield.
36. The article according to claim 35 wherein the metal film of the coating is a silver film and the coating is selected from a solar control coating, an electrically heatable coating, and combinations thereof, and the passing areas extend at least through the metal film of the coating.
37. The article according to claim 36 wherein the substrate is a first glass sheet and the coating is on a major surface of the first glass sheet and the communication window is in a predetermined location in the coating and further including a second glass sheet having a major surface and a plastic interlayer between the major surface of the first sheet and the major surface of the second sheet, securing the first and second sheet together.
38. The article according to claim 37 wherein the coating blocks out at least one predetermined wavelength of the electromagnetic spectrum, the blocking area between columns and passing areas is continuous from a first location on the imaginary boundary and in contact with the coating outside the imaginary boundary to a second location on the imaginary boundary and in contact with the coating outside the imaginary boundary, with the first location spaced from the second location.
39. The article according to claim 38, wherein the coating includes a dielectric film above and below the silver film.
40. The article according to claim 39, wherein the silver film is a first silver film and further including a second silver film with a dielectric film between the first and second silver films, under the first silver film and over the second silver film.
41. The article according to claim 40 further including a pair of spaced bus bars between the sheets and in electrical contact with the coating, a first lead contacting one of the bus bars and extending out from a peripheral edge of the windshield and a second lead contacting the other bus bar and extending out from the peripheral edge of the windshield to provide external electrical contact to the bus bars.
42. The article according to claim 42, wherein the blocking area between the columns is oriented in the direction of current flow between the bus bars.
43. The article according to claim 42 further including:
a first plurality of deletion lines in the coating spaced from one another and extending from one bus bar defined as a first bus bar toward the communication window;
a second plurality of deletion lines in the coating spaced from one another and extending from the other bus bar defined as a second bus bar toward the communication window, with the first and second plurality of deletion lines generally aligned with one another;
wherein selected ones of the first plurality of deletion lines and selected ones of the second plurality of deletion lines have a path around one side of the communication window defined as the first side and are in contact with one another to provide continuous spaced current paths from the first bus bar to the second bus bar around the first side of the communication window and selected ones of the first plurality of deletion lines and selected ones of the second plurality of deletion lines have a path around opposite side of the communication window defined as the second side and are in contact with one another to provide continuous spaced current paths from the first bus bar to the second bus bar around the second side of the communication window.
43. The article according to claim 44, wherein an outer major surface of one of the glass sheets includes a hydrophobic coating.
44. The article according to claim 42, wherein an outer major surfaces of one of the glass sheets includes a photocatalytic coating.
45. The article according to claim 42, wherein at least one of the glass sheets or the plastic interlayer has a portion in cross section having a wedged shape.
46. The article according to claim 41, wherein the communication window has a rectangular shape having a length of 150 mm, and a height of 100 mm, and the frequency selective surface is selected from one of the following groups:
Group 1: the columns are spaced 1 mm apart, the columns have a width of 1 mm, the blocking areas within the columns are spaced from each other and the blocking area between the columns a distance of 100 microns;
Group 2: the columns are spaced 2 mm apart, the columns have a width of 1 mm, the blocking areas within the columns are spaced from each other and the blocking area between the columns a distance of 100 microns; and Group 3: the columns are spaced 2 mm apart, the columns have a width of 2 mm, and each column has two subcolumns having the blocking areas surrounded by passing areas, the blocking areas are spaced from adjacent blocking areas a distance of 100 microns.
CA002520554A 2003-04-08 2004-04-07 Conductive frequency selective surface utilizing arc and line elements Expired - Lifetime CA2520554C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/409,518 2003-04-08
US10/409,518 US6891517B2 (en) 2003-04-08 2003-04-08 Conductive frequency selective surface utilizing arc and line elements
PCT/US2004/010672 WO2004093497A1 (en) 2003-04-08 2004-04-07 Conductive frequency selective surface utilizing arc and line elements

Publications (2)

Publication Number Publication Date
CA2520554A1 true CA2520554A1 (en) 2004-10-28
CA2520554C CA2520554C (en) 2010-03-09

Family

ID=33130614

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002520554A Expired - Lifetime CA2520554C (en) 2003-04-08 2004-04-07 Conductive frequency selective surface utilizing arc and line elements

Country Status (11)

