CA2471840A1 - Novel compositions and methods for cancer - Google Patents

Novel compositions and methods for cancer Download PDF

Info

Publication number
CA2471840A1
CA2471840A1 CA002471840A CA2471840A CA2471840A1 CA 2471840 A1 CA2471840 A1 CA 2471840A1 CA 002471840 A CA002471840 A CA 002471840A CA 2471840 A CA2471840 A CA 2471840A CA 2471840 A1 CA2471840 A1 CA 2471840A1
Authority
CA
Canada
Prior art keywords
seq
sequence
gene
mouse
human
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002471840A
Other languages
French (fr)
Inventor
David W. Morris
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sagres Discovery Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2471840A1 publication Critical patent/CA2471840A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5011Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing antineoplastic activity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/502Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
    • G01N33/5023Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects on expression patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/136Screening for pharmacological compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S436/00Chemistry: analytical and immunological testing
    • Y10S436/811Test for named disease, body condition or organ function
    • Y10S436/813Cancer

Abstract

The present invention relates to novel sequences associated with carcinomas, especially lymphoma carcinomas. The present invention provides novel compositions for use in diagnosis and treatment of carcinomas, especially lymphoma carcinomas. In addition, the present invention describes the use of novel compositions for use in screening methods for cancer.

Description

NOVEL COMPOSITIONS AND METHODS FOR CANCER
INVENTORS:
David W. MORRIS and Eric K. ENGELHARD
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] The present application is a continuing application of U.S.S.N.s 09/747,377, filed December 22, 2000 and 09/798,586, filed March 2, 2001, and applications entitled Novel Compositions and Methods for Cancer filed October 23, 2001, November 8, 2001, November 30, 2001, and December 20, 2001, all of which are expressly incorporated herein by reference.
SEQUENCE LISTING
[0002] The Sequence Listing submitted on compact disc is hereby incorporated by reference. The two, identical compact discs contain the file named A-71249.ST25.txt, created on May 29, 2002, and containing 16,870,127 bytes.
FIELD OF THE INVENTION
[0003] The present invention relates to novel sequences for use in diagnosis and treatment of cancer, especially carcinomas, as well as the use of the novel compositions in screening methods.
BACKGROUND OF THE INVENTION
[0004] Oncogenes are genes that can cause cancer. Carcinogenesis can occur by a wide variety of mechanisms, including infection of cells by viruses containing oncogenes, activation of protooncogenes in the host genome, and mutations of protooncogenes and tumor suppressor genes.
[0005] There are a number of viruses known to be involved in human cancer as well as in animal cancer. Of particular interest here are viruses that do not contain oncogenes themselves; these are slow-transforming retroviruses. They induce tumors by integrating into the host genome and affecting neighboring protooncogenes in a variety of ways, including promoter insertion, enhancer insertion, and/or truncation of a protooncogene or tumor suppressor gene. The analysis of sequences at or near the insertion sites led to the identification of a number of new protooncogenes.
[0006] With respect to lymphoma and leukemia, marine leukemia retrovirus (MuLV), such as SL3-3 or Akv, is a potent inducer of tumors when inoculated into susceptible newborn mice, or when carried in the germline. A number of sequences have been identified as relevant in the induction of lymphoma and leukemia by analyzing the insertion sites; see Sorensen et al., J. of Virology 74:2161 (2000); Hansen et al., Genome Res. 10(2):237-43 (2000); Sorensen et al., J. Virology 70:4063 (1996);
Sorensen et al., J. Virology 67:7118 (1993); Joosten et al., Virology 268:308 (2000);
and Li et al., Nature Genetics 23:348 (1999); all of which are expressly incorporated by reference herein.
[0007] Lymphomas are a collection of cancers involving the lymphatic system and are generally categorized as Hodgkin's disease and Non-Hodgkin lymphoma.
Hodgkin's lymphomas are of B lymphocyte origin. Non-Hodgkin lymphomas are a collection of over 30 different types of cancers including T and B lymphomas.
Leukemia is a disease of the blood forming tissues and includes B and T cell lymphocytic leukemias. It is characterized by an abnormal and persistent increase in the number of leukocytes and the amount of bone marrow, with enlargement of the spleen and lymph nodes.
[0008] Breast cancer is one of the most significant diseases that affects women. At the current rate, American women have a 1 in 8 risk of developing breast cancer by age 95 (American Cancer Society, 1992). Treatment of breast cancer at later stages is often futile and disfiguring, making early detection a high priority in medical management of the disease.
[0009] Accordingly, it is an object of the invention to provide sequences involved in cancer and in particular in oncogenesis.
SUMMARY OF THE INVENTION
[0010] In accordance with the objects outlined above, the present invention provides methods for screening for compositions which modulate carcinomas, especially lymphoma and leukemia. Also provided herein are methods of inhibiting proliferation of a cell, preferably a lymphoma cell. Methods of treatment of carcinomas, including diagnosis, are also provided herein.
[0011] In one aspect, a method of screening drug candidates comprises providing a cell that expresses a carcinoma associated (CA) gene or fragments thereof.
Preferred embodiments of CA genes are genes which are differentially expressed in cancer cells, preferably lymphatic, breast, prostate or epithelial cells, compared to other cells.
Preferred embodiments of CA genes used in the methods herein include, but are not limited to the nucleic acids selected from Tables 1-112. The method further includes adding a drug candidate to the cell and determining the effect of the drug candidate on the expression of the CA gene.
[0012] In one embodiment, the method of screening drug candidates includes comparing the level of expression in the absence of the drug candidate to the level of expression in the presence of the drug candidate.
[0013] Also provided herein is a method of screening for a bioactive agent capable of binding to a CA protein (CAP), the method comprising combining the CAP and a candidate bioactive agent, and determining the binding of the candidate agent to the CAP.
[0014] Further provided herein is a method for screening for a bioactive agent capable of modulating the activity of a CAP. In one embodiment, the method comprises combining the CAP and a candidate bioactive agent, and determining the effect of the candidate agent on the bioactivity of the CAP.
[0015] Also provided is a method of evaluating the effect of a candidate carcinoma drug comprising administering the drug to a patient and removing a cell sample from the patient. The expression profile of the cell is then determined. This method may further comprise comparing the expression profile of the patient to an expression profile of a heathy individual.
[0016] In a fiuther aspect, a method for inhibiting the activity of an CA
protein is provided. In one embodiment, the method comprises administering to a patient an inhibitor of a CA protein preferably selected from the group consisting of the sequences outlined in Tables 1-112 or their complements.
[0017] A method of neutralizing the effect of a CA protein, preferably a protein encoded by a nucleic acid selected from the group of sequences outlined in Tables 1-112, is also provided. Preferably, the method comprises contacting an agent specific for said protein with said protein in an amount sufficient to effect neutralization.

[001] Moreover, provided herein is a biochip comprising a nucleic acid segment which encodes a CA protein, preferably selected from the sequences outlined in Tables 1-112.
[0019] Also provided herein is a method for diagnosing or determining the propensity to carcinomas, especially lymphoma or leukemia by sequencing at least one carcinoma or lymphoma gene of an individual. In yet another aspect of the invention, a method is provided for determining carcinoma including lymphoma and leukemia gene copy number in an individual.
[0020] Novel sequences are also provided herein. Other aspects of the invention will become apparent to the skilled artisan by the following description of the invention.

(0021] The present invention is directed to a number of sequences associated with carcinomas, especially lymphoma, breast cancer or prostate cancer. The relatively tight linkage between clonally-integrated proviruses and protooncogenes forms "provirus tagging", in which slow-transforming retroviruses that act by an insertion mutation mechanism are used to isolate protooncogenes. In some models, uninfected animals have low cancer rates, and infected animals have high cancer rates. It is known that many of the retroviruses involved do not carry transduced host protooncogenes or pathogenic traps-acting viral genes, and thus the cancer incidence must therefor be a direct consequence of proviral integration effects into host protooncogenes. Since proviral integration is random, rare integrants will "activate"
host protooncogenes that provide a selective growth advantage, and these rare events result in new proviruses at clonal stoichiometries in tumors.
[0022] The use of oncogenic retroviruses, whose sequences insert into the genome of the host organism resulting in carcinoma, allows the identification of host sequences involved in carcinoma. These sequences may then be used in a number of different ways, including diagnosis, prognosis, screening for modulators (including both agonists and antagonists), antibody generation (for immunotherapy and imaging), etc.
However, as will be appreciated by those in the art, oncogenes that are identified in one type of cancer such as lymphoma or leukemia have a strong likelihood of being involved in other types of cancers as well. Thus, while the sequences outlined herein are initially identified as correlated with lymphoma, they can also be found in other types of cancers as well, outlined below.
[0023] Accordingly, the present invention provides nucleic acid and protein sequences that are associated with carcinoma, herein termed "carcinoma associated"
or "CA" sequences. In a preferred embodiment, the present invention provides nucleic acid and protein sequences that are associated with carcinomas which originate in lymphatic tissue, herein termed "lymphoma associated" , "leukemia associated" or "LA" sequences.
[0024] Suitable cancers which can be diagnosed or screened for using the methods of the present invention include cancers classified by site or by histological type.
Cancers classified by site include cancer of the oral cavity and pharynx (lip, tongue, salivary gland, floor of mouth, gum and other mouth, nasopharynx, tonsil, oropharynx, hypopharynx, other oral/pharynx); cancers of the digestive system (esophagus; stomach; small intestine; colon and rectum; anus, anal canal, and anorectum; liver; intrahepatic bile duct; gallbladder; other biliary;
pancreas;
retroperitoneum; peritoneum, omentum, and mesentery; other digestive); cancers of the respiratory system (nasal cavity, middle ear, and sinuses; larynx; lung and bronchus; pleura; trachea, mediastinum, and other respiratory); cancers of the mesothelioma; bones and joints; and soft tissue, including heart; skin cancers, including melanomas and other non-epithelial skin cancers; Kaposi's sarcoma and breast cancer; cancer of the female genital system (cervix uteri; corpus uteri; uterus, nos; ovary; vagina; vulva; and other female genital); cancers of the male genital system (prostate gland; testis; penis; and other male genital); cancers of the urinary system (urinary bladder; kidney and renal pelvis; ureter; and other urinary);
cancers of the eye and orbit; cancers of the brain and nervous system (brain; and other nervous system); cancers of the endocrine system (thyroid gland and other endocrine, including thymus); cancers of the lymphomas (hodgkin's disease and non-hodgkin's lymphoma), multiple myeloma, and leukemias (lymphocytic leukemia; myeloid leukemia; monocytic leukemia; and other leukemias).
[0025] Other cancers, classified by histological type, that may be associated with the sequences of the invention include, but are not limited to, Neoplasm, malignant;
Carcinoma, NOS; Carcinoma, undifferentiated, NOS; Giant and spindle cell carcinoma; Small cell carcinoma, NOS; Papillary carcinoma, NOS; Squamous cell carcinoma, NOS; Lymphoepithelial carcinoma; Basal cell carcinoma, NOS;

Pilomatrix carcinoma; Transitional cell carcinoma, NOS; Papillary transitional cell carcinoma; Adenocarcinoma, NOS; Gastrinoma, malignant; Cholangiocarcinoma;
Hepatocellular carcinoma, NOS; Combined hepatocellular carcinoma and cholangiocarcinoma; Trabecular adenocarcinoma; Adenoid cystic carcinoma;
Adenocarcinoma in adenomatous polyp; Adenocarcinoma, familial polyposis coli;
Solid carcinoma, NOS; Carcinoid tumor, malignant; Branchiolo-alveolar adenocarcinoma; Papillary adenocarcinoma, NOS; Chromophobe carcinoma;
Acidophil carcinoma; Oxyphilic adenocarcinoma; Basophil carcinoma; Clear cell adenocarcinoma, NOS; Granular cell carcinoma; Follicular adenocarcinoma, NOS;
Papillary and follicular adenocarcinoma; Nonencapsulating sclerosing carcinoma;
Adrenal cortical carcinoma; Endometroid carcinoma; Skin appendage carcinoma;
Apocrine adenocarcinoma; Sebaceous adenocarcinoma; Ceruminous adenocarcinoma; Mucoepidermoid carcinoma; Cystadenocarcinoma, NOS; Papillary cystadenocarcinoma, NOS; Papillary serous cystadenocarcinoma; Mucinous cystadenocarcinoma, NOS; Mucinous adenocarcinoma; Signet ring cell carcinoma;
Infiltrating duct carcinoma; Medullary carcinoma, NOS; Lobular carcinoma;
Inflammatory carcinoma; Paget"s disease, mammary; Acinar cell carcinoma;
Adenosquamous carcinoma; Adenocarcinoma w/ squamous metaplasia; Thymoma, malignant; Ovarian stromal tumor, malignant; Thecoma, malignant; Granulosa cell tumor, malignant; Androblastoma, malignant; Sertoli cell carcinoma; Leydig cell tumor, malignant; Lipid cell tumor, malignant; Paraganglioma, malignant; Extra-mammary paraganglioma, malignant; Pheochromocytoma; Glomangiosarcoma;
Malignant melanoma, NOS; Amelanotic melanoma; Superficial spreading melanoma;
Malig melanoma in giant pigmented nevus; Epithelioid cell melanoma; Blue nevus, malignant; Sarcoma, NOS; Fibrosarcoma, NOS; Fibrous histiocytoma, malignant;
Myxosarcoma; Liposarcoma, NOS; Leiomyosarcoma, NOS; Rhabdomyosarcoma, NOS; Embryonal rhabdomyosarcoma; Alveolar rhabdomyosarcoma; Stromal sarcoma, NOS; Mixed tumor, malignant, NOS; Mullerian mixed tumor;
Nephroblastoma; Hepatoblastoma; Carcinosarcoma, NOS; Mesenchymoma, malignant; Brenner tumor, malignant; Phyllodes tumor, malignant; Synovial sarcoma, NOS; Mesothelioma, malignant; Dysgerminoma; Embryonal carcinoma, NOS;
Teratoma, malignant, NOS; Struma ovarii, malignant; Choriocarcinoma;
Mesonephroma, malignant; Hemangiosarcoma; Hemangioendothelioma, malignant;
Kaposi's sarcoma; Hemangiopericytoma, malignant; Lymphangiosarcoma;

