CA2510930A1 - Method and plant for the heat treatment of solids containing iron oxide - Google Patents

Method and plant for the heat treatment of solids containing iron oxide Download PDF

Info

Publication number
CA2510930A1
CA2510930A1 CA002510930A CA2510930A CA2510930A1 CA 2510930 A1 CA2510930 A1 CA 2510930A1 CA 002510930 A CA002510930 A CA 002510930A CA 2510930 A CA2510930 A CA 2510930A CA 2510930 A1 CA2510930 A1 CA 2510930A1
Authority
CA
Canada
Prior art keywords
gas
reactor
gas supply
supply tube
solids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002510930A
Other languages
French (fr)
Other versions
CA2510930C (en
Inventor
Martin Hirsch
Michael Stroeder
Peter Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metso Outotec Oyj
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2510930A1 publication Critical patent/CA2510930A1/en
Application granted granted Critical
Publication of CA2510930C publication Critical patent/CA2510930C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/0055Separating solid material from the gas/liquid stream using cyclones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1818Feeding of the fluidising gas
    • B01J8/1827Feeding of the fluidising gas the fluidising gas being a reactant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1872Details of the fluidised bed reactor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0033In fluidised bed furnaces or apparatus containing a dispersion of the material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/12Dry methods smelting of sulfides or formation of mattes by gases
    • C22B5/14Dry methods smelting of sulfides or formation of mattes by gases fluidised material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00265Part of all of the reactants being heated or cooled outside the reactor while recycling
    • B01J2208/00274Part of all of the reactants being heated or cooled outside the reactor while recycling involving reactant vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00548Flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00004Scale aspects
    • B01J2219/00006Large-scale industrial plants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Compounds Of Iron (AREA)
  • Manufacture Of Iron (AREA)

Abstract

A method for the heat treatment of solids containing iron oxide, in which fi ne- grained solids are heated to a temperature of about 630~C in a fluidized-bed reactor (1). To improve the utilization of energy, it is proposed to introdu ce a first gas or gas mixture from below through a supply tube (3) into a mixin g chamber (7) of the reactor (1), the gas supply tube (3) being at least partl y surrounded by a stationary annular fluidized bed (10) which is fluidized by supplying fluidizing gas. The gas velocities of the first gas or gas mixture and of the fluidizing gas for the annular fluidized bet (10) are adjusted su ch that the Particle-Froude-Numbers in the gas supply tube (3) are between 1 an d 100, in the annular fluidized bed (10) between 0.02 and 2, and in the mixing chamber (7) between 0.3 and 30.

Claims (18)