Country Link
US (2) US6891517B2 (en)
EP (1) EP1614325B1 (en)
JP (1) JP4160994B2 (en)
KR (1) KR100748780B1 (en)
CN (1) CN100536629C (en)
AU (1) AU2004229648B2 (en)
CA (1) CA2520554C (en)
ES (1) ES2666518T3 (en)
MX (1) MXPA05010792A (en)
RU (1) RU2311705C2 (en)
WO (1) WO2004093497A1 (en)

Families Citing this family (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6891517B2 (en) * 2003-04-08 2005-05-10 Ppg Industries Ohio, Inc. Conductive frequency selective surface utilizing arc and line elements
DE10333618B3 (en) * 2003-07-24 2005-03-24 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Substrate with an electrically conductive coating and a communication window
GB0427749D0 (en) * 2004-12-18 2005-01-19 Pilkington Plc Electrically heated window
US8564472B2 (en) * 2005-10-21 2013-10-22 Nitta Corporation Sheet member for improving communication, and antenna device and electronic information transmitting apparatus provided therewith
DE102006002636B4 (en) * 2006-01-19 2009-10-22 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Tan-clear pane with a heatable layer system
US20070187383A1 (en) * 2006-01-19 2007-08-16 Wipfler Richard T Patterned conductive elements for resistively heated glazing
WO2008024643A2 (en) * 2006-08-11 2008-02-28 Battelle Memorial Institute Patterning non-planar surfaces
EP1908584A1 (en) * 2006-10-02 2008-04-09 Scheuten S.à.r.l. Laminated glazing
EP2095685B1 (en) * 2006-12-20 2013-02-13 Illinois Tool Works Inc. Flat electric heater element, in particular for glass panes of a motor vehicle
DE102007001080A1 (en) * 2007-01-04 2008-07-10 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Electrically heated window pane
EP1951001A1 (en) * 2007-01-24 2008-07-30 Pilkington Italia S.p.A. Heatable vehicle glazing
JP2011510851A (en) * 2007-03-05 2011-04-07 ザ トラスティーズ オブ ダートマウス カレッジ Windshield deicing system and method
US8071931B2 (en) 2007-11-13 2011-12-06 Battelle Energy Alliance, Llc Structures, systems and methods for harvesting energy from electromagnetic radiation
US9472699B2 (en) 2007-11-13 2016-10-18 Battelle Energy Alliance, Llc Energy harvesting devices, systems, and related methods
US7792644B2 (en) 2007-11-13 2010-09-07 Battelle Energy Alliance, Llc Methods, computer readable media, and graphical user interfaces for analysis of frequency selective surfaces
GB0800448D0 (en) * 2008-01-11 2008-02-20 Pilkington Group Ltd Electrically heated window
DE202008017848U1 (en) * 2008-04-10 2010-09-23 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Transparent disc with a heatable coating and low-resistance conductive layers
JP2010020918A (en) * 2008-07-08 2010-01-28 Nippon Sheet Glass Co Ltd Terminal structure and glass panel with terminal for vehicle
US8288678B2 (en) * 2008-12-18 2012-10-16 Ppg Industries Ohio, Inc. Device for and method of maintaining a constant distance between a cutting edge and a reference surface
GB0914961D0 (en) * 2009-08-27 2009-09-30 Appleton Steve Electrically heated window
EP2405708A1 (en) * 2010-07-07 2012-01-11 Saint-Gobain Glass France Transparent plate with heatable coating
PT2614680T (en) * 2010-09-09 2017-10-03 Saint Gobain Transparent panel having a heatable coating
US8576130B2 (en) 2010-10-22 2013-11-05 Pittsburgh Glass Works, Llc Wideband antenna
US9806425B2 (en) 2011-02-11 2017-10-31 AMI Research & Development, LLC High performance low profile antennas
US8855453B2 (en) 2011-02-11 2014-10-07 AMI Research & Development, LLC Quadratic phase weighed solar receiver
US9246230B2 (en) 2011-02-11 2016-01-26 AMI Research & Development, LLC High performance low profile antennas
EP2698039B1 (en) * 2011-04-12 2015-02-18 Saint-Gobain Glass France Panel heating element and method for producing same
