CA2475239C - Remote center of motion robotic system and method - Google Patents

Remote center of motion robotic system and method Download PDF

Info

Publication number
CA2475239C
CA2475239C CA002475239A CA2475239A CA2475239C CA 2475239 C CA2475239 C CA 2475239C CA 002475239 A CA002475239 A CA 002475239A CA 2475239 A CA2475239 A CA 2475239A CA 2475239 C CA2475239 C CA 2475239C
Authority
CA
Canada
Prior art keywords
base
unit
round member
coupled
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002475239A
Other languages
French (fr)
Other versions
CA2475239A1 (en
Inventor
Dan Stoianovici
Louis L. Whitcomb
Dumitru Mazilu
Russell H. Taylor
Louis R. Kavoussi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johns Hopkins University
Original Assignee
Johns Hopkins University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johns Hopkins University filed Critical Johns Hopkins University
Publication of CA2475239A1 publication Critical patent/CA2475239A1/en
Application granted granted Critical
Publication of CA2475239C publication Critical patent/CA2475239C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • B25J18/007Arms the end effector rotating around a fixed point
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/71Manipulators operated by drive cable mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • B25J17/02Wrist joints
    • B25J17/0241One-dimensional joints
    • B25J17/025One-dimensional joints mounted in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/06Programme-controlled manipulators characterised by multi-articulated arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/102Gears specially adapted therefor, e.g. reduction gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/104Programme-controlled manipulators characterised by positioning means for manipulator elements with cables, chains or ribbons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/305Details of wrist mechanisms at distal ends of robotic arms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/71Manipulators operated by drive cable mechanisms
    • A61B2034/715Cable tensioning mechanisms for removing slack
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/50Supports for surgical instruments, e.g. articulated arms
    • A61B2090/506Supports for surgical instruments, e.g. articulated arms using a parallelogram linkage, e.g. panthograph
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20207Multiple controlling elements for single controlled element
    • Y10T74/20305Robotic arm
    • Y10T74/20317Robotic arm including electric motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20207Multiple controlling elements for single controlled element
    • Y10T74/20305Robotic arm
    • Y10T74/20323Robotic arm including flaccid drive element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20207Multiple controlling elements for single controlled element
    • Y10T74/20305Robotic arm
    • Y10T74/20329Joint between elements

Abstract

A remote center of motion robotic system including a base unit and a plurality of linking units. The base unit is rotatable about a first axis. The plurality of linking units are coupled with one another. At least two of the linking units are kept parallel to each another during motion. The plurality of linking units are coupled with that base unit at a first end. The plurality of linking units are rotatable about a second axis by changing an angle between each of the plurality of links

Description

REMOTE CENTER OF MOTION ROBOTIC SYSTEM AND METHOD
BACKGROUND OF THE INVENTION:

Field of the Invention:
[0002] The present invention relates to robotic devices and methods. In particular, the invention relates to systems and methods for orienting an end-effector about two axes intersecting at a fixed geometric point located distally, materiatizing a pivot point or a Remote Center of Motion (RCM).
Description of the Related Art:
[0003] In robotics the pivot point and kinematic principle used is commonly referred to as the Remote Center of Motion. Systems and methods for orienting parts, tools, and instruments about a RCM point distal to the mechanism are well known. For example, see U.S. Patent Nos. 5,397,323, 5,515,478, 5,630,431, 5,817,084, 5,907,664, 6,047,610, and 6,246,200, the entire contents of each are incorporated herein by reference.
[0004] The RCM principle is commonly used in freehand surgical practice. In robotic assisted surgery, several mechanisms implementing the RCM principle have also been developed. The present invention is a new type of RCM mechanism possessing unlimited rotations, with no kinematic singularities, and adjustable RCM
point.
[0005] US Patent No. 4,098,001 to Watson introduced the precursor of the RCM, the Remote Center of Compliance (RCC) principle, which was derived for industrial robot applications of peg-in-hole insertions. RCC mechanisms give rotational and translational compliance for the "peg" at the insertion point into the "hole"
so that the robot can perform the assembly operation in case of misalignment. Commonly, the motion is restricted to a narrow region and it is passive.
[0006] US Patent No. 4,098,001 describes a passive 3-D n-bar linkage RCC
mechanism for part assembly operations. A flurry of inventions by Watson's collaborators (see US Patent Nos. 4,409,736, 4,477,975, 4,556,203, and 4,537,557;
Nevins J, (1981): "Systems analysis and experimental study advance the art of assembly automation", Assembly Automation, vol. 1, no.4 p. 186-9; Masamune K, Patriciu A, Stoianovici D, Susil R, Taylor RE, Fichtinger G, Kavoussi LR, Anderson J, Sakurna I, Dohi T, (1999), "Development of CT-PAKY frame system - CT image guided Needle puncturing manipulator and a single slice registration for urological surgery", Proc. 8th annual meeting of JSCAS, Kyoto 1999:89-90) describe a number of other solutions employ rigid and elastic linkage mechanisms, both passive and active, to achieve RCC motion for manufacturing assembly operations. All of these mechanisms have limited range of angular motion as a result of their linkage designs. Currently, numerous passive types of 3-D linkage RCC devices are commercially available, for example from ATI Industrial Automation (http://www.ati-la.com/another.htm), RISTEC (http)://wyvw.ristec.com/rcc.htm), and PFA, Inc.
(http)://www.pfa-inc.com/rccfront.htmi). The RCC mechanism only allows rotational, TECH/92369.1 2 pivoting motion about the fulcrum point, it is performed on a larger range, and it is normally actuated.

US Patent No. 5,397,323 to Taylor et al. introduced the RCM
principle with the invention of the "Remote Center-of-Motion Robot for Surgery".
The invention was implemented on an LARS robot developed at IBM, which uses a pivot Remote Center of Motion (RCM) point proximal to the patient but distal form the robotic mechanism. See also U.S. Patent No. 5,630,431. In the Taylor systems, the first axis of rotation points into the RCM, and the second axis is materialized by a parallelogram mechanism implemented by two coupled parallel linkages of rigid bars and cylindrical joints. The two axes of the RCM are orthogonal, and the mechanism operated around an upright initial (zero) direction.

In US Patent No. 5,630,431, the robot uses two concentric goniometer arcs of normal relative orientation connected in series. See also Cutting CB, Bookstein FL, Taylor RH, (1996): "Applications of Simulation, Morphometrics and Robotics in Craniofacial Surgery, in Computer-Integrated Surgery," M!T Press 1996:

Cambridge, Mass. p. 641-662; 37. Taylor RE, (1991): "A Model-Based Optimal Planning and Execution System with Active Sensing and Passive Manipulation for Augmentation of Human Precision in Computer-Integrated Surgery", Second Int.
Symposium on Experimental Robotics, Toulouse, France; Taylor RH, (1992):
"Augmentation of Human Precision in Computer-Integrated Surgery", Innovation et Technologie en Biologie et Medicine, 13(4 (special issue on computer assisted surgery)): p. 450-459; and Taylor RH., (1992): "A Passive/Active Manipulation System for Surgical Augmentation", First Int. Workshop on Mechatronics in Medicine, Malaga, Spain. The RCM point is located at the common center of the guides, which is located distal from the mechanism. The two directions of rotation are orthogonal. The location of the pivot point is locked by the architecture of the mechanism, and the robot could only be operated around an upright initial orientation.

In 1998, Jensen modified Taylor's initial design in US Patent 5,817,084. The robot in that patent replaced the parallel linkage of bars at the base of the parallelogram mechanism with a belt drive ("Flexible Drive"). The mechanism was implemented on a Stanford Research Institution (SRI) robot for laparoscopy. See Cornum RL, Bowersox JC:

Telepresence: a 21 st century interface for urologic surgery. J Urol. 1996;
155 (Supp 5): 489A. Abstract 715. Although Jensen realized the advantage of replacing the parallel linkage with a continuous transmission, he did not fully eliminate its use. For this reason, his mechanism inherited certain poor characteristics of the Taylor system: limited range of motion around an upward zero, unequal stiffness at different positions. This prior art RCM system is also unadjustable and has axes that are orthogonal.

It is known that the RCM point can be defined and mechanically locked by the kinematics of the mechanism, or can be arbitrarily chosen and implemented with a high degrees-of-freedom (DOF) mechanism under coordinated joint control.
Almost any high mobility robot can be programmed to perform such a task. US Patent No.
6,047,610 describes an example. This approach has advantages of pivot flexibility, increased maneuverability, and overall versatility. However, these mechanisms are unsafe for surgical applications. Mechanical RCMs are safer due to their reduced DOF, decoupled motion and locked pivot features.