1. A method for the heat treatment of solids containing iron oxide, in which fine-grained solids are heated to a temperature of about 450 to 950°C in a fluidized-bed reactor (1), characterized in that a first gas or gas mixture is introduced from below into a mixing chamber region (7) of the reactor (1) through a preferably central gas supply tube (3), the gas supply tube (3) being at least partly surrounded by a stationary annular fluidized bed (10) which is fluidized by supplying fluidizing gas, and that the gas velocities of the first gas or gas mixture and of the fluidizing gas for the annular fluid-ized bed (10) are adjusted such that the Particle-Froude-Numbers in the gas supply tube (3) are between 1 and 100, in the annular fluidized bed (10) between 0.02 and 2, and in the mixing chamber (7) between 0.3 and 30.
2. The method as claimed in claim 1, characterized in that the Particle-Froude-Number in the gas supply tube (3) is between 1.15 and 20, in particular about 10.6.
3. The method as claimed in claim 1 or 2, characterized in that the Particle-Froude-Number in the annular fluidized bed (10) is between 0.115 and 1.15, in particu-lar about 0.28.
4. The method as claimed in any of the preceding claims, characterized in that the Particle-Froude-Number in the mixing chamber (7) is between 0.37 and 3.7, in par-ticular about 1.1.
5. The method as claimed in any of the preceding claims, characterized in that the bed height of solids in the reactor (1) is adjusted such that the annular fluidized bed (10) at least partly extends beyond the upper orifice end of the gas supply tube (3) and that solids are constantly introduced into the first gas or gas mixture and are entrained by the gas stream to the mixing chamber (7) located above the orifice region of the gas supply tube (3).
6. The method as claimed in any of the preceding claims, characterized in that iron-oxide-containing ore, in particular iron ore or iron ore concentrate is used as start-ing material.
7. The method as claimed in any of the preceding claims, characterized in that the fluidizing gas introduced into the annular fluidized bed (10) of the reactor (1) is a preheated reduction gas which contains at least 80 %, in particular more than hydrogen.
8. The method as claimed in claim 7, characterized in that the reduction gas is cleaned in a reprocessing stage (31, 32, 33, 34, 35) downstream of the reactor (1) and is subsequently recirculated to the reactor (1).
9. The method as claimed in any of the preceding claims, characterized in that downstream of the reactor (1) another fluidized-bed reactor (23) is provided, whose exhaust gases are separated from solids in a separator (27) and are introduced into the gas supply tube (3) of the reactor (1).
10. The method as claimed in any of the preceding claims, characterized in that upstream of the reactor (1) at least one preheating stage (12, 13, 14, 15) is provided for heating the solids.
11. A plant for the heat treatment of solids containing iron oxide, in particular for performing a method as claimed in any of claims 1 to 10, comprising a reactor (1) con-stituting a fluidized bed reactor, characterized in that the reactor (1) has a gas supply system which is formed such that gas flowing through the gas supply system entrains solids from a stationary annular fluidized bed (10), which at least partly surrounds the gas supply system, into the mixing chamber (7).
12. The plant as claimed in claim 11, characterized in that the gas supply system has at least one gas supply tube (3) which extends upwards substantially vertically from the lower region of the reactor (1) into a mixing chamber (7) of the reactor (1), the gas supply tube (3) being at least partly surrounded by an annular chamber in which the stationary annular fluidized bed (10) is formed.
13. The plant as claimed in claim 12, characterized in that the gas supply tube (3) is arranged approximately centrally with reference to the cross-sectional area of the reactor (1).
14. The plant as claimed in any of claims 11 to 13, characterized in that the gas supply tube (3) has openings, for instance in the form of slots, at its shell surface.
15. The plant as claimed in any of claims 11 to 14, characterized in that a cyclone (9) for separating solids is provided downstream of the reactor (1), and that the cyclone (9) has a solids conduit (22) leading to the annular fluidized bed (10) of the reactor (1).
16. The plant as claimed in any of claims 11 to 15, characterized in that in the an-nular chamber of the reactor (1) a gas distributor (5) is provided, which divides the chamber into an upper fluidized bed region (10) and a lower gas distributor chamber (4), and that the gas distributor chamber (4) is connected with a supply conduit (6) for fluidizing gas.
17. The plant as claimed in any of claims 11 to 16, characterized in that the reac-tor (1) has a supply conduit for hydrogen-containing reduction gas, which leads to the gas supply tube (3) and is connected for instance with the exhaust gas outlet of a sepa-rator (27) of another reactor (23) downstream of the reactor (1), and/or has a supply conduit for preheated hydrogen-containing reduction gas, which leads to the annular chamber.
18. The plant as claimed in any of claims 11 to 17, characterized in that a preheat-ing stage (12, 13, 14, 15) for the solids is provided upstream of the reactor (1).
CA2510930A 2002-12-23 2003-12-12 Method and plant for the heat treatment of solids containing iron oxide Expired - Fee Related CA2510930C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10260731A DE10260731B4 (en) 2002-12-23 2002-12-23 Process and plant for the heat treatment of iron oxide-containing solids
DE10260731.1 2002-12-23
PCT/EP2003/014106 WO2004057044A2 (en) 2002-12-23 2003-12-12 Method and plant for the heat treatment of solids containing iron oxide

Publications (2)

Publication Number Publication Date
CA2510930A1 true CA2510930A1 (en) 2004-07-08
CA2510930C CA2510930C (en) 2012-11-27

Family

ID=32477937

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2510930A Expired - Fee Related CA2510930C (en) 2002-12-23 2003-12-12 Method and plant for the heat treatment of solids containing iron oxide

Country Status (11)

