CA2508065A1 - Antiproliferative drug and delivery device - Google Patents

Antiproliferative drug and delivery device Download PDF

Info

Publication number
CA2508065A1
CA2508065A1 CA002508065A CA2508065A CA2508065A1 CA 2508065 A1 CA2508065 A1 CA 2508065A1 CA 002508065 A CA002508065 A CA 002508065A CA 2508065 A CA2508065 A CA 2508065A CA 2508065 A1 CA2508065 A1 CA 2508065A1
Authority
CA
Canada
Prior art keywords
rapamycin
stent
delivery device
agent
drug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002508065A
Other languages
French (fr)
Other versions
CA2508065C (en
Inventor
Robert Falotico
Gregory A. Kopia
Gerard H. Llanos
John Siekierka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cardinal Health 529 LLC
Original Assignee
Cordis Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cordis Corp filed Critical Cordis Corp
Publication of CA2508065A1 publication Critical patent/CA2508065A1/en
Application granted granted Critical
Publication of CA2508065C publication Critical patent/CA2508065C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/436Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a six-membered ring having oxygen as a ring hetero atom, e.g. rapamycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/726Glycosaminoglycans, i.e. mucopolysaccharides
    • A61K31/727Heparin; Heparan
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91533Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
    • A61F2002/91541Adjacent bands are arranged out of phase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0067Means for introducing or releasing pharmaceutical products into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0067Means for introducing or releasing pharmaceutical products into the body
    • A61F2250/0068Means for introducing or releasing pharmaceutical products into the body the pharmaceutical product being in a reservoir
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/0097Coating or prosthesis-covering structure made of pharmaceutical products, e.g. antibiotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/41Anti-inflammatory agents, e.g. NSAIDs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/416Anti-neoplastic or anti-proliferative or anti-restenosis or anti-angiogenic agents, e.g. paclitaxel, sirolimus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2420/00Materials or methods for coatings medical devices
    • A61L2420/08Coatings comprising two or more layers

Abstract

A drug and drug delivery system may be utilized in the treatment of vascular disease. A local delivery system is coated with rapamycin or other suitable drug, agent or compound and delivered intraluminally for the treatment and prevention of neointimal hyperplasia following percutaneous transluminal coronary angiography. The local delivery of the drugs or agents provides for increased effectiveness and lower systemic toxicity.

