CA2495190A1 - Fluidics-based assay devices - Google Patents

Fluidics-based assay devices Download PDF

Info

Publication number
CA2495190A1
CA2495190A1 CA002495190A CA2495190A CA2495190A1 CA 2495190 A1 CA2495190 A1 CA 2495190A1 CA 002495190 A CA002495190 A CA 002495190A CA 2495190 A CA2495190 A CA 2495190A CA 2495190 A1 CA2495190 A1 CA 2495190A1
Authority
CA
Canada
Prior art keywords
probes
detection
calibration
separated
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002495190A
Other languages
French (fr)
Other versions
CA2495190C (en
Inventor
Xuedong Song
Rosann Kaylor
Shawn Feaster
Kaiyuan Yang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimberly Clark Worldwide Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2495190A1 publication Critical patent/CA2495190A1/en
Application granted granted Critical
Publication of CA2495190C publication Critical patent/CA2495190C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54326Magnetic particles
    • G01N33/54333Modification of conditions of immunological binding reaction, e.g. use of more than one type of particle, use of chemical agents to improve binding, choice of incubation time or application of magnetic field during binding reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0668Trapping microscopic beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0825Test strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/043Moving fluids with specific forces or mechanical means specific forces magnetic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0677Valves, specific forms thereof phase change valves; Meltable, freezing, dissolvable plugs; Destructible barriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/969Multiple layering of reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/97Test strip or test slide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/10Composition for standardization, calibration, simulation, stabilization, preparation or preservation; processes of use in preparation for chemical testing

Abstract

A fluidics-based assay device for detecting the presence or quantity of an analyte residing in a test sample is provided. The device utilizes a self-calibrated magnetic binding assay format (e.g., sandwich, competitive, etc.) that includes detection probes capable of generating a detection signal (e.g., fluorescent non-magnetic particles) and calibration probes capable of generating a calibration signal (e.g., fluorescent magnetic particles). The amount of the analyte within the test sample is proportional (e.g., directly or inversely) to the intensity of the detection signal calibrated by the intensity of the calibration signal. It has been discovered that the fluidics-based device of the present invention provides an accurate, inexpensive, and readily controllable method of determining the presence of an analyte in a test sample.

Claims (41)

1. A fluidics-based assay device for detecting the presence or quantity of an analyte residing in a test sample, said device comprising:
a reaction chamber, said reaction chamber being capable of containing a solution that comprises the test sample, detection probes capable of generating a detection signal, and magnetic calibration probes capable of generating a calibration signal;
a channel in fluid communication with said reaction chamber, said channel defining a detection zone; and a magnetic device positioned adjacent to said detection zone, said magnetic device being capable of separating said detection probes and said calibration probes from said solution;
wherein the amount of the analyte within the test sample is proportional to the intensity of the detection signal generated by said separated detection probes at the detection zone calibrated by the intensity of the calibration signal generated by said separated calibration probes at the detection zone.
2. A device as defined in claim 1, wherein said channel facilitates capillary flow of the test sample.
3. A device as defined in claim 1, further comprising a barrier disposed between said reaction chamber and said channel, said barrier being capable of holding said solution within said reaction chamber for a certain period of time.
4. A device as defined in claim 3, wherein said barrier is capable of being substantially dissolved by said solution.
5. A device as defined in claim 4, wherein said barrier contains a material selected from the group consisting of carbohydrates, salts, and combinations thereof.
6. A device as defined in claim 3, wherein said barrier is capable of physically rupturing after said certain period of time.
7. A device as defined in claim 1, wherein said detection probes and said calibration probes are fluorescent compounds, chemiluminescent compounds, phosphorescent compounds, or combinations thereof.
8. A device as defined in claim 1, wherein said detection probes are fluorescent non-magnetic compounds.
9. A device as defined in claim 1, wherein said calibration probes are fluorescent magnetic particles.
10. A device as defined in claim 1, wherein said detection probes are capable of binding to the analyte.
11. A device as defined in claim 1, further comprising non-fluorescent magnetic particles.
12. A device as defined in claim 11, wherein said non-fluorescent magnetic particles are capable of binding to the analyte.
13. A device as defined in claim 1, wherein said separated detection probes include complexes formed by said detection probes.
14. A device as defined in claim 1, wherein said separated calibration probes include complexes formed by said calibration probes.
15. A device as defined in claim 1, wherein the amount of the analyte within the test sample is proportional to the intensity of the detection signal generated by said separated detection probes at said detection zone divided by the intensity of the calibration signal generated by said separated calibration probes at said detection zone.
16. A capillary flow assay device for detecting the presence or quantity of an analyte residing in a test sample, said device comprising:
a reaction chamber, said reaction chamber being capable of containing a solution that comprises the test sample, detection probes capable of generating a detection signal, and magnetic calibration probes capable of generating a calibration signal;
a capillary channel in communication with said reaction chamber, said fluidic capillary channel defining a detection zone;
a barrier disposed between said reaction chamber and said capillary channel, said barrier being capable of holding said solution within said reaction chamber for a certain period of time; and a magnetic device positioned adjacent to said detection zone, said magnetic device being capable of separating said detection probes and said calibration probes from said solution;
wherein the amount of the analyte within the test sample is proportional to the intensity of the detection signal generated by said separated detection probes at the detection zone calibrated by the intensity of the calibration signal generated by said separated calibration probes at the detection zone.
17. A device as defined in claim 16, wherein said barrier is capable of being substantially dissolved by said solution.
18. A device as defined in claim 17, wherein said barrier contains a material selected from the group consisting of carbohydrates, salts, and combinations thereof.
19. A device as defined in claim 16, wherein said barrier is capable of physically rupturing after said certain period of time.
20. A device as defined in claim 16, wherein said detection probes and said calibration probes are fluorescent compounds.
21. A device as defined in claim 16, wherein said detection probes are fluorescent non-magnetic compounds.
22. A device as defined in claim 16, wherein said calibration probes are fluorescent magnetic particles.
23. A device as defined in claim 16, wherein said separated detection probes include complexes formed by said detection probes.
24. A device as defined in claim 16, wherein said separated calibration probes include complexes formed by said calibration probes.
25. A device as defined in claim 16, wherein the amount of the analyte within the test sample is proportional to the intensity of the detection signal generated by said separated detection probes at said detection zone divided by the intensity of the calibration signal generated by said separated calibration probes at said detection zone.
26. A method for detecting the presence or quantity of an analyte residing in a test sample, said method comprising:
i) providing a fluidics-based device, said device comprising:
a) a reaction chamber containing detection probes capable of generating a detection signal and magnetic calibration probes capable of generating a calibration signal;
b) a channel in fluid communication with said reaction chamber that defines a detection zone; and c) a magnetic device positioned adjacent to said detection zone;