Country Link
US (2) US7632334B2 (en)
CN (1) CN100529125C (en)
AU (1) AU2003292233B2 (en)
BR (1) BR0317664B1 (en)
CA (1) CA2510930C (en)
DE (1) DE10260731B4 (en)
EA (1) EA010275B1 (en)
MY (1) MY134382A (en)
UA (1) UA81792C2 (en)
WO (1) WO2004057044A2 (en)
ZA (1) ZA200505916B (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10260733B4 (en) * 2002-12-23 2010-08-12 Outokumpu Oyj Process and plant for the heat treatment of iron oxide-containing solids
DE10260737B4 (en) 2002-12-23 2005-06-30 Outokumpu Oyj Process and plant for the heat treatment of titanium-containing solids
DE10260731B4 (en) * 2002-12-23 2005-04-14 Outokumpu Oyj Process and plant for the heat treatment of iron oxide-containing solids
DE10260741A1 (en) 2002-12-23 2004-07-08 Outokumpu Oyj Process and plant for the heat treatment of fine-grained solids
DE10260734B4 (en) * 2002-12-23 2005-05-04 Outokumpu Oyj Process and plant for the production of carbon coke
DE10260739B3 (en) 2002-12-23 2004-09-16 Outokumpu Oy Process and plant for producing metal oxide from metal compounds
DE10260735B4 (en) * 2002-12-23 2005-07-14 Outokumpu Oyj Process and plant for heat treatment of sulfide ores
DE10260738A1 (en) 2002-12-23 2004-07-15 Outokumpu Oyj Process and plant for conveying fine-grained solids
DE102004042430A1 (en) * 2004-08-31 2006-03-16 Outokumpu Oyj Fluidized bed reactor for the thermal treatment of vortex substances in a microwave-heated fluidized bed
CN101386908B (en) * 2007-09-11 2010-12-08 中国科学院过程工程研究所 Magnetization roasting technique system for refractory iron ore powder and roasting technology
US8282887B2 (en) * 2010-03-30 2012-10-09 Uop Llc Multi-stage fluidized bed reactor for dehydrogenation of hydrocarbons
CN103316618B (en) * 2012-03-21 2015-10-28 中国石油化工集团公司 A kind of gas distributor with distributor chamber
CN102728844A (en) * 2012-06-29 2012-10-17 武汉钢铁(集团)公司 Method for preparing superfine iron powder at low cost
RS59951B1 (en) * 2013-12-11 2020-03-31 Outotec Finland Oy Arsenic removal from minerals
US10661340B2 (en) * 2016-08-03 2020-05-26 Reid Reactors Llc Method and apparatus for producing metallic iron from iron oxide fines
US10434576B2 (en) * 2016-08-03 2019-10-08 Reid Reactors Llc Method and apparatus for producing metallic iron from iron oxide fines
PL3708684T3 (en) 2019-03-15 2022-06-20 Primetals Technologies Austria GmbH Method for direct reduction in a fluidised bed
WO2022243605A1 (en) * 2021-05-20 2022-11-24 Teknologian Tutkimuskeskus Vtt Oy Method and apparatus for heating fluidizing agent and use