Description

ANTIPROLIF'ERATiVE DRUG AND DELIVERY DEVICE
CROSS REFERENCE TO RELATED APPLICATIONS
This application is a continuation-in-part of U.S. Application Serial Number 09/850,507, filed on May 7, 2001 which is a continuation-in-part of U.S. Application Serial Number 09/575,480, filed on May 19, 2000 which claims the benefit of U.S. Provisional Application No. 60/204,417, filed May 12, 2000 and claims the benefit of U.S. Provisional Application No. 60/262,614, filed January 18, 2001, U.S. Provisional Application No. 601262,461, filed January 18, 2001, U.S. Provisional Application No. 601263,806, filed January 24, 2001 and U.S. Provisional Application No. 60/263,979, filed January 25, 2001.
BACKGROUND OF THE INVENTION
1. Field of the Invention The present invention relates to drugs and drug delivery systems for the prevention and treatment of vascular disease, and more particularly to drugs and drug delivery systems for the prevention and treatment of neointimal hyperplasia.
2. Discussion of the Related Art Many individuals suffer from circulatory disease caused by a progressive blockage of the blood vessels #hat perfuse the heart and other major organs with nutrients. More severe blockage of blood vessels in such individuals often leads to hypertension, ischemic injury, stroke, or myocardial infarction.
Atherosclerotic lesions, which limit or obstruct coronary blood flow, are the major cause of ischemic heart disease. Percutaneous transluminal coronary angioplasty is a medical procedure whose purpose is to increase blood flow through an artery. Percutaneous transluminal coronary angio-plasty is the ' ' CA 02508065 2005-05-20 predominant treatment for coronary vessel stenosis. The increasing use of this procedure is attributable to its relatively high success rate and its minimal invasiveness compared with coronary bypass surgery. A limitation associated with percutaneous transluminal coronary angioplasty is the abrupt closure of the vessel which may occur immediately after the procedure and restenosis which occurs gradually following the procedure. Additionally, restenosis is a chronic problem in patients who have undergone saphenous vein bypass grafting. The mechanism of acute occlusion appears to involve several factors and may result from vascular recoil with resultant closure of the artery and/or deposition of,blood platelets and fibrin along the damaged length of the newly opened blood vessel.
Restenosis after percutaneous transluminal coronary angioplasty is a more gradual process initiated by vascular injury. Multiple pracesses, including thrombosis, inflammation, growth factor and cytokine release, cell proliferation, cell migration and extracellular matrix synthesis each contribute to the restenotic process.
While the exact mechanism of restenosis is not completely understood, the general aspects of the restenosis process have been identified. In the normal arterial wall, smooth muscle cells proliferate at a low rate, approximately less than 0.1 percent per day. Smooth muscle cells in the vessel walls exist in a contractile phenotype characterized by eighty to ninety percent of the cell cytoplasmic volume occupied with the contractile apparatus.
Endoplasmic reticulum, Golgi, and free ribosomes are few and are located in the perinuclear region. Extracellular matrix surrounds the smooth muscle cells and is rich in heparin-like glycosylaminoglycans which are believed to .be responsible for maintaining smooth muscle cells in the contractile phenotypic state (Campbell and Campbell, 1985).
Upon pressure expansion of an intracoronary taailoon catheter during angioplasty, smooth muscle cells within the vessel wall become injur.~d, initiating a thrombotic and inflarramatory response. Cell derived growth factors such as platelet derived growth factor, fibroblast growth factor, epidermal growth factor, thrombin, etc., released from platelets, invading macrophages and/or leukocytes, or directly from the smooth muscle cells provoke proliferative and migratory responses in media( smooth muscle cells. These cells undergo a change from the contractile phenotype to a synthetic phenotype characterized by only a few contractile filament bundles, extensive rough endoplasmic reticulum, Golgi and free ribosomes. Proliferation/migration usually begins within one to two days post-injury and peaks several days thereafter (Campbell and Campbell, 1987; Clowes and Schwartz, 1985).
Daughter cells migrate to the intimal layer of arterial smooth muscle and continue to proliferate and secrete significant amounts of extracellular matrix proteins. Proliferation, migration and extracellular matrix synthesis continue until the damaged endothelial layer is repaired at which time proliferation slows within the intima, usually within seven to fourteen days post-injury. The newly formed tissue is called neointima. The further vascular narrowing that occurs over the next three to six months is due primarily to negative or constrictive remodeling.
Simultaneous with local proliferation and migration, inflammatory cells invade the site of vascular injury. Within three to seven days post-injury, inflammatory cells have migrated to the deeper layers of the vessel wall. In animal models employing either balloon injury or stem implantation, inflammatory cells may persist at the site of vascular injury for at least thirty days (Tanaka et al., 1993; Edelman et al., 1998). Inflammatory cells therefore are present and may contribute to both the acute and chronic phases of restenosis.
Numerous agents have been examined for presumed anti-proliferative actions in restenosis and have shown some activity in experimental animal models. Some of the agents which have been shown to successfully reduce the extent of intimal hyperplasia in animal models include: heparin and heparin fragments (Clowes, A.W. and Karnwsky M., Nature 265: 25-26, 1977; Guyton,
3 J.R. et al., Circ. Res., 46: 625-634, 1980; Clowes, A.W. and Clowes, M.M., Lab. Invest. 52: 611-616, 1985; Clowes, A.W. and Clowes, M.M., Circ. Res. 58:
839-845, 1986; Majesky et al., Circ. Res. 61: 296-300, 1987; Snow et aL, Am.
J. Pathol. 137:313-330, 1990; Okada, T. et al., Neurosurgery 25: 92-98, 1989), colchicine (furrier, J.W. et al., Circ. 80: 11-66, 1989), taxol (Sollot, S.J.
et al., J. Clin. Invest. 95: 1869-1876, 1995), angiotensin converting enzyme (ACE) inhibitors (Powell; J.S. et al., Science, 245: 186-188, 1989), angiopeptin (Lundergan, C.F. et aI: Am. J. Cardiof. 17(Suppl. B):132B-1368, 1991 ), cyclosporin A (Jonassan, L. et al., Proc. Nati., Acad. Sci., 85: 2303, 1988), goat-anti-rabbit PDGF antibody (Ferns, G.A.A., et al., Science 253: 1129-1132, 1991 ), terbinafine (Nemecek, G.M. et al., J. Pharmacol. Exp. Thera. 248: 1167-1174, 1989), trapidil (Liu, M.W. et al., Circ. 81: 1089-1093, 1990), tranilast (Fukuyama, J. et al., Eur. J. Pharmacol. 318: 327-332, 1996), interferon-gamma (Hansson, G.K. and Holm, J., Circ. 84: 1266-1272, 1991 ), rapamycin (Marx, S.O. et al., Circ. Res. 76: 412-417, 1995), corticosteroids (Colburn, M.D.
et al., J. Vasc. Surg. 15: 510-518, 1992), see also Berk, B.C. et al.; J. Am.
Coll.
Cardiol. 17: 1118-1178, 1991), ionizing radiation (Weinberger, J. et al., Int.
J.
Rad. Onc. Biol. Phys. 36: 767-775, 1996), fusion toxins (Farb, A. et al., Circ.
Res. 80: 542-550, 1997) antisense oligonucleotides (Simons; M. et al., Nature 359: 67-70, 1992) and gene vectors (Chang, M.W. et al., J. Clin: Invest. 96:
2260-2268, 1995). Anti-proliferative effects on smooth muscle cells in vitro have been demonstrated for many of these agents, including heparin and heparin conjugates, taxol, tranilast, colchicine, ACE inhibitors, fusion toxins, antisense oligonucleotides, rapamycin and ionizing radiation. Thus, agents with diverse mechanisms of smooth muscle cell inhibition may have therapeutic utility in reducing intimal hyperplasia.
However, in contrast to animal models, attempts in human angiopiasty patients to prevent restenosis by systemic pharmacologic means have thus far been unsuccessful. Neither aspirin-dipyridamole, ticlopidine, anti-coagulant therapy (acute heparin, chronic warfarin, hirudin or hiruiog), thromboxane receptor antagonism nor steroids have been effective in preventing restenosis, although platelet inhibitors have been effective in preventing acute reocclusion
4 after angioplasty (Mak and Topol, 1997; Lang et al., 1991; Popma et al., 1991 ).
The platelet GP Ilb/Illa receptor, antagonist, Reopro is still under study but has not shown promising results for the reduction in restenosis following angioplasty and stenting. Other agents, which have also been unsuccessful in the prevention of restenosis, include the calcium channel antagonists, prostacyclin mimetics, angiotensin converting enzyme inhibitors, serotonin receptor antagonists, and anti-proliferative agents. These agents must be given systemically, however, and attainment of a therapeutically effective dose may not be possible; anti-proliferative (or anti-restenosis) concentrations may exceed the known toxic concentrations of these agents so that levels sufficient to produce smooth muscle inhibition may not be reached (Mak and Topol, 1997; Lang et al., 1991; Popma et al., 1991 ).
Additional clinical trials in which the effectiveness for preventing restenosis utilizing dietary fish oil supplements or cholesterol lowering agents has been examined showing either conflicting or negative results so that no pharmacological agents are as yet clinically available to prevent post-angioplasty restenosis (Mak and Topol, 1997; Franklin and Faxon, 1993:
Serruys, P.W. et al., 1993). Recent observations suggest that the antilipid/antioxidant agent, probucol may be useful in preventing restenosis but this work requires confirmation (Tardif et al., 1997; Yokoi, et al., 1997).
Probucol is presently not approved for use in the United States and a thirty-day pretreatment period would preclude its use in emergency angioplasty.
Additionally, the application of ionizing radiation has shown significant promise in reducing or preventing restenosis after angioplasty in patients with stents (Teirstein et al., 1997). Currently, however, the most effective treatments for restenosis are repeat angiopiasty, atherectomy or coronary artery bypass grafting, because no therapeutic agents currently have Food and Drug Administration approvai for use for the prevention of post-angioplasty restenosis.
Unlike systemic pharmacologic therapy, stems have proven effective in significantly reducing restenosis. Typically, stents are balloon-expandable
5 slotted metal tubes (usually, but not limited to, stainless steel), which, when expanded within the lumen of an angioplastied coronary artery, provide structural support through rigid scaffolding to the arterial wall. 'this support is helpful in maintaining vessel lumen patency. In two randomized clinical trials, stents increased angiographic success after percutaneous transluminal coronary angioplasty, by increasing minimal lumen diameter and reducing, but not eliminating, the incidence of restenosis at six months (Serruys et al., 1994;
Fischman et al., 1994).
Additionally, the heparin coating of stents appears to have the added benefit of producing a reduction in sub-acute thrombosis after scent implantation (Serruys et al., 1996). Thus, sustained mechanical expansion of a stenosed coronary artery with a stent has been shown to provide some measure of restenosis prevention, and the coating of stents with heparin has demonstrated both the feasibility and the clinical usefulness of delivering drugs locally, at the site of injured tissue.
Accordingly, there exists a need for effective drugs and drug delivery systems for the effective prevention and treatment of neointimal thickening that occurs after percutaneous transluminal coronary angioplasty and stent implantation.
SUMMARY OF THE INVENTION
The drugs and drug delivery systems of the present invention provide a means for overcoming the difficulties associated with the methods and devices currentiy in use as briefly described above.
In accordance with one aspect, the present invention is directed to a method for the treatment of intimal hyperpfasia in vessel walls. The method comprises the controlled delivery, by release from an intraluminal medical device, of an anti-proliferative agent in therapeutic dosage amounts.
6 .... ,.. ,.,~~. :~.*~u. .:,..~;,~.~.~.~..w~~_~.~~, ..w,~~ ...,..."_ .._ r....W.. .~.m..._._.._.._ ... .. _....._ In accordance with another aspect, the present invention is directed to a drug delivery device. The drug delivery device comprises an intraluminal medical device and a therapeutic dosage of an agent releasably affixed to the intraluminal medical device for the treatment of intimal hyperplasia.
In accordance with another aspect, the present invention is directed to a method for the treatment of intimal hyperplasia in vessel walls. The method comprises delivery, by release from an intraluminal medical device, of an anti-proiiferative agent in therapeutic dosage amounts, the anti-proliferative agent being targeted specifically toward the pathophysiology of human vascular lesions, and controlling the release rate and dosage levels directly at the lesion site.
The drugs and drug delivery systems of the present invention utilize a stent or graft in combination with rapamycin or other drugslagents/compounds to prevent and treat neointimal hyperplasia, i.e. restenosis, following percutaneous transluminal coronary angioplasty and stem implantation. It has been determined that raparnycin functions to inhibit smooth muscle cell proliferation through a number of mechanisms. It has also been determined that rapamycin eluting stent coatings produce superior effects in humans, when compared to animals, with respect to the magnitude and duration of the reduction in neointimai hyperplasia. Rapamycin administration from a local delivery platform also produces an anti-inflammatory effect in the vessel wall that is distinct from and complimentary to its smooth muscle cell anti-proliferative effect. In addition, it has also been demonstrated that rapamycin inhibits constrictive vascular remodeling in humans.
Other drugs, agents or compounds which mimic certain actions of rapamycin may also be utilized in combination with local delivery systems or platforms.