JP5835705B2 (en) * 2011-08-08 2015-12-24 小島プレス工業株式会社 On-vehicle frequency selection board
EP2581243B1 (en) * 2011-10-12 2019-10-09 Volvo Car Corporation Controlled collapse of car windshield
DE102011115967A1 (en) 2011-10-13 2013-04-18 Daimler Ag Windshield for motor car, has intersecting lines that are interrupted at crossing points so that metallic material remains to some areas of coating portion
RU2510704C2 (en) * 2012-03-05 2014-04-10 Александр Сергеевич Костюченко Light-transparent structure with heating function
KR101916241B1 (en) 2012-03-12 2018-11-07 삼성전자주식회사 Antenna apparatus for portable terminal
KR101443509B1 (en) * 2012-03-21 2014-09-19 주식회사 엘지화학 Heating element and method for preparing the same
US8847824B2 (en) 2012-03-21 2014-09-30 Battelle Energy Alliance, Llc Apparatuses and method for converting electromagnetic radiation to direct current
DE102012012566B3 (en) * 2012-06-23 2013-12-05 Audi Ag Composite pane for a motor vehicle and motor vehicle with such a composite pane.
WO2014019780A1 (en) * 2012-08-01 2014-02-06 Saint-Gobain Glass France Composite pane with electrical contact-making means
GB201218182D0 (en) * 2012-10-10 2012-11-21 Pilkington Group Ltd Electromagnetic radiation permeable glazing with a sign
BR112015007536B1 (en) 2012-10-15 2021-03-02 Saint-Gobain Glass France panel, composite panel, method for producing such a panel, and, use of such a panel or such a composite panel
WO2014078356A1 (en) 2012-11-13 2014-05-22 AMI Research & Development, LLC Wideband light energy waveguide and detector
JP6316839B2 (en) * 2012-12-20 2018-04-25 サン−ゴバン グラス フランスSaint−Gobain Glass France Glass plate provided with electric heating layer and method for producing the same
TR201905361T4 (en) * 2012-12-20 2019-05-21 Saint Gobain Glass plate with an electric heating layer.
WO2014112649A1 (en) * 2013-01-21 2014-07-24 旭硝子株式会社 Electrically heated plate-shaped body for window
KR101775259B1 (en) * 2013-03-07 2017-09-05 쌩-고벵 글래스 프랑스 Coated disk with partially uncoated regions
FI20135454L (en) * 2013-05-03 2014-11-04 Lammin Ikkuna Oy Window
US9112278B2 (en) * 2013-05-29 2015-08-18 Delphi Technologies, Inc. Radar device for behind windshield installations
US8927069B1 (en) * 2013-10-02 2015-01-06 Eritek, Inc. Method and apparatus for improving radio frequency signal transmission through low-emissivity coated glass
US9557480B2 (en) 2013-11-06 2017-01-31 R.A. Miller Industries, Inc. Graphene coupled MIM rectifier especially for use in monolithic broadband infrared energy collector
GB201320257D0 (en) * 2013-11-16 2014-01-01 Pilkington Group Ltd Glazing
EA033458B1 (en) * 2013-12-16 2019-10-31 Saint Gobain Heatable pane with high-frequency transmission
USD774024S1 (en) 2014-01-22 2016-12-13 Agc Automotive Americas R&D, Inc. Antenna
USD747298S1 (en) * 2014-01-22 2016-01-12 Agc Automotive Americas R&D, Inc. Antenna
USD788078S1 (en) 2014-01-22 2017-05-30 Agc Automotive Americas R&D, Inc. Antenna
US9806398B2 (en) 2014-01-22 2017-10-31 Agc Automotive Americas R&D, Inc. Window assembly with transparent layer and an antenna element
US9406996B2 (en) 2014-01-22 2016-08-02 Agc Automotive Americas R&D, Inc. Window assembly with transparent layer and an antenna element
US9673534B2 (en) 2014-02-11 2017-06-06 Pittsburgh Glass Works, Llc Heatable window with high-pass frequency selective surface
CN110027510B (en) * 2014-04-28 2022-05-10 Agc株式会社 Plate-shaped body for electric heating window
GB201416175D0 (en) * 2014-09-12 2014-10-29 Pilkington Group Ltd Heated coated glazing
US9972901B2 (en) * 2014-10-20 2018-05-15 The Boeing Company Antenna electromagnetic radiation steering system