ii) applying a test sample containing the analyte to the reaction chamber to form a solution;
iii), allowing said solution to flow from said reaction chamber to said detection zone of said channel;
iv) separating said detection probes and said calibration probes from said solution at said detection zone using said magnetic device;
v) exciting said separated detection probes and said separated calibration probes, wherein said excitation causes said separated detection probes to emit said detection signal and said separated calibration probes to emit said calibration signal;
vi) measuring the intensity of the detection signal at a first emission wavelength and the intensity of the calibration signal at a second emission wavelength; and vii) comparing the intensity of the detection signal to the calibration signal, wherein the amount of the analyte within the test sample is proportional to the intensity of the detection signal calibrated by the intensity of the calibration signal.
27. A method as defined in claim 26, further comprising holding the solution within said reaction chamber for a certain period of time with a barrier that is disposed between said reaction chamber and said channel.
28. A method as defined in claim 26, wherein said detection and calibration probes are fluorescent.
29. A method as defined in claim 26, wherein said detection and calibration probes are chemiluminescent.
30. A method as defined in claim 26, wherein said detection and calibration probes are phosphorescent.
31. A method as defined in claim 26, wherein said detection probes are non-magnetic.
32. A method as defined in claim 26, wherein said separated detection probes include complexes formed by said detection probes.
33. A method as defined in claim 29, wherein said complexes are formed with the analyte.
34. A method as defined in claim 26, wherein said separated calibration probes include complexes formed by said calibration probes.
35. A method as defined in claim 31, wherein said complexes are formed with the analyte.
36. A method as defined in claim 26, wherein said first emission wavelength is different than said second emission wavelength.
37. A method as defined in claim 26, further comprising generating a calibration curve by plotting the intensity of the detection signal calibrated by the intensity of the calibration signal for a plurality of predetermined analyte concentrations.
38. A method as defined in claim 26, wherein said separated detection probes and said separated calibration probes are excited simultaneously.
39. A method as defined in claim 26, wherein said separated detection probes and said separated calibration probes are excited separately.
40. A method as defined in claim 26, wherein the intensity of the detection signal and the calibration signal are measured simultaneously.
41. A method as defined in claim 26, wherein the intensity of the detection signal and the calibration signal are measured separately.
CA2495190A 2002-08-27 2003-08-08 Fluidics-based assay devices Expired - Lifetime CA2495190C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/228,838 US7314763B2 (en) 2002-08-27 2002-08-27 Fluidics-based assay devices
US10/228,838 2002-08-27
PCT/US2003/024871 WO2004021006A1 (en) 2002-08-27 2003-08-08 Fluidics-based assay devices

Publications (2)

Publication Number Publication Date
CA2495190A1 true CA2495190A1 (en) 2004-03-11
CA2495190C CA2495190C (en) 2012-12-18

Family

ID=31976122

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2495190A Expired - Lifetime CA2495190C (en) 2002-08-27 2003-08-08 Fluidics-based assay devices

Country Status (9)

Country Link
US (1) US7314763B2 (en)
EP (1) EP1532451A1 (en)
KR (1) KR100994345B1 (en)
CN (1) CN100365416C (en)
AU (1) AU2003259690A1 (en)
CA (1) CA2495190C (en)
MX (1) MXPA05001678A (en)
TW (1) TWI251080B (en)
WO (1) WO2004021006A1 (en)