The local administration of drugs, agents or compounds to stented vessels have the additional therapeutic benefit of higher tissue concentration than that which would be achievable through the systemic administration of the same drugs, agents or compounds. Other benefits include reduced systemic toxicity, single treatment, and ease of administration. An additional benefit of a local delivery device and drug, agent or compound therapy may be to reduce the dose of the therapeutic drugs, agents or compounds and thus limit their toxicity, while still achieving a reduction in restenosis.
BRIEF DESCRIPTION OF THE DRAWINGS
The foregoing and other features and advantages of the invention will be apparent from the following, more particular description of preferred embodiments of the invention, as illustrated in the accompanying drawings.
Figure 1 is a chart indicating the effectiveness of rapamycin as an anti-inflammatory relative to other anti-inflammatories.
Figure 2 is a view along the length of a stent (ends not shown) prior to expansion showing the exterior surface of the stmt and the characteristic banding pattern.
Figure 3 is a perspective view of the stent of Figure 1 having reservoirs in accordance with the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
As stated above, the proliferation of vascular smooth muscle cells in response to mitogenic stimuli that are released during balloon angioplasty and stent implantation is the primary cause of neointimal hyperplasia. Excessive neointimal hyperplasia can often lead to impairment of blood flow, cardiac ischemia and the need for a repeat intervention in selected patients in high risk treatment groups. Yet repeat revascularization incurs risk of patient morbidity and mortality while adding significantly to the cost of health care. Given the widespread use of stents in interventional practice, there is a clear need for safe and effective inhibitors of neointimal hyperplasia.
Rapamycin is a macroyclic triene antibiotic produced by streptomyces hygroscopicus as disclosed in U.S. Patent No. 3,929,992. It has been found that rapamycin inhibits the proliferation of vascular smooth muscle cells in vivo.
Accordingly, rapamycin may be utilized in treating intimal smooth muscle cell hyperplasia, restenosis and vascular occlusion in a mammal, particularly following either biologically or mechanically mediated vascular injury, or under conditions that would predispose a mammal to suffering such a vascular injury.
Rapamycin functions to inhibit smooth muscle cell proliferation and does not interfere with the re-endothelialization of the vessel walls.
Rapamycin functions to inhibit smooth muscle cell proliferation through a number of mechanisms. in addition, rapamycin reduces the other effects caused by vascular injury, for example, inflammation. The operation and various functions of rapamycin are described in detail below. Rapamycin as used throughout this application shall include rapamycin, rapamycin analogs, derivatives and congeners that bind FKBP12 and possess the same pharmacologic properties as rapamycin.
Rapamycin reduces vascular hyperplasia by antagonizing smooth muscle proliferation in response to mitogenic signals that are released during angioplasty. Inhibition of growth factor and cytokine mediated smooth muscle proliferation at the late G1 phase of the cell cycle is believed to be the dominant mechanism of action of rapamycin. However, rapamycin is also known to prevent T-cell proliferation and differentiation when administered systemically. This is the basis for its immunosuppresive activity and its ability to prevent graft rejection.

The molecular events that are responsible for the actions of rapamycin, a known anti-proliferative, which acts to reduce the magnitude and duration of neointimal hyperplasia, are still being elucidated. It is known, however, that rapamycin enters cells and binds to a high-affinity cytosolic protein called FKBP12. The complex of rapamycin and FKPB12 in turn binds to and inhibits a phosphoinositide (Pl)-3 kinase called the "mammalian Target of Rapamycin"
or TOR. TOR is a protein kinase that plays a key role in mediating the downstream signaling events associated with mitogenic growth factors and cytokines in smooth muscle cells and T lymphocytes. These events include phosphorylation of p27, phosphorylation of p70 s6 kinase and phosphorylation of 4BP-1, an important regulator of protein translation.
It is recognized that rapamycin reduces restenosis by inhibiting neointimal hyperplasia. However, there is evidence that rapamycin may also inhibit the other major component of restenosis, namely, negative remodeling.
Remodeling is a process whose mechanism is not clearly understood but which results in shrinkage of the external elastic lamina and reduction in lumenal area over time, generally a period of approximately three to six months in humans.
Negative or constrictive vascular remodeling may be quantified angiographically as the percent diameter stenosis at the lesion site where there.
is no stent to obstruct the process. If late lumen loss is abolished in-lesion, it may be inferred that negative remodeling has been inhibited. Another method of determining the degree of remodeling involves measuring in-lesion external elastic lamina area using intravascular ultrasound (IVIJS). Intravascular ultrasound is a technique that can image the external elastic lamina as well as the vascular lumen. Changes in the external elastic lamina proximal and distal to the stem from the post-procedural timepoint to four-month and twelve-month follow-ups are reflective of remodeling changes.
Evidence that rapamycin exerts an effect on remodeling comes from human implant studies with rapamycin coated stents showing a very low degree of restenosis in-lesion as well as in-stenf. ln-lesion parameters are usually measured approximately five millimeters on either side of the stent i.e.
proximal and distal. Since the scent is not present to control remodeling in these zones which are still affected by balloon expansion; it may be inferred that rapamycin is preventing vascular remodeling.
The data in Table 1 below illustrate that in-lesion percent diameter stenosis remains low in the rapamycin treated groups, even at twelve months.
Accordingly, these results support the hypothesis that rapamycin reduces remodeling.

Angiographic In-Lesion Percent Diameter Stenosis (%, mean ~ SD and "n=") In Patients Who Received a Rapamycin-Coated Stent Coating Post 4- 6 month 12 month Group Placement Follow Up Follow Up Brazil 10.6 5.7 (30) 13.6 22.3 7.2 8.6 (30) (15) Netherlands14.7 8.8 22.4 6.4 TABLE 1.0 Additional evidence supporting a reduction in negative remodeling with rapamycin comes from intravascufar ultrasound data fihat was obtained from a first-in-man clinical program as illustrated in Table 2 below.
Matched IVUS data in Patients Who Receiived a Rapamycin-Coated Stent IVUS Parameter Post (n=) 4-Month 12-Month Follow-Up Follow-Up n~ n=_ Mean proximal vessel16.53 + 16.31 4.36 13.96 2.26 area 3.53 (mm2) (27) (28) (13) Mean distal vessel 13.12 + 13.53 + 4.1712.49 + 3.25 area 3.68 (mm2) (26) (26) (14) TABLE 2.0 The data illustrated that there is minimal loss of vessel area proximally or distally which indicates that inhibition of negative remodeling has occurred in vessels treated with rapamycin-coated stents.
Other than the stent itself, there have been no effective solutions to the problem of vascular remodeling. Accordingly, rapamycin may represent a biological approach to controlling the vascular remodeling phenomenon.
It may be hypothesized that rapamycin acts to reduce negative 2S remodeling in several ways. By specifically blocking the proliferation of fibroblasts in the vascular wall in response to injury, rapamycin may reduce the formation of vascular scar tissue. Rapamycin may also affect the translation of key proteins involved in collagen formation or metabolism.
Rapamycin used in this context includes rapamycin and all analogs, derivatives and congeners that bind FKBP12 and possess the same pharmacologic properties as rapamycin.
In a preferred embodiment, the rapamycin is delivered by a local delivery device to control negative remodeling of an arterial segment after balloon angioplasty as a means of reducing or preventing restenosis. While any delivery device may be utilized, it is preferred that the delivery device comprises a stent that includes a coating or sheath which elutes or releases rapamycin. The delivery system for such a device may comprise a local infusion catheter that delivers rapamycin at a rate controlled by the administrator.
Rapamycin may also be delivered systemically using an oral dosage form or a chronic injectible depot form or a patch to deliver rapamycin for a period ranging from about sevdn to forty-five days to achieve vascular tissue levels that are sufficient to inhibit negative remodeling. Such treatment is to be used to reduce or prevent restenosis when administered several days prior to elective angioplasty with o~ without a stent.
Data generated in porcine and rabbit models show that the release of rapamycin into the vascular wall from a nonerodible polymeric stent coating in a range of doses (35-430 ug115-18 mm coronary stent) produces a peak fifty to fifty-five percent reduction in neointimal hyperplasia as set forth in Table 3 below. This reduction, which is maximal at about twenty-eight to thirty days, is typically not sustained in the range of ninety to one hundred eighty days in the porcine model as set forth in Table 4 below.