US10912155B2 (en) 2014-11-17 2021-02-02 Dai Nippon Printing Co., Ltd. Heating plate, conductive pattern sheet, vehicle, and method of manufacturing heating plate
WO2016080406A1 (en) 2014-11-17 2016-05-26 大日本印刷株式会社 Heating plate, conductive pattern sheet, vehicle, and method for manufacturing heating plate
WO2016096432A1 (en) * 2014-12-16 2016-06-23 Saint-Gobain Glass France Electrically heatable windscreen antenna, and method for producing same
JP6481386B2 (en) * 2015-01-29 2019-03-13 大日本印刷株式会社 Heating plate and vehicle
JP6363528B2 (en) * 2015-02-09 2018-07-25 株式会社デンソー Radar device mounting structure
HUE054039T2 (en) 2015-04-08 2021-08-30 Saint Gobain Vehicle antenna window
WO2016162252A1 (en) 2015-04-08 2016-10-13 Saint-Gobain Glass France Windscreen antenna
FR3042677B1 (en) * 2015-10-15 2017-11-24 Peugeot Citroen Automobiles Sa GLAZING WITH IMPROVED DEFROSTING SYSTEM.
JP6610222B2 (en) * 2015-12-04 2019-11-27 大日本印刷株式会社 Heating electrode device, electrically heated glass
EP3379897B1 (en) * 2015-11-17 2021-11-03 Dai Nippon Printing Co., Ltd. Heating electrode device, electrical heating glass, heat-generating plate, vehicle, window for building, sheet with conductor, conductive pattern sheet, conductive heat-generating body, laminated glass, and manufacturing method for conductive heat-generating body
JP6786791B2 (en) * 2015-11-17 2020-11-18 大日本印刷株式会社 Heating electrode device, energizing heating glass
JP6597574B2 (en) * 2015-12-07 2019-10-30 大日本印刷株式会社 Transparent heating plate, vehicle and building windows
EP3226027B8 (en) 2016-03-30 2019-01-09 Aptiv Technologies Limited Radar with defrost beam being absorbed in the radome
EP3486225A4 (en) * 2016-05-26 2020-05-06 Nippon Sheet Glass Company, Limited Laminated glass
GB201617577D0 (en) * 2016-10-17 2016-11-30 Pilkington Group Limited Vehicle glazing
KR102570124B1 (en) * 2016-10-18 2023-08-23 삼성전자 주식회사 Film laminate and window product including the film laminate
WO2018140954A1 (en) * 2017-01-30 2018-08-02 Newtonoid Technologies, L.L.C. Smart ovens and optional browning trays therefor
JP6908417B2 (en) * 2017-04-11 2021-07-28 株式会社デンソー Object detection method by in-vehicle radar device and in-vehicle radar system
US10355721B2 (en) * 2017-05-01 2019-07-16 Palo Alto Research Center Incorporated Multi-band radio frequency transparency window in conductive film
US10978777B1 (en) 2017-09-14 2021-04-13 Apple Inc. Systems having windows with patterned coatings
CO2018000469A1 (en) * 2017-11-30 2018-04-30 Agp America Sa Automotive laminate with invisible solid edge substrate compensation layer
CN108162728B (en) * 2018-01-11 2019-10-18 福建省万达汽车玻璃工业有限公司 A kind of coated glass with communication window
EP3963662A1 (en) * 2019-04-30 2022-03-09 AGC Glass Europe Glazing unit with frequency selective coating and method
EP4023035A1 (en) 2019-08-28 2022-07-06 Saint-Gobain Glass France Windowpane with pattern for high-frequency transmission
GB201916522D0 (en) * 2019-11-13 2019-12-25 Pilkington Group Ltd Glazing having a data tranmission window, method of manufacturing the same and use of the same
CN111129780B (en) * 2019-12-28 2021-11-23 华南理工大学 Structure for improving oblique incidence characteristic of glass material in 5G millimeter wave frequency band
KR102310383B1 (en) * 2020-04-20 2021-10-12 현대자동차주식회사 Glass plate having heat generating function and manufacturing method of the same
FR3114586B1 (en) * 2020-09-29 2022-09-09 Saint Gobain Radio Frequency Transparent Solar Control Heated Glazing
CN112310648B (en) * 2020-10-28 2022-05-10 福耀玻璃工业集团股份有限公司 Vehicle glass antenna
US20220324754A1 (en) * 2021-04-09 2022-10-13 Carlex Glass America, Llc Coated glazing
FR3135082A1 (en) 2022-04-28 2023-11-03 Saint-Gobain Glass France Laminated glazing for head-up display