[0011] Between 1996 and 1999 Wang et al. reported a series of ten inventions entitled "Automated Endoscope System for Optimal Positioning" [42,43] or similar for the AESOP robot (Computer Motion, Inc., Goleta, CA, http://www.computermotion.com/). The last two joints of the AESOP robot are passive and rotary with intersecting axes. The intersection of these axes is neither remote from the mechanism nor located at the laparoscopic port level. The laparoscopic instrument occupies a free orientation between the end of the robot and the laparoscopic entry port. The AESOP is not a genuine RCM mechanism, but rather, a floating RCM, which provides a safe way of pivoting the laparoscope.
[0012] More recent advancements in the RCM field are related to the daVinci robot (Intuitive Surgical, Inc., Mountain View, CA, http://www.intusurg.com/).
See US
Patent No. 6,246,200. This system comprises a bilateral surgical robot and a camera holder performing laparoscopic tasks under direct control of a surgeon located at a command console. Both the robot and the surgeon's console use a version of an RCM mechanism. The RCM mechanism is a very elegant, but rather massive version of the original Taylor RCM. Like Jensen, Intuitive Surgical modified the base linkage of the parallelogram mechanism in order to accommodate the drive-of the additional cable driven DOF. Kinematically, daVinci has the same capabilities as Taylor's LARS robot.

[0013] With very few exceptions, the prior art RCM mechanical devices for use in surgical applications are either goniometer are systems or are variations on the Taylor design, from the original LARS robot to the newest and highly sophisticated daVinci. The prior art devices each have limitations that beg improvement. In particular, rigid linkage RCM designs have limited range of motion.

TECH/92369.1 5 [0014] Thus, there is a need for new and improved image based target guiding systems and methods that take advantage of commonly available imaging technology and solve the problems with the prior art.

SUMMARY OF THE INVENTION:

[0015] According to an embodiment of the present invention, an "uncalibrated"
system and method are provided for accurate needle placement without precise camera/imager calibration.

[0016] According to an embodiment of the present invention, a robotic module is provided that can be used to orient an end-effector about two axes intersecting at a fixed geometric point located distal to the mechanism materializing a pivot point or a Remote Center of Motion (RCM). A robotic tool (or end-effector) mounted on an RCM module will rotate about the RCM point, which can be conveniently located on the end-effector since this point is remote from the robotic module.

[0017] The module presents two rotational degrees-of-freedom (DOF) with coincident axes at the geometric RCM point. The position of the pivot is adjustable along one axis by modifying the relative angle between the axes. As such, the two rotations are not necessarily orthogonal.

[0018] Unlike all previous RCM mechanisms, which all possess kinematic singularity points, this new mechanism provides unrestricted rotation about both axes with no singularities. This is achieved by using a double belt-drive not previously reported. It also allows the end-effector to rotate about any initial orientation of the mechanism, folded, extended, or midway. The mechanism presents uniform mechanical properties at different orientations. Mechanical and/or electronic means can used to limit and set the desired range of motion.

TECH/92369.1 6 [0019] The present invention is a new RCM device for performing controlled motion in the form of a robotic module. The novelty of this device is that it can attain any rotational orientation without encountering the kinematic singularities that limit the motion of all previously reported mechanisms of rigid linkage RCM
designs. With special end-effector adapters the module can manipulate various tools/instruments. The module can be used standalone or in conjunction with other robotic components for increased DOF. It also provides an RCM motion without any part of the mechanism impinging "over" the center of motion (i.e., without the mechanism interfering with free access from the RCM point along a direction orthogonal to the two rotational axes of the RCM mechanism.

[0020] According to an aspect of the present invention, there is provided a remote center of motion robotic system comprising:
a base link unit;
a connecting link unit, the connecting link unit moveably coupled to the base link unit at a first rotating joint;
the first rotating joint comprising a first round member and a first rotation axis, the connecting link unit rotates around the first rotation axis, and the first round member is coupled to the base link unit such that the angle of the first round member with respect to the base link unit is constant;
an end link unit, the end link unit moveably coupled to the connecting link unit at a second rotating joint;
the second rotating joint comprising a second round member, a third round member and a second rotation axis, the end link unit rotates around the second rotation axis, the second round member is coupled to the end link unit such that the angle of the second round member with respect to the end link unit is constant, the third round member is coupled to the connecting link unit such that the angle of the third round member with respect to the connecting link unit is constant, the first round member is coupled to the second round member so that the angle of the first round member with respect to the second round member is constant;
a base unit, the base unit comprising a base rotating joint; and the base rotating joint comprising a base unit round member moveably coupled to the base unit so that the base unit can rotate around a base axis, the base unit round member configured to couple the base unit to a base, wherein the base link unit is moveably coupled to the base unit at a pivot joint, the pivot joint having a pivot axis that is not parallel to the base axis.

[0021] According to another aspect of the invention, there is provided a remote center of motion robotic system comprising:
a base unit, the base unit comprising a base rotating joint; the base rotating joint comprising a base unit round member moveably coupled to the base unit so that the base unit can rotate around a base axis, the base unit round member configured to couple the base unit to a base;
a base unit rotating motor drivingly coupled to the base rotating joint to rotate the base unit around the base axis;
a base link unit, the base link unit moveably coupled to the base unit at a pivot joint, the pivot joint having a pivot axis that is not parallel to the base axis;
a connecting link unit, the connecting link unit moveably coupled to the base link unit at a first rotating joint;
the first rotating joint comprising a first round member and a first rotation axis, the connecting link unit rotates around the first rotation axis, and the first round member is coupled to the base link unit such that the angle of the first round member with respect to the base link unit is constant;
a connecting link rotating motor drivingly coupled to the connecting link unit to rotate the connecting link around the first rotation axis;
an end link unit, the end link unit moveably coupled to the connecting link unit at a second rotating joint;
the second rotating joint comprising a second round member, a third round member and a second rotation axis, the second and third round 7a members rotate around- the second rotation axis, the end link unit rotates around the second rotation axis, the second round member is coupled to the end link unit such that the angle of the second round member with respect to the end link unit is constant, the third round member is coupled to the connecting link unit such that the angle of the third round member with respect to the connecting link unit is constant, the first round member is coupled to the second round member so that the angle of the first round member with respect to the second round member is constant;
a third rotating joint, the third rotating joint is carried by the end link unit, the third rotating joint comprising a fourth round member that rotates around a third rotation axis, the third round member is coupled to the fourth round member so that the angle of the third round member with respect to the fourth round member is constant; and an end-effector, the end-effector is coupled to the end link unit at the third rotating joint so that the angle of the fourth round member with respect to the end-effector is constant.

According to yet another aspect of the invention, there is provided a remote center of motion robotic system comprising:
a base linking unit;
a connecting linking unit;
first rotating joint means for moveably connecting the base linking unit to the connecting linking unit; an end linking unit;
a second rotating joint means for moveably connecting the connecting linking unit to the end linking unit; kinematic means for kinematically connecting the first and second rotating joint means;
a base rotating joint means for coupling a base unit to a base; and a pivot means for coupling the base unit to the base linking unit.
Yet another aspect of the invention concerns a remote center of motion robotic system comprising:

7b a base unit; a base rotating joint means for connecting the base unit to a base and for allowing the base unit to rotate around a base axis with respect to the base;
a base unit rotating means coupled to the base rotating joint means for rotating the base unit around the base axis;
a base linking unit;
a pivot joint means for moveably coupling the base unit to the base linking unit;
a connecting linking unit; a first rotating joint means for coupling the connecting linking unit to the base linking unit; a connecting link rotating means for rotating the connecting link around a first rotation axis;
an end linking unit; a second rotating joint means for coupling the end linking unit to the connecting linking unit;
an end-effector;
a third rotating joint means for connecting the end-effector to the end linking unit; and a kinematic means for kinematically connecting the first, second and third rotating joint means.

7c [0022] The objects and features of the invention will be more readily understood with reference to the following description and the attached drawings, wherein:
[0023] Figures 1A-1C are diagrams of the robotic module according to an embodiment of the present invention;

[0024] Figures 2a and 2B are schematic representations of the module in Figures 1 a-1 c, according to an embodiment of the present invention;

[0025] Figures 3A and 3B are schematic representations of the module in Figures 1 a-1 c, according to an embodiment of the present invention;

[0026] Figure 4 is a schematic of the kinematic principals of the module in Figures 1A -1C, according to an embodiment of the present invention;

[0027] Figures 5A and 5B are a frontal view and a cross sectional view of the module in Figures 1 A - 1C, according to an embodiment of the present invention;
[0028] Figures 6A and 6B are a top view and an aligned cross sectional view of the module in Figures 1A - 1C, according to an embodiment of the present invention;
[0029] Figure 7 shows an RCM module under CT guidance according to an embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS:
[0031] The present invention provides a novel apparatus and method for performing image assisted surgery. The invention includes a robotic system or module that can be used to orient an end-effector about two axes intersecting at a fixed geometric point, located distal to the mechanism materializing a pivot point, referred to herein as a Remote Center of Motion (RCM). An end-effector, for example, a robotic tool such as a needle driver, may be mounted upon an RCM
module and configured to rotate about the RCM point, which can be conveniently located on the end-effector since this point is remote from the robotic module.
[0032] The present invention is configured to allow two rotational degrees-of-freedom (DOF) with coincident axes at the geometric RCM point. The position of the pivot is adjustable along one axis by modifying the relative angle between the axes, referred to herein as the adjustment angle. As such, the two rotations are not necessarily orthogonal.