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7285424B2 (en) 2002-08-27 2007-10-23 Kimberly-Clark Worldwide, Inc. Membrane-based assay devices
US7781172B2 (en) * 2003-11-21 2010-08-24 Kimberly-Clark Worldwide, Inc. Method for extending the dynamic detection range of assay devices
US7247500B2 (en) 2002-12-19 2007-07-24 Kimberly-Clark Worldwide, Inc. Reduction of the hook effect in membrane-based assay devices
US20050112703A1 (en) * 2003-11-21 2005-05-26 Kimberly-Clark Worldwide, Inc. Membrane-based lateral flow assay devices that utilize phosphorescent detection
US7943395B2 (en) 2003-11-21 2011-05-17 Kimberly-Clark Worldwide, Inc. Extension of the dynamic detection range of assay devices
US7713748B2 (en) 2003-11-21 2010-05-11 Kimberly-Clark Worldwide, Inc. Method of reducing the sensitivity of assay devices
FR2863626B1 (en) * 2003-12-15 2006-08-04 Commissariat Energie Atomique METHOD AND DEVICE FOR DIVIDING A BIOLOGICAL SAMPLE BY MAGNETIC EFFECT
US7943089B2 (en) * 2003-12-19 2011-05-17 Kimberly-Clark Worldwide, Inc. Laminated assay devices
GB2410086A (en) * 2004-01-14 2005-07-20 British Biocell Internat Ltd Assay devices having flow block(s) to determine flow of liquids
JP2005309140A (en) * 2004-04-22 2005-11-04 Toshiba Corp Method for manufacturing photomask, method for determining position of photomask defect correction, and apparatus for determining position of photomask defect correction
US20050244953A1 (en) * 2004-04-30 2005-11-03 Kimberly-Clark Worldwide, Inc. Techniques for controlling the optical properties of assay devices
US20060019265A1 (en) * 2004-04-30 2006-01-26 Kimberly-Clark Worldwide, Inc. Transmission-based luminescent detection systems
US7815854B2 (en) * 2004-04-30 2010-10-19 Kimberly-Clark Worldwide, Inc. Electroluminescent illumination source for optical detection systems
US7796266B2 (en) * 2004-04-30 2010-09-14 Kimberly-Clark Worldwide, Inc. Optical detection system using electromagnetic radiation to detect presence or quantity of analyte
US7094528B2 (en) * 2004-06-30 2006-08-22 Kimberly-Clark Worldwide, Inc. Magnetic enzyme detection techniques
US7906276B2 (en) 2004-06-30 2011-03-15 Kimberly-Clark Worldwide, Inc. Enzymatic detection techniques
US7521226B2 (en) 2004-06-30 2009-04-21 Kimberly-Clark Worldwide, Inc. One-step enzymatic and amine detection technique
US20060093528A1 (en) * 2004-10-18 2006-05-04 Applera Corporation Device including a dissolvable structure for flow control
US20070121113A1 (en) * 2004-12-22 2007-05-31 Cohen David S Transmission-based optical detection systems
US7682817B2 (en) * 2004-12-23 2010-03-23 Kimberly-Clark Worldwide, Inc. Microfluidic assay devices
US8470608B2 (en) * 2008-05-20 2013-06-25 Rapid Pathogen Screening, Inc Combined visual/fluorescence analyte detection test
US8669052B2 (en) * 2008-06-10 2014-03-11 Rapid Pathogen Screening, Inc. Lateral flow nucleic acid detector
US20090291508A1 (en) * 2008-05-20 2009-11-26 Rapid Pathogen Screening Inc. Nanoparticles in diagnostic tests
US7803319B2 (en) 2005-04-29 2010-09-28 Kimberly-Clark Worldwide, Inc. Metering technique for lateral flow assay devices
US7858384B2 (en) * 2005-04-29 2010-12-28 Kimberly-Clark Worldwide, Inc. Flow control technique for assay devices
US7504235B2 (en) 2005-08-31 2009-03-17 Kimberly-Clark Worldwide, Inc. Enzyme detection technique
US7829347B2 (en) 2005-08-31 2010-11-09 Kimberly-Clark Worldwide, Inc. Diagnostic test kits with improved detection accuracy
US7279136B2 (en) 2005-12-13 2007-10-09 Takeuchi James M Metering technique for lateral flow assay devices
US7618810B2 (en) * 2005-12-14 2009-11-17 Kimberly-Clark Worldwide, Inc. Metering strip and method for lateral flow assay devices
US20090227044A1 (en) * 2006-01-26 2009-09-10 Dosi Dosev Microchannel Magneto-Immunoassay
GB2436616A (en) * 2006-03-29 2007-10-03 Inverness Medical Switzerland Assay device and method
US8758989B2 (en) 2006-04-06 2014-06-24 Kimberly-Clark Worldwide, Inc. Enzymatic detection techniques
WO2008039130A1 (en) * 2006-09-29 2008-04-03 Ge Healthcare Bio-Sciences Ab Method and device for small scale reactions
US7749773B2 (en) * 2006-10-11 2010-07-06 Day Alan R Device for detection of molecules in biological fluids
WO2008050335A2 (en) * 2006-10-27 2008-05-02 Ramot At Tel Aviv University Ltd. Method and system for detecting a target within a population of molecules
US7897360B2 (en) 2006-12-15 2011-03-01 Kimberly-Clark Worldwide, Inc. Enzyme detection techniques
US7935538B2 (en) * 2006-12-15 2011-05-03 Kimberly-Clark Worldwide, Inc. Indicator immobilization on assay devices
US7748283B2 (en) * 2007-02-16 2010-07-06 Whatman, Inc. Controlled transfer biological sample collection devices and methods of using such devices
KR100889862B1 (en) * 2007-07-12 2009-03-24 광주과학기술원 Target capturing method, microfluidic channel system for capturing target and target assaying method
US8535617B2 (en) * 2007-11-30 2013-09-17 Kimberly-Clark Worldwide, Inc. Blood cell barrier for a lateral flow device
CN104459148B (en) * 2008-03-14 2017-06-16 科隆迪亚戈有限公司 Analysis
US8815609B2 (en) 2008-05-20 2014-08-26 Rapid Pathogen Screening, Inc. Multiplanar lateral flow assay with diverting zone
US8962260B2 (en) 2008-05-20 2015-02-24 Rapid Pathogen Screening, Inc. Method and device for combined detection of viral and bacterial infections
US20130196310A1 (en) 2008-05-20 2013-08-01 Rapid Pathogen Screening, Inc. Method and Device for Combined Detection of Viral and Bacterial Infections
US9068981B2 (en) 2009-12-04 2015-06-30 Rapid Pathogen Screening, Inc. Lateral flow assays with time delayed components
US8609433B2 (en) 2009-12-04 2013-12-17 Rapid Pathogen Screening, Inc. Multiplanar lateral flow assay with sample compressor
US20110086359A1 (en) * 2008-06-10 2011-04-14 Rapid Pathogen Screening, Inc. Lateral flow assays
TWI398636B (en) * 2008-10-14 2013-06-11 Actherm Inc Detecting method of liquid sample
US20100290948A1 (en) * 2009-05-15 2010-11-18 Xuedong Song Absorbent articles capable of indicating the presence of urinary tract infections
US8697435B2 (en) * 2009-08-31 2014-04-15 Mbio Diagnostics, Inc. Integrated sample preparation and analyte detection
CA2784791A1 (en) * 2009-12-17 2011-07-14 Abaxis, Inc. Novel assays for detecting analytes in samples and kits and compositions related thereto
US10114020B2 (en) 2010-10-11 2018-10-30 Mbio Diagnostics, Inc. System and device for analyzing a fluidic sample
CN103229056B (en) 2010-11-30 2015-06-24 皇家飞利浦电子股份有限公司 A sensor device for magnetically actuated particles
CN102879559B (en) * 2011-07-12 2015-12-09 上海执诚生物科技股份有限公司 A kind of time-resolved fluoroimmunoassay chromatography real-time and quantification detects reagent and method
WO2013007028A1 (en) * 2011-07-14 2013-01-17 深圳西德赛科技有限公司 Method and system for self-calibrating microfluidic chip-based detection system
GB201113992D0 (en) 2011-08-12 2011-09-28 Molecular Vision Ltd Device
US10725033B2 (en) 2012-01-31 2020-07-28 Regents Of The University Of Minnesota Lateral flow assays with thermal contrast readers
US10816492B2 (en) 2012-01-31 2020-10-27 Regents Of The University Of Minnesota Lateral flow assays with thermal contrast readers
ES2661870T3 (en) 2012-01-31 2018-04-04 Regents Of The University Of Minnesota Test and thermal contrast reader
AU2013279833B2 (en) * 2012-06-22 2018-07-19 Zoetis Denmark Aps A method and a system for quantitative or qualitative determination of a target component
WO2014070235A1 (en) 2012-10-29 2014-05-08 Mbio Diagnostics, Inc. Biological particle identification system, cartridge and associated methods
EP2951583B1 (en) * 2013-01-29 2018-01-24 BIO-RAD Haifa Ltd. Detection assays employing magnetic nanoparticles
JP2016156673A (en) * 2015-02-24 2016-09-01 株式会社日立ハイテクノロジーズ Automatic analyzer and analytical method
US10808287B2 (en) 2015-10-23 2020-10-20 Rapid Pathogen Screening, Inc. Methods and devices for accurate diagnosis of infections
CN105435867B (en) * 2015-10-26 2018-05-22 深圳华迈兴微医疗科技有限公司 Detect the magnetic microparticle chemiluminescence micro-fluidic chip of creatine kinase isozyme in whole blood
US20200158721A1 (en) * 2017-01-26 2020-05-21 Vital Biosciences, Inc. Magnetic particle-based immunoassay and methods of using the same
CN111650383A (en) * 2020-06-19 2020-09-11 东南大学 Chemiluminescence immunoassay method based on fluorescent dye as internal standard substance and application thereof