Osteosarcoma, NOS; Juxtacortical osteosarcoma; Chondrosarcoma, NOS;
Chondroblastoma, malignant; Mesenchymal chondrosarcoma; Giant cell tumor of bone; Ewing's sarcoma; Odontogenic tumor, malignant; Ameloblastic odontosarcoma;
Ameloblastoma, malignant; Ameloblastic fibrosarcoma; Pinealoma, malignant;
Chordoma; Glioma, malignant; Ependymoma, NOS; Astrocytoma, NOS;
Protoplasmic astrocytoma; Fibrillary astrocytoma; Astroblastoma; Glioblastoma, NOS; Oligodendroglioma, NOS; Oligodendroblastoma; Primitive neuroectodermal;
Cerebellar sarcoma, NOS; Ganglioneuroblastoma; Neuroblastoma, NOS;
Retinoblastoma, NOS; Olfactory neurogenic tumor; Meningioma, malignant;
Neurofibrosarcoma; Neurilemmoma, malignant; Granular cell tumor, malignant;
Malignant lymphoma, NOS; Hodgkin's disease, NOS; Hodgkin's; paragranuloma, NOS; Malignant lymphoma, small lymphocytic; Malignant lymphoma, large cell, diffuse; Malignant lymphoma, follicular, NOS; Mycosis fungoides; Other specified non-Hodgkin's lymphomas; Malignant histiocytosis; Multiple myeloma; Mast cell sarcoma; Immunoproliferative small intestinal disease; Leukemia, NOS; Lymphoid leukemia, NOS; Plasma cell leukemia; Erythroleukemia; Lymphosarcoma cell leukemia; Myeloid leukemia, NOS; Basophilic leukemia; Eosinophilic leukemia;
Monocytic leukemia, NOS; Mast cell leukemia; Megakaryoblastic leukemia;
Myeloid sarcoma; and Hairy cell leukemia.
[0026] In addition, the genes may be involved in other diseases, such as but not limited to diseases associated with aging or neurodegenerative diseases.
[0027] Association in this context means that the nucleotide or protein sequences are either differentially expressed, activated, inactivated or altered in carcinomas as compared to normal tissue. As outlined below, CA sequences include those that are up-regulated (i.e. expressed at a higher level), as well as those that are down-regulated (i.e. expressed at a lower level), in carcinomas. CA sequences also include sequences which have been altered (i.e., truncated sequences or sequences with substitutions, deletions or insertions, including point mutations) and show either the same expression profile or an altered profile. In a preferred embodiment, the CA
sequences are from humans; however, as will be appreciated by those in the art, CA
sequences from other organisms may be useful in animal models of disease and drug evaluation;
thus, other CA sequences are provided, from vertebrates, including mammals, including rodents (rats, mice, hamsters, guinea pigs, etc.), primates, farm animals (including sheep, goats, pigs, cows, horses, etc). In some cases, prokaryotic CA

sequences may be useful. CA sequences from other organisms may be obtained using the techniques outlined below.
[0028] CA sequences can include both nucleic acid and amino acid sequences. In a preferred embodiment, the CA sequences are recombinant nucleic acids. By the term "recombinant nucleic acid" herein is meant nucleic acid, originally formed in vitro, in general, by the manipulation of nucleic acid by polymerases and endonucleases, in a form not normally found in nature. Thus an isolated nucleic acid, in a linear form, or an expression vector formed in vitro by ligating DNA molecules that are not normally joined, are both considered recombinant for the purposes of this invention. It is understood that once a recombinant nucleic acid is made and reintroduced into a host cell or organism, it will replicate non-recombinantly, i.e. using the in vivo cellular machinery of the host cell rather than in vitro manipulations; however, such nucleic acids, once produced recombinantly, although subsequently replicated non-recombinantly, are still considered recombinant for the purposes of the invention.
[0029] Similarly, a "recombinant protein" is a protein made using recombinant techniques, i.e. through the expression of a recombinant nucleic acid as depicted above. A recombinant protein is distinguished from naturally occurring protein by at least one or more characteristics. For example, the protein may be isolated or purified away from some or all of the proteins and compounds with which it is normally associated in its wild type host, and thus may be substantially pure. For example, an isolated protein is unaccompanied by at least some of the material with which it is normally associated in its natural state, preferably constituting at least about 0.5%, more preferably at least about 5% by weight of the total protein in a given sample. A
substantially pure protein comprises at least about 75% by weight of the total protein, with at least about 80% being preferred, and at least about 90% being particularly preferred. The definition includes the production of an CA protein from one organism in a different organism or host cell. Alternatively, the protein may be made at a significantly higher concentration than is normally seen, through the use of an inducible promoter or high expression promoter, such that the protein is made at increased concentration levels. Alternatively, the protein may be in a form not normally found in nature, as in the addition of an epitope tag or amino acid substitutions, insertions and deletions, as discussed below.
[0030] In a preferred embodiment, the CA sequences are nucleic acids. As will be appreciated by those in the art and is more fully outlined below, CA sequences are useful in a variety of applications, including diagnostic applications, which will detect naturally occurring nucleic acids, as well as screening applications; for example, biochips comprising nucleic acid probes to the CA sequences can be generated.
In the broadest sense, then, by "nucleic acid" or "oligonucleotide" or grammatical equivalents herein means at least two nucleotides covalently linked together.
A
nucleic acid of the present invention will generally contain phosphodiester bonds, although in some cases, as outlined below (for example in antisense applications or when a candidate agent is a nucleic acid), nucleic acid analogs may be used that have alternate backbones, comprising, for example, phosphoramidate (Beaucage et al., Tetrahedron 49(10):1925 (1993) and references therein; Letsinger, J. Org.
Chem.
35:3800 (1970); Sprinzl et al., Eur. J. Biochem. 81:579 (1977); Letsinger et al., Nucl.
Acids Res. 14:3487 (1986); Sawai et al, Chem. Lett. 805 (1984), Letsinger et al., J.
Am. Chem. Soc. 110:4470 (1988); and Pauwels et al., Chemica Scripta 26:141 91986)), phosphorothioate (Mag et al., Nucleic Acids Res. 19:1437 (1991); and U.S.
Patent No. 5,644,048), phosphorodithioate (Briu et al., J. Am. Chem. Soc.
111:2321 (1989), O-methylphophoroamidite linkages (see Eckstein, Oligonucleotides and Analogues: A Practical Approach, Oxford University Press), and peptide nucleic acid backbones and linkages (see Egholm, J. Am. Chem. Soc. 114:1895 (1992); Meier et al., Chem. Int. Ed. Engl. 31:1008 (1992); Nielsen, Nature, 365:566 (1993);
Caxlsson et al., Nature 380:207 (1996), all of which are incorporated by reference).
Other analog nucleic acids include those with positive backbones (Denpcy et al., Proc. Natl.
Acad. Sci. USA 92:6097 (1995); non-ionic backbones (U.S. Patent Nos.
5,386,023, 5,637,684, 5,602,240, 5,216,141 and 4,469,863; Kiedrowshi et al., Angew. Chem.
Intl. Ed. English 30:423 (1991); Letsinger et al., J. Am. Chem. Soc. 110:4470 (1988);
Letsinger et al., Nucleoside & Nucleotide 13:1597 (1994); Chapters 2 and 3, ASC
Symposium Series 580, "Carbohydrate Modifications in Antisense Research", Ed.
Y.S. Sanghui and P. Dan Cook; Mesmaeker et al., Bioorganic & Medicinal Chem.
Lett. 4:395 (1994); Jeffs et al., J. Biomolecular NMR 34:17 (1994);
Tetrahedron Lett.
37:743 (1996)) and non-ribose backbones, including those described in U.S.
Patent Nos. 5,235,033 and 5,034,506, and Chapters 6 and 7, ASC Symposium Series 580, "Carbohydrate Modifications in Antisense Research", Ed. Y.S. Sanghui and P.
Dan Cook. Nucleic acids containing one or more carbocyclic sugars are also included within one definition of nucleic acids (see Jenkins et al., Chem. Soc. Rev.
(1995) pp169-176). Several nucleic acid analogs are described in Rawls, C & E News June 2, 1997 page 35. All of these references are hereby expressly incorporated by reference. These modifications of the ribose-phosphate backbone may be done for a variety of reasons, for example to increase the stability and half life of such molecules in physiological environments for use in anti-sense applications or as probes on a biochip.
[0031] As will be appreciated by those in the art, all of these nucleic acid analogs may find use in the present invention. In addition, mixtures of naturally occurring nucleic acids and analogs can be made; alternatively, mixtures of different nucleic acid analogs, and mixtures of naturally occurring nucleic acids and analogs may be made.
[0032] The nucleic acids may be single stranded or double stranded, as specified, or contain portions of both double stranded or single stranded sequence. As will be appreciated by those in the art, the depiction of a single strand "Watson"
also defines the sequence of the other strand "Crick"; thus the sequences described herein also includes the complement of the sequence. The nucleic acid may be DNA, both genomic and cDNA, RNA or a hybrid, where the nucleic acid contains any combination of deoxyribo- and ribo-nucleotides, and any combination of bases, including uracil, adenine, thymine, cytosine, guanine, inosine, xanthine hypoxanthine, isocytosine, isoguanine, etc. As used herein, the term "nucleoside" includes nucleotides and nucleoside and nucleotide analogs, and modified nucleosides such as amino modified nucleosides. In addition, "nucleoside" includes non-naturally occurring analog structures. Thus for example the individual units of a peptide nucleic acid, each containing a base, are referred to herein as a nucleoside.
[0033] An CA sequence can be initially identified by substantial nucleic acid and/or amino acid sequence homology to the CA sequences outlined herein. Such homology can be based upon the overall nucleic acid or amino acid sequence, and is generally determined as outlined below, using either homology programs or hybridization conditions.
[0034] The CA sequences of the invention were initially identified as described herein; basically, infection of mice with marine leukemia viruses (MLV) resulted in lymphoma, although many of these sequences will also be involved in other cancers as is generally outlined herein.
[0035] The CA sequences outlined herein comprise the insertion sites for the virus.
In general, the retrovirus can cause carcinomas in three basic ways: first of all, by inserting upstream of a normally silent host gene and activating it (e.g.
promoter insertion); secondly, by truncating a host gene that leads to oncogenesis; or by enhancing the transcription of a neighboring gene. For example, retrovirus enhancers, including SL3-3, are known to act on genes up to approximately 200 kilobases of the insertion site.
[0036] In a preferred embodiment, CA sequences are those that are up-regulated in carcinomas; that is, the expression of these genes is higher in carcinoma tissue as compared to normal tissue of the same differentiation stage. "Up-regulation"
as used herein means at least about 50%, more preferably at least about 100%, more preferably at least about 150%, more preferably, at least about 200%, with from 300 to at least 1000% being especially preferred.
[0037] In a preferred embodiment, CA sequences are those that are down-regulated in carcinomas; that is, the expression of these genes is lower in carcinoma tissue as compared to normal 1 tissue of the same differentiation stage. "Down-regulation" as used herein means at least about 50%, more preferably at least about 100%, more preferably at least about 150%, more preferably, at least about 200%, with from 300 to at least 1000% being especially preferred.
[0038] In a preferred embodiment, CA sequences are those that are altered but show either the same [0039] expression profile or an altered profile as compared to normal lymphoid tissue of the same [0040] differentiation stage. "Altered CA sequences" as used herein refers to sequences which are truncated, contain insertions or contain point mutations.
[0041] CA proteins of the present invention may be classified as secreted proteins, transmembrane proteins or intracellular proteins.
[0042] In a preferred embodiment the CA protein is an intracellular protein.
Intracellular proteins may be found in the cytoplasm and/or in the nucleus.
Intracellular proteins are involved in all aspects of cellular function and replication (including, for examphe, signaling pathways); aberrant expression of such proteins results in unregulated or disregulated cellular processes. For example, many intracellular proteins have enzymatic activity such as protein kinase activity, protein phosphatase activity, protease activity, nucleotide cyclase activity, polymerase activity and the like. Intracellular proteins also serve as docking proteins that are involved in organizing complexes of proteins, or targeting proteins to various subcellular localizations, and are involved in maintaining the structural integrity of organelles.
[0043] An increasingly appreciated concept in characterizing intracellular proteins is the presence in the proteins of one or more motifs for which defined functions have been attributed. In addition to the highly conserved sequences found in the enzymatic domain of proteins, highly conserved sequences have been identified in proteins that are involved in protein-protein interaction. For example, Src-homology-2 (SH2) domains bind tyrosine-phosphorylated targets in a sequence dependent manner.
PTB
domains, which are distinct from SH2 domains, also bind tyrosine phosphorylated targets. SH3 domains bind to proline-rich targets. In addition, PH domains, tetratricopeptide repeats and WD domains to name only a few, have been shown to mediate protein-protein interactions. Some of these may also be involved in binding to phospholipids or other second messengers. As will be appreciated by one of ordinary skill in the art, these motifs can be identified on the basis of primary sequence; thus, an analysis of the sequence of proteins may provide insight into both the enzymatic potential of the molecule and/or molecules with which the protein may associate.
[0044] In a preferred embodiment, the CA sequences are transmembrane proteins.
Transmembrane proteins are molecules that span the phospholipid bilayer of a cell.
They may have an intracellular domain, an extracellular domain, or both. The intracellular domains of such proteins may have a number of functions including those already described for intracellular proteins. For example, the intracellular domain may have enzymatic activity and/or may serve as a binding site for additional proteins. Frequently the intracellular domain of transmembrane proteins serves both roles. For example certain receptor tyrosine kinases have both protein kinase activity and SH2 domains. In addition, autophosphorylation of tyrosines on the receptor molecule itself, creates binding sites for additional SH2 domain containing proteins.
[0045] Transmembrane proteins may contain from one to many transmembrane domains. For example, receptor tyrosine kinases, certain cytokine receptors, receptor guanylyl cyclases and receptor serine/threonine protein kinases contain a single transmembrane domain. However, various other proteins including channels and adenylyl cyclases contain numerous transmembrane domains. Many important cell surface receptors are classified as "seven transmembrane domain" proteins, as they contain 7 membrane spanning regions. Important transmembrane protein receptors include, but are not limited to insulin receptor, insulin like growth factor receptor, human growth hormone receptor, glucose transporters, transferrin receptor, epidermal growth factor receptor, low density lipoprotein receptor, epidermal growth factor receptor, leptin receptor, interleukin receptors, e.g. IL_1 receptor, IL 2 receptor, etc.
[0046] Characteristics of transmembrane domains include approximately 20 consecutive hydrophobic amino acids that may be followed by charged amino acids.
Therefore, upon analysis of the amino acid sequence of a particular protein, the localization and number of transmembrane domains within the protein may be predicted.
[0047] The extracellular domains of transmembrane proteins are diverse;
however, conserved motifs are found repeatedly among various extracellular domains.
Conserved structure and/or functions have been ascribed to different extracellular motifs. For example, cytokine receptors axe characterized by a cluster of cysteines and a WSXWS (W= tryptophan, S= serine, X=any amino acid (SEQ ID NO:1613) motif. Immunoglobulin-like domains are highly conserved. Mucin-like domains may be involved in cell adhesion and leucine-rich repeats participate in protein-protein interactions.
[0048] Many extracellular domains are involved in binding to other molecules.
In one aspect, extracellular domains are receptors. Factors that bind the receptor domain include circulating ligands, which may be peptides, proteins, or small molecules such as adenosine and the like. For example, growth factors such as EGF, FGF and PDGF
are circulating growth factors that bind to their cognate receptors to initiate a variety of cellular responses. Other factors include cytokines, mitogenic factors, neurotrophic factors and the like. Extracellular domains also bind to cell-associated molecules. In this respect, they mediate cell-cell interactions. Cell-associated ligands can be tethered to the cell for example via a glycosylphosphatidylinositol (GPI) anchor, or may themselves be transmembrane proteins. Extracellular domains also associate with the extracellular matrix and contribute to the maintenance of the cell structure.
[0049] CA proteins that are transmembrane are particularly preferred in the present invention as they axe good targets for immunotherapeutics, as are described herein. In addition, as outlined below, transmembrane proteins can be also useful in imaging modalities.
[0050] It will also be appreciated by those in the art that a transmembrane protein can be made soluble by removing transmembrane sequences, for example through recombinant methods. Furthermore, transmembrane proteins that have been made soluble can be made to be secreted through recombinant means by adding an appropriate signal sequence.
[0051] In a preferred embodiment, the CA proteins are secreted proteins; the secretion of which can be either constitutive or regulated. These proteins have a signal peptide or signal sequence that targets the molecule to the secretory pathway.
Secreted proteins are involved in numerous physiological events; by virtue of their circulating nature, they serve to transmit signals to various other cell types. The secreted protein may function in an autocrine manner (acting on the cell that secreted the factor), a paracrine manner (acting on cells in close proximity to the cell that secreted the factor) or an endocrine manner (acting on cells at a distance). Thus secreted molecules find use in modulating or altering numerous aspects of physiology.
CA
proteins that are secreted proteins are particularly preferred in the present invention as they serve as good targets for diagnostic markers, for example for blood tests.
[0052] An CA sequence is initially identified by substantial nucleic acid and/or amino acid sequence homology to the CA sequences outlined herein. Such homology can be based upon the overall nucleic acid or amino acid sequence, and is generally determined as outlined below, using either homology programs or hybridization conditions.
[0053] As used herein, a nucleic acid is a "CA nucleic acid" if the overall homology of the nucleic acid sequence to one of the nucleic acids of Tables 1-112 is preferably greater than about 75%, more preferably greater than about 80%, even more preferably greater than about 85% and most preferably greater than 90%. In some embodiments the homology will be as high as about 93 to 95 or 98%. In a preferred embodiment, the sequences which are used to determine sequence identity or similarity are selected from those of the nucleic acids of Tables 1-112. In another embodiment, the sequences are naturally occurring allelic variants of the sequences of the nucleic acids of Tables 1-112. In another embodiment, the sequences are sequence vaxiants as further described herein.
[0054] Homology in this context means sequence similarity or identity, with identity being preferred. A preferred comparison for homology purposes is to compare the sequence containing sequencing errors to the correct sequence. This homology will be determined using standard techniques known in the art, including, but not limited to, the local homology algorithm of Smith & Waterman, Adv. Appl. Math. 2:482 (1981), by the homology alignment algorithm of Needleman & Wunsch, J. Mol.
Biol.
48:443 (1970), by the search for similarity method of Pearson & Lipman, PNAS
USA
85:2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Drive, Madison, WI), the Best Fit sequence program described by Devereux et al., Nucl. Acid Res. 12:387-395 (1984), preferably using the default settings, or by inspection.
(0055] One example of a useful algorithm is PILEUP. PILEUP creates a multiple sequence alignment from a group of related sequences using progressive, pairwise alignments. It can also plot a tree showing the clustering relationships used to create the alignment. PILEUP uses a simplification of the progressive alignment method of Feng & Doolittle, J. Mol. Evol. 35:351-360 (1987); the method is similar to that described by Higgins & Sharp CABIOS 5:151-153 (1989). Useful PILEUP
parameters including a default gap weight of 3.00, a default gap length weight of 0.10, and weighted end gaps.
[0056] Another example of a useful algorithm is the BLAST algorithm, described in Altschul et al., J. Mol. Biol. 215, 403-410, (1990) and Marlin et al., PNAS
USA
90:5873-5787 (1993). A particularly useful BLAST program is the WU-BLAST-2 program which was obtained from Altschul et al., Methods in Enzymology, 266:

480 (1996); http://blast.wustl]. WU-BLAST-2 uses several search parameters, most of which are set to the default values. The adjustable parameters are set with the following values: overlap span =1, overlap fraction = 0.125, word threshold (T) = 11.
The HSP S and HSP S2 parameters are dynamic values and are established by the program itself depending upon the composition of the particular sequence and composition of the particular database against which the sequence of interest is being searched; however, the values may be adjusted to increase sensitivity. A %
amino acid sequence identity value is determined by the number of matching identical residues divided by the total number of residues of the "longer" sequence in the aligned region. The "longer" sequence is the one having the most actual residues in the aligned region (gaps introduced by WU-Blast-2 to maximize the alignment score are ignored). ' [0057] Thus, "percent (%) nucleic acid sequence identity" is defined as the percentage of nucleotide residues in a candidate sequence that axe identical with the nucleotide residues of the nucleic acids of Tables 1-112. A preferred method utilizes the BLASTN module of WU-BLAST-2 set to the default parameters, with overlap span and overlap fraction set to 1 and 0.125, respectively.
[0058] The alignment may include the introduction of gaps in the sequences to be aligned. In addition, for sequences which contain either more or fewer nucleotides than those of the nucleic acids of Tables 1-112, it is understood that the percentage of homology will be determined based on the number of homologous nucleosides in relation to the total number of nucleosides. Thus, for example, homology of sequences shorter than those of the sequences identified herein and as discussed below, will be determined using the number of nucleosides in the shorter sequence.
[0059] In one embodiment, the nucleic acid homology is determined through hybridization studies. Thus, for example, nucleic acids which hybridize under high stringency to the nucleic acids identified in the figures, or their complements, are considered CA sequences. High stringency conditions are known in the art; see for example Maniatis et al., Molecular Cloning: A Laboratory Manual, 2d Edition, 1989, and Short Protocols in Molecular Biology, ed. Ausubel, et al., both of which are hereby incorporated by reference. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures. An extensive guide to the hybridization of nucleic acids is found in Tijssen, Techniques in Biochemistry and Molecular Biology--Hybridization with Nucleic Acid Probes, "Overview of principles of hybridization and the strategy of nucleic acid assays" (1993). Generally, stringent conditions are selected to be about 5-10 ~ C lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength pH. The Tm is the temperature (under defined ionic strength, pH and nucleic acid concentration) at which 50% of the probes complementary to the target hybridize to the target sequence at equilibrium (as the target sequences are present in excess, at Tm, 50% of the probes are occupied at equilibrium).
Stringent conditions will be those in which the salt concentration is less than about 1.0 M
sodium ion, typically about 0.01 to 1.0 M sodium ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30~C for short probes (e.g. 10 to 50 nucleotides) and at least about 600C for long probes (e.g. greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide.

[0060] In another embodiment, less stringent hybridization conditions are used; for example, moderate or low stringency conditions may be used, as axe known in the art;
see Maniatis and Ausubel, supra, and Tij ssen, supra.
[0061] In addition, the CA nucleic acid sequences of the invention are fragments of larger genes, i.e. they are nucleic acid segments. Alternatively, the CA
nucleic acid sequences can serve as indicators of oncogene position, for example, the CA
sequence may be an enhancer that activates a protooncogene. "Genes" in this context includes coding regions, non-coding regions, and mixtures of coding and non-coding regions.
Accordingly, as will be appreciated by those in the art, using the sequences provided herein, additional sequences of the CA genes can be obtained, using techniques well known in the art for cloning either longer sequences or the full length sequences; see Maniatis et al., and Ausubel, et al., supra, hereby expressly incorporated by reference.
In general, this is done using PCR, for example, kinetic PCR.
[0062] Once the CA nucleic acid is identified, it can be cloned and, if necessary, its constituent parts recombined to form the entire CA nucleic acid. Once isolated from its natural source, e.g., contained within a plasmid or other vector or excised therefrom as a linear nucleic acid segment, the recombinant CA nucleic acid can be further used as a probe to identify and isolate other CA nucleic acids, for example additional coding regions. It can also be used as a "precursor" nucleic acid to make modified or variant CA nucleic acids and proteins.
[0063] The CA nucleic acids of the present invention are used in several ways.
In a first embodiment, nucleic acid probes to the CA nucleic acids are made and attached to biochips to be used in screening and diagnostic methods, as outlined below, or for administration, for example for gene therapy and/or antisense applications.
Alternatively, the CA nucleic acids that include coding regions of CA proteins can be put into expression vectors for the expression of CA proteins, again either for screening purposes or for administration to a patient.
[0064] In a preferred embodiment, nucleic acid probes to CA nucleic acids (both the nucleic acid sequences outlined in the figures and/or the complements thereof) axe made. The nucleic acid probes attached to the biochip are designed to be substantially complementary to the CA nucleic acids, i.e. the target sequence (either the target sequence of the sample or to other probe sequences, for example in sandwich assays), such that hybridization of the target sequence and the probes of the present invention occurs. As outlined below, this complementarity need not be perfect; there may be any number of base pair mismatches which will interfere with hybridization between the target sequence and the single stranded nucleic acids of the present invention.
However, if the number of mutations is so great that no hybridization can occur under even the least stringent, of hybridization conditions, the sequence is not a complementary target sequence. Thus, by "substantially complementary" herein is meant that the probes are sufficiently complementary to the target sequences to hybridize under normal reaction conditions, particularly high stringency conditions, as outlined herein.
[0065] A nucleic acid probe is generally single stranded but can be partially single and partially double stranded. The strandedness of the probe is dictated by the structure, composition, and properties of the target sequence. In general, the nucleic acid probes range from about 8 to about 100 bases long, with from about 10 to about 80 bases being preferred, and from about 30 to about 50 bases being particularly preferred. That is, generally whole genes are not used. In some embodiments, much longer nucleic acids can be used, up to hundreds of bases.
[0066] In a preferred embodiment, more than one probe per sequence is used, with either overlapping probes or probes to different sections of the target being used.
That is, two, three, four or more probes, with three being preferred, axe used to build in a redundancy for a particular target. The probes can be overlapping (i.e.
have some sequence in common), or separate.
[0067] As will be appreciated by those in the art, nucleic acids can be attached or immobilized to a solid support in a wide variety of ways. By "immobilized" and grammatical equivalents herein is meant the association or binding between the nucleic acid probe and the solid support is sufficient to be stable under the conditions of binding, washing, analysis, and removal as outlined below. The binding can be covalent or non-covalent. By "non-covalent binding" and grammatical equivalents herein is meant one or more of either electrostatic, hydrophilic, and hydrophobic interactions. Included in non-covalent binding is the covalent attachment of a molecule, such as, streptavidin to the support and the non-covalent binding of the biotinylated probe to the streptavidin. By "covalent binding" and grammatical equivalents herein is meant that the two moieties, the solid support and the probe, are attached by at least one bond, including sigma bonds, pi bonds and coordination bonds. Covalent bonds can be formed directly between the probe and the solid support or can be formed by a cross linker or by inclusion of a specific reactive group on either the solid support or the probe or both molecules. Immobilization may also involve a combination of covalent and non-covalent interactions.
[0068] In general, the probes are attached to the biochip in a wide variety of ways, as will be appreciated by those in the art. As described herein, the nucleic acids can either be synthesized first, with subsequent attachment to the biochip, or can be directly synthesized on the biochip.
[0069] The biochip comprises a suitable solid substrate. By "substrate" or "solid support" or other grammatical equivalents herein is meant any material that can be modified to contain discrete individual sites appropriate for the attachment or association of the nucleic acid probes and is amenable to at least one detection method. As will be appreciated by those in the art, the number of possible substrates are very large, and include, but are not limited to, glass and modified or functionalized glass, plastics (including acrylics, polystyrene and copolymers of styrene and other materials, polypropylene, polyethylene, polybutylene, polyurethanes, TeflonTM, etc.), polysaccharides, nylon or nitrocellulose, resins, silica or silica based materials including silicon and modified silicon, carbon, metals, inorganic glasses, etc. In general, the substrates allow optical detection and do not appreciably fluoresce.
[0070] In a preferred embodiment, the surface of the biochip and the probe may be derivatized with chemical functional groups for subsequent attachment of the two.
Thus, for example, the biochip is derivatized with a chemical functional group including, but not limited to, amino groups, carboxy groups, oxo groups and thiol groups, with amino groups being particularly preferred. Using these functional groups, the probes can be attached using functional groups on the probes. For example, nucleic acids containing amino groups can be attached to surfaces comprising amino groups, for example using linkers as are known in the art;
for example, homo-or hetero-bifunctional linkers as are well known (see 1994 Pierce Chemical Company catalog, technical section on cross linkers, pages 155 200, incorporated herein by reference). In addition, in some cases, additional linkers, such as alkyl groups (including substituted and heteroalkyl groups) may be used.
[0071] In this embodiment, the oligonucleotides are synthesized as is known in the art, and then attached to the surface of the solid support. As will be appreciated by those skilled in the art, either the 5' or 3' terminus may be attached to the solid support, or attachment may be via an internal nucleoside.
[0072] In an additional embodiment, the immobilization to the solid support may be very strong, yet non-covalent. For example, biotinylated oligonucleotides can be made, which bind to surfaces covalently coated with streptavidin, resulting in attachment.
[0073) Alternatively, the oligonucleotides may be synthesized on the surface, as is known in the art. For example, photoactivation techniques utilizing photopolymerization compounds and techniques are used. In a preferred embodiment, the nucleic acids can be synthesized in situ, using well known photolithographic techniques, such as those described in WO 95/25116; WO
95/35505; U.S. Patent Nos. 5,700,637 and 5,445,934; and references cited within, all of which are expressly incorporated by reference; these methods of attachment form the basis of the Affymetrix GeneChip technology.
[0074] In addition to the solid-phase technology represented by biochip arrays, gene expression can also be quantified using liquid-phase arrays. One such system is kinetic polymerase chain reaction (PCR). Kinetic PCR allows for the simultaneous amplification and quantification of specific nucleic acid sequences. The specificity is derived from synthetic oligonucleotide primers designed to preferentially adhere to single-stranded nucleic acid sequences bracketing the target site. This pair of oligonucleotide primers form specific, non-covalently bound complexes on each strand of the target sequence. These complexes facilitate in vitro transcription of double-stranded DNA in opposite orientations. Temperature cycling of the reaction mixture creates a continuous cycle of primer binding, transcription, and re-melting of the nucleic acid to individual strands. The result is an exponential increase of the target dsDNA product. This product can be quantified in real time either through the use of an intercalating dye or a sequence specific probe. SYBR~ Greene I, is an example of an intercalating dye, that preferentially binds to dsDNA resulting in a concomitant increase in the fluorescent signal. Sequence specific probes, such as used with TaqMan~ technology, consist of a fluorochrome and a quenching molecule covalently bound to opposite ends of an oligonucleotide. The probe is designed to selectively bind the target DNA sequence between the two primers. When the DNA
strands are synthesized during the PCR reaction, the fluorochrome is cleaved from the probe by the exonuclease activity of the polymerase resulting in signal dequenching.
The probe signaling method can be more specific than the intercalating dye method, but in each case, signal strength is proportional to the dsDNA product produced.