[0033] Unlike prior art RCM mechanisms, which possess kinematic singularity points, the present invention provides a double belt-drive configuration that helps achieve unrestricted rotation about both axes with no singularity points. The present invention also allows the end-effector to rotate about any initial orientation of the RCM mechanism, including folded, extended, or any orientation in between. The present invention is capable of uniform mechanical properties at different orientations. Mechanical and/or electronic means can used to limit and set the desired range of motion.

[0034] Figures 1 A - 1 C show an isometric, top, and frontal view, respectively, of an RCM module according to an embodiment of the present invention. The module or mechanism 100 includes first, second and third arms (also referred to as links and linking units) 10, 18, and 26, respectively. First arm 10 is coupled with a base element 9, which can be secured to a base, such as a fixed support or a forerunner robotic component, through the base shaft 1. Third arm 26 is configured to receive a holder/driver 32 that holds an end-effector 33, which can be connected on either side of the output shaft 31 or 34 of arm 26. A mounting screw 35 is used which can TECH/92369.1 9 accommodate different end-effectors for different applications. The means for coupling the each of the elements are described below in more detail.

The system 100 is configured to allow two active DOF: a) rotation (x about axis xy of the base shaft 1 representing a first pivoting axis; and b) rotation R about axis y of the parallelogram structure formed by arms 18, 26, and holder driver 32 and/or end effector 33, representing a second pivoting axis y The two axes intersect at the center of the xyz coordinate system, representing the pivot point or RCM point of the mechanism.
System 100 is configured so that the adjustment angle y between the elements 9 and 10 can be adjusted, and the elements 9 and 10 can be locked in a desired relative orientation. The adjustment angle y changes the orientation of the axis x,, and shifts the location of the RCM point along the second pivot axis y. This angular adjustment design allows for conveniently setting the pivot point to accommodate different end-effectors while maintaining a compact design. One drawback is the degeneration of the orthogonal pivoting axes (x & y I y = 0) into the non-orthogonal pivot (xy & y I y> 0). This reduces the working envelope and, if necessary, requires coordinated motion of the axes to obtain an orthogonal pivoting motion of the end-effector. Nevertheless, for small adjustment angles the degeneracy is minimal. During testing, when the adjustment angle y{0 , 15 }
representing the tested angle range of 00 to 150, no difficulties were found related to this issue.

The second pivoting axis y is materialized by the pseudo-parallelogram mechanism described by the links 18, 26, and the end-effector 33 / holder 32.
The link 18 may be actuated with respect to link 10, and the link 26 maintains its parallel orientation with respect to link 10. The end-effector 33 / holder 32 (which is rigidly attached to the output shaft 31, 34) maintains its relative orientation with respect to Iink 18. Output shaft 31, 34 is rotatable, and therefore, the orientation of end-effector 33 / holder 32 with respect to link 26 is adjustable, This design allows for rotating the end-effector 33 1 holder 32 about an axis y, which is remote from the mechanism. In fact this is the classic RCM
design.
The novelty of the present module is given by the kinematic design and mechanisms used to implement the parallelogram.
The two pivot axes have unlimited motion, and the axes are able to continuously spin. This is not necessarily important for performing multiple turns, but is important for allowing different operation modes. The initial (zero) position of the mechanism 100 can be set at any angle, especially at any.8 angle, and can allow the end-effector to pivot from one side to the other of that zero-set direction in space.
Figures 2A - 2B and 3A - 3B illustrate two examples respectively.

Operating about a "Folded" initial position, ,f3o = 00 : Figures 2a - 2b respectively show a frontal view of the module and its top, aligned view together with a special end-effector 33 and holder'32. The mechanism 100 oriented at (3 =
16o = 0 is represented with solid lines, and mechanism 100 pivots about a "folded"
position of the module, are exemplified by the two dotted positions R= RO 20 .

The mechanism 100 is shown as mounted inclined (b1 > 00 ) with respect to the ground in order to raise the mechanism above the RCM point. The holder supports the end-effector 33 at an angle 63 = 90 , and the end-effector is positioned at 62 = 63 - b, with respect to the mechanism, so that in the initial position f3 =Po = 00 , the end-effector 33 is vertical.

[0042] The holder 32 is shown as connected on the outer side 31 of the module.
An adjustment of the adjustment angle y> 0 is used to shift the RCM point along the y axis and place it at the tip of the end-effector 33. Thus, the RCM is the pivot point for the xy & y I y> 0 axes.

[0043] This folded operation mode ([3o = 0 ) allows the module not just to clear the RCM pivot, but also to clear the region above the RCM. This is important in performing image-guided procedures, wherein the robot should be distal from the active field of the image to allow unimpeded visualization of the target and end-effector during the procedure.

[0044] Figures 3A - 3B illustrate an example wherein the mechanism is pivoting about an "unfolded" position,6 =,6o Z= 90 . As for the folded case, the mechanism is inclined (b1 > 0 ) with respect to the ground in order to lower the RCM point.
The end-effector 33, however, is mounted along the holder (b3 = 0 , see Figure 3A) and passes through the axis of the output shaft 31 and 34 so that b2 =[i (see Figure 3B).
In this case, the initial orientation is chosen to place the end-effector 33 vertically at an angle 8o = 90 -61. Moreover, it is possible to construct the holder 32 so that the pivot directions are orthogonal (y = 0 ) by connecting it on the opposite (inner) side 34 of the module. In the case that the end-effector 33 interferes with the link 18 for very small 8 angles, the outer mounting, which avoids interference, could also be employed. This unfolded mode with (3o near 90 is suitable for situations when the presence of the robotic module above the RCM pivot does not encumber the operation, in procedures such as robotically assisted laparoscopy.

[0045] Accordingly, the module can operate about a folded (a = 0 ), normal (,6 =
90 ), inverted (,(3 =-90 ), extended (J3 =180 ), or any unfolded position (R {-90 , 0 TECH/92369.1 12 90 , 180 )), with end-effector 33 mounting on either side of the mechanism.
The folded and unfolded operation niodes exemplified above are two preferred arrangements of initial positions, orientation of the module, holder design, and side mountings showing the large variety of potential architectures and application capabilities.

[0046] Figure 4 illustrates the kinematic design of the RCM module according to an embodiment of the present invention. Six links (1, 9, 10,18, 26, 31) and five revolute joints (2, 8, 17, 22, 30) are shown. One of these joints is passive (y adjustment 8) and three other joints (17, 22, 30) are kinematically coupled by belts, so that the mechanism presents only two active DOF (2,17-22-30).

[0047] Module 100 incorporates three main mechanisms: the base adjustment angle, the first pivoting joint of rotation a along the inclined direction xy, and the pseudo-parallelogram mechanism.

[0048] The base adjustment angle is realized by changing the angle between the elements 9 and 10 of module 100, which are coupled by the joint 8. A convex and respectively a concave cylindrical shape can be mated to implement the revolute joint 8, which can be set and locked at the desired orientation.

[0049] The first pivoting joint of rotation a along the inclined direction x.
is implemented by the revolute joint 2 acting between the input shaft 1 and the link 9. In the preferred embodiment, this joint is activated by a worm transmission 3-4 by mounting worm gear 3 on the input shaft 1. The worm transmission may be a Bail-Worm type.

A bevel gear transmission 6-7 is used to actuate the worm 4 from the actuator motor 11 of the first axis. These components are arranged so that the adjustment joint 8, the worm 4, and the bevel gear 6 are coaxial. The worm 4 and the bevel gear 6 are rigidly attached to one another and supported by a set of bearings 5 located at the center of convex joint surface of 9. This kinematic chain insures that the motion of the actuator motor 11 is transmitted to the output shaft 1 at any set position y of the adjustment joint 8. In this way the actuator motor 11 could be compactly located in the base link 10, together with the actuator motor 12 of the other pivoting axis.

The pseudo-parallelogram mechanism is implemented by the remaining components. For clarity, Figure 4 shows the module for a a= 900 angle of the second pivot axis. The parallelogram (more easily observed in the frontal views of Figure 1 C and Figure 3B) is formed between the links 18, 26, and the holder and/or end-effector 33. An imaginary line connects the output shaft 31 to the RCM
pivot. Three corner points of this parallelogram are located at joints 17, 22, and 30, and the fourth corner point is imaginary representing the second RCM
pivot.
In the RCM prototype, the parallelogram has equal sides of 100mm. The only actuated joint is 17 and the other two are coupled to it through belt-drive mechanisms of 1:1 non-slip transmission ratios implemented by the two belts 19 and 25 (timing belt, chain, cable chain, cable drive, metallic belts, etc.).

The revolute joint 17 acting between links 10 and 18 is engaged by the worm mechanism 13-14, actuated by the motor 12 mounted in the link 10, with the worm 13 supported by the set of bearings 15. Preferably, worm mechanism 13-14 is implemented by the mechanism described in provisional patent application 60/339,247.