Family Cites Families (168)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US164659A (en) 1875-06-22 Improvement in processes of preparing pickles
US522459A (en) * 1894-07-03 Packing
US1366241A (en) 1919-10-03 1921-01-18 Frederick W Burch Ratchet mechanism for camp-beds
US3772076A (en) 1970-01-26 1973-11-13 Hercules Inc Reaction products of epihalohydrin and polymers of diallylamine and their use in paper
US3700623A (en) 1970-04-22 1972-10-24 Hercules Inc Reaction products of epihalohydrin and polymers of diallylamine and their use in paper
CS179075B1 (en) 1974-11-26 1977-10-31 Stoy Vladimir Mode of manufacture of spherical particles from polymer
SE388694B (en) 1975-01-27 1976-10-11 Kabi Ab WAY TO PROVIDE AN ANTIGEN EXV IN SAMPLES OF BODY WHEATS, USING POROST BERAR MATERIAL BONDED OR ADSORBING ANTIBODIES
USRE30267E (en) 1975-06-20 1980-05-06 Eastman Kodak Company Multilayer analytical element
US4094647A (en) 1976-07-02 1978-06-13 Thyroid Diagnostics, Inc. Test device
US4210723A (en) 1976-07-23 1980-07-01 The Dow Chemical Company Method of coupling a protein to an epoxylated latex
US4275149A (en) 1978-11-24 1981-06-23 Syva Company Macromolecular environment control in specific receptor assays
US4374925A (en) 1978-11-24 1983-02-22 Syva Company Macromolecular environment control in specific receptor assays
US4235601A (en) 1979-01-12 1980-11-25 Thyroid Diagnostics, Inc. Test device and method for its use
US4361537A (en) 1979-01-12 1982-11-30 Thyroid Diagnostics, Inc. Test device and method for its use
US4441373A (en) 1979-02-21 1984-04-10 American Hospital Supply Corporation Collection tube for drawing samples of biological fluids
US4312228A (en) 1979-07-30 1982-01-26 Henry Wohltjen Methods of detection with surface acoustic wave and apparati therefor
US4849338A (en) 1982-07-16 1989-07-18 Syntex (U.S.A.) Inc. Simultaneous calibration heterogeneous immunoassay
US4533629A (en) 1981-04-17 1985-08-06 Syva Company Simultaneous calibration heterogeneous immunoassay
US4540659A (en) 1981-04-17 1985-09-10 Syva Company Simultaneous calibration heterogeneous immunoassay
US4843000A (en) 1979-12-26 1989-06-27 Syntex (U.S.A.) Inc. Simultaneous calibration heterogeneous immunoassay
US5156953A (en) 1979-12-26 1992-10-20 Syntex (U.S.A.) Inc. Simultaneous calibration heterogeneous immunoassay
CH648052A5 (en) 1980-02-14 1985-02-28 Ciba Geigy Ag METHOD FOR PRODUCING TRIARYL METHANE COMPOUNDS.
US4427836A (en) 1980-06-12 1984-01-24 Rohm And Haas Company Sequential heteropolymer dispersion and a particulate material obtainable therefrom, useful in coating compositions as a thickening and/or opacifying agent
US4366241A (en) 1980-08-07 1982-12-28 Syva Company Concentrating zone method in heterogeneous immunoassays
US4385126A (en) 1980-11-19 1983-05-24 International Diagnostic Technology, Inc. Double tagged immunoassay
US4426451A (en) 1981-01-28 1984-01-17 Eastman Kodak Company Multi-zoned reaction vessel having pressure-actuatable control means between zones
US4442204A (en) 1981-04-10 1984-04-10 Miles Laboratories, Inc. Homogeneous specific binding assay device and preformed complex method
US4444592A (en) 1981-06-02 1984-04-24 The Sherwin-Williams Company Pigment compositions and processes therefor
US4363874A (en) 1981-08-07 1982-12-14 Miles Laboratories, Inc. Multilayer analytical element having an impermeable radiation nondiffusing reflecting layer
US4480042A (en) 1981-10-28 1984-10-30 E. I. Du Pont De Nemours And Company Covalently bonded high refractive index particle reagents and their use in light scattering immunoassays
US4477635A (en) 1982-01-04 1984-10-16 Minnesota Mining And Manufacturing Company Polymeric triarylmethane dyes
US4435504A (en) 1982-07-15 1984-03-06 Syva Company Immunochromatographic assay with support having bound "MIP" and second enzyme
US4534356A (en) 1982-07-30 1985-08-13 Diamond Shamrock Chemicals Company Solid state transcutaneous blood gas sensors
US4632559A (en) 1982-11-29 1986-12-30 Miles Laboratories, Inc. Optical readhead
US4537861A (en) 1983-02-03 1985-08-27 Elings Virgil B Apparatus and method for homogeneous immunoassay
GB8314523D0 (en) 1983-05-25 1983-06-29 Lowe C R Diagnostic device
DE3464252D1 (en) 1983-06-03 1987-07-23 Hoffmann La Roche Labelled molecules for fluorescence immunoassays and processes and intermediates for their preparation
CH662421A5 (en) 1983-07-13 1987-09-30 Suisse Horlogerie Rech Lab PIEZOELECTRIC CONTAMINATION DETECTOR.
US4537657A (en) 1983-08-26 1985-08-27 Hercules Incorporated Wet strength resins
US4552458A (en) 1983-10-11 1985-11-12 Eastman Kodak Company Compact reflectometer
US4595661A (en) 1983-11-18 1986-06-17 Beckman Instruments, Inc. Immunoassays and kits for use therein which include low affinity antibodies for reducing the hook effect
US4703017C1 (en) 1984-02-14 2001-12-04 Becton Dickinson Co Solid phase assay with visual readout
US4698262A (en) 1984-04-27 1987-10-06 Becton, Dickinson And Company Fluorescently labeled microbeads