Family Cites Families (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE248109C (en)
DE278348C (en)
US2485317A (en) 1943-01-29 1949-10-18 Standard Oil Dev Co Method of manufacturing plaster of paris
US2714126A (en) 1946-07-19 1955-07-26 Kellogg M W Co Method of effecting conversion of gaseous hydrocarbons
US2607666A (en) 1946-09-28 1952-08-19 Standard Oil Dev Co Apparatus for treating carbonaceous solids
US2582710A (en) 1946-09-28 1952-01-15 Standard Oil Dev Co Method for the conversion of carbonaceous solids into volatile products
US2582170A (en) 1949-12-22 1952-01-08 Einar B Schon Duplicating attachment for contour shaping machines
DE1016938C2 (en) 1951-10-24 1958-03-27 Metallgesellschaft Ag Process for roasting and sintering sulphidic ores and other sulphurous materials
US2901421A (en) 1952-07-12 1959-08-25 Socony Mobil Oil Co Inc Method and apparatus for transfer of contact materials
DE1010157B (en) 1952-12-08 1957-06-13 Licentia Gmbh Current transformer for high voltage
US2826460A (en) 1954-05-26 1958-03-11 Continental Oil Co Apparatus for elevating granular material
US2864674A (en) 1954-07-12 1958-12-16 Phillips Petroleum Co Process and apparatus for recovery of powdered materials such as carbon black
US2874095A (en) 1956-09-05 1959-02-17 Exxon Research Engineering Co Apparatus and process for preparation of seed coke for fluid bed coking of hydrocarbons
GB951245A (en) 1960-09-30 1964-03-04 Gas Council Improvements in or relating to the fluid transfer of solid particles
GB1143880A (en) 1967-06-16 1900-01-01
US3528179A (en) 1968-10-28 1970-09-15 Cryodry Corp Microwave fluidized bed dryer
US3578798A (en) * 1969-05-08 1971-05-18 Babcock & Wilcox Co Cyclonic fluid bed reactor
US3671424A (en) 1969-10-20 1972-06-20 Exxon Research Engineering Co Two-stage fluid coking
DE6941710U (en) 1969-10-24 1970-02-26 Boehler & Co Ag Geb DEVICE FOR OVERLAY, ANCHOR HOLE AND / OR UNDERWATER DRILLING
DE2256385B2 (en) 1972-11-17 1981-04-16 Metallgesellschaft Ag, 6000 Frankfurt Process for the continuous heating of fine-grained solids
US3876392A (en) 1973-06-25 1975-04-08 Exxon Research Engineering Co Transfer line burner using gas of low oxygen content
US4044094A (en) 1974-08-26 1977-08-23 Kennecott Copper Corporation Two-stage fluid bed reduction of manganese nodules
US3995987A (en) 1975-03-31 1976-12-07 Macaskill Donald Heat treatment of particulate materials
DE2524541C2 (en) 1975-06-03 1986-08-21 Aluminium Pechiney, Lyon Process for the thermal cracking of aluminum chloride hydrate
US4073642A (en) 1975-09-04 1978-02-14 Stora Kopparbergs Bergslags Aktiebolag Method for reducing material containing iron oxides
AU504225B2 (en) 1975-10-17 1979-10-04 Titanium Technology (Aust.) Ltd. Oxidation of titaniferous ores
DE2624302A1 (en) 1976-05-31 1977-12-22 Metallgesellschaft Ag PROCEDURE FOR CARRYING OUT EXOTHERMAL PROCESSES
GB1589466A (en) 1976-07-29 1981-05-13 Atomic Energy Authority Uk Treatment of substances
DE2636854C2 (en) 1976-08-16 1986-08-21 Aluminium Pechiney, Lyon Process for the thermal cracking of aluminum chloride hydrate
DE2805906C2 (en) 1978-02-13 1986-08-14 Aluminium Pechiney, Lyon Process for the thermal cracking of aluminum chloride hydrate
US4191544A (en) 1978-03-17 1980-03-04 The Babcock & Wilcox Company Gas cleaning apparatus
US4338283A (en) 1980-04-04 1982-07-06 Babcock Hitachi Kabushiki Kaisha Fluidized bed combustor
DE3107711A1 (en) 1981-02-28 1982-10-07 Creusot-Loire Entreprises, 92150 Suresnes METHOD FOR PRODUCING CEMENT CLINKER
US4377466A (en) 1981-04-27 1983-03-22 Chevron Research Company Process for staged combustion of retorted carbon containing solids
US4404755A (en) 1981-08-25 1983-09-20 Foster Wheeler Energy Corporation Fluidized bed heat exchanger utilizing induced diffusion and circulation
DE3235559A1 (en) 1982-09-25 1984-05-24 Metallgesellschaft Ag, 6000 Frankfurt Process for the removal of sulphur oxides from flue gas
DK157442C (en) 1982-12-07 1990-06-05 Smidth & Co As F L PROCEDURE AND APPARATUS FOR CALCINATING PHOSPHATE