[0053] An inverted-pulley mounting design can be used to generate the motion of a parallelogram mechanism with two belt-drives rather than a classic four-bar linkage. In this case, the motor rotates the link 18 with angle A; the link 26 stays parallel to the base 10 at any rotation P; and the output shaft 31 maintains its orientation (stays parallel) with respect to link 18. For this, the gear 14 spins the link 18 and not the pulley 16, which is attached to the base element 10. Thus, the second pulley 23 of the first belt 19, tensioned by the idler 21 mounted on the bearing 20, maintains its orientation with respect to the base 10. A similar inverted-pulley mounting is then employed for the second 26 and third 31 edge of the parallelogram.
Link 26 is attached through a shaft to the pulley 23, thus remaining parallel to base 10, and the first pulley 24 of the second belt 25 is connected to the previous link 18.
The idler 21 supported by the bearing 20 tensions the belt 25, coupling the second pulley 29. In this way the output shaft 31, which is attached to the pulley 29 maintains its relative orientation with respect to link 18, closing the pseudo-parallelogram mechanism.

[0054] The combined kinematic design implements an adjustable pivot RCM
mechanism of non-orthogonal xy & y I y> 0 axes at the RCM point, which can operate around any /3 angle (folded, normal, extended, inverted, or generally unfolded position), with bilateral end-effector mounting.

[0055] Certain mechanical aspects of the present invention are described with reference to Figures 5A - 5B. Figs. 5A - 5B illustrate a frontal view and a central cross-section A-A of the RCM module 100 in its folded position (,6 = 0 ) and with an TECH/92369.1 15 orthogonal pivot setup (y = 00). Figure 5B depicts an embodiment of the present invention using the Ball-Worm mechanisms.

For the Ball-Worm embodiment, the worm gears 3 and 14 have been machined on their shafts I and 35, respectively, as represented in the figure.
In the classic worm embodiment, the worm gears have been mounted on the shafts by press fitting and securing with a longitudinal key.

The bearings used to implement the joints of the kinematic design (Figure 4) are labelled with the same number in Figures 5b. For example, the shaft 1 is supported by two bearings 2. The adjustment joint 8 of the base angle y between the links 9 and 10 can be easily observed in the cross-section A-A, as well as co-axially with the axis of the worm 4. The links 18 and 26 can be covered with thin lids 42 and 43, respectively.

Figure 5B also depicts the inverted-pulley mounting of the belts 19 and 25.
The pulley 16 is fixed with respect to the base 10 and the gear 14 engages the link 18. Similarly, the pulley 24 is mounted on link 18, and the pulley 23 engages link 26.
The belts can be tensioned using idlers 21 and 28 mounted on the bearings 20 and 27 supported by the eccentric shafts 37 and 38, respectively, and locked by the flat head screws.

An angular adjustment at the level of the kinematic joint 22 has been incorporated for adjusting the angle between links 18 and 26 in the assembly process so that link 26 is parallel to the base link 10. This allows for mounting the pulleys on their shafts in any initial orientation, for tensioning of the belts, and performance of the "timing" of the belts. This mechanism allows for adjusting the angle between the pulley 23 and link 26 and locking it in the desired orientation. For this, the pulley 23 is mounted on a shaft 39 presenting a conic surface mated the shaft 40, which is attached to the link 26. The adjustment is performed setting the relative angle between the shafts 39 and 40 and locking it with the screw 41.

The output shaft presents a symmetric construction so that the end-effector holder can be mounted on the conic surface of either side 31 or side 34 with the screw 35. Figure 5B depicts the screw 35 mounted from the side 31 of the shaft 34 for attaching the holder on the side of the shaft 31 (outer side). For mounting on the opposite side (inner side) the screw 35 is reversed, with its head on the side 31 of the shaft.

Figures 6A and 6B present a top view of the module and an aligned cross section B-B through the center of the adjustment joint. The mechanism is represented at the middle of the base adjustment angle at y = 7.50 and for a folded position of the mechanism P = 0 .

Figure 6B depicts the base adjustment arrangement and its bilateral tensioning mechanism, which comprises the plate 46, the dowel pin 47, and the setscrew 48 presenting a tapered point. The dowel pin 47 is inserted into the link 9 presenting a radial channel 49 coaxial with the adjustment joint 8. In this way, the pin 47 can sweep the channel adjusting its location so that the tensioning plate maintains a normal direction at the surface of the joint 8. Thus, the plate 46 is secured at one end into the link 9 by pin 47. At the other end of the plate 46 is a hole, which is engaged on the conical part of the tapered setscrew 48, which is threaded into link 10. This acts like a wedge between the conical surface of 48 and the hole in plate 46, activated by the setscrew 48. By loosening the setscrews 48, on both sides of the link 10, the plate 46 is released unlocking the adjustment joint 8, and vice versa for locking.

Figure 6B also shows the placement of both actuator motors 11 and 12 compactly into the body of link 10, and the motor cover 44 allowing immediate access to the motors. All electric components, motor connectors, and redundant encoder connections, which have been incorporated in the second prototype, are placed in the hollow space of link 10, next to the motors. The wiring cable is released through the hole 45 drilled in the cap 44.

According to an embodiment of the present invention, the RCM module can be a Ball-Worm RCM (BW-RCM), that is, a robotic module for surgical applications that implements a fulcrum point located 100 mm distal to the mechanism. The BW-RCM presents a compact design and can be folded into a small structure and can weigh very little (e.g., 175 x 68 x 54 mm structure at only 1.35 Kg). The BW-RCM can precisely orient a surgical instrument in space while maintaining the location of one of its points.
The kinematic architecture of the RCM module of the present invention makes it suitable for minimally invasive applications as well as trocar/needle orientation in percutaneous procedures. The RCM module of the present invention can accommodate various end-effectors. For example, the RCM may be used in conjunction with the Percutaneous-Access-of-the-Kidney (PAKY) radiolucent needle driver (See : Stoianovici D, Cadeddu JA, Demaree RD, Basile HA, Taylor RH, Whitcomb LL, Sharpe WN, Kavoussi LR: An Efficient Needle Injection Technique and Radiological Guidance Method for Percutaneous Procedures. Lecture !Votes in Computer Science, 1997 CVRNled-MRCAS; Springer-Verlag, 1997; 1205:295-298;

Stoianovici D, Cadeddu JA, Demaree RD, Basile HA, Taylor RH, Whitcomb LL, Kavoussi LR: A Novel Mechanical Transmission Applied to Percutaneous Renal Access. Proceedings of the ASME Dynamic Systems and Control Division, 1997; DSC-61: 401-406; and Stoianovici D, Kavoussi LR, Whitcomb LL, Taylor RH, Cadeddu JA, Basile HA, Demaree RD. (1996). Published PCT document WO 98/36688 for performing image-guided percutaneous renal access. The robot can orient and insert the needle using X-ray fluoroscopy guidance from a C-Arm imager as controlled by the surgeon. With the PAKY radiolucent needle driver the module operates around a folded position [i = 00 thus clearing the x-ray field, and uses a base adjustment angle y= 9.3 thus generating a non-orthogonal pivot. The system can be used for percutaneous renal access, offering an unquestionable improvement of needle placement accuracy and procedure time while reducing the radiation exposure to patient and urologist.
[0066] The RCM module of the present invention can be used with a special needle driver for computer topography (CT) registration. The Z-Stage PAKY is a modified version of the PAKY needle driver adapted to implement a CT/MRI
registration method in addition to PAKY's needle driving capabilities, constructed in collaboration with the National Science Foundation (NSF) Engineering Research Center for Computer Integrated Surgical Systems and Technology (CISST) at the Johns Hopkins University and the University of Tokyo . As with the PAKY driver, the RCM also operates in a folded mode with non-orthogonal axes.

Figure 7 shows that under CT guidance, the RCM module of the present invention can be used for kidney and spine percutaneous procedures using a simple method for robot registration in CT and MR imaging system. The method uses the laser markers readily available on any CT scanner and does not require imaging thus eliminating radiation exposure. Unlike the manual approach, the method allows for performing oblique insertions, for which the skin entry point and the target are located in different slices.

A high DOF robotic system incorporating the RCM has been developed in for CT guidance operations. Figure 8 shows this system configured for CT-guided percutaneous renal access. As it can be observed in the picture, in this case the robot also presents a folded non-orthogonal operation mode (go = 0 , y= 9.3 ), but it is placed vertically for perineal access, presenting a base inclination angle (Figure 2) of b1= 90 .
Accordingly, described above is an RCM module, which is a compact robotic module capable of orienting an end-effector in two directions in space about a pivot point located distal to the mechanism. Applications of the remote pivoting motion include industrial and, most importantly, surgical operations because this type of motion is commonly involved in manual surgical practice. The module accommodates various end-effectors and operation modes yielding application flexibility. The multiple clinical applications performed with multiple modular arrangements show the versatility of the RCM, its utility and safety for surgical use.

[0070] Thus, having fully described the invention by way of example with reference to the attached drawing figures, it will readily be appreciated that many changes and modifications may be made to the invention and to the embodiments disclosed without departing from the scope and spirit of the invention as defined by the appended claims.