Animal Studies with Raparnycin-coated stents.
Values are mean ~ Standard Error of Mean Neofntimal Area Chan StudyDurationStentt RapamycinN a From mmy Po me Metal Porcine 9800914 Metal 8 .D4 t 0.17 da s 1X+ra am 153 8 166 _0.17*_ -42%_0 cin -19%

1X+TC300+ra 155 8 1.51 .19' -47% -26%
am cin 9900528 Metal 10 .29 0.21 da s 9 .91 t 0.60*' 1 X + TC30 130 8 .81 0.34 +23 + ra am cin 1X+TC100+ra 0 9 62 0. 1 +14k am in 9900628 Metal 12 4.57 0.46 da s EVAIBMA 3X 12 5 02 t 0.62 +10%

1 X + ra 125 11 .84 t 0 1' ' -43'%
am in -38 h _ 3X + ra am 0 12 3.06 f 0.1T " -39%
cin -33%

3X+ra am 157 12 .77f0 1*' -45% -39%
cin 9901128 Metal 11 3.09 0.27 days 11 4.52 37 1X + ra am 89 14 05 0.35 -1 cin 3X + ra m 182!36314 72 0.71 -12%
cin/dex 9 60 Met I 12 2.14 0.25 021 da 1X + ra am 1 12 .95 0 38 +38%
cin 9903428 Metal 8 .24 58 da s 1 X + ra 186 8 2 47 + 0.33" 5396 am cin 3X + ra am 18 /3696 .42 + .64*' -54%
cinJdex 2000128 Metal 6 .81 0.09 da s _ 172 5 1.66 0.44 -8%
1X+ra am cin _ 30 Metal 9 .94 t 0.43 da s 1XTC+ra am 5 10 1.40 11' -52k' cln --.

Rabbit 9901928 Metai 8 _1.20 0.07_ da EVAIBMA 1X 10 _1.26_0.16_ +5%

i X + ra 64 9 0.92 f 0.14 -27% -23%
am cin .

1 X + ra 196 10 0 6 12* " -48% -45%
am cin 9902028 Metal 12 18 _0.10 da s EVAIBMA 1X _ ~8 T 0.81 t 0.16 ~ -32~
+ rapamycin ~ 197 pg 'Stent nomenGature: EVAIBMA 1X, 2X, and 3X si~ifies approx. SOOpg, 1000wg, and 1500~g total mass (polymer + drug), respectively. TC, top coat of 30ug 100N,g, or 300pg drug-free BMA; Biphasic; 2 x 1X layers of rapamycin in tvAIBMA spearated by a 100)ig drug-free BMA layer. T025mglkgld x 14 d proceeded 1 ~ by a loading dose of 0.5mglkgld x 3d prior to scent in~lantation.
~p<0.05 from EVA/BAAA ~ntrol. "p<0.05 from Meal;
'Inflammation scare: (0 = essentially no intimal involvement; 1 = Q5°/
intima involved;2=>25% in6ma involved; 3 =>50 % intima involvedj.
TABLE 3.0 180 day Porcine Study with Rapamycin-coated stents.
Values are mean ~ Standard Error of Mean i ~ Chan lntlammation l A a Fro N
ti StudyDurationStent Ra m cin eo Pa Y N ma rea n z . (mm pol me Score 200073 da Metal 10 ) Metal #
ETP-2-002233-P1XTC + ra 155 10 0.3 .06 OS D.
am cin 0.2 D3 -24% 1.08 0.04 30 Metal 9 2.94 t 0,11 da 0.43 t 0.08 s 1XTC+ra am 155 10 1.400.11'-520' 025 0.10 cin 90 Metal 10 3.45 0.34 0. 0 da 1 XTC + ra SS 10 3.03 -1296 0.08 s am cin 0 29 0 80 0.

1X+ra am 71 10 2.8 t -17% ' 60 0.
cin 35 180 Metal 10 3.6 39 65 0.
da 1 s 1 XTC +ra 1 5 1 D 3.34 0.31-8 50 0.34 I am cin _ - 171 ua 3.870.28 +6% 1,6810.37 1X+mpamycin 10 [

TABLE 4.0 The release of rapamycin into the vascular wall of a human from a nonerodible polymeric stent coating provides superior results with respect to the magnitude and duration of the reduction in neointimal hyperplasia within the stent as compared to the vascular walls of animals as set forth above.
Humans implanted with a rapamycin coated stent comprising rapamycin in the same dose range as studied in animal models using the same polymeric matrix, as described above, reveal a much more profound reduction in neointimal hyperplasia than observed in animal models, based on the magnitude and duration of reduction in neointima. The human clinical response to rapamycin reveals essentially total abolition of neointimal hyperplasia inside the stent using both angiographic and intravascular ultrasound measurements. These results are sustained for at least one year as set forth in Table 5 below.
'I 5 Patients Treated (N=45 patients) with a Ranamvcin-coated Stent Effectiveness Measures Sirolimus FIM 95%
N=45 Patients, 45 Lesio_ns_ Confidence Limit Procedure Success QCA 100.0% 45145 92.1%,100.0%

4-month In-Stent Diameter Stenosis MeanSD N 4.8%-1-6.1 % 30 [2.6%,7.0%) Ran a min,max -8.2%,14.9%

6-month In-Stent Diameter Stenosis MeanSD N 8.9%7.6% 13 [4.8%,13.0%]

Ran a min,max -2.9%,20.4%

12-month In-Stent Diameter Stenosis MeanSD N 8.9%6.1% 15 [5.8%,12.0%]

Ran a min,max -3.0%,2_2.0_/0 4-month In-Stent Late Loss mm MeanSD N 0.000.29 30 [-0.10,0.10]

Ran a min,max -0.51,0.45 6-month In-Stent Late Loss mm MeanSD N 0.2510.27 13 [0.10,0.39]

Ran a min,max -0_._51,0_.91 12-month In-Sterit Late Loss mm MeanSD N _0.110.3_6 15[-0.08,0.29]

Ran a min,max -0.51,0.82 4-month Obstruction Volume % iVUS

MeanSD N 10.48%12.78% 28 [9.45%,11.51%]

Ran a min,max 4.60%,16.35%

6-month Obstruction Volume % IVUS

MeantSD N 7.22%4.60% 13 [4:72%,9.72%], Ran a min,max 3.82%,19.88%

12-month Obstruction Volume % IVUS 2.11 %5.28% 15 [0.00%,4.78%], MeanSD N

Ran a min,max 0.00x,19.89%
0.l)% (0/30) [0.0%,9.5%]
6-month Target Lesion Revascularization (TLR) 0.0% (0/15) [0.0%,18.1%]

12-month Target Lesion Revascularization (TLR) QCA = Quantitative Coronary Angiography SD = Standard Deviation IVUS = Intravascuiar Ultrasound TABLE 5.0 Rapamycin produces an unexpected benefit in humans when delivered from a stent by causing a profound reduction in in-stem neointimal hyperplasia that is sustained for at least one year. The magnitude and duration of this benefit in humans is not predicted from animal model data. Rapamycin used in this context includes rapamycin and al! analogs, derivatives and congeners that bind FKBP12 and possess the same pharm~cologic properties as rapamycin.
These results may be due to a number of factors. For example, the greater effectiveness of rapamycin in humans is due to greater sensitivity of its mechanisms) of action toward the pathophysiology of human vascular lesions compared to the pathophysiology of animal models of angioplasty. In addition, the combination of the dose applied to the stent and the polymer coating that controls the release of the drug is important in the effectiveness of the drug.
As stated above, rapamycin reduces vascular hyperplasia by antagonizing smooth muscle proliferation in response to mitogenic signals that are released during angioplasty injury. Also, it is known that rapamycin prevents T-cell proliferation and differentiation when administered systemically.
IS It has also been determined that rapamycin exerts a local inflammatory effect in the vessel wall when administered from a stent in Pow doses for a sustained period of time (approximately finro to six weeks). The local anti-inflammatory benefit is profound and unexpected. In combination with the smooth muscle anti-proliferative effect, this dual mode of action of rapamycin may be responsible for its exceptional efficacy.
Accordingly, rapamycin delivered from a local device platform, reduces neointimal hyperplasia by a combination of anti-inflammatory and smooth muscle anti-proiiferative effects. Rapamycin used in this context means rapamycin and all analogs, derivatives and congeners that bind FKBP12 and possess the same pharmacologic properties as rapamycin. Local device platforms include stmt coatings, stent sheaths, grafts and local drug infusion catheters or porous balloons or any other suitable means for the in situ or local delivery of drugs, agents or compounds.
The anti-inflammatory effect of rapamycin is evident in data from an experiment, illustrated in Table 6, in which rapamycin delivered from a stent was compared with dexarnethasone delivered from a stent. Dexamethasone, a potent steroidal anti-inflammatory agent, was used as a reference standard.
Although dexamethasone is able to reduce inflammation scores, rapamycin is far more effective than dexamethasone in reducing inflammation scores. In addition, rapamycin significantly reduces neointimal hyperplasia, unlike dexamethasone.
Group Neointimal Area% Area Inflammation Rapamycin ~_ (mm2) Stenosis Score Ra U ncoated 8 5.24 1.65 54 19 0.97 t 1.00 Dexamethasone8 4.31 ~ 3.02 4.5 31 0.39 0.24 Dex Rapamycin 7 2.47 0.94* 26 10* 0.13 0.19*