DE3307848A1 (en) * 1983-03-05 1984-09-06 Metallgesellschaft Ag, 6000 Frankfurt METHOD FOR REBURNING AND PURIFYING PROCESS EXHAUST GAS
US4545132A (en) 1984-04-06 1985-10-08 Atlantic Richfield Company Method for staged cooling of particulate solids
DE3428782A1 (en) 1984-08-04 1986-02-13 Metallgesellschaft Ag, 6000 Frankfurt METHOD FOR PRODUCING IRON SPONGE
DE3688007D1 (en) 1985-06-12 1993-04-22 Metallgesellschaft Ag COMBUSTION DEVICE WITH CIRCULATING FLUID BED.
DE3540541A1 (en) * 1985-11-15 1987-05-21 Metallgesellschaft Ag METHOD FOR REDUCING HIGHER METAL OXIDS TO LOW METAL OXIDS
KR880000618B1 (en) 1985-12-28 1988-04-18 재단법인 한국화학연구소 Preparation for silicon multy crystal
GB8607698D0 (en) 1986-03-27 1986-04-30 Shell Int Research Contacting particulate solids with fluid
DD248109A1 (en) 1986-04-17 1987-07-29 Dessau Zementanlagenbau Veb DEVICE FOR THE THERMAL TREATMENT OF FINE-COATED SUBSTANCES
US4693682A (en) 1986-05-12 1987-09-15 Institute Of Gas Technology Treatment of solids in fluidized bed burner
DE3626027A1 (en) * 1986-08-01 1988-02-11 Metallgesellschaft Ag METHOD FOR REDUCING FINE-GRAIN, IRON-CONTAINING MATERIALS WITH SOLID CARBONATED REDUCING AGENTS
US4822592A (en) 1987-02-05 1989-04-18 Aluminum Company Of America Producing alpha alumina particles with pressurized acidic steam
DE3706538A1 (en) 1987-02-28 1988-09-08 Metallgesellschaft Ag Fluidized bed system
US4992245A (en) 1988-03-31 1991-02-12 Advanced Silicon Materials Inc. Annular heated fluidized bed reactor
US4919715A (en) 1988-06-03 1990-04-24 Freeport Mcmoran Inc. Treating refractory gold ores via oxygen-enriched roasting
DE3822999C1 (en) 1988-07-07 1990-01-04 Vereinigte Kesselwerke Ag, 4000 Duesseldorf, De
CN1039847A (en) * 1988-08-04 1990-02-21 广西冶金研究所 The fluidized-bed roasting process of mineral-smelting pre-treatment and equipment thereof
DD278348A1 (en) 1988-12-21 1990-05-02 Freiberg Brennstoffinst METHOD AND DEVICE FOR QUICKLY PYROLYSIS OF CARBON
US5033413A (en) 1989-05-08 1991-07-23 Hri, Inc. Fluidized bed combustion system and method utilizing capped dual-sided contact units
DE4015031A1 (en) 1990-05-10 1991-11-14 Kgt Giessereitechnik Gmbh METHOD FOR THE THERMAL REGENERATION OF OLD SANDS CONTAINING IN FOUNDRIES, AND FOR TREATING THE DUST RESULTING IN THE SAND CIRCUIT
DE4023060A1 (en) 1990-07-20 1992-01-23 Metallgesellschaft Ag METHOD FOR COOLING HOT PROCESS GAS
US5204115A (en) * 1990-12-12 1993-04-20 Suomen Xyrofin Oy Directly compressible xylitol and method
DE4103965C1 (en) 1991-02-09 1992-04-09 Metallgesellschaft Ag, 6000 Frankfurt, De
DE4109743C2 (en) 1991-03-25 1995-03-23 Escher Wyss Gmbh Process for the thermal treatment of moist hydrates
TW211603B (en) 1991-06-03 1993-08-21 Mitsubishi Heavy Ind Ltd
DE4131962C2 (en) 1991-09-25 1998-03-26 Hismelt Corp Pty Ltd Method and device for treating hot gases with solids in a fluidized bed
US5349154A (en) 1991-10-16 1994-09-20 Rockwell International Corporation Diamond growth by microwave generated plasma flame
DE4206602C2 (en) 1992-03-03 1995-10-26 Metallgesellschaft Ag Process for removing pollutants from combustion exhaust gases and fluidized bed reactor therefor
FR2692497B1 (en) 1992-06-17 1994-11-25 Procedair Device for the treatment of a gas by contact with particles of solid matter.
US5382412A (en) 1992-10-16 1995-01-17 Korea Research Institute Of Chemical Technology Fluidized bed reactor heated by microwaves
GB2271518B (en) 1992-10-16 1996-09-25 Korea Res Inst Chem Tech Heating of fluidized bed reactor by microwave
EP0630975B1 (en) * 1993-06-19 1997-07-23 Metallgesellschaft Ag Process for the direct reducing of material containing iron oxide
DE4410093C1 (en) * 1994-03-24 1995-03-09 Metallgesellschaft Ag Process for the direct reduction of materials containing iron oxides
FI97424C (en) 1993-06-23 1996-12-10 Foster Wheeler Energia Oy Method and apparatus for treating or recovering hot gas
FI93274C (en) 1993-06-23 1995-03-10 Ahlstroem Oy Method and apparatus for treating or recovering a hot gas stream