US4632901A (en) 1984-05-11 1986-12-30 Hybritech Incorporated Method and apparatus for immunoassays
US4586695A (en) 1984-06-22 1986-05-06 Miller Charlie D Continuous tube extractor
FI842992A0 (en) 1984-07-26 1984-07-26 Labsystems Oy IMMUNOLOGISKT DEFINITIONSFOERFARANDE.
US4661235A (en) 1984-08-03 1987-04-28 Krull Ulrich J Chemo-receptive lipid based membrane transducers
US4596697A (en) 1984-09-04 1986-06-24 The United States Of America As Represented By The Secretary Of The Army Chemical sensor matrix
US5026653A (en) 1985-04-02 1991-06-25 Leeco Diagnostic, Inc. Scavenger antibody mixture and its use for immunometric assay
US4722889A (en) 1985-04-02 1988-02-02 Leeco Diagnostics, Inc. Immunoassays using multiple monoclonal antibodies and scavenger antibodies
US4743542A (en) 1985-04-11 1988-05-10 Ortho Diagnostic Method for forestalling the hook effect in a multi-ligand immunoassay system
GB8509492D0 (en) 1985-04-12 1985-05-15 Plessey Co Plc Optical assay
US4963498A (en) 1985-08-05 1990-10-16 Biotrack Capillary flow device
US5238815A (en) 1985-08-30 1993-08-24 Toyo Soda Manufacturing Co., Ltd. Enzymatic immunoassay involving detecting fluorescence while oscillating magnetic beads
US4917503A (en) 1985-12-02 1990-04-17 Lifelines Technology, Inc. Photoactivatable leuco base time-temperature indicator
CA1291031C (en) 1985-12-23 1991-10-22 Nikolaas C.J. De Jaeger Method for the detection of specific binding agents and their correspondingbindable substances
US4916056A (en) 1986-02-18 1990-04-10 Abbott Laboratories Solid-phase analytical device and method for using same
US5482830A (en) * 1986-02-25 1996-01-09 Biostar, Inc. Devices and methods for detection of an analyte based upon light interference
US4776944A (en) 1986-03-20 1988-10-11 Jiri Janata Chemical selective sensors utilizing admittance modulated membranes
EP0272320B1 (en) * 1986-06-17 1994-03-23 Baxter Diagnostics Inc. Homogeneous fluoroassay methods employing fluorescent background rejection
GB8618133D0 (en) 1986-07-24 1986-09-03 Pa Consulting Services Biosensors
JPH0692969B2 (en) 1986-07-30 1994-11-16 株式会社シノテスト Immunological measurement method
US5182135A (en) 1986-08-12 1993-01-26 Bayer Aktiengesellschaft Process for improving the adherency of metallic coatings deposited without current on plastic surfaces
GB2197065A (en) 1986-11-03 1988-05-11 Stc Plc Optical sensor device
US4857453A (en) 1987-04-07 1989-08-15 Syntex (U.S.A.) Inc. Immunoassay device
US4855240A (en) 1987-05-13 1989-08-08 Becton Dickinson And Company Solid phase assay employing capillary flow
US4842783A (en) 1987-09-03 1989-06-27 Cordis Corporation Method of producing fiber optic chemical sensors incorporating photocrosslinked polymer gels
US6013531A (en) * 1987-10-26 2000-01-11 Dade International Inc. Method to use fluorescent magnetic polymer particles as markers in an immunoassay
JP2763635B2 (en) 1988-02-08 1998-06-11 ユニバーシティ カレッジ カーディフ コンサルタンツ リミティド Detection of diamines in biological fluids
US5268306A (en) 1988-02-29 1993-12-07 Boehringer Mannheim Gmbh Preparation of a solid phase matrix containing a bound specific binding pair
US5145784A (en) 1988-05-04 1992-09-08 Cambridge Biotech Corporation Double capture assay method employing a capillary flow device
DE68907519T2 (en) 1988-05-10 1993-10-21 Amersham Int Plc Biosensors.
EP0341928A1 (en) 1988-05-10 1989-11-15 AMERSHAM INTERNATIONAL plc Improvements relating to surface plasmon resonance sensors
GB8811919D0 (en) 1988-05-20 1988-06-22 Amersham Int Plc Biological sensors
GB8813307D0 (en) 1988-06-06 1988-07-13 Amersham Int Plc Biological sensors
US4877586A (en) 1988-07-27 1989-10-31 Eastman Kodak Company Sliding test device for assays
US5075077A (en) 1988-08-02 1991-12-24 Abbott Laboratories Test card for performing assays
AT390517B (en) 1988-08-04 1990-05-25 Avl Verbrennungskraft Messtech OPTICAL SENSOR AND METHOD FOR THE PRODUCTION THEREOF
US4973670A (en) 1988-08-12 1990-11-27 The Dow Chemical Company Method for preparing hollow latexes
US5252459A (en) 1988-09-23 1993-10-12 Abbott Laboratories Indicator reagents, diagnostic assays and test kits employing organic polymer latex particles
EP0363504A1 (en) 1988-10-10 1990-04-18 Dräger Nederland B.V. Method of providing a substrate with a layer comprising a polyvinylbased hydrogel and a biochemically active material
SE8804074D0 (en) * 1988-11-10 1988-11-10 Pharmacia Ab SENSOR UNIT AND ITS USE IN BIOSENSOR SYSTEM
SE462454B (en) 1988-11-10 1990-06-25 Pharmacia Ab METHOD FOR USE IN BIOSENSORS
US5003178A (en) 1988-11-14 1991-03-26 Electron Vision Corporation Large-area uniform electron source
US5063081A (en) 1988-11-14 1991-11-05 I-Stat Corporation Method of manufacturing a plurality of uniform microfabricated sensing devices having an immobilized ligand receptor
US4940734A (en) 1988-11-23 1990-07-10 American Cyanamid Process for the preparation of porous polymer beads
ATE115982T1 (en) 1988-11-23 1995-01-15 Cytec Tech Corp POROUS POLYMER BEADS AND METHODS.