Ra Rap + Dex 6 2.42 1.58* 26 18* 0.17 t 0.30*

= sign'rficance level P< 0.05 TABLE 6.0 Rapamycin has also been found to reduce cyfokine levels in vascular tissue when delivered from a stem. The data in 1'igure 1 illustrates that rapamycin is highly effective in reducing monocyte chernotactic protein (MCP-1 ) levels in the vascular wall. MCP-1 is an example of a proinflammatorylchemotactic cytokine that is elaborated during vessel injury.
Reduction in MCP-1 illustrates the beneficial effect of rapamycin in reducing the expression of proinflammatory mediators and contributing to the anti-inflammatory effect of rapamycin delivered locally from a stent. It is recognized that vascular inflammation in response to injury is a major contributor to the development of neointimal hyperplasia.
Since rapamycin may be shown to inhibit local inflammatory events in the vessel it is believed that this could explain the unexpected superiority of rapamycin in inhibiting neointima.
As set forth above, rapamycin functions on a number of levels to produce such desired effects as the prevention of T-cell proliferation, the inhibition of negative remodeling, the reduction of inflammation, and the prevention of smooth muscle cell proliferation. While the exact mechanisms of these functions are not completely known, the mechanisms that have been identified may be expanded upon.
Studies with rapamycin suggest that the prevention of smooth muscle cell proliferation by blockade of the cell cycle is a valid strategy for reducing neointimai hyperplasia. Dramatic and sustained reductions in late lumen loss and neointimal plaque volume have been observed in patients receiving I O rapamycin delivered locally from a stent. The present invention expands upon the mechanism of rapamycin to include additional approaches to inhibit the cell cycle and reduce neointimal hyperplasia without producing toxicity.
The ceN cycle is a tightly controlled biochemical cascade of events that regulate the process of cell replication. When cells are stimulated by appropr7ate growth factors, they move from Go (quiescence) to the G1 phase of the cell cycle. Selecfiive inhibition of the cell cycle in the G1 phase, prior to DNA replication {S phase); may offer therapeutic advantages of cell preservation and viability white retaining anti-proliferative efficacy when compared to therapeutics that act later in the cell cycle i.e. at S, G2 or M
phase.
Accordingly, the prevention of intimal hyperplasia in blood vessels and other conduit vessels in the body may be achieved using cell cycle inhibitors that act selectively at the G1 phase of the cell cycle. These inhibitors of the G1 phase of the cell cycle may be small molecules, peptides, proteins, oligonucleotides or DNA sequences. More specifically, these drugs or agents include inhibitors of cyclin dependent kinases {cdk's) involved with the progression of the cell cycle through the G1 phase, in particular cdk2 and cdk4.
Examples of drugs, agents or compounds that act selectively at the G1 phase of the cell cycle include small molecules such as flavopiridol and its structural analogs that have been found to inhibit cell cycle in the late G1 i9 phase by antagonism of cyclin dependent kinases. Therapeutic agents that elevate an endogenous kinase inhibitory proteink'p called P27, sometimes referred to as P27k'p', that selectively inhibits cyciin dependent kinases may be utilized. This includes small molecules, peptides and proteins that either block the degradation of P27 or enhance the cellular production of P27, including gene vectors that can transfact the gene to produce P27. Staurosporin and related small molecules that block the cell cycle by inhibiting protein kinases may be utilized. Protein kinase inhibitors, including the class of tyrphostins that selectively inhibit protein kinases to antagonize signal transduction in smooth muscle in response to a broad range of growth factors such as PDGF and FGF
may also be utilized.
Any of the drugs, agents or compounds discussed above may be administered either systemically, for example; orally, intravenously, intramuscularly, subcutaneously, nasally or intradermally, or locally, for example, stem coating, stent covering or local delivery catheter. In addition, the drugs or agents discussed above may be formulated far fast-release or slow release with the objective of maintaining the drugs or agents in contact with target tissues for a period ranging from three days to eight weeks.
As set forth above, the complex of rapamycin and FKPB12 binds to and inhibits a phosphoinositide (P1)-3 kinase called the mammalian Target of Rapamycin or TOR. An antagonist of the catalytic activity of TOR, functioning as either an active site inhibitor or as an allosteric modulator, i.e. an indirect inhibitor that allosterically modulates, would mimic the actions of rapamycin but bypass the requirement for FKBP12. The potential advantages of a direct inhibitor of TOR include better tissue penetration and better physical/chemical stability. In addition, other potential advantages include greater selectivity and specificity of action due to the specificity of an antagonist for one of multiple isoforms of TOR that may exist in different tissues, and a potentially different spectrum of downstream effects leading to greater drug efficacy and/or safety.

The inhibitor may be a small organic molecule {approximate mw<1000), which is either a synthetic or naturally derived product. Wortmanin may be an agent which inhibits the function of this class of proteins. It may also be a peptide or an oligonucleotide sequence. The inhibitor may be administered either sytemically (orally, intravenously, intramuscularly, subcutaneously, nasally, or intradermally) or locally {stent coating, stent covering, local drug delivery catheter). For example, the inhibitor may be released into the vascular wall of a human from a nonerodible polymeric stent coating. In addition, the inhibitor may be formulated for fast-release or slow release with the objective of maintaining the rapamycin or other drug, agent or compound in contact with target tissues for a period ranging from three days to eight weeks.
As stated previously, the implantation of a coronary stem in conjunction with balloon angiop(asty is highly effective in treating acute vessel closure and ZS may reduce the risk of restenosis. Intravascular ultrasound studies {Mintz et al., 1996) suggest that coronary stenting effectively prevents vessel constriction and that most of the late luminal loss after stent implantation is due to plaque growth, probably related to neointimal hyperplasia. The late luminal loss after coronary stenting is almost two times higher than that observed after conventional balloon angioplasty. Thus, inasmuch as scents prevent at least a portion of the restenosis process, the use of drugs, agents or compounds which prevent inflammation and proliferation, or prevent proliferation by multiple mechanisms, combined with a stent may provide the most efficacious treatment for post-angioplasty restenosis.
The local delivery of drugs, agents or compounds from a stent has the following advantages; namely, the prevention of vessel recoil and remodeling through the scaffolding action of the stent and the drugs, agents or compounds and the prevention of multiple components of neointimal hyperplasia. This local administration of drugs, agents or compounds to stented coronary arteries may also have additional therapeutic benefit. For example; higher tissue concentrations would be achievable than that which would occur with systemic administration, reduced systemic toxicity, and single treatment and ease of ... _. . ... .rv. ,..~ ~t .~..... . n,~,~~ ~ ,.,,,~~.:a~"~".~~".~::~a,~,. ..
...~._ ...__.,~__..,. ..n.. m..~..;.._ ..~.. ..