US5560762A (en) 1994-03-24 1996-10-01 Metallgesellschaft Ag Process for the heat treatment of fine-grained iron ore and for the conversion of the heat treated iron ore to metallic iron
KR970003636B1 (en) 1994-12-31 1997-03-20 포항종합제철 주식회사 A furnace for reduction fine coal in the manufacture of iron melts
JP3180603B2 (en) 1995-02-07 2001-06-25 信越化学工業株式会社 Fluidized bed reactor for metal nitride production
IT1275573B (en) 1995-07-20 1997-08-07 Spherilene Spa PROCESS AND EQUIPMENT FOR GAS PHASE POMIMERIZATION OF ALPHA-OLEFINS
DE19542309A1 (en) 1995-11-14 1997-05-15 Metallgesellschaft Ag Process for the production of aluminum oxide from aluminum hydroxide
DE19609284A1 (en) 1996-03-09 1997-09-11 Metallgesellschaft Ag Treating granular sulphidic ores containing gold and/or silver
FR2750348B1 (en) 1996-06-28 1998-08-21 Conte PROCESS FOR INCREASING THE WET RESISTANCE OF A BODY, BODY THUS PROCESSED AND ITS APPLICATIONS
ZA976925B (en) 1996-08-06 1998-03-19 Emr Microwave Technology Corp Method and apparatus for optimization of energy coupling for microwave treatment of metal ores and concentrates in a microwave fluidized bed reactor.
US6022513A (en) 1996-10-31 2000-02-08 Pecoraro; Theresa A. Aluminophosphates and their method of preparation
KR100276339B1 (en) 1996-12-23 2000-12-15 이구택 Three-stage Fluidized Bed Reduction Apparatus for Ferrous Iron Ore with X-shaped Circulation Tube
KR100210261B1 (en) 1997-03-13 1999-07-15 이서봉 Method of production for poly crystal silicon
US6029612A (en) 1997-07-07 2000-02-29 Foster Wheeler Energia Oy Fluidized bed reactor
DE19735378A1 (en) 1997-08-14 1999-02-18 Wacker Chemie Gmbh Process for the production of high-purity silicon granules
US6048374A (en) 1997-08-18 2000-04-11 Green; Alex E. S. Process and device for pyrolysis of feedstock
DE19841513A1 (en) 1997-11-25 1999-05-27 Metallgesellschaft Ag Process for cleaning exhaust gases from incinerators
US5942110A (en) 1997-12-29 1999-08-24 Norris; Samuel C Water treatment apparatus
DE19813286A1 (en) 1998-03-26 1999-09-30 Metallgesellschaft Ag Process for separating vaporous phthalic anhydride from a gas stream
JP2003524136A (en) 1998-10-02 2003-08-12 エスアールアイ インターナショナル Fluidized bed reactor with centrally located internal heat source
AU765620B2 (en) 1998-11-23 2003-09-25 Outotec Oyj Process of reducing ilmenite
DE10061386A1 (en) 2000-12-09 2002-09-05 Daimler Chrysler Ag Method and device for supercritical wet oxidation
US6827786B2 (en) 2000-12-26 2004-12-07 Stephen M Lord Machine for production of granular silicon
DE10164086A1 (en) 2001-12-24 2003-08-14 Invertec E V Production of silicon granulate, used for electronic device or solar cell manufacture, includes two-phase cyclic process with unfluidized or hardly fluidized bed of silicon particles during deposition and alternating with fluidization
DE10260734B4 (en) 2002-12-23 2005-05-04 Outokumpu Oyj Process and plant for the production of carbon coke
DE10260733B4 (en) 2002-12-23 2010-08-12 Outokumpu Oyj Process and plant for the heat treatment of iron oxide-containing solids
DE10260745A1 (en) 2002-12-23 2004-07-01 Outokumpu Oyj Process and plant for the thermal treatment of granular solids
DE10260739B3 (en) 2002-12-23 2004-09-16 Outokumpu Oy Process and plant for producing metal oxide from metal compounds
NO321880B1 (en) 2002-12-23 2006-07-17 Knutsen Oas Shipping As Device for reducing VOC evaporation
DE10260737B4 (en) 2002-12-23 2005-06-30 Outokumpu Oyj Process and plant for the heat treatment of titanium-containing solids
DE10260731B4 (en) 2002-12-23 2005-04-14 Outokumpu Oyj Process and plant for the heat treatment of iron oxide-containing solids
DE10260738A1 (en) 2002-12-23 2004-07-15 Outokumpu Oyj Process and plant for conveying fine-grained solids
DE10260741A1 (en) 2002-12-23 2004-07-08 Outokumpu Oyj Process and plant for the heat treatment of fine-grained solids
DE10260735B4 (en) 2002-12-23 2005-07-14 Outokumpu Oyj Process and plant for heat treatment of sulfide ores
US20060231433A1 (en) 2005-03-30 2006-10-19 Meadwestvaco Corporation Package with aligned discs on opposite covers