TECH/92369.1 21

Claims (27)

WHAT IS CLAIMED IS:
1. A remote center of motion robotic system comprising:
a base link unit;
a connecting link unit, the connecting link unit moveably coupled to the base link unit at a first rotating joint;
the first rotating joint comprising a first round member and a first rotation axis, the connecting link unit rotates around the first rotation axis, and the first round member is coupled to the base link unit such that the angle of the first round member with respect to the base link unit is constant;
an end link unit, the end link unit moveably coupled to the connecting link unit at a second rotating joint;
the second rotating joint comprising a second round member, a third round member and a second rotation axis, the end link unit rotates around the second rotation axis, the second round member is coupled to the end link unit such that the angle of the second round member with respect to the end link unit is constant, the third round member is coupled to the connecting link unit such that the angle of the third round member with respect to the connecting link unit is constant, the first round member is coupled to the second round member so that the angle of the first round member with respect to the second round member is constant;
a base unit, the base unit comprising a base rotating joint; and the base rotating joint comprising a base unit round member moveably coupled to the base unit so that the base unit can rotate around a base axis, the base unit round member configured to couple the base unit to a base, wherein the base link unit is moveably coupled to the base unit at a pivot joint, the pivot joint having a pivot axis that is not parallel to the base axis.
2. The remote center of motion robotic system of claim 1, further comprising: a base unit rotating motor drivingly coupled to the base rotating joint to rotate the base unit around the base axis.
3. The remote center of motion robotic system of claim 1, further comprising: a connecting unit rotating motor drivingly coupled to the connecting link unit to rotate the connecting link unit around the first axis.
4. The remote center of motion robotic system of claim 3, further comprising a base unit rotating motor drivingly coupled to the base rotating joint by a first worm gear drive that rotates the base unit about the base axis to rotate the base unit around the base axis; and wherein the connecting unit rotating motor is drivingly coupled to the connecting link unit with a second worm gear drive that rotates the connecting link unit about the first rotation axis.
5. The remote center of motion robotic system of claim 1, wherein the pivot axis and the base axis are orthogonal.
6. The remote center of motion robotic system of claim 1, wherein the first rotation axis and the pivot axis are orthogonal.
7. The remote center of motion robotic system of claim 1, wherein the pivot joint is a passive joint, said passive joint setting an adjustment angle of base axis from an X axis parallel to the base link unit.
8. The remote center of motion robotic system of claim 1, further comprising: a third rotating joint, the third rotating joint is carried by the end link unit, the third rotating joint comprising a fourth round member that rotates around a third rotation axis, the third round member is coupled to the fourth round member so that the angle of the third round member with respect to the fourth round member is constant.
9. The remote center of motion robotic system of claim 8, further comprising: an end-effector, the end-effector coupled to the end link unit at the third rotating joint, the end-effector coupled to the fourth round member so that the angle of the fourth round member with respect to the end-effector is constant.
10. The remote center of motion robotic system of claim 9, wherein changing the angle between the base link unit and the connecting link unit allows an rcm end of the end-effector to rotate about a remote center of motion point.
11. The remote center of motion robotic system of claim 9, wherein the end-effector is coupled to the end link unit in a position parallel to the connecting link unit.
12. The remote center of motion robotic system of claim 8, wherein the first round member is coupled to the second round member with a first belt drive;
and the third round member is coupled to the fourth round member with a second belt drive.
13. The remote center of motion robotic system of claim 8, further comprising: a connecting unit rotating motor drivingly coupled to the connecting link unit to rotate the connecting link unit around the first axis.
14. The remote center of motion robotic system of claim 13, further comprising: a base unit rotating motor drivingly coupled to the base rotating joint to rotate the base unit around the base axis.
15. A remote center of motion robotic system comprising:
a base unit, the base unit comprising a base rotating joint; the base rotating joint comprising a base unit round member moveably coupled to the base unit so that the base unit can rotate around a base axis, the base unit round member configured to couple the base unit to a base;
a base unit rotating motor drivingly coupled to the base rotating joint to rotate the base unit around the base axis;
a base link unit, the base link unit moveably coupled to the base unit at a pivot joint, the pivot joint having a pivot axis that is not parallel to the base axis;
a connecting link unit, the connecting link unit moveably coupled to the base link unit at a first rotating joint;
the first rotating joint comprising a first round member and a first rotation axis, the connecting link unit rotates around the first rotation axis, and the first round member is coupled to the base link unit such that the angle of the first round member with respect to the base link unit is constant;
a connecting link rotating motor drivingly coupled to the connecting link unit to rotate the connecting link around the first rotation axis;
an end link unit, the end link unit moveably coupled to the connecting link unit at a second rotating joint;
the second rotating joint comprising a second round member, a third round member and a second rotation axis, the second and third round members rotate around the second rotation axis, the end link unit rotates around the second rotation axis, the second round member is coupled to the end link unit such that the angle of the second round member with respect to the end link unit is constant, the third round member is coupled to the connecting link unit such that the angle of the third round member with respect to the connecting link unit is constant, the first round member is coupled to the second round member so that the angle of the first round member with respect to the second round member is constant;
a third rotating joint, the third rotating joint is carried by the end link unit, the third rotating joint comprising a fourth round member that rotates around a third rotation axis, the third round member is coupled to the fourth round member so that the angle of the third round member with respect to the fourth round member is constant; and an end-effector, the end-effector is coupled to the end link unit at the third rotating joint so that the angle of the fourth round member with respect to the end-effector is constant.
16. A remote center of motion robotic system comprising:
a base linking unit;
a connecting linking unit;
first rotating joint means for moveably connecting the base linking unit to the connecting linking unit; an end linking unit;
a second rotating joint means for moveably connecting the connecting linking unit to the end linking unit; kinematic means for kinematically connecting the first and second rotating joint means;
a base rotating joint means for coupling a base unit to a base; and a pivot means for coupling the base unit to the base linking unit.
17. The remote center of motion robotic system of claim 16, further comprising: a base unit rotating means coupled to the base rotating joint means for rotating the base unit around a base axis.
18. The remote center of motion robotic system of claim 16, further comprising: a connecting unit rotating means coupled to connecting linking unit for rotating the connecting linking unit around a first axis.
19. The remote center of motion robotic system of claim 16, wherein the pivot means is a passive joint means for setting an adjustment angle of the base axis from an X axis parallel to the base linking unit.
20. The remote center of motion robotic system of claim 16, further comprising: a third rotating joint means for coupling an end-effector to the end linking unit, wherein the kinematic means kinematically connects the first, second and third rotation joint means.
21. The remote center of motion robotic system of claim 20, further comprising: an end-effector, the end-effector coupled to the end linking unit with the third rotating joint means.
22. The remote center of motion robotic system of claim 21, wherein changing the angle between the base linking unit and the connecting linking unit allows an rcm end of the end-effector to rotate about a remote center of motion point.
23. The remote center of motion robotic system of claim 21, wherein the end-effector is coupled to the end linking unit in a position parallel to the connecting linking unit.
24. The remote center of motion robotic system of claim 20 wherein the kinematic means is at least one belt drive.
25. The remote center of motion robotic system of claim 20, further comprising: a connecting unit rotating means coupled to the connecting linking unit to rotate the connecting linking unit around a first axis.
26. The remote center of motion robotic system of claim 25, further comprising: a base unit rotating means coupled to the base rotating joint means for rotating the base unit around the base axis.
27. A remote center of motion robotic system comprising:
a base unit; a base rotating joint means for connecting the base unit to a base and for allowing the base unit to rotate around a base axis with respect to the base;
a base unit rotating means coupled to the base rotating joint means for rotating the base unit around the base axis;

a base linking unit;
a pivot joint means for moveably coupling the base unit to the base linking unit;
a connecting linking unit; a first rotating joint means for coupling the connecting linking unit to the base linking unit; a connecting link rotating means for rotating the connecting link around a first rotation axis;
an end linking unit; a second rotating joint means for coupling the end linking unit to the connecting linking unit;
an end-effector;
a third rotating joint means for connecting the end-effector to the end linking unit; and a kinematic means for kinematically connecting the first, second and third rotating joint means.
CA002475239A 2002-02-06 2003-02-06 Remote center of motion robotic system and method Expired - Lifetime CA2475239C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US35465602P 2002-02-06 2002-02-06
US60/354,656 2002-02-06
PCT/US2003/001090 WO2003067341A2 (en) 2002-02-06 2003-02-06 Remote center of motion robotic system and method

Publications (2)

Publication Number Publication Date
CA2475239A1 CA2475239A1 (en) 2003-08-14
CA2475239C true CA2475239C (en) 2008-07-29

Family

ID=27734404

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002475239A Expired - Lifetime CA2475239C (en) 2002-02-06 2003-02-06 Remote center of motion robotic system and method

Country Status (7)

Country Link
US (1) US7021173B2 (en)
EP (1) EP1472579B1 (en)
JP (1) JP2005516786A (en)
CN (1) CN100349705C (en)
AU (1) AU2003214837B2 (en)
CA (1) CA2475239C (en)
WO (1) WO2003067341A2 (en)