administration. An additions! benefit of drug therapy may be to reduce the dose of the therapeutic compounds, thereby limiting their toxicity, while still achieving a reduction in restenosis.
There are a multiplicity of different stents that may be utilized following percutaneous transluminal coronary angioplasty. Although any number of stents may be utilized irt accordance with the present invention, for simplicity, one particular stent will be described in exemplary embodiments of the present invention. The skilled artisan will recognize that any number of stents may be IO utilized in connection with the present invention.
A stem is commonly used as a tubular structure left inside the lumen of a duct to relieve an obstruction. Commonly, stems are inserted into the lumen in a non-expanded form and are then expanded autonomously, or with the aid of a second device in situ. A typical method of expansion occurs through the use of a catheter-mounted angioplasty balloon which is inflated within the stenosed vessel or body passageway in order to shear and disrupt the obstructions associated with the wall components of the vessel and to obtain an enlarged lumen. As set forth below, self-expanding stents may also be utilized.
Figure 2 illustrates an exemplary stem 100 which maybe utilized in accordance with an exemplary embodiment of the present invention. The expandable cylindrical stent 100 comprises a fenestrated structure for placement in a blood vessel, duct or lumen to hold the vessel, duct or lumen open, more particularly for protecting a segment of artery from restenosis after angioplasty. The stent 100 may be expanded circumferentiaily and maintained in an expanded configuration, that is circumferentially or radially rigid. The stent 100 is axially flexible and when flexed at a band, the stent 100 avoids any externally-protruding component parts.
The stent 100 generally comprises first and second ends with an intermediate section therebetween. The stent 100 has a longitudinal axis and comprises a plurality of longitudinally disposed bands 102, wherein each band 102 defines a generally continuous wave along a line segment parallel to the longitudinal axis. A plurality of circumferentially arranged links 104 maintain the bands 102 in a substantially tubular structure. Essentially, each longitudinally disposed band 102 is connected at a plurality of periodic locations, by a short circumferentially arranged link 104 to an adjacent band 102. The wave associated with each of the bands 102 has approximately the same fundamental spatial frequency in the intermediate section, and tha bands 102 are so disposed that the wave associated with them are generally aligned so as to be generally in phase with one another. As illustrated in the figure, each longitudinally arranged band 102 undulates through approximately two cycles before there is a link to an adjacent band.
The stent 100 may be fabricated utilizing any number of methods. For example, the stent 100 may be fabricated from a hollow or formed stainless steel tube that may be machined using lasers, electric discharge milling, chemical etching or other means. The stem 100 is inserted into the body and placed at the desired site in an unexpanded forrr~. In one embodiment, expansion may be effected in a blood vessel by a balloon catheter, where the final diameter of the stent 100 is a function of the diameter of the balloon catheter used.
It should be appreciated that a stent 100 in accordance with the present invention may be embodied in a shape-memory material, including, for example, an appropriate alloy of nickel and titanium. In this embodiment, after the stent 100 has been formed it may be compressed so as to occupy a space sufficiently small as to permifi its insertion in a blood vessel or other tissue by insertion means, wherein the insertion means include a suitable catheter, or flexible rod. On emerging from the catheter, the stent 100 may be configured to expand into the desired configuration where the expansion is automatic or triggered by a change in pressure, temperature or electrical stimulation.

Figure 3 illustrates an exemplary embodiment of the present invention utilizing the stent 100 illustrated in Figure 2. As illustrated, the stent 100 may be modified to comprise a reservoir 106. each of the reservoirs may be opened or closed as desired. These reservoirs 106 may be specifically S designed to hold the drug, agent, compound or combinations thereof to be delivered. Regardless of the design of the scent 100, it is preferable to have the drug; agent, compound or combinations thereof dosage applied with enough specificity and a sufficient concentration to provide an effective dosage in the lesion area. In this regard, the reservoir size in the bands 102 is preferably sized to adequately apply the drug/drug combination dosage at the desired location and in the desired amount.
In an alternate exemplary embodiment, the entire inner and outer surface of the stem 100 may be coated with various drug and drug 15 combinations in therapeutic dosage amounts. A detailed description of exemplary coating techniques is described below.
Rapamycin or any of the drugs, agents or compounds described above may be incorporated into or affixed to the stent in a number of ways and utilizing any number of biocompatible materials. In the exemplary embodiment, the rapamycin is directly incorporated into a polymeric matrix and sprayed onto the outer surface of the scent. The rapamycin elutes from the polymeric matrix over time and enters the surrounding tissue. The rapamycin preferably remains on the stent for at least three days up to approximately six months and more preferably between seven and thirty days.
Any number of non-erodible polymers may be utilized in conjunction with rapamycin. In the exemplary embodiment, the polymeric matrix comprises two layers. The base layer comprises a solution of ethylene-co-vinylacetate and polybutylmethacrylate. The rapamycin is incorporated into this layer. The outer layer comprises only polybutylmethacrylate and acts as a diffusion barrier to prevent the rapamycin from eluting too quickly and entering the surrounding tissues. The thickness of the outer layer or top coat determines the rate at which the rapamycin elutes from the matrix. Essentially, the rapamycin elutes from the matrix by diffusion through the polymer molecules. Polymers are permeable; thereby allowing solids, liquids and gases to escape therefrom.
The total thickness of the polymeric matrix is in the range from about 1 micron to about 20 microns or greater. In a preferred exemplary embodiment, the base layer, including the polymer and drug, has a thickness in the range from about 8 microns to about 12 microns and the outer layer has a thickness in the range from about 1 micron to about 2 microns.
The ethylene-co-vinylacetate, polybutylmethacrylate and rapamycin solution may be incorporated into or onto the stent in a number of ways. For example, the solution maybe sprayed onto the stmt or the stent may be dipped into the solution. In a preferred embodiment, the solution is sprayed onto the stent and then allowed to dry. In another exemplary embodiment, the solution may be electrically charged to one polarity and the stent electrically changed to the opposite polarity. In this manner, the solution and stent will be attracted to one another. In using this type of spraying process; waste may be reduced and more control over the thickness of the coat may be achieved.
Since rapamycin works by entering the surrounding tissue, it is preferably only affixed to the surface of the stent making contact with one tissue: Typically, only the outer surface of the stent makes contact with the tissue. Accordingly, in a preferred embodiment, caniy the outer surface of the stent is coated with rapamycin. For other drugs, agents or compounds, the entire stenf may be coated.
It is important to note that different polymers may be utilized for different stents. For example, in the above-described embodiment, ethylene-co-vinylacetate and polybutylmethacrylate are utilized to form the polymeric matrix. This matrix works well with stainless steel scents. Other polymers may be utilized more effectively with stems formed from other materials, including materials that exhibit superelastic properties such as alloys of nickel and titanium.

Although shown and described is what is believed to be the most practical and preferred embodiments, it is apparent that departures from specific designs and methods described and shown will suggest themselves to those skilled in the art and may be used without departing from the spirit and scope of the invention. The present invention is not restricted to the particular constructions described and illustrated, but should be constructed to cohere with all modifications that may fall within the scope of the appended claims.

Claims (4)

1. A drug delivery device for treating in-stent intimal hyperplasia in human vessel walls comprising:
an intraluminal medical device, the intraluminal medical device including a stent having a fenestrated structure, the stent comprising a plurality of bands and links defining a substantially tubular device with openings;
a therapeutic dosage of an agent having anti-proliferative and anti-inflammatory properties and having a multi-mode action targeted toward a pathophysiology of human vascular lesions, including the reduction of monocyte chemotactic protein levels in the vessel walls, releasably affixed to the intraluminal medical device for a treatment of in-stent intimal hyperplasia, the agent being incorporated in a multi-layer non-erodible polymeric coating and affixed to the bands and links, the non-erodible polymeric coating including a first layer comprising the agent and a second layer acting as a diffusion barrier and having a thickness in the range from about one micron to about twenty microns with the first layer having a thickness in the range from about eight microns to about twelve microns and the second layer having a thickness in the range from about one micron to about two microns.
2. The drug delivery device according to Claim 1, wherein the agent comprises rapamycin.
3. The drug delivery device according to Claim 1, wherein the agent comprises analogs and congeners that bind a high-affinity cytosolic protein, FKBP12, and possesses the same pharmacologic properties equivalent to rapamycin.
4. The drug delivery device according to Claim 1, wherein the agent comprises cell cycle inhibitors that act selectively at the G1 phase of a cell cycle.
CA2508065A 2004-05-24 2005-05-20 Antiproliferative drug and delivery device Active CA2508065C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/852,517 US20040243097A1 (en) 2000-05-12 2004-05-24 Antiproliferative drug and delivery device
US10/852,517 2004-05-24

Publications (2)

Publication Number Publication Date
CA2508065A1 true CA2508065A1 (en) 2005-11-24
CA2508065C CA2508065C (en) 2015-01-13

Family

ID=34941170

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2508065A Active CA2508065C (en) 2004-05-24 2005-05-20 Antiproliferative drug and delivery device

Country Status (5)