Also Published As

Publication number Publication date
WO2004057044A3 (en) 2005-02-24
MY134382A (en) 2007-12-31
BR0317664B1 (en) 2013-09-10
US7632334B2 (en) 2009-12-15
AU2003292233A1 (en) 2004-07-14
US20100044933A1 (en) 2010-02-25
EA010275B1 (en) 2008-08-29
DE10260731B4 (en) 2005-04-14
CN1738918A (en) 2006-02-22
EA200501030A1 (en) 2006-02-24
US8025836B2 (en) 2011-09-27
DE10260731A1 (en) 2004-07-08
US20060230880A1 (en) 2006-10-19
UA81792C2 (en) 2008-02-11
WO2004057044A2 (en) 2004-07-08
CN100529125C (en) 2009-08-19
CA2510930C (en) 2012-11-27
BR0317664A (en) 2005-11-29
ZA200505916B (en) 2006-11-29
AU2003292233B2 (en) 2009-07-09

Similar Documents

Publication Publication Date Title
CA2510930A1 (en) Method and plant for the heat treatment of solids containing iron oxide
AU2003294752B2 (en) Method and plant for the heat treatment of solids containing iron oxide using a fluidized bed reactor
JP2006511419A5 (en)
MY135617A (en) Method and plant for the heat treatment of fine-grained solids
CA1153559A (en) Method for the gaseous reduction of metal ores using reducing gas produced by gasification of solid or liquid fossil fuels
JPH05248769A (en) Method and device for treating gas and particulate solid in fluid bed
CN100473452C (en) Method and apparatus for the conveyance of fine-grained solids
AU2003294753B2 (en) Method and plant for producing low-temperature coke
AU2003296631B2 (en) Method and plant for the heat treatment of sulfidic ores using annular fluidized bed
CN104560217B (en) The method and system of oil gas coproduction gasification
CA2510000A1 (en) Methods and apparatus for heat treatment in a fluidised bed
JPS589809B2 (en) An operating method that uses a fluidized bed to simultaneously sinter and reduce powdered iron oxide and gasify heavy oil.
MXPA05006826A (en) Method and plant for the heat treatment of sulfidic ores using annular fluidized
JPH09272911A (en) Circulating fluidized bed reduction apparatus and its operation

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20201214