Each type of quantification method can be used in mufti-well liquid phase arrays with each well representing primers and/or probes specific to nucleic acid sequences of interest. When used with messenger RNA preparations of tissues or cell lines, and an array of probe/primer reactions can simultaneously quantify the expression of multiple gene products of interest. See Germer, S., et al., Genome Res. 10:25-(2000); Heid, C. A., et al., Genome Res. 6, 986-994 (1996).
[0075] In a preferred embodiment, CA nucleic acids encoding CA proteins are used to make a variety of expression vectors to express CA proteins which can then be used in screening assays, as described below. The expression vectors may be either self replicating extrachromosomal vectors or vectors which integrate into a host genome. Generally, these expression vectors include transcriptional and translational regulatory nucleic acid operably linked to the nucleic acid encoding the CA
protein.
The term "control sequences" refers to DNA sequences necessary for the expression of an operably linked coding sequence in a particular host organism. The control sequences that are suitable for prokaryotes, for example, include a promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.
[0076]
[0077] Nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, "operably linked"
means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice. The transcriptional and translational regulatory nucleic acid will generally be appropriate to the host cell used to express the CA protein; for example, transcriptional and translational regulatory nucleic acid sequences from Bacillus are preferably used to express the CA protein in Bacillus.

Numerous types of appropriate expression vectors, and suitable regulatory sequences are known in the art for a variety of host cells.
[0078] In general, the transcriptional and translational regulatory sequences may include, but are not limited to, promoter sequences, ribosomal binding sites, transcriptional start and stop sequences, translational start and stop sequences, and enhancer or activator sequences. In a preferred embodiment, the regulatory sequences include a promoter and transcriptional start and stop sequences.
[0079] Promoter sequences encode either constitutive or inducible promoters.
The promoters may be either naturally occurring promoters or hybrid promoters.
Hybrid promoters, which combine elements of more than one promoter, are also known in the axt, and are useful in the present invention.
[0080] In addition, the expression vector may comprise additional elements.
For example, the expression vector may have two replication systems, thus allowing it to be maintained in two organisms, for example in mammalian or insect cells for expression and in a procaryotic host for cloning and amplification.
Furthermore, for integrating expression vectors, the expression vector contains at least one sequence homologous to the host cell genome, and preferably two homologous sequences which flank the expression construct. The integrating vector may be directed to a specific locus in the host cell by selecting the appropriate homologous sequence for inclusion in the vector. Constructs for integrating vectors are well known in the art.
[0081] In addition, in a preferred embodiment, the expression vector contains a selectable marker gene to allow the selection of transformed host cells.
Selection genes are well known in the art and will vary with the host cell used.
[0082] The CA proteins of the present invention are produced by culturing a host cell ' transformed with an expression vector containing nucleic acid encoding an CA
protein, under the appropriate conditions to induce or cause expression of the CA
protein. The conditions appropriate for CA protein expression will vary with the choice of the expression vector and the host cell, and will be easily ascertained by one skilled in the art through routine experimentation. For example, the use of constitutive promoters in the expression vector will require optimizing the growth and proliferation of the host cell, while the use of an inducible promoter requires the appropriate growth conditions for induction. In addition, in some °embodiments, the timing of the harvest is important. For example, the baculoviral systems used in insect cell expression are lytic viruses, and thus harvest time selection can be crucial for product yield.
[0083] Appropriate host cells include yeast, bacteria, archaebacteria, fungi, and insect, plant and animal cells, including mammalian cells. Of particular interest are Drosophila melahogaster cells, Saccharomyces cerevisiae and other yeasts, E.
coli, Bacillus subtilis, S~ cells, C129 cells, 293 cells, Neurospora, BHK, CHO, COS, HeLa cells, THP 1 cell line (a macrophage cell line) and human cells and cell lines.
[0084] In a preferred embodiment, the CA proteins are expressed in mammalian cells.
Mammalian expression systems are also known in the art, and include retroviral systems. A preferred expression vector system is a retroviral vector system such as is generally described in PCT/LTS97/01019 and PCT/LTS97/01048, both of which axe hereby expressly incorporated by reference. Of particular use as mammalian promoters are the promoters from mammalian viral genes, since the viral genes are often highly expressed and have a broad host range. Examples include the SV40 early promoter, mouse mammary tumor virus LTR promoter, adenovirus major late promoter, herpes simplex virus promoter, and the CMV promoter. Typically, transcription termination and polyadenylation sequences recognized by mammalian cells are regulatory regions located 3' to the translation stop codon and thus, together with the promoter elements, flank the coding sequence. Examples of transcription terminator and polyadenlytion signals include those derived form SV40.
[0085] The methods of introducing exogenous nucleic acid into mammalian hosts, as well as other hosts, is well known in the art, and will vary with the host cell used.
Techniques include dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, viral infection, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei.
[0086] In a preferred embodiment, CA proteins are expressed in bacterial systems.
Bacterial expression systems are well known in the art. Promoters from bacteriophage may also be used and are known in the art. In addition, synthetic promoters and hybrid promoters are also useful; for example, the tac promoter is a hybrid of the trp and lac promoter sequences. Furthermore, a bacterial promoter can include naturally occurring promoters of non-bacterial origin that have the ability to bind bacterial RNA polymerase and initiate transcription. In addition to a functioning promoter sequence, an efficient ribosome binding site is desirable. The expression vector may also include a signal peptide sequence that provides for secretion of the CA protein in bacteria. The protein is either secreted into the growth media (gram-positive bacteria) or into the periplasmic space, located between the inner and outer membrane of the cell (gram-negative bacteria). The bacterial expression vector may also include a selectable marker gene to allow for the selection of bacterial strains that have been transformed. Suitable selection genes include genes which render the bacteria resistant to drugs such as ampicillin, chloramphenicol, erythromycin, kanamycin, neomycin and tetracycline. Selectable markers also include biosynthetic genes, such as those in the histidine, tryptophan and leucine biosynthetic pathways.
These components are assembled into expression vectors. Expression vectors for bacteria are well known in the art, and include vectors for Bacillus subtilis, E. coli, Streptococcus cremoris, and Streptococcus lividans, among others. The bacterial expression vectors are transformed into bacterial host cells using techniques well known in the art, such as calcium chloride treatment, electroporation, and others.
[0087] In one embodiment, CA proteins are produced in insect cells. Expression vectors for the transformation of insect cells, and in particular, baculovirus-based expression vectors, are well known in the art.
[0088] In a preferred embodiment, CA protein is produced in yeast cells. Yeast expression systems axe well known in the art, and include expression vectors for Saccharomyces cerevisiae, Candida albicans and C. maltosa, Hanse~ula polymorpha, Kluyveromyces fragilis and K. lactis, Pichia guillerimondii and P. pastoris, Schizosaccharomyces pombe, and Yarrowia lipolytica.
[0089] The CA protein may also be made as a fusion protein, using techniques well known in the art. Thus, for example, for the creation of monoclonal antibodies. If the desired epitope is small, the CA protein may be fused to a carrier protein to form an immunogen. Alternatively, the CA protein may be made as a fusion protein to increase expression, or for other reasons. For example, when the CA protein is an CA
peptide, the nucleic acid encoding the peptide may be linked to other nucleic acid for expression purposes.
[0090] In one embodiment, the CA nucleic acids, proteins and antibodies of the invention are labeled. By "labeled" herein is meant that a compound has at least one element, isotope or chemical compound attached to enable the detection of the compound. In general, labels fall into three classes: a) isotopic labels, which may be radioactive or heavy isotopes; b) immune labels, which may be antibodies or antigens;

and c) colored or fluorescent dyes. The labels may be incorporated into the CA
nucleic acids, proteins and antibodies at any position. For example, the label should be capable of producing, either directly or indirectly, a detectable signal.
The detectable moiety may be a radioisotope, such as 3H, 14C, 32P, 3sS, or lash a fluorescent or chemiluminescent compound, such as fluorescein isothiocyanate, rhodamine, or luciferin, or an enzyme, such as alkaline phosphatase, beta-galactosidase or horseradish peroxidase. Any method known in the art for conjugating the antibody to the label may be employed, including those methods described by Hunter et al., Nature, 144:945 (1962); David et al., Biochemistry, 13 :1014 ( 1974); Pain et al., J. Immunol. Meth., 40:219 ( 1981 ); and Nygren, J.
Histochem. and Cytochem., 30:407 (1982).
[0091] Accordingly, the present invention also provides CA protein sequences.
An CA protein of the present invention may be identified in several ways.
"Protein" in this sense includes proteins, polypeptides, and peptides. As will be appreciated by those in the art, the nucleic acid sequences of the invention can be used to generate protein sequences. There are a variety of ways to do this, including cloning the entire gene and verifying its frame and amino acid sequence, or by comparing it to known sequences to search for homology to provide a frame, assuming the CA protein has homology to some protein in the database being used. Generally, the nucleic acid sequences are input into a program that will search all three frames for homology.
This is done in a preferred embodiment using the following NCBI Advanced BLAST
parameters. The program is blastx or blastn. The database is nr. The input data is as "Sequence in FASTA format". The organism list is "none". The "expect" is 10;
the filter is default. The "descriptions" is 500, the "alignments" is 500, and the "alignment view" is pairwise. The "query Genetic Codes" is standard (1). The matrix is BLOSLTM62; gap existence cost is 1 l, per residue gap cost is 1; and the lambda ratio is .85 default. This results in the generation of a putative protein sequence.
[0092] Also included within one embodiment of CA proteins are amino acid variants of the naturally occurring sequences, as determined herein. Preferably, the variants are preferably greater than about 75% homologous to the wild-type sequence, more preferably greater than about 80%, even more preferably greater than about 85%
and most preferably greater than 90%. In some embodiments the homology will be as high as about 93 to 95 or 98%. As for nucleic acids, homology in this context means sequence similarity or identity, with identity being preferred. This homology will be determined using standard techniques known in the art as are outlined above for the nucleic acid homologies.
[0093] CA proteins of the present invention may be shorter or longer than the wild type amino acid sequences. Thus, in a preferred embodiment, included within the definition of CA proteins are portions or fragments of the wild type sequences herein.
In addition, as outlined above, the CA nucleic acids of the invention may be used to obtain additional coding regions, and thus additional protein sequence, using techniques known in the art.
[0094] In a preferred embodiment, the CA proteins are derivative or variant CA
proteins as compared to the wild-type sequence. That is, as outlined more fully below, the derivative CA peptide will contain at least one amino acid substitution, deletion or insertion, with amino acid substitutions being particularly preferred. The amino acid substitution, insertion or deletion may occur at any residue within the CA
peptide.
[0095] Also included in an embodiment of CA proteins of the present invention are amino acid sequence variants. These variants fall into one or more of three classes:
substitutional, insertional or deletional variants. These variants ordinarily are prepared by site specific mutagenesis of nucleotides in the DNA encoding the CA
protein, using cassette or PCR mutagenesis or other techniques well known in the art, to produce DNA encoding the variant, and thereafter expressing the DNA in recombinant cell culture as outlined above. However, variant CA protein fragments having up to about 100-150 residues may be prepared by in vitro synthesis using established techniques. Amino acid sequence variants are characterized by the predetermined nature of the variation, a feature that sets them apart from naturally occurring allelic or interspecies variation of the CA protein amino acid sequence. The variants typically exhibit the same qualitative biological activity as the naturally occurring analogue, although variants can also be selected which have modified characteristics as will be more fully outlined below.
[0096] While the site or region for introducing an amino acid sequence variation is predetermined, the mutation per se need not be predetermined. For example, in order to optimize the performance of a mutation at a given site, random mutagenesis may be conducted at the target codon or region and the expressed CA variants screened for the optimal combination of desired activity. Techniques for making substitution mutations at predetermined sites in DNA having a known sequence are well known, for example, M13 primer mutagenesis and LAR mutagenesis. Screening of the mutants is done using assays of CA protein activities.
[0097] Amino acid substitutions are typically of single residues; insertions usually will be on the order of from about 1 to 20 amino acids, although considerably larger insertions may be tolerated. Deletions range from about 1 to about 20 residues, although in some cases deletions may be much larger.
[0098] Substitutions, deletions, insertions or any combination thereof may be used to arrive at a final derivative. Generally these changes are done on a few amino acids to minimize the alteration of the molecule. However, larger changes may be tolerated in certain circumstances. When small alterations in the characteristics of the CA
protein are desired, substitutions are generally made in accordance with the following chart:
Chart I
Original Residue Exemplary Substitutions Ala Ser Arg Lys Asn Gln, His Asp Glu Cys Ser Gln Asn Glu Asp Gly Pro His Asn, Gln Ile Leu, Val Leu Ile, Val Lys Arg, Gln, Glu Met Leu, Ile Phe Met, Leu, Tyr Ser Thr Thr Ser Trp Tyr Tyr Trp, Phe Val Ile, Leu [0099] Substantial changes in function or immunological identity are made by selecting substitutions that are less conservative than those shown in Chart I. For example, substitutions may be made which more significantly affect: the structure of the polypeptide backbone in the area of the alteration, for example the alpha-helical or beta-sheet structure; the charge or hydrophobicity of the molecule at the target site; or the bulk of the side chain. The substitutions which in general are expected to produce the greatest changes in the polypeptide's properties are those in which (a) a hydrophilic residue, e.g. seryl or threonyl is substituted for (or by) a hydrophobic residue, e.g. leucyl, isoleucyl, phenylalanyl, valyl or alanyl; (b) a cysteine or proline is substituted for (or by) any other residue; (c) a residue having an electropositive side chain, e.g. lysyl, arginyl, or histidyl, is substituted for (or by) an electronegative residue, e.g. glutamyl or aspartyl; or (d) a residue having a bulky side chain, e.g.
phenylalanine, is substituted for (or by) one not having a side chain, e.g.
glycine.
[0100] The variants typically exhibit the same qualitative biological activity and will elicit the same immune response as the naturally-occurring analogue, although variants also are selected to modify the characteristics of the CA proteins as needed.
Alternatively, the variant may be designed such that the biological activity of the CA
protein is altered. . For example, glycosylation sites may be altered or removed, dominant negative mutations created, etc.
[0101] Covalent modifications of CA polypeptides are included within the scope of this invention, for example for use in screening. One type of covalent modification includes reacting targeted amino acid residues of an CA polypeptide with an organic derivatizing agent that is capable of reacting with selected side chains or the N-or C-terminal residues of an CA polypeptide. Derivatization with bifunctional agents is useful, for instance, for crosslinking CA polypeptides to a water-insoluble support matrix or surface for use in the method for purifying anti-CA antibodies or screening assays, as is more fully described below. Commonly used crosslinking agents include, e.g., l,l-bis(diazoacetyl)-2-phenylethane, glutaraldehyde, N-hydroxysuccinimide esters, for example, esters with 4-azidosalicylic acid, homobifunctional imidoesters, including disuccinimidyl esters such as 3,3'-dithiobis(succinimidylpropionate), bifunctional maleimides such as bis-N-maleimido-1,8-octane and agents such as methyl-3-[(p-azidophenyl)dithio]propioimidate.