Country Link
US (1) US20040243097A1 (en)
EP (1) EP1600180A3 (en)
JP (1) JP2005334646A (en)
CA (1) CA2508065C (en)
MX (1) MXPA05005471A (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7208010B2 (en) 2000-10-16 2007-04-24 Conor Medsystems, Inc. Expandable medical device for delivery of beneficial agent
US8236048B2 (en) 2000-05-12 2012-08-07 Cordis Corporation Drug/drug delivery systems for the prevention and treatment of vascular disease
ATE343969T1 (en) 2000-09-29 2006-11-15 Cordis Corp COATED MEDICAL DEVICES
US20040073294A1 (en) 2002-09-20 2004-04-15 Conor Medsystems, Inc. Method and apparatus for loading a beneficial agent into an expandable medical device
US7842083B2 (en) 2001-08-20 2010-11-30 Innovational Holdings, Llc. Expandable medical device with improved spatial distribution
US7758636B2 (en) 2002-09-20 2010-07-20 Innovational Holdings Llc Expandable medical device with openings for delivery of multiple beneficial agents
US7758881B2 (en) * 2004-06-30 2010-07-20 Advanced Cardiovascular Systems, Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US8435550B2 (en) 2002-12-16 2013-05-07 Abbot Cardiovascular Systems Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
EP1610823B1 (en) 2003-03-28 2011-09-28 Innovational Holdings, LLC Implantable medical device with continuous agent concentration gradient
US8709469B2 (en) 2004-06-30 2014-04-29 Abbott Cardiovascular Systems Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
ES2432556T3 (en) 2004-08-04 2013-12-04 Evonik Corporation Methods for manufacturing supply devices and their devices
WO2006063199A2 (en) * 2004-12-09 2006-06-15 The Foundry, Inc. Aortic valve repair
US11039942B2 (en) 2006-06-13 2021-06-22 Sino Medical Sciences Technology Inc. Drug eluting stent and method of use of the same for enabling restoration of functional endothelial cell layers
EP2222281B1 (en) 2007-12-20 2018-12-05 Evonik Corporation Process for preparing microparticles having a low residual solvent volume
CA2767994C (en) * 2009-09-30 2017-07-04 Terumo Kabushiki Kaisha Stent
JP6689605B2 (en) 2013-04-16 2020-04-28 株式会社カネカ Medical tubular body
CN106137302B (en) 2016-08-16 2018-10-09 北京迈迪顶峰医疗科技有限公司 Auricle clamp
BR112019005131B1 (en) * 2016-12-22 2023-10-31 Sino Medical Sciences Technology Inc DRUG ELUTRIATION STENT, AND ITS MANUFACTURING METHOD
US11058564B2 (en) 2019-02-27 2021-07-13 Vactronix Scientific Llc Stent and method of making same