US4895017A (en) 1989-01-23 1990-01-23 The Boeing Company Apparatus and method for early detection and identification of dilute chemical vapors
US5096671A (en) 1989-03-15 1992-03-17 Cordis Corporation Fiber optic chemical sensors incorporating electrostatic coupling
US5120662A (en) 1989-05-09 1992-06-09 Abbott Laboratories Multilayer solid phase immunoassay support and method of use
US5234813A (en) 1989-05-17 1993-08-10 Actimed Laboratories, Inc. Method and device for metering of fluid samples and detection of analytes therein
US5143854A (en) 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
US5744101A (en) * 1989-06-07 1998-04-28 Affymax Technologies N.V. Photolabile nucleoside protecting groups
JPH0366384A (en) 1989-08-04 1991-03-22 Senjiyu Seiyaku Kk System for controlling release of physiologically active material
US5298222A (en) * 1989-08-09 1994-03-29 Osteotech, Inc. Process for disinfecting musculoskeletal tissue and tissues prepared thereby
US5235238A (en) 1989-08-10 1993-08-10 Dainabot Company, Limited Electrode-separated piezoelectric crystal oscillator and method for measurement using the electrode-separated piezoelectric crystal oscillator
AU635314B2 (en) 1989-09-08 1993-03-18 Terumo Kabushiki Kaisha Measuring apparatus
JP2979414B2 (en) 1989-09-29 1999-11-15 富士レビオ株式会社 Magnetic particles and immunoassay using the same
US5225935A (en) 1989-10-30 1993-07-06 Sharp Kabushiki Kaisha Optical device having a microlens and a process for making microlenses
US5252743A (en) * 1989-11-13 1993-10-12 Affymax Technologies N.V. Spatially-addressable immobilization of anti-ligands on surfaces
GB8927503D0 (en) 1989-12-04 1990-02-07 Kronem Systems Inc Enzyme-amplified lanthanide chelate luminescence
US5508171A (en) * 1989-12-15 1996-04-16 Boehringer Mannheim Corporation Assay method with enzyme electrode system
ES2116977T3 (en) * 1990-05-11 1998-08-01 Microprobe Corp SOLID SUPPORTS FOR NUCLEIC ACID HYBRIDIZATION TESTS AND METHODS TO IMMOBILIZE OLIGONUCLEOTIDES IN A COVALENT WAY.
DK138090D0 (en) * 1990-06-06 1990-06-06 Novo Nordisk As DIAGNOSTIC METHOD OF ANALYSIS
US5200084A (en) 1990-09-26 1993-04-06 Immunicon Corporation Apparatus and methods for magnetic separation
US5076094A (en) 1990-10-03 1991-12-31 The United States Of America As Represented By The United States Department Of Energy Dual output acoustic wave sensor for molecular identification
US5726064A (en) * 1990-11-22 1998-03-10 Applied Research Systems Ars Holding Nv Method of assay having calibration within the assay
US6027944A (en) * 1990-11-22 2000-02-22 Applied Research Systems Ars Holding Nv Capillary-fill biosensor device comprising a calibration zone
US5510481A (en) * 1990-11-26 1996-04-23 The Regents, University Of California Self-assembled molecular films incorporating a ligand
US5208535A (en) 1990-12-28 1993-05-04 Research Development Corporation Of Japan Mr position detecting device
GB9102646D0 (en) * 1991-02-07 1991-03-27 Fisons Plc Analytical device
US5196350A (en) 1991-05-29 1993-03-23 Omnigene, Inc. Ligand assay using interference modulation
WO1993001308A1 (en) * 1991-07-10 1993-01-21 Igen, Inc. Methods and apparatus for improved luminescence assays using particle concentration and chemiluminescence detection
US5726010A (en) * 1991-07-31 1998-03-10 Idexx Laboratories, Inc. Reversible flow chromatographic binding assay
US5418136A (en) * 1991-10-01 1995-05-23 Biostar, Inc. Devices for detection of an analyte based upon light interference
US5516635A (en) * 1991-10-15 1996-05-14 Ekins; Roger P. Binding assay employing labelled reagent
US5221454A (en) 1992-01-31 1993-06-22 Biometric Imaging Inc. Differential separation assay
US5137609A (en) 1992-01-31 1992-08-11 Biometric Imaging Inc. Differential separation assay
US5885527A (en) * 1992-05-21 1999-03-23 Biosite Diagnostics, Inc. Diagnostic devices and apparatus for the controlled movement of reagents without membrances
US5321492A (en) * 1992-08-07 1994-06-14 Miles Inc. Dual function readhead for a reflectance instrument
GB9217864D0 (en) * 1992-08-21 1992-10-07 Unilever Plc Monitoring method
US6399397B1 (en) * 1992-09-14 2002-06-04 Sri International Up-converting reporters for biological and other assays using laser excitation techniques
GB9221329D0 (en) * 1992-10-10 1992-11-25 Delta Biotechnology Ltd Preparation of further diagnostic agents
US6200820B1 (en) * 1992-12-22 2001-03-13 Sienna Biotech, Inc. Light scatter-based immunoassay
US5422726A (en) * 1993-02-16 1995-06-06 Tyler; Jonathan M. Solid state spectrofluorimeter and method of using the same
DE4310142A1 (en) * 1993-03-29 1994-10-06 Boehringer Mannheim Gmbh Immunologically active conjugates and a process for their preparation
US5484867A (en) * 1993-08-12 1996-01-16 The University Of Dayton Process for preparation of polyhedral oligomeric silsesquioxanes and systhesis of polymers containing polyhedral oligomeric silsesqioxane group segments
KR0177182B1 (en) * 1993-10-20 1999-05-15 최근선 Process for the preparation of emulsion polymer