Families Citing this family (152)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6626899B2 (en) 1999-06-25 2003-09-30 Nidus Medical, Llc Apparatus and methods for treating tissue
US8768516B2 (en) 2009-06-30 2014-07-01 Intuitive Surgical Operations, Inc. Control of medical robotic system manipulator about kinematic singularities
US7594912B2 (en) 2004-09-30 2009-09-29 Intuitive Surgical, Inc. Offset remote center manipulator for robotic surgery
US7766894B2 (en) 2001-02-15 2010-08-03 Hansen Medical, Inc. Coaxial catheter system
US8414505B1 (en) 2001-02-15 2013-04-09 Hansen Medical, Inc. Catheter driver system
US6517546B2 (en) * 2001-03-13 2003-02-11 Gregory R. Whittaker Method and apparatus for fixing a graft in a bone tunnel
US7195642B2 (en) * 2001-03-13 2007-03-27 Mckernan Daniel J Method and apparatus for fixing a graft in a bone tunnel
US7594917B2 (en) * 2001-03-13 2009-09-29 Ethicon, Inc. Method and apparatus for fixing a graft in a bone tunnel
US7331967B2 (en) * 2002-09-09 2008-02-19 Hansen Medical, Inc. Surgical instrument coupling mechanism
US6840127B2 (en) * 2003-02-05 2005-01-11 Michael Julius Moran Tendon link mechanism with six degrees of freedom
US8007511B2 (en) 2003-06-06 2011-08-30 Hansen Medical, Inc. Surgical instrument design
US7976539B2 (en) 2004-03-05 2011-07-12 Hansen Medical, Inc. System and method for denaturing and fixing collagenous tissue
US7972298B2 (en) * 2004-03-05 2011-07-05 Hansen Medical, Inc. Robotic catheter system
US7971505B2 (en) * 2004-03-11 2011-07-05 Ntn Corporation Link actuating device
US20050267359A1 (en) * 2004-05-27 2005-12-01 General Electric Company System, method, and article of manufacture for guiding an end effector to a target position within a person
US9261172B2 (en) * 2004-09-30 2016-02-16 Intuitive Surgical Operations, Inc. Multi-ply strap drive trains for surgical robotic arms
US10646292B2 (en) 2004-09-30 2020-05-12 Intuitive Surgical Operations, Inc. Electro-mechanical strap stack in robotic arms
US7763015B2 (en) * 2005-01-24 2010-07-27 Intuitive Surgical Operations, Inc. Modular manipulator support for robotic surgery
CN101389284B (en) * 2005-01-28 2012-07-04 马萨诸塞总医院 Guidance and insertion system
JP2016190297A (en) * 2015-03-31 2016-11-10 セイコーエプソン株式会社 Robot system
EP1906858B1 (en) 2005-07-01 2016-11-16 Hansen Medical, Inc. Robotic catheter system
GB0521281D0 (en) 2005-10-19 2005-11-30 Acrobat Company The Ltd hybrid constrant mechanism
US7955322B2 (en) 2005-12-20 2011-06-07 Intuitive Surgical Operations, Inc. Wireless communication in a robotic surgical system
US20100228096A1 (en) * 2009-03-06 2010-09-09 Ethicon Endo-Surgery, Inc. Methods and devices for providing access into a body cavity
US8062211B2 (en) 2006-06-13 2011-11-22 Intuitive Surgical Operations, Inc. Retrograde instrument
EP2034921B1 (en) 2006-06-19 2018-10-10 Robarts Research Institute Apparatus for guiding a medical tool
US8900306B2 (en) 2006-09-26 2014-12-02 DePuy Synthes Products, LLC Nucleus anti-expulsion devices and methods
CN100425409C (en) * 2006-12-13 2008-10-15 北京航空航天大学 Rope-driven two-dimensional virtual center rotation mechanism
US8444631B2 (en) 2007-06-14 2013-05-21 Macdonald Dettwiler & Associates Inc Surgical manipulator
WO2009079781A1 (en) * 2007-12-21 2009-07-02 Macdonald Dettwiler & Associates Inc. Surgical manipulator
US7967549B2 (en) * 2008-05-15 2011-06-28 The Boeing Company Robotic system including foldable robotic arm
US9610131B2 (en) 2008-11-05 2017-04-04 The Johns Hopkins University Rotating needle driver and apparatuses and methods related thereto
US20100126293A1 (en) * 2008-11-21 2010-05-27 Comau Inc. Robotic radial tool positioning system
US9737334B2 (en) * 2009-03-06 2017-08-22 Ethicon Llc Methods and devices for accessing a body cavity
US20100228090A1 (en) * 2009-03-06 2010-09-09 Ethicon Endo-Surgery, Inc. Methods and devices for providing access into a body cavity
US9254123B2 (en) 2009-04-29 2016-02-09 Hansen Medical, Inc. Flexible and steerable elongate instruments with shape control and support elements
GB0908368D0 (en) 2009-05-15 2009-06-24 Univ Leuven Kath Adjustable remote center of motion positioner
WO2010140016A1 (en) 2009-06-03 2010-12-09 Moog B.V. Skewed-axis three degree-of-freedom remote-center gimbal
CN102029608A (en) * 2009-09-24 2011-04-27 鸿富锦精密工业(深圳)有限公司 Robot
US9474540B2 (en) 2009-10-08 2016-10-25 Ethicon-Endo-Surgery, Inc. Laparoscopic device with compound angulation
SE0901394A1 (en) * 2009-10-30 2010-10-12 Olaf Ruppel Adjustable arm for grippers
CN101708129B (en) * 2009-11-04 2012-05-09 温州医学院 Remote-control apparatus for alimentary tract endoscope interventional treatment
US8376938B2 (en) * 2009-11-20 2013-02-19 Ethicon Endo-Surgery, Inc. Discrete flexion head for single port device
US8460186B2 (en) * 2009-12-11 2013-06-11 Ethicon Endo-Surgery, Inc. Methods and devices for providing access through tissue to a surgical site
US8357088B2 (en) * 2009-12-11 2013-01-22 Ethicon Endo-Surgery, Inc. Methods and devices for providing access into a body cavity
US8414483B2 (en) * 2009-12-11 2013-04-09 Ethicon Endo-Surgery, Inc. Methods and devices for providing access into a body cavity
US8444557B2 (en) * 2009-12-11 2013-05-21 Ethicon Endo-Surgery, Inc. Methods and devices for providing access through tissue to a surgical site
US8500633B2 (en) * 2009-12-11 2013-08-06 Ethicon Endo-Surgery, Inc. Methods and devices for providing surgical access through tissue to a surgical site
US8517932B2 (en) * 2009-12-11 2013-08-27 Ethicon Endo-Surgery, Inc. Methods and devices for providing access through tissue to a surgical site
US8231570B2 (en) * 2009-12-11 2012-07-31 Ethicon Endo-Surgery, Inc. Inverted conical expandable retractor
US8435174B2 (en) * 2009-12-11 2013-05-07 Ethicon Endo-Surgery, Inc. Methods and devices for accessing a body cavity
US8353873B2 (en) * 2009-12-11 2013-01-15 Ethicon Endo-Surgery, Inc. Methods and devices for providing access through tissue to a surgical site
US8282546B2 (en) * 2009-12-11 2012-10-09 Ethicon Endo-Surgery, Inc. Inverted conical expandable retractor with coil spring
IT1399603B1 (en) 2010-04-26 2013-04-26 Scuola Superiore Di Studi Universitari E Di Perfez ROBOTIC SYSTEM FOR MINIMUM INVASIVE SURGERY INTERVENTIONS
US8562592B2 (en) 2010-05-07 2013-10-22 Ethicon Endo-Surgery, Inc. Compound angle laparoscopic methods and devices
US9226760B2 (en) 2010-05-07 2016-01-05 Ethicon Endo-Surgery, Inc. Laparoscopic devices with flexible actuation mechanisms
KR101205364B1 (en) * 2010-05-13 2012-11-28 삼성중공업 주식회사 Industrial manipulators having attachable and detachable 4-bar-linkage-typed mechanical driving module
WO2011149260A2 (en) * 2010-05-28 2011-12-01 주식회사 이턴 Rcm structure for a surgical robot arm
KR101550451B1 (en) * 2010-08-10 2015-09-07 (주)미래컴퍼니 RCM structure of surgical robot arm
US8460337B2 (en) 2010-06-09 2013-06-11 Ethicon Endo-Surgery, Inc. Selectable handle biasing
WO2012020386A1 (en) 2010-08-11 2012-02-16 Ecole Polytechnique Federale De Lausanne (Epfl) Mechanical positioning system for surgical instruments
CA2713053A1 (en) 2010-08-12 2012-02-12 Socpra-Sciences Et Genie S.E.C. Device for orienting an object according to a given spatial orientation
CN102371590A (en) * 2010-08-25 2012-03-14 鸿富锦精密工业(深圳)有限公司 Arm structure of robot
WO2012049623A1 (en) 2010-10-11 2012-04-19 Ecole Polytechnique Federale De Lausanne (Epfl) Mechanical manipulator for surgical instruments
US8603078B2 (en) 2010-10-13 2013-12-10 Ethicon Endo-Surgery, Inc. Methods and devices for guiding and supporting surgical instruments
US20140039314A1 (en) * 2010-11-11 2014-02-06 The Johns Hopkins University Remote Center of Motion Robot for Medical Image Scanning and Image-Guided Targeting
WO2012100211A2 (en) 2011-01-20 2012-07-26 Hansen Medical, Inc. System and method for endoluminal and transluminal therapy
CN102229145A (en) * 2011-06-23 2011-11-02 哈尔滨工程大学 Secondary oscillating joint structure of underwater electric manipulator
WO2013014621A2 (en) 2011-07-27 2013-01-31 Ecole Polytechnique Federale De Lausanne (Epfl) Mechanical teleoperated device for remote manipulation
US9138166B2 (en) 2011-07-29 2015-09-22 Hansen Medical, Inc. Apparatus and methods for fiber integration and registration
US9227326B2 (en) 2011-08-11 2016-01-05 The Board Of Trustees Of The Leland Stanford Junior University Remote center of motion mechanism and method of use
US8617176B2 (en) 2011-08-24 2013-12-31 Depuy Mitek, Llc Cross pinning guide devices and methods
CN103170987B (en) * 2011-12-21 2015-06-03 中国科学院沈阳自动化研究所 Planet surface mechanical arm sampling device
US9956042B2 (en) 2012-01-13 2018-05-01 Vanderbilt University Systems and methods for robot-assisted transurethral exploration and intervention
US9539726B2 (en) * 2012-04-20 2017-01-10 Vanderbilt University Systems and methods for safe compliant insertion and hybrid force/motion telemanipulation of continuum robots
US9687303B2 (en) 2012-04-20 2017-06-27 Vanderbilt University Dexterous wrists for surgical intervention
US9549720B2 (en) 2012-04-20 2017-01-24 Vanderbilt University Robotic device for establishing access channel
CN104334112B (en) * 2012-06-01 2017-10-27 直观外科手术操作公司 Multiport surgical robot system framework
WO2013181522A1 (en) 2012-06-01 2013-12-05 Intuitive Surgical Operations, Inc. Redundant axis and degree of freedom for hardware-constrained remote center robotic manipulator
CN104349741B (en) 2012-06-01 2017-03-22 直观外科手术操作公司 Surgical instrument manipulator aspects
BR112015001895A2 (en) 2012-08-02 2017-07-04 Koninklijke Philips Nv robotic surgical system, and robotic method
CN102922509A (en) * 2012-09-27 2013-02-13 北京航空航天大学 Modularized two-DOF (Degree of Freedom) parallel mechanism with virtual rotating center
US20140148673A1 (en) 2012-11-28 2014-05-29 Hansen Medical, Inc. Method of anchoring pullwire directly articulatable region in catheter
US20140277334A1 (en) 2013-03-14 2014-09-18 Hansen Medical, Inc. Active drives for robotic catheter manipulators
US9326822B2 (en) 2013-03-14 2016-05-03 Hansen Medical, Inc. Active drives for robotic catheter manipulators
US20140276936A1 (en) 2013-03-15 2014-09-18 Hansen Medical, Inc. Active drive mechanism for simultaneous rotation and translation
US9408669B2 (en) 2013-03-15 2016-08-09 Hansen Medical, Inc. Active drive mechanism with finite range of motion
EP3003180B1 (en) 2013-03-28 2019-02-27 Koninklijke Philips N.V. Localization of robotic remote center of motion point using custom trocar
CN106659540B (en) * 2014-02-03 2019-03-05 迪斯塔莫申股份公司 Mechanical remote control operating device including distal end instrument can be exchanged
JP6881979B2 (en) * 2014-02-04 2021-06-02 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Definition of remote motion centers with light sources for robotic systems
US10046140B2 (en) 2014-04-21 2018-08-14 Hansen Medical, Inc. Devices, systems, and methods for controlling active drive systems
US9549781B2 (en) 2014-05-30 2017-01-24 The Johns Hopkins University Multi-force sensing surgical instrument and method of use for robotic surgical systems
JP6715823B2 (en) * 2014-07-15 2020-07-01 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Image integration and robotic endoscope control in X-ray suite
EP3185808B1 (en) 2014-08-27 2022-02-23 DistalMotion SA Surgical system for microsurgical techniques
WO2016051746A1 (en) * 2014-09-30 2016-04-07 Seiko Epson Corporation Robot and robot system
EP3232973B1 (en) 2014-12-19 2020-04-01 DistalMotion SA Sterile interface for articulated surgical instruments
EP3232977B1 (en) 2014-12-19 2020-01-29 DistalMotion SA Docking system for mechanical telemanipulator
US10864052B2 (en) 2014-12-19 2020-12-15 Distalmotion Sa Surgical instrument with articulated end-effector
EP3232974B1 (en) 2014-12-19 2018-10-24 DistalMotion SA Articulated handle for mechanical telemanipulator
EP4342412A2 (en) 2014-12-19 2024-03-27 DistalMotion SA Reusable surgical instrument for minimally invasive procedures
CN105832412B (en) * 2015-01-12 2018-05-29 上银科技股份有限公司 For auxiliary locator used in introscope localization method and the localization method
DE102015101018A1 (en) * 2015-01-23 2016-07-28 MAQUET GmbH Device for holding and moving a laparoscope during an operation
KR101666103B1 (en) * 2015-02-02 2016-10-13 하이윈 테크놀로지스 코포레이션 Method for positioning endoscope and auxiliary device for same method
JP6677970B2 (en) * 2015-02-20 2020-04-08 川崎重工業株式会社 Industrial robot
JP2016190296A (en) * 2015-03-31 2016-11-10 セイコーエプソン株式会社 Robot system
JP6582492B2 (en) * 2015-03-31 2019-10-02 セイコーエプソン株式会社 Robot system
JP6582491B2 (en) * 2015-03-31 2019-10-02 セイコーエプソン株式会社 robot
JP2016190294A (en) * 2015-03-31 2016-11-10 セイコーエプソン株式会社 Robot system
JP2016190298A (en) * 2015-03-31 2016-11-10 セイコーエプソン株式会社 Robot and robot system
EP3280337B1 (en) 2015-04-09 2019-11-13 DistalMotion SA Articulated hand-held instrument
WO2016162752A1 (en) 2015-04-09 2016-10-13 Distalmotion Sa Mechanical teleoperated device for remote manipulation
JP6528525B2 (en) * 2015-04-27 2019-06-12 セイコーエプソン株式会社 Robot and robot system
JP6511939B2 (en) 2015-04-27 2019-05-15 セイコーエプソン株式会社 robot
WO2016174841A1 (en) 2015-04-28 2016-11-03 セイコーエプソン株式会社 Robot system and robot
JP6582520B2 (en) * 2015-04-28 2019-10-02 セイコーエプソン株式会社 robot
CN106078675A (en) * 2015-04-28 2016-11-09 精工爱普生株式会社 Robot
GB201512966D0 (en) 2015-07-22 2015-09-02 Cambridge Medical Robotics Ltd Drive arrangements for robot arms
KR200479723Y1 (en) * 2015-08-21 2016-03-03 (주)미래컴퍼니 RCM structure of surgical robot arm
WO2017037532A1 (en) 2015-08-28 2017-03-09 Distalmotion Sa Surgical instrument with increased actuation force
JP2017052016A (en) * 2015-09-07 2017-03-16 セイコーエプソン株式会社 Robot, control device and robot system
CN107053252B (en) 2015-10-30 2021-07-16 精工爱普生株式会社 Robot
JP6766339B2 (en) * 2015-11-02 2020-10-14 セイコーエプソン株式会社 Robots and robot systems
JP2017087301A (en) * 2015-11-02 2017-05-25 セイコーエプソン株式会社 Robot, control device and robot system
JP6686644B2 (en) 2016-04-06 2020-04-22 セイコーエプソン株式会社 Robots and robot systems
WO2017203026A2 (en) 2016-05-26 2017-11-30 Siemens Healthcare Gmbh 3d printed robot for holding medical instruments during procedures and its control
JP2018001315A (en) * 2016-06-29 2018-01-11 セイコーエプソン株式会社 Robot, control device, and robot system
JP2018001313A (en) * 2016-06-29 2018-01-11 セイコーエプソン株式会社 Robot, robot control device, and robot system
JP6769771B2 (en) * 2016-07-28 2020-10-14 株式会社Ihi Waste dismantling equipment and methods
US10463439B2 (en) 2016-08-26 2019-11-05 Auris Health, Inc. Steerable catheter with shaft load distributions
US11241559B2 (en) 2016-08-29 2022-02-08 Auris Health, Inc. Active drive for guidewire manipulation
WO2018053361A1 (en) 2016-09-16 2018-03-22 Verb Surgical Inc. Multi-degree of freedom sensor
ES2903422T3 (en) * 2016-09-16 2022-04-01 Verb Surgical Inc Belt termination and tension in pulley arrangement for a robotic arm
WO2018075527A1 (en) 2016-10-18 2018-04-26 Intuitive Surgical Operations, Inc. Computer-assisted teleoperated surgery systems and methods
EP3576596A4 (en) 2016-12-02 2021-01-06 Vanderbilt University Steerable endoscope with continuum manipulator
CN106584445B (en) * 2016-12-16 2018-12-25 微创(上海)医疗机器人有限公司 Fixed point mechanism
US11058503B2 (en) 2017-05-11 2021-07-13 Distalmotion Sa Translational instrument interface for surgical robot and surgical robot systems comprising the same
JP2018187749A (en) 2017-05-11 2018-11-29 セイコーエプソン株式会社 robot
US10967504B2 (en) 2017-09-13 2021-04-06 Vanderbilt University Continuum robots with multi-scale motion through equilibrium modulation
JP7013766B2 (en) * 2017-09-22 2022-02-01 セイコーエプソン株式会社 Robot control device, robot system, and control method
CN107639627A (en) * 2017-09-29 2018-01-30 重庆金山医疗器械有限公司 Parallelogram drive mechanism
AU2019218707A1 (en) 2018-02-07 2020-08-13 Distalmotion Sa Surgical robot systems comprising robotic telemanipulators and integrated laparoscopy
JP7167522B2 (en) * 2018-07-27 2022-11-09 セイコーエプソン株式会社 robot arm
CN109394342B (en) * 2018-12-18 2023-09-05 中国科学院苏州生物医学工程技术研究所 Needle insertion device of puncture robot based on double-parallelogram RCM mechanism
WO2020144714A1 (en) * 2019-01-11 2020-07-16 Indian Council Of Medical Research Robotic system
CA3082629A1 (en) * 2019-07-04 2021-01-04 Aaron Fenster Biopsy apparatus
US11071601B2 (en) 2019-11-11 2021-07-27 Procept Biorobotics Corporation Surgical probes for tissue resection with robotic arms
CN111166471B (en) * 2020-01-09 2020-12-22 浙江理工大学 Three-axis intersection type active and passive hybrid surgical endoscope holding arm
CN111227940B (en) * 2020-01-23 2021-11-30 诺创智能医疗科技(杭州)有限公司 Operation arm and operation robot
US11877818B2 (en) * 2020-06-26 2024-01-23 Procept Biorobotics Corporation Integration of robotic arms with surgical probes
US11096753B1 (en) 2020-06-26 2021-08-24 Procept Biorobotics Corporation Systems and methods for defining and modifying range of motion of probe used in patient treatment
CN218899904U (en) * 2021-10-03 2023-04-25 崔迪 Ophthalmic surgery robot and ophthalmic surgery equipment
US11844585B1 (en) 2023-02-10 2023-12-19 Distalmotion Sa Surgical robotics systems and devices having a sterile restart, and methods thereof