[0102] Other modifications include deamidation of glutaminyl and asparaginyl residues to the corresponding glutamyl and aspartyl residues, respectively, hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of Beryl, threonyl or tyrosyl residues, methylation of the a-amino groups of lysine, arginine, and histidine side chains [T.E. Creighton, Proteins: Structure and Molecular Properties, W.H. Freeman & Co., San Francisco, pp. 79-86 (1983)], acetylation of the N-terminal amine, and amidation of any C-terminal carboxyl group.
[0103] Another type of covalent modification of the CA polypeptide included within the scope of this invention comprises altering the native glycosylation pattern of the polypeptide. "Altering the native glycosylation pattern" is intended for purposes herein to mean deleting one or more carbohydrate moieties found in native sequence CA polypeptide, and/or adding one or more glycosylation sites that are not present in the native sequence CA polypeptide.
[0104] Addition of glycosylation sites to CA polypeptides may be accomplished by altering the amino acid sequence thereof. The alteration may be made, for example, by the addition of, or substitution by, one or more serine or threonine residues to the native sequence CA polypeptide (for O-linked glycosylation sites). The CA
amino acid sequence may optionally be altered through changes at the DNA level, particularly by mutating the DNA encoding the CA polypeptide at preselected bases such that codons are generated that will translate into the desired amino acids.
[0105] Another means of increasing the number of carbohydrate moieties on the CA
polypeptide is by chemical or enzymatic coupling of glycosides to the polypeptide.
Such methods are described in the art, e.g., in WO 87/05330 published 11 September 1987, and in Aplin and Wriston, LA Crit. Rev. Biochem., pp. 259-306 (1981).
[0106] Removal of carbohydrate moieties present on the CA polypeptide may be accomplished chemically or enzymatically or by mutational substitution of codons encoding for amino acid residues that serve as targets for glycosylation.
Chemical deglycosylation techniques are known in the art and described, for instance, by Hakimuddin, et al., Arch. Biochem. Biophys., 259:52 (1987) and by Edge et al., Anal.
Biochem., 118:131 (1981). Enzymatic cleavage of carbohydrate moieties on polypeptides can be achieved by the use of a variety of endo-and exo-glycosidases as described by Thotakura et al.,, Meth. Enzymol., 138:350 (1987).

[0107] Another type of covalent modification of CA comprises linking the CA
polypeptide to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol, polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S.
PatentNos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337.
[0108] CA polypeptides of the present invention may also be modified in a way to form chimeric molecules comprising an CA polypeptide fused to another, heterologous polypeptide or amino acid sequence. In one embodiment, such a chimeric molecule comprises a fusion of an CA polypeptide with a tag polypeptide which provides an epitope to which an anti-tag antibody can selectively bind.
The epitope tag is generally placed at the amino-or carboxyl-terminus of the CA
polypeptide, although internal fusions may also be tolerated in some instances. The presence of such epitope-tagged forms of an CA polypeptide can be detected using an antibody against the tag polypeptide. Also, provision of the epitope tag enables the CA polypeptide to be readily purified by affinity purification using an anti-tag antibody or another type of affinity matrix that binds to the epitope tag. In an alternative embodiment, the chimeric molecule may comprise a fusion of an CA
polypeptide with an immunoglobulin or a particular region of an immunoglobulin.
For a bivalent form of the chimeric molecule, such a fusion could be to the Fc region of an IgG molecule.
[0109] Various tag polypeptides and their respective antibodies are well known in the art. Examples include poly-histidine (poly-his) or poly-histidine-glycine (poly-his-gly) tags; the flu HA tag polypeptide and its antibody 12CA5 [Field et al., Mol. Cell.
Biol., 8:2159-2165 (1988)]; the c-myc tag and the 8F9, 3C7, 6E10, G4, B7 and antibodies thereto [Evan et al., Molecular and Cellular Biology, 5:3610-3616 (1985)];
and the Herpes Simplex virus glycoprotein D (gD) tag and its antibody [Paborsky et al., Protein Engineering, 3(6):547-553 (1990)]. Other tag polypeptides include the Flag-peptide [Hopp et al., BioTechnology, 6:1204-1210 (1988)]; the I~T3 epitope peptide [Martin et al., Science, 255:192-194 (1992)]; tubulin epitope peptide [Skinner et al., J. Biol. Chem., 266:15163-15166 (1991)]; and the T7 gene 10 protein peptide tag [Lutz-Freyermuth et al., Proc. Natl. Acad. Sci. USA, 87:6393-6397 (1990)].
[0110] Also included with the definition of CA protein in one embodiment are other CA proteins of the CA family, and CA proteins from other organisms, which axe cloned and expressed as outlined below. Thus, probe or degenerate polymerase chain reaction (PCR) primer sequences may be used to find other related CA proteins from humans or other organisms. As will be appreciated by those in the art, particularly useful probe and/or PCR primer sequences include the unique axeas of the CA
nucleic acid sequence. As is generally known in the art, preferred PCR primers are from about 15 to about 35 nucleotides in length, with from about 20 to about 30 being preferred, and may contain inosine as needed. The conditions for the PCR
reaction are well known in the art.
[0111] In addition, as is outlined herein, CA proteins can be made that are longer than those encoded by the nucleic acids of the figures, for example, by the elucidation of additional sequences, the addition of epitope or purification tags, the addition of other fusion sequences, etc.
[0112] CA proteins may also be identified as being encoded by CA nucleic acids.
Thus, CA proteins are encoded by nucleic acids that will hybridize to the sequences of the sequence listings, or their complements, as outlined herein.
[0113] In a preferred embodiment, the invention provides CA antibodies. In a preferred embodiment, when the CA protein is to be used to generate antibodies, for example for immunotherapy, the CA protein should share at least one epitope or determinant with the full length protein. By "epitope" or "determinant" herein is meant a portion of a protein which will generate and/or bind an antibody or T-cell receptor in the context of MHC. Thus, in most instances, antibodies made to a smaller CA protein will be able to bind to the full length protein. In a preferred embodiment, the epitope is unique; that is, antibodies generated to a unique epitope show little or no cross-reactivity.
[0114] In one embodiment, the term "antibody" includes antibody fragments, as are known in the art, including Fab, Fab2, single chain antibodies (Fv for example), chimeric antibodies, etc., either produced by the modification of whole antibodies or those synthesized de novo using recombinant DNA technologies.
[0115] Methods of preparing polyclonal antibodies axe known to the skilled artisan.
Polyclonal antibodies can be raised in a mammal, for example, by one or more injections of an immunizing agent and, if desired, an adjuvant. Typically, the immunizing agent and/or adjuvant will be injected in the mammal by multiple subcutaneous or intraperitoneal injections. The immunizing agent may include a protein encoded by a nucleic acid of the figures or fragment thereof or a fusion protein thereof. It may be useful to conjugate the immunizing agent to a protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. Examples of adjuvants which may be employed include Freund's complete adjuvant and MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate).
The immunization protocol may be selected by one skilled in the art without undue experimentation.
[0116] The antibodies may, alternatively, be monoclonal antibodies. Monoclonal antibodies may be prepared using hybridoma methods, such as those described by Kohler and Milstein, Nature, 256:495 (1975). In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes may be immunized in vitro. The immunizing agent will typically include a polypeptide encoded by a nucleic acid of Tables 1-112, or fragment thereof or a fusion protein thereof. Generally, either peripheral blood lymphocytes ("PBLs") are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell [coding, Monoclonal Antibodies: Principles and Practice, Academic Press, (1986) pp. 59-103]. Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin.
Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells may be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine ("HAT medium"), which substances prevent the growth of HGPRT-deficient cells.
[0117] In one embodiment, the antibodies are bispecific antibodies. Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens. In the present case, one of the binding specificities is for a protein encoded by a nucleic acid of Tables 1-112, or a fragment thereof, the other one is for any other antigen, and preferably for a cell-surface protein or receptor or receptor subunit, preferably one that is tumor specific.
[0118] In a preferred embodiment, the antibodies to CA are capable of reducing or eliminating the biological function of CA, as is described below. That is, the addition of anti-CA antibodies (either polyclonal or preferably monoclonal) to CA (or cells containing CA) may reduce or eliminate the CA activity. Generally, at least a 25%
decrease in activity is preferred, with at least about 50% being particularly preferred and about a 95-100% decrease being especially preferred.
[0119] In a preferred embodiment the antibodies to the CA proteins are humanized antibodies. Humanized forms of non human (e.g., marine) antibodies are chimeric molecules of immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')2 or other antigen binding subsequences of antibodies) which contain minimal sequence derived from non human immunoglobulin. Humanized antibodies include human immunoglobulins (recipient antibody) in which residues form a complementary determining region (CDR) of the recipient are replaced by residues from a CDR of a non human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity and capacity. In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non human residues. Humanized antibodies may also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non human immunoglobulin and all or substantially all of the framework residues (FR) regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin [Jones et al., Nature, 321:522 525 (1986); Riechmann et al., Nature, 332:323 329 (1988); and Presta, Curr. Op. Struct. Biol., 2:593 (1992)].
[0120] Methods for humanizing non human antibodies are well known in the art.
Generally, a humanized antibody has one or more amino acid residues introduced into it from a source which is non human. These non human amino acid residues are often referred to as import residues, which are typically taken from an import variable domain. Humanization can be essentially performed following the method of Winter and co workers [Jones et al., Nature, 321:522 525 (1986); Riechmann et al., Nature, 332:323 327 (1988); Verhoeyen et al., Science, 239:1534 1536 (1988)], by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such humanized antibodies are chimeric antibodies (U.S. Patent No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.
[0121] Human antibodies can also be produced using various techniques known in the art, including phage display libraries [Hoogenboom and Winter, J. Mol. Biol., 227:381 (1991); Marks et al., J. Mol. Biol., 222:581 (1991)]. The techniques of Cole et al. and Boerner et al. are also available for the preparation of human monoclonal antibodies [Cole et al., Monoclonal Antibodies and Cancer Therapy, Alan R.
Liss, p.
77 (1985) and Boerner et al., J. Immunol., 147(1):86 95 (1991)]. Similarly, human antibodies can be made by introducing human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, for example, in U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126;
5,633,425;
5,661,016, and in the following scientific publications: Marks et al., Bio/Technology 10, 779 783 (1992); Lonberg et al., Nature 368 856 859 (1994); Morrison, Nature 368, 812-13 (1994); Fishwild et al., Nature Biotechnology 14, 845 51 (1996);
Neuberger, Nature Biotechnology 14, 826 (1996); Lonberg and Huszar, Intern.
Rev.
Immunol. 13 65 93 (1995).
[0122] By immunotherapy is meant treatment of a carcinoma with an antibody raised against an CA protein. As used herein, immunotherapy can be passive or active.
Passive immunotherapy as defined herein is the passive transfer of antibody to a recipient (patient). Active immunization is the induction of antibody and/or T-cell responses in a recipient (patient). Induction of an immune response is the result of providing the recipient with an antigen to which antibodies are raised. As appreciated by one of ordinary skill in the art, the antigen may be provided by injecting a polypeptide against which antibodies are desired to be raised into a recipient, or contacting the recipient with a nucleic acid capable of expressing the antigen and under conditions for expression of the antigen.
[0123] In a preferred embodiment, oncogenes which encode secreted growth factors may be inhibited by raising antibodies against CA proteins that are secreted proteins as described above. Without being bound by theory, antibodies used for treatment, bind and prevent the secreted protein from binding to its receptor, thereby inactivating the secreted CA protein.
[0124] In another preferred embodiment, the CA protein to which antibodies are raised is a transmembrane, protein. Without being bound by theory, antibodies used for treatment, bind the extracellular domain of the CA protein and prevent it from binding to other proteins, such as circulating ligands or cell-associated molecules.
The antibody may cause down-regulation of the transmembrane CA protein. As will be appreciated by one of ordinary skill in the art, the antibody may be a competitive, non-competitive or uncompetitive inhibitor of protein binding to the extracellular domain of the CA protein. The antibody is also an antagonist of the CA
protein.
Further, the antibody prevents activation of the transmembrane CA protein. In one aspect, when the antibody prevents the binding of other molecules to the CA
protein, the antibody prevents growth of the cell. The antibody may also sensitize the cell to cytotoxic agents, including, but not limited to TNF-, TNF-, IL-1, INF; and IL-2, or chemotherapeutic agents including SFU, vinblastine, actinomycin D, cisplatin, methotrexate, and the like. In some instances the antibody belongs to a sub-type that activates serum complement when complexed with the transmembrane protein thereby mediating cytotoxicity. Thus, carcinomas may be treated by administering to a patient antibodies directed against the transmembrane CA protein.
[0125] In another preferred embodiment, the antibody is conjugated to a therapeutic moiety. In one aspect the therapeutic moiety is a small molecule that modulates the activity of the CA protein. In another aspect the therapeutic moiety modulates the activity of molecules associated with or in close proximity to the CA protein.
The therapeutic moiety may inhibit enzymatic activity such as protease or protein kinase activity associated with carcinoma.
[0126] In a preferred embodiment, the therapeutic moiety may also be a cytotoxic agent. In this method, targeting the cytotoxic agent to tumor tissue or cells, results in a reduction in the number of afflicted cells, thereby reducing symptoms associated with carcinomas, including lymphoma. Cytotoxic agents are numerous and varied and include, but are not limited to, cytotoxic drugs or toxins or active fragments of such toxins. Suitable toxins and their corresponding fragments include diphtheria A
chain, exotoxin A chain, ricin A chain, abrin A chain, curcin, crotin, phenomycin, enomycin and the like. Cytotoxic agents also include radiochemicals made by conjugating radioisotopes to antibodies raised against CA proteins, or binding of a radionuclide to a chelating agent that has been covalently attached to the antibody.
Targeting the therapeutic moiety to transmembrane CA proteins not only serves to increase the local concentration of therapeutic moiety in the carcinoma of interest, i.e., lymphoma, but also serves to reduce deleterious side effects that may be associated with the therapeutic moiety.
[0127] In another preferred embodiment, the CA protein against which the antibodies are raised is an intracellular protein. In this case, the antibody may be conjugated to a protein which facilitates entry into the cell. In one case, the antibody enters the cell by endocytosis. In another embodiment, a nucleic acid encoding the antibody is administered to the individual or cell. Moreover, wherein the CA protein can be targeted within a cell, i.e., the nucleus, an antibody thereto contains a signal for that target localization, i.e., a nuclear localization signal.
[0128] The CA antibodies of the invention specifically bind to CA proteins. By "specifically bind" herein is meant that the antibodies bind to the protein with a binding constant in the range of at least 10-4- 10-6 M-1, with a preferred range being 10-7 - 10-9 M-1.
[0129] In a preferred embodiment, the CA protein is purified or isolated after expression. CA proteins may be isolated or purified in a variety of ways known to those skilled in the art depending on what other components are present in the sample.
Standard purification methods include electrophoretic, molecular, immunological and chromatographic techniques, including ion exchange, hydrophobic, affinity, and reverse-phase HPLC chromatography, and chromatofocusing. For example, the CA
protein may be purified using a standard anti-CA antibody column.
Ultrafiltration and diafiltration techniques, in conjunction with protein concentration, are also useful.
For general guidance in suitable purification techniques, see Scopes, R., Protein Purification, Springer-Verlag, NY (1982). The degree of purification necessary will vary depending on the use of the CA protein. In some instances no purification will be necessary.
[0130] Once expressed and purified if necessary, the CA proteins and nucleic acids are useful in a number of applications.
[0131] In one aspect, the expression levels of genes are determined for different cellular states in the carcinoma phenotype; that is, the expression levels of genes in normal tissue and in carcinoma tissue (and in some cases, for varying severities of lymphoma that relate to prognosis, as outlined below) are evaluated to provide expression profiles. An expression profile of a particular cell state or point of development is essentially a "fingerprint" of the state; while two states may have any particular gene similarly expressed, the evaluation of a number of genes simultaneously allows the generation of a gene expression profile that is unique to the state of the cell. By comparing expression profiles of cells in different states, information regarding which genes are important (including both up- and down-regulation of genes) in each of these states is obtained. Then, diagnosis may be done or confirmed: does tissue from a particular patient have the gene expression profile of normal or carcinoma tissue.
[0132] "Differential expression," or grammatical equivalents as used herein, refers to both qualitative as well as quantitative differences in the genes temporal and/or cellular expression patterns within and among the cells. Thus, a differentially expressed gene can qualitatively have its expression altered, including an activation or inactivation, in, for example, normal versus carcinoma tissue. That is, genes may be turned on or turned off in a particular state, relative to another state. As is apparent to the skilled artisan, any comparison of two or more states can be made. Such a qualitatively regulated gene will exhibit an expression pattern within a state or cell type which is detectable by standard techniques in one such state or cell type, but is not detectable in both. Alternatively, the determination is quantitative in that expression is increased or decreased; that is, the expression of the gene is either upregulated, resulting in an increased amount of transcript, or downregulated, resulting in a decreased amount of transcript. The degree to which expression differs need only be large enough to quantify via standard characterization techniques as outlined below, such as by use of Affymetrix GeneChip~ expression arrays, Lockhart, Nature Biotechnology, 14:1675-1680 (1996), hereby expressly incorporated by reference. Other techniques include, but are not limited to, quantitative reverse transcriptase PCR, Northern analysis and RNase protection. As outlined above, preferably the change in expression (i.e. upregulation or downregulation) is at least about 50%, more preferably at least about 100%, more preferably at least about 150%, more preferably, at least about 200%, with from 300 to at least 1000% being especially preferred.
[0133] As will be appreciated by those in the art, this may be done by evaluation at either the gene transcript, or the protein level; that is, the amount of gene expression may be monitored using nucleic acid probes to the DNA or RNA equivalent of the gene transcript, and the quantification of gene expression levels, or, alternatively, the final gene product itself (protein) can be monitored, for example through the use of antibodies to the CA protein and standard immunoassays (ELISAs, etc.) or other techniques, including mass spectroscopy assays, 2D gel electrophoresis assays, etc.
Thus, the proteins corresponding to CA genes, i.e. those identified as being important in a particular carcinoma phenotype, i.e., lymphoma, can be evaluated in a diagnostic test specific for that carcinoma.
[0134] In a preferred embodiment, gene expression monitoring is done and a number of genes, i.e. an expression profile, is monitored simultaneously, although multiple protein expression monitoring can be done as well. Similarly, these assays may be done on an individual basis as well.
[0135] In this embodiment, the CA nucleic acid probes may be attached to biochips as outlined herein for the detection and quantification of CA sequences in a particular cell. The assays are done as is known in the art. As will be appreciated by those in the art, any number of different CA sequences may be used as probes, with single sequence assays being used in some cases, and a plurality of the sequences described herein being used in other embodiments. In addition, while solid-phase assays are described, any number of solution based assays may be done as well.