EP0653639B1 (en) * 1993-11-12 2000-03-22 Unilever Plc Analytical devices and methods of use thereof
SG72684A1 (en) * 1993-11-12 2000-05-23 Unipath Ltd Reading devices and assay devices for use therewith
US5527711A (en) * 1993-12-13 1996-06-18 Hewlett Packard Company Method and reagents for binding chemical analytes to a substrate surface, and related analytical devices and diagnostic techniques
JPH0862214A (en) * 1994-08-19 1996-03-08 Nippon Paint Co Ltd Method for measuring substance in vivo
US5599668A (en) * 1994-09-22 1997-02-04 Abbott Laboratories Light scattering optical waveguide method for detecting specific binding events
US5620850A (en) * 1994-09-26 1997-04-15 President And Fellows Of Harvard College Molecular recognition at surfaces derivatized with self-assembled monolayers
US5489988A (en) * 1995-01-03 1996-02-06 Motorola Environmental sensor and method therefor
AU4213396A (en) * 1995-01-26 1996-08-01 Nippon Paint Co., Ltd. Kit for immunologically assaying biological substance and assay process
AU4927496A (en) * 1995-02-21 1996-09-11 Iqbal W. Siddiqi Apparatus and method for mixing and separation employing magnetic particles
US5518689A (en) * 1995-09-05 1996-05-21 Bayer Corporation Diffused light reflectance readhead
AUPN527995A0 (en) * 1995-09-07 1995-09-28 Agen Biomedical Limited Method and apparatus for semiquantification of an analyte
CA2250684A1 (en) * 1996-03-29 1997-10-09 Donald Elliott Brooks Platelet count assay using platelet granule proteins
US5753517A (en) * 1996-03-29 1998-05-19 University Of British Columbia Quantitative immunochromatographic assays
US6387707B1 (en) * 1996-04-25 2002-05-14 Bioarray Solutions Array Cytometry
DE19621133A1 (en) * 1996-05-24 1997-11-27 Boehringer Mannheim Gmbh Determination method with oligomerized receptors
US5876944A (en) * 1996-06-10 1999-03-02 Bayer Corporation Method for amplification of the response signal in a sandwich immunoassay
US6020047A (en) * 1996-09-04 2000-02-01 Kimberly-Clark Worldwide, Inc. Polymer films having a printed self-assembling monolayer
US6194220B1 (en) * 1996-09-25 2001-02-27 Becton, Dickinson And Company Non-instrumented assay with quantitative and qualitative results
US6048623A (en) * 1996-12-18 2000-04-11 Kimberly-Clark Worldwide, Inc. Method of contact printing on gold coated films
US6180288B1 (en) * 1997-03-21 2001-01-30 Kimberly-Clark Worldwide, Inc. Gel sensors and method of use thereof
US6235471B1 (en) * 1997-04-04 2001-05-22 Caliper Technologies Corp. Closed-loop biochemical analyzers
EP0872736A1 (en) * 1997-04-18 1998-10-21 Byk Gulden Italia S.p.A. Assay utilizing magnetic particles
US6171780B1 (en) * 1997-06-02 2001-01-09 Aurora Biosciences Corporation Low fluorescence assay platforms and related methods for drug discovery
US5906921A (en) * 1997-09-29 1999-05-25 Matsushita Electric Industrial Co., Ltd. Biosensor and method for quantitative measurement of a substrate using the same
US6306642B1 (en) * 1997-11-24 2001-10-23 Quidel Corporation Enzyme substrate delivery and product registration in one step enzyme immunoassays
US6060256A (en) * 1997-12-16 2000-05-09 Kimberly-Clark Worldwide, Inc. Optical diffraction biosensor
US6241863B1 (en) * 1998-04-27 2001-06-05 Harold G. Monbouquette Amperometric biosensors based on redox enzymes
US6030840A (en) * 1998-06-15 2000-02-29 Nen Life Sciences, Inc. Neutral enhancement of lanthanides for time resolved fluorescence
US6183972B1 (en) * 1998-07-27 2001-02-06 Bayer Corporation Method for the determination of analyte concentration in a lateral flow sandwich immunoassay exhibiting high-dose hook effect
GB9827411D0 (en) * 1998-12-11 1999-02-03 Axis Biochemicals Asa Dipstick assay
US6221579B1 (en) * 1998-12-11 2001-04-24 Kimberly-Clark Worldwide, Inc. Patterned binding of functionalized microspheres for optical diffraction-based biosensors
US6579673B2 (en) * 1998-12-17 2003-06-17 Kimberly-Clark Worldwide, Inc. Patterned deposition of antibody binding protein for optical diffraction-based biosensors
US6511814B1 (en) * 1999-03-26 2003-01-28 Idexx Laboratories, Inc. Method and device for detecting analytes in fluids
US6136549A (en) * 1999-10-15 2000-10-24 Feistel; Christopher C. systems and methods for performing magnetic chromatography assays
US6399295B1 (en) * 1999-12-17 2002-06-04 Kimberly-Clark Worldwide, Inc. Use of wicking agent to eliminate wash steps for optical diffraction-based biosensors
US6365417B1 (en) * 2000-02-09 2002-04-02 A-Fem Medical Corporation Collection device for lateral flow chromatography
US20050032051A1 (en) * 2000-06-19 2005-02-10 Hayes Mark A Rapid flow-based immunoassay microchip
DE60117556T2 (en) * 2000-06-21 2006-11-02 Bioarray Solutions Ltd. MULTI-ANALYTIC MOLECULAR ANALYSIS THROUGH THE USE OF APPLICATION SPECIFIC RAPID PARTICLE ARRAYS
AU2002239780A1 (en) * 2000-10-25 2002-06-03 Tufts University Polymeric microspheres
US20020164659A1 (en) * 2000-11-30 2002-11-07 Rao Galla Chandra Analytical methods and compositions