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4068763A (en) * 1976-07-26 1978-01-17 Nasa Wrist joint assembly
US4098001A (en) * 1976-10-13 1978-07-04 The Charles Stark Draper Laboratory, Inc. Remote center compliance system
US4149278A (en) * 1977-09-27 1979-04-17 Nasa Compact artificial hand
US4355469A (en) * 1980-11-28 1982-10-26 The Charles Stark Draper Laboratory, Inc. Folded remote center compliance device
US4477975A (en) * 1981-05-22 1984-10-23 The Charles Stark Draper Laboratory Adjustable remote center compliance device
US4409736A (en) * 1981-07-31 1983-10-18 The Charles Stark Draper Laboratory, Inc. Null seeking system for remote center compliance device
EP0078113A3 (en) * 1981-10-26 1984-05-30 United Kingdom Atomic Energy Authority A manipulator
US4537557A (en) * 1982-04-23 1985-08-27 The Charles Stark Draper Laboratory, Inc. Remote center compliance gripper system
US4556203A (en) * 1984-01-05 1985-12-03 The Charles Stark Draper Laboratory, Inc. Remote center compliance device
JPS60186384A (en) * 1984-03-07 1985-09-21 株式会社日立製作所 Drive for robot
JP2535366B2 (en) * 1988-01-09 1996-09-18 ファナック株式会社 Method and device for confirming operation ability of industrial robot
US5207114A (en) * 1988-04-21 1993-05-04 Massachusetts Institute Of Technology Compact cable transmission with cable differential
JPH03114460A (en) * 1989-09-29 1991-05-15 Mitaka Koki Kk Three-dimensional stereotaxic apparatus for medical use
US5647554A (en) * 1990-01-23 1997-07-15 Sanyo Electric Co., Ltd. Electric working apparatus supplied with electric power through power supply cord
US5279309A (en) * 1991-06-13 1994-01-18 International Business Machines Corporation Signaling device and method for monitoring positions in a surgical operation
US5305653A (en) * 1991-09-30 1994-04-26 Tokico Ltd. Robot wrist mechanism
US5515478A (en) * 1992-08-10 1996-05-07 Computer Motion, Inc. Automated endoscope system for optimal positioning
US5524180A (en) * 1992-08-10 1996-06-04 Computer Motion, Inc. Automated endoscope system for optimal positioning
JP3273084B2 (en) * 1992-08-20 2002-04-08 オリンパス光学工業株式会社 Medical device holder device
US5397323A (en) * 1992-10-30 1995-03-14 International Business Machines Corporation Remote center-of-motion robot for surgery
JP2665052B2 (en) * 1993-05-14 1997-10-22 エスアールアイ インターナショナル Remote center positioning device
JP3476878B2 (en) * 1993-11-15 2003-12-10 オリンパス株式会社 Surgical manipulator
US5876325A (en) * 1993-11-02 1999-03-02 Olympus Optical Co., Ltd. Surgical manipulation system
US5765444A (en) * 1995-07-10 1998-06-16 Kensington Laboratories, Inc. Dual end effector, multiple link robot arm system with corner reacharound and extended reach capabilities
US5792135A (en) * 1996-05-20 1998-08-11 Intuitive Surgical, Inc. Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
US5807377A (en) * 1996-05-20 1998-09-15 Intuitive Surgical, Inc. Force-reflecting surgical instrument and positioning mechanism for performing minimally invasive surgery with enhanced dexterity and sensitivity
US6047610A (en) * 1997-04-18 2000-04-11 Stocco; Leo J Hybrid serial/parallel manipulator
WO2000007503A1 (en) * 1998-08-04 2000-02-17 Intuitive Surgical, Inc. Manipulator positioning linkage for robotic surgery
DE19840358A1 (en) * 1998-09-04 2000-03-09 Motan Holding Gmbh Heating of bulk material, especially polymer chips prior to injection molding machine, involves a hot air stream flowing transversely to the material stream
JP2000141270A (en) * 1998-11-06 2000-05-23 Matsushita Electric Ind Co Ltd Articulated robot
JP3926501B2 (en) * 1998-11-13 2007-06-06 ナブテスコ株式会社 Robot arm and its driving device
JP3326472B2 (en) * 1999-11-10 2002-09-24 独立行政法人 航空宇宙技術研究所 Articulated robot
JP2001310287A (en) * 2000-04-28 2001-11-06 Shinko Electric Co Ltd Arm device for robot
EP1463611A2 (en) * 2001-10-31 2004-10-06 Thermo CRS Ltd. A robotic device for loading laboratory
US6675671B1 (en) * 2002-05-22 2004-01-13 Sandia Corporation Planar-constructed spatial micro-stage