[0136] In a preferred embodiment, both solid and solution based assays may be used to detect CA sequences that are up-regulated or down-regulated in carcinomas as compared to normal tissue. In instances where the CA sequence has been altered but shows the same expression profile or an altered expression profile, the protein will be detected as outlined herein.
[0137] In a preferred embodiment nucleic acids encoding the CA protein are detected.
Although DNA or RNA encoding the CA protein may be detected, of particular interest are methods wherein the mRNA encoding a CA protein is detected. The presence of mRNA in a sample is an indication that the CA gene has been transcribed to form the mRNA, and suggests that the protein is expressed. Probes to detect the mRNA can be any nucleotide/deoxynucleotide probe that is complementary to and base pairs with the mRNA and includes but is not limited to oligonucleotides, cDNA
or RNA. Probes also should contain a detectable label, as defined herein. In one method the mRNA is detected after immobilizing the nucleic acid to be examined on a solid support such as nylon membranes and hybridizing the probe with the sample.
Following washing to remove the non-specifically bound probe, the label is detected.
In another method detection of the mRNA is performed in situ. In this method permeabilized cells or tissue samples are contacted with a detectably labeled nucleic acid probe for sufficient time to allow the probe to hybridize with the target mRNA.
Following washing to remove the non-specifically bound probe, the label is detected.
For example a digoxygenin labeled riboprobe (RNA probe) that is complementary to the mRNA encoding a CA protein is detected by binding the digoxygenin with an anti-digoxygenin secondary antibody and developed with nitro blue tetrazolium and bromo 4 chloro 3 indoyl phosphate.
[0138] In a preferred embodiment, any of the three classes of proteins as described herein (secreted, transmembrane or intracellular proteins) axe used in diagnostic assays. The CA proteins, antibodies, nucleic acids, modified proteins and cells containing CA sequences are used in diagnostic assays. This can be done on an individual gene or corresponding polypeptide level, or as sets of assays.
[0139] As described and defined herein, CA proteins find use as markers of carcinomas, including lymphomas such as, but not limited to, Hodgkin's and non-Hodgkin lymphoma. Detection of these proteins in putative carcinoma tissue or patients allows for a determination or diagnosis of the type of carcinoma.
Numerous methods known to those of ordinary skill in the art find use in detecting carcinomas.
In one embodiment, antibodies are used to detect CA proteins. A preferred method separates proteins from a sample or patient by electrophoresis on a gel (typically a denaturing and reducing protein gel, but may be any other type of gel including isoelectric focusing gels and the like). Following separation of proteins, the CA
protein is detected by immunoblotting with antibodies raised against the CA
protein.
Methods of immunoblotting.are well known to those of ordinary skill in the art.
[0140] In another preferred method, antibodies to the CA protein find use in in situ imaging techniques. In this method cells are contacted with from one to many antibodies to the CA protein(s). Following washing to remove non-specific antibody binding, the presence of the antibody or antibodies is detected. In one embodiment the antibody is detected by incubating with a secondary antibody that contains a detectable label. In another method the primary antibody to the CA proteins) contains a detectable label. In another preferred embodiment each one of multiple primary antibodies contains a distinct and detectable label. This method finds particular use in simultaneous screening for a plurality of CA proteins. As will be appreciated by one of ordinary skill in the art, numerous other histological imaging techniques are useful in the invention.
[0141] In a preferred embodiment the label is detected in a fluorometer which has the ability to detect and distinguish emissions of different wavelengths. In addition, a fluorescence activated cell sorter (FACS) can be used in the method.
[0142] In another preferred embodiment, antibodies find use in diagnosing carcinomas from blood samples. As previously described, certain CA proteins are secreted/circulating molecules. Blood samples, therefore, are useful as samples to be probed or tested for the presence of secreted CA proteins. Antibodies can be used to detect the CA proteins by any of the previously described immunoassay techniques including ELISA, immunoblotting (Western blotting), immunoprecipitation, BIACORE technology and the like, as will be appreciated by one of ordinary skill in the art.
[0143] In a preferred embodiment, in situ hybridization of labeled CA nucleic acid probes to tissue arrays is done. For example, arrays of tissue samples, including CA

tissue and/or normal tissue, are made. Ih situ hybridization as is known in the art can then be done.
[0144] It is understood that when comparing the expression fingerprints between an individual and a standard, the skilled artisan can make a diagnosis as well as a prognosis. It is further understood that the genes which indicate the diagnosis may differ from those which indicate the prognosis.
[0145] In a preferred embodiment, the CA proteins, antibodies, nucleic acids, modified proteins and cells containing CA sequences are used in prognosis assays.
As above, gene expression profiles can be generated that correlate to carcinoma, especially lymphoma, severity, in terms of long term prognosis. Again, this may be done on either a protein or gene level, with the use of genes being preferred.
As above, the CA probes are attached to biochips for the detection and quantification of CA sequences in a tissue or patient. The assays proceed as outlined for diagnosis.
[0146] In a preferred embodiment, any of the CA sequences as described herein are used in drug screening assays. The CA proteins, antibodies, nucleic acids, modified proteins and cells containing CA sequences are used in drug screening assays or by evaluating the effect of drug candidates on a "gene expression profile" or expression profile of polypeptides. In one embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes after treatment with a candidate agent, Zlokarnik, et al., Science 279, 84-8 (1998), Heid, et al., Genome Res., 6:986-(1996).
[0147] In a preferred embodiment, the CA proteins, antibodies, nucleic acids, modified proteins and cells containing the native or modified CA proteins are used in screening assays. That is, the present invention provides novel methods for screening for compositions which modulate the carcinoma phenotype. As above, this can be done by screening for modulators of gene expression or for modulators of protein activity. Similarly, this may be done on an individual gene or protein level or by evaluating the effect of drug candidates on a "gene expression profile". In a preferred embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes after treatment with a candidate agent, see Zlokarnik, supra.

[0148] Having identified the CA genes herein, a variety of assays to evaluate the effects of agents on gene expression may be executed. In a preferred embodiment, assays may be run on an individual gene or protein level. That is, having identified a particular gene as aberrantly regulated in carcinoma, candidate bioactive agents may be screened to modulate the genes response. "Modulation" thus includes both an increase and a decrease in gene expression or activity. The preferred amount of modulation will depend on the original change of the gene expression in normal versus tumor tissue, with changes of at least 10%, preferably 50%, more preferably 100-300%, and in some embodiments 300-1000% or greater. Thus, if a gene exhibits a 4 fold increase in tumor compared to normal tissue, a decrease of about four fold is desired; a 10 fold decrease in tumor compared to normal tissue gives a 10 fold increase in expression for a candidate agent is desired, etc. Alternatively, where the CA sequence has been altered but shows the same expression profile or an altered expression profile, the protein will be detected as outlined herein.
[0149] As will be appreciated by those in the art, this may be done by evaluation at either the gene or the protein level; that is, the amount of gene expression may be monitored using nucleic acid probes and the quantification of gene expression levels, or, alternatively, the level of the gene product itself can be monitored, for example through the use of antibodies to the CA protein and standard immunoassays.
Alternatively, binding and bioactivity assays with the protein may be done as outlined below.
[0150] In a preferred embodiment, gene expression monitoring is done and a number of genes, i.e. an expression profile, is monitored simultaneously, although multiple protein expression monitoring can be done as well.
[0151] In this embodiment, the CA nucleic acid probes are attached to biochips as outlined herein for the detection and quantification of CA sequences in a particular cell. The assays are further described below.
[0152] Generally, in a preferred embodiment, a candidate bioactive agent is added to the cells prior to analysis. Moreover, screens are provided to identify a candidate bioactive agent which modulates a particular type of carcinoma, modulates CA
proteins, binds to a CA protein, or interferes between the binding of a CA
protein and an antibody.