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2557983A (en) 1949-03-22 1951-06-26 Pittsburgh Plate Glass Co Transparent electroconductive article
US3396399A (en) * 1965-03-24 1968-08-06 Winegard Co Ultra-high frequency fishbone type television antenna
US3633206A (en) * 1967-01-30 1972-01-04 Edward Bellamy Mcmillan Lattice aperture antenna
US3789404A (en) * 1968-10-16 1974-01-29 Univ Ohio State Res Found Periodic surface for large scan angles
US3789192A (en) * 1972-09-01 1974-01-29 Ppg Industries Inc Electrically heated window with a temperature sensor
US3789191A (en) * 1972-09-01 1974-01-29 Ppg Industries Inc Temperature sensor
US3794809A (en) * 1972-12-29 1974-02-26 Ford Motor Co Vehicle windshield
US3790752A (en) * 1973-03-26 1974-02-05 Ford Motor Co Heatable laminated windshield construction
US3961333A (en) * 1974-08-29 1976-06-01 Texas Instruments Incorporated Radome wire grid having low pass frequency characteristics
US3975738A (en) * 1975-05-12 1976-08-17 The United States Of America As Represented By The Secretary Of The Air Force Periodic antenna surface of tripole slot elements
US4126866A (en) * 1977-05-17 1978-11-21 Ohio State University Research Foundation Space filter surface
US4301456A (en) * 1979-06-27 1981-11-17 Lockheed Corporation Electromagnetic wave attenuating surface
US4287520A (en) * 1979-11-09 1981-09-01 The United States Of America As Represented By The Secretary Of The Air Force Slot chevron element for periodic antennas and radomes
US4479131A (en) * 1980-09-25 1984-10-23 Hughes Aircraft Company Thermal protective shield for antenna reflectors
JPS57132401A (en) * 1981-02-09 1982-08-16 Nec Corp High-frequency branching device
DE3402659A1 (en) * 1984-01-26 1985-08-01 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn REFLECTOR ANTENNA FOR OPERATION IN MULTIPLE FREQUENCY RANGES
US4543466A (en) * 1984-07-02 1985-09-24 Ford Motor Company Bus bar arrangement for uniformly heating a trapezoidally-shaped electrically heated windshield
US4587769A (en) * 1985-05-21 1986-05-13 Ppg Industries, Inc. Grinding wheel wear compensation system
US4656487A (en) * 1985-08-19 1987-04-07 Radant Technologies, Inc. Electromagnetic energy passive filter structure
DE3644297A1 (en) 1985-12-26 1987-07-02 Nippon Sheet Glass Co Ltd HEATED GLASS PANEL
JPS62154493A (en) * 1985-12-26 1987-07-09 日本板硝子株式会社 Conductive glass plate
US4820902A (en) * 1987-12-28 1989-04-11 Ppg Industries, Inc. Bus bar arrangement for an electrically heated transparency
US5213828A (en) * 1989-07-03 1993-05-25 Ppg Industries, Inc. Heatable windshield
US5812332A (en) * 1989-09-28 1998-09-22 Ppg Industries, Inc. Windshield for head-up display system
US5030592A (en) * 1989-10-26 1991-07-09 The United States Of America As Represented By The Secretary Of The Air Force Highly dense cordierite and method of manufacturing same
US5523162A (en) * 1990-04-03 1996-06-04 Ppg Industries, Inc. Water repellent surface treatment for plastic and coated plastic substrates
US5208603A (en) * 1990-06-15 1993-05-04 The Boeing Company Frequency selective surface (FSS)
US5593929A (en) * 1990-07-30 1997-01-14 Ppg Industries, Inc. Ultraviolet absorbing green tinted glass
US5240886A (en) * 1990-07-30 1993-08-31 Ppg Industries, Inc. Ultraviolet absorbing, green tinted glass
DE4121245C2 (en) * 1991-06-27 1995-08-10 Daimler Benz Aerospace Ag Frequency selective surface structure
US5364685A (en) * 1991-08-13 1994-11-15 Central Glass Company, Limited Laminated panel with low reflectance for radio waves
JP2620456B2 (en) * 1992-04-17 1997-06-11 セントラル硝子株式会社 Radio wave transmitting heat reflecting glass for vehicles
US5528249A (en) * 1992-12-09 1996-06-18 Gafford; George Anti-ice radome
JPH07242441A (en) * 1994-03-07 1995-09-19 Nippon Sheet Glass Co Ltd Radio wave transmissive heat rays reflection plate and production thereof
US5492750A (en) * 1994-09-26 1996-02-20 Ppg Industries, Inc. Mask for coated glass
DE19513263A1 (en) 1995-04-07 1996-10-10 Lindenmeier Heinz Antenna arrangement on a window with high heat transmission loss
SE504815C2 (en) * 1995-08-17 1997-04-28 Ericsson Telefon Ab L M Protection for one or more electromagnetic sensors
US5767789A (en) * 1995-08-31 1998-06-16 International Business Machines Corporation Communication channels through electrically conducting enclosures via frequency selective windows
US6027766A (en) * 1997-03-14 2000-02-22 Ppg Industries Ohio, Inc. Photocatalytically-activated self-cleaning article and method of making same
JP3419675B2 (en) * 1998-02-10 2003-06-23 三菱電機株式会社 In-vehicle radio radar equipment
DE19817712C1 (en) 1998-04-21 2000-02-03 Sekurit Saint Gobain Deutsch Transparent plate, in particular glass pane with a coating and a radiation window
US6313825B1 (en) * 1998-12-28 2001-11-06 Gateway, Inc. Virtual input device
US6582799B1 (en) 1999-06-02 2003-06-24 Ppg Industries Ohio, Inc. Laminated transparency
ATE527219T1 (en) 1999-06-16 2011-10-15 Ppg Ind Ohio Inc PROTECTIVE COATING FOR ITEMS WITH SPOT COATED
JP2002020142A (en) * 2000-06-29 2002-01-23 Nippon Sheet Glass Co Ltd Windshield for vehicle and method for manufacturing the same
US6323825B1 (en) 2000-07-27 2001-11-27 Ball Aerospace & Technologies Corp. Reactively compensated multi-frequency radome and method for fabricating same
US6441792B1 (en) * 2001-07-13 2002-08-27 Hrl Laboratories, Llc. Low-profile, multi-antenna module, and method of integration into a vehicle
JP2003069282A (en) 2001-08-30 2003-03-07 Takenaka Komuten Co Ltd Specified electromagnetic wave transmitting plate
GB0121118D0 (en) * 2001-08-31 2001-10-24 Pilkington Plc Electrically heated window
US6791065B2 (en) 2002-07-24 2004-09-14 Ppg Industries Ohio, Inc. Edge sealing of a laminated transparency
US7132625B2 (en) 2002-10-03 2006-11-07 Ppg Industries Ohio, Inc. Heatable article having a configured heating member
US6922175B2 (en) * 2002-12-04 2005-07-26 The Ohio State University Radio transmission region in metallic panel
US6891517B2 (en) * 2003-04-08 2005-05-10 Ppg Industries Ohio, Inc. Conductive frequency selective surface utilizing arc and line elements