Also Published As

Publication number Publication date
US20040043507A1 (en) 2004-03-04
CN100365416C (en) 2008-01-30
US7314763B2 (en) 2008-01-01
KR100994345B1 (en) 2010-11-12
EP1532451A1 (en) 2005-05-25
MXPA05001678A (en) 2005-04-19
TWI251080B (en) 2006-03-11
CN1675546A (en) 2005-09-28
TW200412434A (en) 2004-07-16
CA2495190C (en) 2012-12-18
WO2004021006A1 (en) 2004-03-11
AU2003259690A1 (en) 2004-03-19
KR20060002726A (en) 2006-01-09

Similar Documents

Publication Publication Date Title
CA2495190A1 (en) Fluidics-based assay devices
CA2495209A1 (en) Membrane-based assay devices
CA2495206A1 (en) Membrane-based assays using time-resolved fluorescence
US8685644B2 (en) Method and device for determining a concentration of ligands in an analysed sample
US9316585B2 (en) Method and apparatus for determining a relaxation time dependent parameter related to a system
US5945344A (en) Electrochemiluminescence method
US20140170674A1 (en) Membraine-Based Assay Devices Utilizing Time-Resolved Up-Converting Luminescence
WO2001059436A3 (en) Fluorescence intensity and lifetime distribution analysis
US20130171624A1 (en) Magnetic Binding Assays Utilizing Time-Resolved Up-Converting Luminescence Detection
WO1996041155A9 (en) An improved electrochemiluminescence method
CA2871658C (en) Biological assay sample analyzer
WO2005019419B1 (en) Co-detection of single polypeptide and polynucleotide molecules
KR101789356B1 (en) Use of signal enhancing compounds in electrochemiluminescence detection
Trinquet et al. Fluorescence technologies for the investigation of chemical libraries
US20130171623A1 (en) Binding Assays Utilizing Time-Resolved Up-Converting Luminescence Detection
US20100003702A1 (en) Procedure And Device For Determining The Concentrations Of At Least Two Ligands
CN108645826A (en) A kind of new method of quick detection ascorbic acid
JP7202300B2 (en) Methods and systems for performing high temporal resolution high throughput screening measurements
US20210208075A1 (en) Autofluorescence quenching assay and device
KR100704007B1 (en) Lateral flow immunoassay kit based on chemiluminescence and chemifluorescence reaction and using method thereof
Mayr et al. Multi-ion imaging using fluorescent sensors in a microtiterplate array format
JPH01302144A (en) Analysis based on luminescence in the generation of electricity in solution
AU619842B2 (en) Apparatus for conducting a plurality of simultaneous measurements of electrochemiluminescent phenomena
US10845310B2 (en) Quantification of topologically arranged luminescent dyes
RU2156969C1 (en) Device measuring concentration of oxygen in liquids and gases

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20230808

MKEX Expiry

Effective date: 20230808

MKEX Expiry

Effective date: 20230808

MKEX Expiry

Effective date: 20230808

MKEX Expiry

Effective date: 20230808

MKEX Expiry

Effective date: 20230808

MKEX Expiry

Effective date: 20230808

MKEX Expiry

Effective date: 20230808

MKEX Expiry

Effective date: 20230808

MKEX Expiry

Effective date: 20230808

MKEX Expiry

Effective date: 20230808

MKEX Expiry

Effective date: 20230808

MKEX Expiry

Effective date: 20230808

MKEX Expiry

Effective date: 20230808

MKEX Expiry

Effective date: 20230808

MKEX Expiry

Effective date: 20230808

MKEX Expiry

Effective date: 20230808

MKEX Expiry

Effective date: 20230808

MKEX Expiry

Effective date: 20230808

MKEX Expiry

Effective date: 20230808

MKEX Expiry

Effective date: 20230808

MKEX Expiry

Effective date: 20230808

MKEX Expiry

Effective date: 20230808

MKEX Expiry

Effective date: 20230808