[0153] The term "candidate bioactive agent" or "drug candidate" or grammatical equivalents as used herein describes any molecule, e.g., protein, oligopeptide, small organic or inorganic molecule, polysaccharide, polynucleotide, etc., to be tested for bioactive agents_that are capable of directly or indirectly altering either the carcinoma phenotype, binding to and/or modulating the bioactivity of an CA protein, or the expression of a CA sequence, including both nucleic acid sequences and protein sequences. In a particularly preferred embodiment, the candidate agent suppresses a CA phenotype, for example to a normal tissue fingerprint. Similarly, the candidate agent preferably suppresses a severe CA phenotype. Generally a plurality of assay mixtures are run in parallel with different agent concentrations to obtain a differential response to the various concentrations. Typically, one of these concentrations serves as a negative control, i.e., at zero concentration or below the level of detection.
[0154] In one aspect, a candidate agent will neutralize the effect of an CA
protein.
By "neutralize" is meant that activity of a protein is either inhibited or counter acted against so as to have substantially no effect on a cell.
[0155] Candidate agents encompass numerous chemical classes, though typically they are organic or inorganic molecules, preferably small organic compounds having a molecular weight of more than 100 and less than about 2,500 daltons. Preferred small molecules are less than 2000, or less than 1500 or less than 1000 or less than 500 D.
Candidate agents comprise functional groups necessary for structural interaction with proteins, particularly hydrogen bonding, and typically include at least an amine, carbonyl, hydroxyl or carboxyl group, preferably at least two of the functional chemical groups. The candidate agents often comprise cyclical carbon or heterocyclic structures and/or aromatic or polyaromatic structures substituted with one or more of the above functional groups. Candidate agents are also found among biomolecules including peptides, saccharides, fatty acids, steroids, purines, pyrimidines, derivatives, structural analogs or combinations thereof. Particularly preferred are peptides.
[0156] Candidate agents are obtained from a wide variety of sources including libraries of synthetic or natural compounds. For example, numerous means are available for random and directed synthesis of a wide variety of organic compounds and biomolecules, including expression of randomized oligonucleotides.
Alternatively, libraries of natural compounds in the form of bacterial, fungal, plant and animal extracts are available or readily produced. Additionally, natural or synthetically produced libraries and compounds are readily modified through conventional chemical, physical and biochemical means. Known pharmacological agents may be subjected to directed or random chemical modifications, such as acylation, alkylation, esterification, amidification to produce structural analogs.
[0157] In a preferred embodiment, the candidate bioactive agents are proteins.
By "protein" herein is meant at least two covalently attached amino acids, which includes proteins, polypeptides, oligopeptides and peptides. The protein may be made up of naturally occurring amino acids and peptide bonds, or synthetic peptidomimetic structures. Thus "amino acid", or "peptide residue", as used herein means both naturally occurring and synthetic amino acids. For example, homo-phenylalanine, citrulline and noreleucine are considered amino acids for the purposes of the invention. "Amino acid" also includes imino acid residues such as proline and hydroxyproline. The side chains may be in either the (R) or the (S) configuration. In the preferred embodiment, the amino acids are in the (S) or L-configuration.
If non-naturally occurring side chains are used, non-amino acid substituents may be used, for example to prevent or retard in vivo degradations.
[0158] In a preferred embodiment, the candidate bioactive agents are naturally occurring proteins or fragments of naturally occurring proteins. Thus, for example, cellular extracts containing proteins, or random or directed digests of proteinaceous cellular extracts, may be used. In this way libraries of procaryotic and eucaryotic proteins may be made for screening in the methods of the invention.
Particularly preferred in this embodiment are libraries of bacterial, fungal, viral, and mammalian proteins, with the latter being preferred, and human proteins being especially preferred.
[0159] In a preferred embodiment, the candidate bioactive agents are peptides of from about 5 to about 30 amino acids, with from about 5 to about 20 amino acids being preferred, and from about 7 to about 15 being particularly preferred. The peptides may be digests of naturally occurring proteins as is outlined above, random peptides, or "biased" random peptides. By "randomized" or grammatical equivalents herein is meant that each nucleic acid and peptide consists of essentially random nucleotides and amino acids, respectively. Since generally these random peptides (or nucleic acids, discussed below) axe chemically synthesized, they may incorporate any nucleotide or amino acid at any position. The synthetic process can be designed to generate randomized proteins or nucleic acids, to allow the formation of all or most of the possible combinations over the length of the sequence, thus forming a library of randomized candidate bioactive proteinaceous agents.
[0160] In one embodiment, the library is fully randomized, with no sequence preferences or constants at any position. In a preferred embodiment, the library is biased. That is, some positions within the sequence are dither held constant, or are selected from a limited number of possibilities. For example, in a preferred embodiment, the nucleotides or amino acid residues are randomized within a defined class, for example, of hydrophobic amino acids, hydrophilic residues, sterically biased (either small or large) residues, towards the creation of nucleic acid binding domains, the creation of cysteines, for cross-linking, prolines for SH-3 domains, serines, threonines, tyrosines or histidines for phosphorylation sites, etc., or to purines, etc.
[0161] In a preferred embodiment, the candidate bioactive agents are nucleic acids, as defined above.
[0162] As described above generally for proteins, nucleic acid candidate bioactive agents may be naturally occurring nucleic acids, random nucleic acids, or "biased"
random nucleic acids. For example, digests of procaryotic or eucaryotic genomes may be used as is outlined above for proteins.
[0163] In a preferred embodiment, the candidate bioactive agents are organic chemical moieties, a wide variety of which are available in the literature.
[0164) In assays'for altering the expression profile of one or more CA genes, after the candidate agent has been added and the cells allowed to incubate for some period of time, the sample containing the target sequences to be analyzed is added to the biochip. If required, the target sequence is prepared using known techniques.
For example, the sample may be treated to lyse the cells, using known lysis buffers, electroporation, etc., with purification and/or amplification such as PCR
occurring as needed, as will be appreciated by those in the art. For example, an i~c vitro transcription with labels covalently attached to the nucleosides is done.
Generally, the nucleic acids are labeled with a label as defined herein, with biotin-FITC or PE, cy3 and cy5 being particularly preferred.
(0165] In a preferred embodiment, the target sequence is labeled with, for example, a fluorescent, chemiluminescent, chemical, or radioactive signal, to provide a means of detecting the target sequence's specific binding to a probe. The label also can be an enzyme, such as, alkaline phosphatase or horseradish peroxidase, which when provided with an appropriate substrate produces a product that can be detected.
Alternatively, the label can be a labeled compound or small molecule, such as an enzyme inhibitor, that binds but is not catalyzed or altered by the enzyme.
The label also can be a moiety or compound, such as, an epitope tag or biotin which specifically binds to streptavidin. For the example of biotin, the streptavidin is labeled as described above, thereby, providing a detectable signal for the bound target sequence.
As known in the art, unbound labeled streptavidin is removed prior to analysis.
[0166] As will be appreciated by those in the art, these assays can be direct hybridization assays or can comprise "sandwich assays", which include the use of multiple probes, as is generally outlined in U.S. Patent Nos. 5,681,702, 5,597,909, 5,545,730, 5,594,117, 5,591,584, 5,571,670, 5,580,731, 5,571,670, 5,591,584, 5,624,802, 5,635,352, 5,594,118, 5,359,100, 5,124,246 and 5,681,697, all of which are hereby incorporated by reference. In this embodiment, in general, the target nucleic acid is prepared as outlined above, and then added to the biochip comprising a plurality of nucleic acid probes, under conditions that allow the formation of a hybridization complex.
[0167] A variety of hybridization conditions may be used in the present invention, including high, moderate and low stringency conditions as outlined above. The assays are generally run under stringency conditions which allows formation of the label probe hybridization complex only in the presence of target. Stringency can be controlled by altering a step parameter that is a thermodynamic variable, including, but not limited to, temperature, formamide concentration, salt concentration, chaotropic salt concentration pH, organic solvent concentration, etc.
[0168] These parameters may also be used to control non-specific binding, as is generally outlined in U.S. Patent No. 5,681,697. Thus it may be desirable to perform certain steps at higher stringency conditions to reduce non-specific binding.
[0169] The reactions outlined herein may be accomplished in a variety of ways, as will be appreciated by those in the art. Components of the reaction may be added simultaneously, or sequentially, in any order, with preferred embodiments outlined below. In addition, the reaction may include a variety of other reagents may be included in the assays. These include reagents like salts, buffers, neutral proteins, e.g.
albumin, detergents, etc which may be used to facilitate optimal hybridization and detection, and/or reduce non-specific or background interactions. Also reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc., may be used, depending on the sample preparation methods and purity of the target. In addition, either solid phase or solution based (i.e., kinetic PCR) assays may be used.
[0170] Once the assay is run, the data is analyzed to determine the expression levels, and changes in expression levels as between states, of individual genes, forming a gene expression profile.
[0171] In a preferred embodiment, as for the diagnosis and prognosis applications, having identified the differentially expressed genes) or mutated genes) important in any one state, screens can be run to alter the expression of the genes individually.
That is, screening for modulation of regulation of expression of a single gene can be done. Thus, for example, particularly in the case of target genes whose presence or absence is unique between two states, screening is done for modulators of the target gene expression.
[0172] In addition, screens can be done for novel genes that are induced in response to a candidate agent. After identifying a candidate agent based upon its ability to suppress a CA expression pattern leading to a normal expression pattern, or modulate a single CA gene expression profile so as to mimic the expression of the gene from normal tissue, a screen as described above can be performed to identify genes that are specifically modulated in response to the agent. Comparing expression profiles between normal tissue and agent treated CA tissue reveals genes that are not expressed in normal tissue or CA tissue, but are expressed in agent treated tissue.
These agent specific sequences can be identified and used by any of the methods described herein for CA genes or proteins. In particular these sequences and the proteins they encode find use in marking or identifying agent treated cells.
In addition, antibodies can be raised against the agent induced proteins and used to target novel therapeutics to the treated CA tissue sample.
[0173] Thus, in one embodiment, a candidate agent is administered to a population of CA cells, that thus has an associated CA expression profile. By "administration" or "contacting" herein is meant that the candidate agent is added to the cells in such a manner as to allow the agent to act upon the cell, whether by uptake and intracellular action, or by action at the cell surface. In some embodiments, nucleic acid encoding a proteinaceous candidate agent (i.e. a peptide) may be put into a viral construct such as a retroviral construct and added to the cell, such that expression of the peptide agent is accomplished; see PCT LTS97/01019, hereby expressly incorporated by reference.
[0174] Once the candidate agent has been administered to the cells, the cells can be washed if desired and are allowed to incubate under preferably physiological conditions for some period of time. The cells are then harvested and a new gene expression profile is generated, as outlined herein.
[0175] Thus, for example, CA tissue may be screened for agents that reduce or suppress the CA phenotype. A change in at least one gene of the expression profile indicates that the agent has an effect on CA activity. By defining such a signature for the CA phenotype, screens for new drugs that alter the phenotype can be devised.
With this approach, the drug target need not be known and need not be represented in the original expression screening platform, nor does the level of transcript for the target protein need to change.
[0176] In a preferred embodiment, as outlined above, screens may be done on individual genes and gene products (proteins). That is, having identified a particular differentially expressed gene as important in a particular state, screening of modulators of either the expression of the gene or the gene product itself can be done.
The gene products of differentially expressed genes axe sometimes referred to herein as "CA proteins" or an "CAP". The CAP may be a fragment, or alternatively, be the full length protein to the fragment encoded by the nucleic acids of Tables 1-112.
Preferably, the CAP is a fragment. In another embodiment, the sequences are sequence variants as further described herein.
[0177) Preferably, the CAP is a fragment of approximately 14 to 24 amino acids long.
More preferably the fragment is a soluble fragment. Preferably, the fragment includes a non-transmembrane region. In a preferred embodiment, the fragment has an N-terminal Cys to aid in solubility. In one embodiment, the c-terminus of the fragment is kept as a free acid and the n-terminus is a free amine to aid in coupling, i.e., to cysteine.

[0178] In one embodiment the CA proteins are conjugated to an immunogenic agent as discussed herein. In one embodiment the CA protein is conjugated to BSA.
'[0179] In a preferred embodiment, screening is done to alter the biological function of the expression product of the CA gene. Again, having identified the importance of a gene in a particular state, screening for agents that bind and/or modulate the biological activity of the gene product can be run as is more fully outlined below.
[0180] In a preferred embodiment, screens are designed to first find candidate agents that can bind to CA proteins, and then these agents may be used in assays that evaluate the ability of the candidate agent to modulate the CAP activity and the carcinoma phenotype. Thus, as will be appreciated by those in the art, there are a number of different assays which may be run; binding assays and activity assays.
(0181] In a preferred embodiment, binding assays are done. In general, purified or isolated gene product is used; that is, the gene products of one or more CA
nucleic acids are made. In general, this is done as is known in the art. For example, antibodies are generated to the protein gene products, and standard immunoassays are run to determine the amount of protein present. Alternatively, cells comprising the CA proteins can be used in the assays. ' [0182] Thus, in a preferred embodiment, the methods comprise combining a CA
protein and a candidate bioactive agent, and determining the binding of the candidate agent to the CA protein. Preferred embodiments utilize the human or mouse CA
protein, although other mammalian proteins may also be used, for example for the development of animal models of human disease. In some embodiments, as outlined herein, variant or derivative CA proteins may be used.
[0183] Generally, in a preferred embodiment of the methods herein, the CA
protein or the candidate agent is non-diffusably bound to an insoluble support having isolated sample receiving areas (e.g. a microtiter plate, an array, etc.). The insoluble supports may be made of any composition to which the compositions can be bound, is readily separated from soluble material, and is otherwise compatible with the overall method of screening. The surface of such supports may be solid or porous and of any convenient shape. Examples of suitable insoluble supports include microtiter plates, arrays, membranes and beads. These are typically made of glass, plastic (e.g., polystyrene), polysaccharides, nylon or nitrocellulose, TeflonTM, etc.
Microtiter plates and arrays are especially convenient because a large number of assays can be carried out simultaneously, using small amounts of reagents and samples. The particular manner of binding of the composition is not crucial so long as it is compatible with the reagents and overall methods of the invention, maintains the activity of the composition and is nondiffusable. Preferred methods of binding include the use of antibodies (which do not sterically block either the ligand binding site or activation sequence when the protein is bound to the support), direct binding to "sticky" or ionic supports, chemical crosslinking, the synthesis of the protein or agent on the surface, etc. Following binding of the protein or agent, excess unbound material is removed by washing. The sample receiving areas may then be blocked through incubation with bovine serum albumin (BSA), casein or other innocuous protein or other moiety.
[0184] In a preferred embodiment, the CA protein is bound to the support, and a candidate bioactive agent is added to the assay. Alternatively, the candidate agent is bound to the support and the CA protein is added. Novel binding agents include specific antibodies, non natural binding agents identified in screens of chemical libraries, peptide analogs, etc. Of particular interest are screening assays for agents that have a low toxicity for human cells. A wide variety of assays may be used for this purpose, including labeled in vitro protein-protein binding assays, electrophoretic mobility shift assays, immunoassays for protein binding, functional assays (phosphorylation assays, etc.) and the like.
[0185] The determination of the binding of the candidate bioactive agent to the CA
protein may be done in a number of ways. In a preferred embodiment, the candidate bioactive agent is labeled, and binding determined directly. For example, this may be done by attaching all or a portion of the CA protein to a solid support, adding a labeled candidate agent (for example a fluorescent label), washing off excess reagent, and determining whether the label is present on the solid support. Various blocking and washing steps may be utilized as is known in the art.
[0186] By "labeled" herein is meant that the compound is either directly or indirectly labeled with a label which provides a detectable signal, e.g. radioisotope, fluorescers, enzyme, antibodies, particles such as magnetic particles, chemiluminescers, or specific binding molecules, etc. Specific binding molecules include pairs, such as biotin and streptavidin, digoxin and antidigoxin etc. For the specific binding members, the complementary member would normally be labeled with a molecule which provides for detection, in accordance with known procedures, as outlined above. The label can directly or indirectly provide a detectable signal.
[0187] In some embodiments, only one of the components is labeled. For example, the proteins (or proteinaceous candidate agents) may be labeled at tyrosine positions using lash or with fluorophores. Alternatively, more than one component may be labeled with different labels; using lasl for the proteins, for example, and a fluorophor for the candidate agents.
[0188] In a preferred embodiment, the binding of the candidate bioactive agent is determined through the use of competitive binding assays. In this embodiment, the competitor is a binding moiety known to bind to the target molecule (i.e. CA
protein), such as an antibody, peptide, binding partner, ligand, etc. Under certain circumstances, there may be competitive binding as between the bioactive agent and the binding moiety, with the binding moiety displacing the bioactive agent.
[0189) In one embodiment, the candidate bioactive agent is labeled. Either the candidate bioactive agent, or the competitor, or both, is added first to the protein for a time sufficient to allow binding, if present. Incubations may be performed at any temperature which facilitates optimal activity, typically between 4 and 40 D
C.
Incubation periods are selected for optimum activity, but may also be optimized to facilitate rapid high through put screening. Typically between 0.1 and 1 hour will be sufficient. Excess reagent is generally removed or washed away. The second component is then added, and the presence or absence of the labeled component is followed, to indicate binding.
[0190] In a preferred embodiment, the competitor is added first, followed by the candidate bioactive agent. Displacement of the competitor is an indication that the candidate bioactive agent is binding to the CA protein and thus is capable of binding to, and potentially modulating, the activity of the CA protein. In this embodiment, either component can be labeled. Thus, for example, if the competitor is labeled, the presence of label in the wash solution indicates displacement by the agent.
Alternatively, if the candidate bioactive agent is labeled, the presence of the label on the support indicates displacement.