Also Published As

Publication number Publication date
RU2005134366A (en) 2006-03-27
WO2004093497A8 (en) 2004-12-23
CN1784929A (en) 2006-06-07
RU2311705C2 (en) 2007-11-27
US7190326B2 (en) 2007-03-13
US20060267856A1 (en) 2006-11-30
KR100748780B1 (en) 2007-08-13
JP2006526944A (en) 2006-11-24
MXPA05010792A (en) 2005-12-05
US6891517B2 (en) 2005-05-10
AU2004229648A1 (en) 2004-10-28
JP4160994B2 (en) 2008-10-08
BRPI0409287A (en) 2006-04-11
ES2666518T3 (en) 2018-05-04
KR20060002951A (en) 2006-01-09
WO2004093497A1 (en) 2004-10-28
CA2520554C (en) 2010-03-09
US20040200821A1 (en) 2004-10-14
EP1614325A1 (en) 2006-01-11
EP1614325B1 (en) 2018-03-14
CN100536629C (en) 2009-09-02
AU2004229648B2 (en) 2007-05-10

Similar Documents

Publication Publication Date Title
CA2520554A1 (en) Conductive frequency selective surface utilizing arc and line elements
CA2500361A1 (en) Heatable article having a configured heating member
KR101941412B1 (en) Panel with high-frequency transmission
JP2003163071A (en) Electric heating window glass
KR20160095156A (en) Heatable pane with high-frequency transmission
EP3068740B1 (en) Glazing
MXPA05000938A (en) Edge sealing of a laminated transparency.
CA2491707A1 (en) Eliminating hot spots at end portions of bus bars of a heatable transparency having an electrically conductive member
KR102619473B1 (en) Laminated glazing comprising a transparent substrate having a heating layer each with its own closed incision lines.
CN109792803B (en) Laminated window with metal wire
KR20220037476A (en) Flat glass with a pattern for high-frequency transmission
EP3718375B1 (en) Conductive pattern sheet, glazing having the same, vehicle having the glazing, method of manufacturing the sheet and method of manufacturing the glazing
WO2023031590A1 (en) Glazing having a conductive coating and a data transmission window, method of manufacturing the same and use of the same
BRPI0409287B1 (en) ARTICLE HAVING A COMMUNICATION WINDOW

Legal Events

Date Code Title Description
EEER Examination request