Also Published As

Publication number Publication date
JP2005516786A (en) 2005-06-09
CN100349705C (en) 2007-11-21
CA2475239A1 (en) 2003-08-14
EP1472579A4 (en) 2009-08-12
AU2003214837A1 (en) 2003-09-02
CN1642696A (en) 2005-07-20
EP1472579A2 (en) 2004-11-03
US7021173B2 (en) 2006-04-04
WO2003067341A3 (en) 2004-02-26
AU2003214837B2 (en) 2008-06-12
US20030221504A1 (en) 2003-12-04
WO2003067341A2 (en) 2003-08-14
EP1472579B1 (en) 2013-05-01

Similar Documents

Publication Publication Date Title
CA2475239C (en) Remote center of motion robotic system and method
JP6907299B2 (en) Aspect of surgical instrument manipulator
US10779711B2 (en) Center robotic arm with five-bar spherical linkage for endoscopic camera
US6997866B2 (en) Devices for positioning implements about fixed points
JP6297084B2 (en) Surgical tool with a small list
US8282653B2 (en) System and methods for controlling surgical tool elements
JP2020175214A (en) Redundant axis and degree of freedom for hardware-constrained remote center robotic manipulator
US7204168B2 (en) Hand controller and wrist device
US9027431B2 (en) Remote centre of motion positioner
US8167872B2 (en) Center robotic arm with five-bar spherical linkage for endoscopic camera
EP1133265B1 (en) Surgical manipulator
RU2531469C2 (en) Robotic system for laparoscopic surgery
US8142420B2 (en) Robotic arm with five-bar spherical linkage
US20080314181A1 (en) Robotic Manipulator with Remote Center of Motion and Compact Drive
US8167873B2 (en) Center robotic arm with five-bar spherical linkage for endoscopic camera
EP3831543A1 (en) Remote centre of motion mechanism
US20230149106A1 (en) Surgical robotic system comprising strut assembly

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20230206