Family Cites Families (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3657744A (en) * 1970-05-08 1972-04-25 Univ Minnesota Method for fixing prosthetic implants in a living body
US3932627A (en) * 1974-02-04 1976-01-13 Rescue Products, Inc. Siver-heparin-allantoin complex
US4388735A (en) * 1980-11-03 1983-06-21 Shiley Inc. Low profile prosthetic xenograft heart valve
SE445884B (en) * 1982-04-30 1986-07-28 Medinvent Sa DEVICE FOR IMPLANTATION OF A RODFORM PROTECTION
US4503569A (en) * 1983-03-03 1985-03-12 Dotter Charles T Transluminally placed expandable graft prosthesis
US5275622A (en) * 1983-12-09 1994-01-04 Harrison Medical Technologies, Inc. Endovascular grafting apparatus, system and method and devices for use therewith
US4580568A (en) * 1984-10-01 1986-04-08 Cook, Incorporated Percutaneous endovascular stent and method for insertion thereof
US5102417A (en) * 1985-11-07 1992-04-07 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4733665C2 (en) * 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US4907336A (en) * 1987-03-13 1990-03-13 Cook Incorporated Method of making an endovascular stent and delivery system
US4800882A (en) * 1987-03-13 1989-01-31 Cook Incorporated Endovascular stent and delivery system
US4990131A (en) * 1987-09-01 1991-02-05 Herbert Dardik Tubular prostheses for vascular reconstructive surgery and process for preparing same
US5192307A (en) * 1987-12-08 1993-03-09 Wall W Henry Angioplasty stent
US5185408A (en) * 1987-12-17 1993-02-09 Allied-Signal Inc. Medical devices fabricated totally or in part from copolymers of recurring units derived from cyclic carbonates and lactides
US4916193A (en) * 1987-12-17 1990-04-10 Allied-Signal Inc. Medical devices fabricated totally or in part from copolymers of recurring units derived from cyclic carbonates and lactides
US5182317A (en) * 1988-06-08 1993-01-26 Cardiopulmonics, Inc. Multifunctional thrombo-resistant coatings and methods of manufacture
US5092877A (en) * 1988-09-01 1992-03-03 Corvita Corporation Radially expandable endoprosthesis
CA1322628C (en) * 1988-10-04 1993-10-05 Richard A. Schatz Expandable intraluminal graft
US5162430A (en) * 1988-11-21 1992-11-10 Collagen Corporation Collagen-polymer conjugates
US4990155A (en) * 1989-05-19 1991-02-05 Wilkoff Howard M Surgical stent method and apparatus
US4994071A (en) * 1989-05-22 1991-02-19 Cordis Corporation Bifurcating stent apparatus and method
US5015253A (en) * 1989-06-15 1991-05-14 Cordis Corporation Non-woven endoprosthesis
US5292331A (en) * 1989-08-24 1994-03-08 Applied Vascular Engineering, Inc. Endovascular support device
IE73670B1 (en) * 1989-10-02 1997-07-02 Medtronic Inc Articulated stent
US5176660A (en) * 1989-10-23 1993-01-05 Cordis Corporation Catheter having reinforcing strands
US5304121A (en) * 1990-12-28 1994-04-19 Boston Scientific Corporation Drug delivery system making use of a hydrogel polymer coating
US5545208A (en) * 1990-02-28 1996-08-13 Medtronic, Inc. Intralumenal drug eluting prosthesis
DE9116881U1 (en) * 1990-10-09 1994-07-07 Cook Inc Percutaneous stent
US5180366A (en) * 1990-10-10 1993-01-19 Woods W T Apparatus and method for angioplasty and for preventing re-stenosis
US5486357A (en) * 1990-11-08 1996-01-23 Cordis Corporation Radiofrequency plasma biocompatibility treatment of inside surfaces
US5132108A (en) * 1990-11-08 1992-07-21 Cordis Corporation Radiofrequency plasma treated polymeric surfaces having immobilized anti-thrombogenic agents
US5178618A (en) * 1991-01-16 1993-01-12 Brigham And Womens Hospital Method and device for recanalization of a body passageway
US5116365A (en) * 1991-02-22 1992-05-26 Cordis Corporation Stent apparatus and method for making
US5304200A (en) * 1991-05-29 1994-04-19 Cordis Corporation Welded radially expandable endoprosthesis and the like
US5213576A (en) * 1991-06-11 1993-05-25 Cordis Corporation Therapeutic porous balloon catheter
US5811447A (en) * 1993-01-28 1998-09-22 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US6515009B1 (en) * 1991-09-27 2003-02-04 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US5500013A (en) * 1991-10-04 1996-03-19 Scimed Life Systems, Inc. Biodegradable drug delivery vascular stent
US5290305A (en) * 1991-10-11 1994-03-01 Kanji Inoue Appliance collapsible for insertion into human organs and capable of resilient restoration
US5387235A (en) * 1991-10-25 1995-02-07 Cook Incorporated Expandable transluminal graft prosthesis for repair of aneurysm
US5405377A (en) * 1992-02-21 1995-04-11 Endotech Ltd. Intraluminal stent
KR950700066A (en) * 1992-03-04 1995-01-16 제프리 비. 오스터 Enantiomeric hydroxylated xanthine compounds
US5510077A (en) * 1992-03-19 1996-04-23 Dinh; Thomas Q. Method of making an intraluminal stent
US5282823A (en) * 1992-03-19 1994-02-01 Medtronic, Inc. Intravascular radially expandable stent
US5591224A (en) * 1992-03-19 1997-01-07 Medtronic, Inc. Bioelastomeric stent
US5599352A (en) * 1992-03-19 1997-02-04 Medtronic, Inc. Method of making a drug eluting stent
US5306250A (en) * 1992-04-02 1994-04-26 Indiana University Foundation Method and apparatus for intravascular drug delivery
US5288711A (en) * 1992-04-28 1994-02-22 American Home Products Corporation Method of treating hyperproliferative vascular disease
WO1995014500A1 (en) * 1992-05-01 1995-06-01 Beth Israel Hospital A stent
US5383928A (en) * 1992-06-10 1995-01-24 Emory University Stent sheath for local drug delivery
US5496365A (en) * 1992-07-02 1996-03-05 Sgro; Jean-Claude Autoexpandable vascular endoprosthesis
US5283257A (en) * 1992-07-10 1994-02-01 The Board Of Trustees Of The Leland Stanford Junior University Method of treating hyperproliferative vascular disease
US5382261A (en) * 1992-09-01 1995-01-17 Expandable Grafts Partnership Method and apparatus for occluding vessels
US5308862A (en) * 1993-03-05 1994-05-03 Boehringer Mannheim Pharmaceuticals Corporation - Smithkline Beecham Corp., Ltd. Partnership No. 1 Use of, and method of treatment using, carbazolyl-(4)-oxypropanolamine compounds for inhibition of smooth muscle cell proliferation
US5607463A (en) * 1993-03-30 1997-03-04 Medtronic, Inc. Intravascular medical device
US5523092A (en) * 1993-04-14 1996-06-04 Emory University Device for local drug delivery and methods for using the same
US5504091A (en) * 1993-04-23 1996-04-02 American Home Products Corporation Biotin esters of rapamycin
US5464650A (en) * 1993-04-26 1995-11-07 Medtronic, Inc. Intravascular stent and method
US5380299A (en) * 1993-08-30 1995-01-10 Med Institute, Inc. Thrombolytic treated intravascular medical device
US5391730A (en) * 1993-10-08 1995-02-21 American Home Products Corporation Phosphorylcarbamates of rapamycin and oxime derivatives thereof
WO1995010989A1 (en) * 1993-10-19 1995-04-27 Scimed Life Systems, Inc. Intravascular stent pump
US5389106A (en) * 1993-10-29 1995-02-14 Numed, Inc. Impermeable expandable intravascular stent
US5393772A (en) * 1993-11-24 1995-02-28 Boehringer Mannheim Pharmaceuticals Corporation Use of, and method of treatment using, hydroxycarbazole compounds for inhibition of smooth muscle migration and proliferation
US5403341A (en) * 1994-01-24 1995-04-04 Solar; Ronald J. Parallel flow endovascular stent and deployment apparatus therefore
US5556413A (en) * 1994-03-11 1996-09-17 Advanced Cardiovascular Systems, Inc. Coiled stent with locking ends
US5397355A (en) * 1994-07-19 1995-03-14 Stentco, Inc. Intraluminal stent
US5788979A (en) * 1994-07-22 1998-08-04 Inflow Dynamics Inc. Biodegradable coating with inhibitory properties for application to biocompatible materials
US5891108A (en) * 1994-09-12 1999-04-06 Cordis Corporation Drug delivery stent
EP1181904B1 (en) * 1994-10-17 2009-06-24 Kabushikikaisha Igaki Iryo Sekkei Stent for liberating drug
US5707385A (en) * 1994-11-16 1998-01-13 Advanced Cardiovascular Systems, Inc. Drug loaded elastic membrane and method for delivery
US5591197A (en) * 1995-03-14 1997-01-07 Advanced Cardiovascular Systems, Inc. Expandable stent forming projecting barbs and method for deploying
US5605696A (en) * 1995-03-30 1997-02-25 Advanced Cardiovascular Systems, Inc. Drug loaded polymeric material and method of manufacture
US5622975A (en) * 1995-06-01 1997-04-22 Eli Lilly And Company Methods for inhibiting vascular smooth muscle cell migration
US5603722A (en) * 1995-06-06 1997-02-18 Quanam Medical Corporation Intravascular stent
US5609629A (en) * 1995-06-07 1997-03-11 Med Institute, Inc. Coated implantable medical device
US5820917A (en) * 1995-06-07 1998-10-13 Medtronic, Inc. Blood-contacting medical device and method
AU716005B2 (en) * 1995-06-07 2000-02-17 Cook Medical Technologies Llc Implantable medical device
DE69632402T2 (en) * 1995-06-30 2005-05-19 Zymogenetics, Inc., Seattle 4- (2- (N - (- 2-CARBOXAMIDOINDOLE) AMINIETHYL) -BENZENESULFONAMIDE OR SULPHONYL HARVES AS PDGF ANTAGONIST
US5607475A (en) * 1995-08-22 1997-03-04 Medtronic, Inc. Biocompatible medical article and method
US5733920A (en) * 1995-10-31 1998-03-31 Mitotix, Inc. Inhibitors of cyclin dependent kinases
DE19614160A1 (en) * 1996-04-10 1997-10-16 Variomed Ag Stent for transluminal implantation in hollow organs
US5728420A (en) * 1996-08-09 1998-03-17 Medtronic, Inc. Oxidative method for attachment of glycoproteins to surfaces of medical devices
US5876433A (en) * 1996-05-29 1999-03-02 Ethicon, Inc. Stent and method of varying amounts of heparin coated thereon to control treatment
DE69722720T2 (en) * 1996-07-24 2004-05-13 Cordis Corp., Miami Lakes Balloon catheter and method of use
US5728150A (en) * 1996-07-29 1998-03-17 Cardiovascular Dynamics, Inc. Expandable microporous prosthesis
KR100526913B1 (en) * 1997-02-20 2005-11-09 쿡 인코포레이티드 Coated implantable medical device
US5858990A (en) * 1997-03-04 1999-01-12 St. Elizabeth's Medical Center Fas ligand compositions for treatment of proliferative disorders
US5879697A (en) * 1997-04-30 1999-03-09 Schneider Usa Inc Drug-releasing coatings for medical devices
US6171232B1 (en) * 1997-06-26 2001-01-09 Cordis Corporation Method for targeting in vivo nitric oxide release
US6177272B1 (en) * 1997-07-21 2001-01-23 The Regents Of The University Of Michigan Method for treating vascular proliferative diseases with p27 and fusions thereof
US6015815A (en) * 1997-09-26 2000-01-18 Abbott Laboratories Tetrazole-containing rapamycin analogs with shortened half-lives
CA2320259C (en) * 1998-04-27 2006-01-24 Surmodics, Inc. Bioactive agent release coating
US6335029B1 (en) * 1998-08-28 2002-01-01 Scimed Life Systems, Inc. Polymeric coatings for controlled delivery of active agents
US20070032853A1 (en) * 2002-03-27 2007-02-08 Hossainy Syed F 40-O-(2-hydroxy)ethyl-rapamycin coated stent
US7419678B2 (en) * 2000-05-12 2008-09-02 Cordis Corporation Coated medical devices for the prevention and treatment of vascular disease
US6641611B2 (en) * 2001-11-26 2003-11-04 Swaminathan Jayaraman Therapeutic coating for an intravascular implant

Also Published As

Publication number Publication date
EP1600180A2 (en) 2005-11-30
EP1600180A3 (en) 2007-12-05
CA2508065C (en) 2015-01-13
JP2005334646A (en) 2005-12-08
US20040243097A1 (en) 2004-12-02
MXPA05005471A (en) 2005-11-28

Similar Documents

Publication Publication Date Title
CA2408752C (en) Delivery systems for treatment of vascular disease
US7300662B2 (en) Drug/drug delivery systems for the prevention and treatment of vascular disease
CA2508065C (en) Antiproliferative drug and delivery device
US20020007213A1 (en) Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020005206A1 (en) Antiproliferative drug and delivery device
US20020007214A1 (en) Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020007215A1 (en) Drug/drug delivery systems for the prevention and treatment of vascular disease
EP1588727A1 (en) Drug/drug delivery systems for the prevention and treatment of vascular disease
AU2001263113A1 (en) Drug/drug delivery systems for the prevention and treatment of vascular disease
AU2001259774A1 (en) Delivery devices for treatment of vascular disease
AU2001263112A1 (en) Delivery systems for the prevention and treatment of vascular disease
AU2001261579A1 (en) Delivery systems for treatment of vascular disease
AU2001261580A1 (en) Delivery devices for treatment of vascular disease
EP1591135A1 (en) Drug/drug delivery systems for the prevention and treatment of vascular disease

Legal Events

Date Code Title Description
EEER Examination request