(0191] In an alternative embodiment, the candidate bioactive agent is added first, with incubation and washing, followed by the competitor. The absence of binding by the competitor may indicate that the bioactive agent is bound to the CA protein with a higher affinity. Thus, if the candidate bioactive agent is labeled, the presence of the label on the support, coupled with a lack of competitor binding, may indicate that the candidate agent is capable of binding to the CA protein.
[0192] In a preferred embodiment, the methods comprise differential screening to identity bioactive agents that are capable of modulating the activity of the CA
proteins. In this embodiment, the methods comprise combining a CA protein and a competitor in a first sample. A second sample comprises a candidate bioactive agent, a CA protein and a competitor. The binding of the competitor is determined for both samples, and a change, or difference in binding between the two samples indicates the presence of an agent capable of binding to the CA protein and potentially modulating its activity. That is, if the binding of the competitor is different in the second sample relative to the first sample, the agent is capable of binding to the CA
protein.
[0193] Alternatively, a preferred embodiment utilizes differential screening to identify drug candidates that bind to the native CA protein, but cannot bind to modified CA proteins. The structure of the CA protein may be modeled, and used in rational drug design to synthesize agents that interact with that site. Drug candidates that affect CA bioactivity are also identified by screening drugs for the ability to either enhance or reduce the activity of the protein.
[0194] Positive controls and negative controls may be used in the assays.
Preferably all control and test samples are performed in at least triplicate to obtain statistically significant results. Incubation of all samples is for a time sufficient for the binding of the agent to the protein. Following incubation, all samples are washed free of non specifically bound material and the amount of bound, generally labeled agent determined. For example, where a radiolabel is employed, the samples may be counted in a scintillation counter to determine the amount of bound compound.
[0195] A variety of other reagents may be included in the screening assays.
These include reagents like salts, neutral proteins, e.g. albumin, detergents, etc which may be used to facilitate optimal protein protein binding and/or reduce non specific or background interactions. Also reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti microbial agents, etc., may be used. The mixture of components may be added in any order that provides for the requisite binding.
[0196] Screening for agents that modulate the activity of CA proteins may also be done. In a preferred embodiment, methods for screening for a bioactive agent capable of modulating the activity of CA proteins comprise the steps of adding a candidate bioactive agent to a sample of CA proteins, as above, and determining an alteration in the biological activity of CA proteins. "Modulating the activity of an CA
protein"
includes an increase in activity, a decrease in activity, or a change in the type or kind of activity present. Thus, in this embodiment, the candidate agent should both bind to CA proteins (although this may not be necessary), and alter its biological or biochemical activity as defined herein. The methods include both i~c vitro screening methods, as are generally outlined above, and in vivo screening of cells for alterations in the presence, distribution, activity or amount of CA proteins.
[0197] Thus, in this embodiment, the methods comprise combining a CA sample and a candidate bioactive agent, and evaluating the effect on CA activity. By "CA
activity" or grammatical equivalents herein is meant one of the CA protein's biological activities, including, but not limited to, its role in tumorigenesis, including cell division, preferably in lymphatic tissue, cell proliferation, tumor growth and transformation of cells. In one embodiment, CA activity includes activation of or by a protein encoded by a nucleic acid of Tables 1-112. An inhibitor of CA activity is the inhibition of any one or more CA activities.
[0198] In a preferred embodiment, the activity of the CA protein is increased;
in another preferred embodiment, the activity of the CA protein is decreased.
Thus, bioactive agents that are antagonists are preferred in some embodiments, and bioactive agents that are agonists may be preferred in other embodiments.
[0199] In a preferred embodiment, the invention provides methods for screening for bioactive agents capable of modulating the activity of a CA protein. The methods comprise adding a candidate bioactive agent, as defined above, to a cell comprising CA proteins. Preferred cell types include almost any cell. The cells contain a recombinant nucleic acid that encodes a CA protein. In a preferred embodiment, a library of candidate agents are tested on a plurality of cells.

[0200] In one aspect, the assays are evaluated in the presence or absence or previous or subsequent exposure of physiological signals, for example hormones, antibodies, peptides, antigens, cytokines, growth factors, action potentials, pharmacological agents including chemotherapeutics, radiation, carcinogenics, or other cells (i.e. cell-cell contacts). In another example, the determinations are determined at different stages of the cell cycle process.
[0201] In this way, bioactive agents are identified. Compounds with pharmacological activity are able to enhance or interfere with the activity of the CA protein.
[0202] In one embodiment, a method of inhibiting carcinoma cancer cell division, is provided. The method comprises administration of a carcinoma cancer inhibitor.
[0203] In a preferred embodiment, a method of inhibiting lymphoma carcinoma cell division is provided comprising administration of a lymphoma carcinoma inhibitor.
[0204] In another embodiment, a method of inhibiting tumor growth is provided.
The method comprises administration of a carcinoma cancer inhibitor. In a particularly preferred embodiment, a method of inhibiting tumor growth in lymphatic tissue is provided comprising administration of a lymphoma inhibitor.
[0205] In a fiuther embodiment, methods of treating cells or individuals with cancer are provided. The method comprises administration of a carcinoma cancer inhibitor.
Preferably, the carcinoma is a lymphoma carcinoma.
[0206] In one embodiment, a carcinoma cancer inhibitor is an antibody as discussed above. In another embodiment, the carcinoma cancer inhibitor is an antisense molecule. Antisense molecules as used herein include antisense or sense oligonucleotides comprising a singe-stranded nucleic acid sequence (either RNA
or DNA) capable of binding to target mRNA (sense) or DNA (antisense) sequences for carcinoma cancer molecules. Antisense or sense oligonucleotides, according to the present invention, comprise a fragment generally at least about 14 nucleotides, preferably from about 14 to 30 nucleotides. The ability to derive an antisense or a sense oligonucleotide, based upon a cDNA sequence encoding a given protein is described in, for example, Stein and Cohen, Cancer Res. 48:2659, (1988) and van der Krol et al., BioTechniques 6:958, (1988).
[0207] Antisense molecules may be introduced into a cell containing the target nucleotide sequence by formation of a conjugate with a ligand binding molecule, as described in WO 91/04753. Suitable ligand binding molecules include, but are not limited to, cell surface receptors, growth factors, other cytokines, or other ligands that bind to cell surface receptors. Preferably, conjugation of the ligand binding molecule does not substantially interfere with the ability of the ligand binding molecule to bind to its corresponding molecule or receptor, or block entry of the sense or antisense oligonucleotide or its conjugated version into the cell. Alternatively, a sense or an antisense oligonucleotide may be introduced into a cell containing the target nucleic acid sequence by formation of an oligonucleotide-lipid complex, as described in WO
90/10448. It is understood that the use of antisense molecules or knock out and knock in models may also be used in screening assays as discussed above, in addition to methods of treatment.
[0208] The compounds having the desired pharmacological activity may be administered in a physiologically acceptable carrier to a host, as previously described.
The agents may be administered in a variety of ways, orally, parenterally e.g., subcutaneously, intraperitoneally, intravascularly, etc. Depending upon the manner of introduction, the compounds may be formulated in a variety of ways. The concentration of therapeutically active compound in the formulation may vary from about 0.1-100% wgt/vol. The agents may be administered alone or in combination with other treatments, i.e., radiation.
[0209] The pharmaceutical compositions can be prepared in various forms, such as granules, tablets, pills, suppositories, capsules, suspensions, salves, lotions and the like. Pharmaceutical grade organic or inorganic carriers and/or diluents suitable for oral and topical use can be used to make up compositions containing the therapeutically active compounds. Diluents known to the art include aqueous media, vegetable and animal oils and fats. Stabilizing agents, wetting and emulsifying agents, salts for varying the osmotic pressure or buffers for securing an adequate pH
value, and skin penetration enhancers can be used as auxiliary agents.
[0210] Without being bound by theory, it appears that the various CA sequences are important in carcinomas. Accordingly, disorders based on mutant or variant CA
genes may be determined. In one embodiment, the invention provides methods for identifying cells containing variant CA genes comprising determining all or part of the sequence of at least one endogenous CA genes in a cell. As will be appreciated by those in the art, this may be done using any number of sequencing techniques.
In a preferred embodiment, the invention provides methods of identifying the CA
genotype of an individual comprising determining all or part of the sequence of at least one CA gene of the individual. This is generally done in at least one tissue of the individual, and may include the evaluation of a number of tissues or different samples of the same tissue. The method may include comparing the sequence of the sequenced CA gene to a known CA gene, i.e., a wild-type gene. As will be appreciated by those in the art, alterations in the sequence of some oncogenes can be an indication of either the presence of the disease, or propensity to develop the disease, or prognosis evaluations.
[0211] The sequence of all or part of the CA gene can then be compared to the sequence of a known CA gene to determine if any differences exist. This can be done using any number of known homology programs, such as Bestfit, etc. In a preferred embodiment, the presence of a difference in the sequence between the CA gene of the patient and the known CA gene is indicative of a disease state or a propensity for a disease state, as outlined herein.
(0212] In a preferred embodiment, the CA genes are used as probes to determine the number of copies of the CA gene in the genome. For example, some cancers exhibit chromosomal deletions or insertions, resulting in an alteration in the copy number of a gene.
[0213] In another preferred embodiment CA genes are used as probes to determine the chromosomal location of the CA genes. Information such as chromosomal location finds use in providing a diagnosis or prognosis in particular when chromosomal abnormalities such as translocations, and the like are identified in CA
gene loci.
[0214] Thus, in one embodiment, methods of modulating CA in cells or organisms are provided. In one embodiment, the methods comprise administering to a cell an anti-CA antibody that reduces or eliminates the biological activity of an endogenous CA protein. Alternatively, the methods comprise administering to a cell or organism a recombinant nucleic acid encoding a CA protein. As will be appreciated by those in the art, this may be accomplished in any number of ways. In a preferred embodiment, for example when the CA sequence is down-regulated in carcinoma, the activity of the CA gene is increased by increasing the amount of CA in the cell, for example by overexpressing the endogenous CA or by administering a gene encoding the CA
sequence, using known gene-therapy techniques, for example. In a preferred embodiment, the gene therapy techniques include the incorporation of the exogenous gene using enhanced homologous recombination (EHR), for example as described in PCT/LTS93/03868, hereby incorporated by reference in its entirety.
Alternatively, for example when the CA sequence is up-regulated in carcinoma, the activity of the endogenous CA gene is decreased, for example by the administration of a CA
antisense nucleic acid.
[0215] In one embodiment, the CA proteins of the present invention may be used to generate polyclonal and monoclonal antibodies to CA proteins, which are useful as described herein. Similarly, the CA proteins can be coupled, using standard technology, to affinity chromatography columns. These columns may then be used to purify CA antibodies. In a preferred embodiment, the antibodies are generated to epitopes unique to~a CA protein; that is, the antibodies show little or no cross-reactivity to other proteins. These antibodies find use in a number of applications.
For example, the CA antibodies may be coupled to standaxd affinity chromatography columns and used to purify CA proteins. The antibodies may also be used as blocking polypeptides, as outlined above, since they will specifically bind to the CA
protein.
[0216] In one embodiment, a therapeutically effective dose of a CA or modulator thereof is administered to a patient. By "therapeutically effective dose"
herein is meant a dose that produces the effects for which it is administered. The exact dose will depend on the purpose of the treatment, and will be ascertainable by one skilled in the art using known techniques. As is known in the art, adjustments for CA
degradation, systemic versus localized delivery, and rate of new protease synthesis, as well as the age, body weight, general health, sex, diet, time of administration, drug interaction and the severity of the condition may be necessary, and will be ascertainable with routine experimentation by those skilled in the art.
[0217] A "patient" for the purposes of the present invention includes both humans and other animals, particularly mammals, and organisms. Thus the methods are applicable to both human therapy and veterinary applications. In the preferred embodiment the patient is a mammal, and in the most preferred embodiment the patient is human.

[0218] The administration of the CA proteins and modulators of the present invention can be done in a variety of ways as discussed above, including, but not limited to, orally, subcutaneously, intravenously, intranasally, transdermally, intraperitoneally, intramuscularly, intrapulmonary, vaginally, rectally, or intraocularly. In some instances, for example, in the treatment of wounds and inflammation, the CA
proteins and modulators may be directly applied as a solution or spray.
[0219] The pharmaceutical compositions of the present invention comprise a CA
protein in a form suitable for administration to a patient. In the preferred embodiment, the pharmaceutical compositions are in a water soluble form, such as being present as pharmaceutically acceptable salts, which is meant to include both acid and base addition salts. "Pharmaceutically acceptable acid addition salt"
refers to those salts that retain the biological effectiveness of the free bases and that are not biologically or otherwise undesirable, formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, and organic acids such as acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, malefic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p toluenesulfonic acid, salicylic acid and the like.
"Pharmaceutically acceptable base addition salts" include those derived from inorganic bases such as sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum salts and the like. Particularly preferred are the ammonium, potassium, sodium, calcium, and magnesium salts. Salts derived from pharmaceutically acceptable organic non toxic bases include salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, and ethanolasnine.
[0220] The pharmaceutical compositions may also include one or more of the following: carrier proteins such as serum albumin; buffers; fillers such as microcrystalline cellulose, lactose, corn and other starches; binding agents;
sweeteners and other flavoring agents; coloring agents; and polyethylene glycol.
Additives are well known in the art, and are used in a variety of formulations.

[0221] In a preferred embodiment, CA proteins and modulators are administered as therapeutic agents, and can be formulated as outlined above. Similarly, CA
genes (including both the full-length sequence, partial sequences, or regulatory sequences of the CA coding regions) can be administered in gene therapy applications, as is known in the art. These CA genes can include antisense applications, either as gene therapy (i.e. for incorporation into the genome) or as antisense compositions, as will be appreciated by those in the art.
[0222] In a preferred embodiment, CA genes are administered as DNA vaccines, either single genes or combinations of CA genes. Naked DNA vaccines are generally known in the art. Brower, Nature Biotechnology, 16:1304-1305 (1998).
[0223] In one embodiment, CA genes of the present invention are used as DNA
vaccines. Methods for the use of genes as DNA vaccines are well known to one of ordinary skill in the art, and include placing a CA gene or portion of a CA
gene under the control of a promoter for expression in a patient with carcinoma. The CA
gene used for DNA vaccines can encode full-length CA proteins, but more preferably encodes portions of the CA proteins including peptides derived from the CA
protein.
In a preferred embodiment a patient is immunized with a DNA vaccine comprising a plurality of nucleotide sequences derived from a CA gene. Similarly, it is possible to immunize a patient with a plurality of CA genes or portions thereof as defined herein.
Without being bound by theory, expression of the polypeptide encoded by the DNA
vaccine, cytotoxic T-cells, helper T-cells and antibodies are induced which recognize and destroy or eliminate cells expressing CA proteins.
[0224] In a preferred embodiment, the DNA vaccines include a gene encoding an adjuvant molecule with the DNA vaccine. Such adjuvant molecules include cytokines that increase the immunogenic response to the CA polypeptide encoded by the DNA
vaccine. Additional or alternative adjuvants are known to those of ordinary skill in the art and find use in the invention.
[0225] In another preferred embodiment CA genes find use in generating animal models of carcinomas, particularly lymphoma carcinomas. As is appreciated by one of ordinary skill in the art, when the CA gene identified is repressed or diminished in CA tissue, gene therapy technology wherein antisense RNA directed to the CA
gene will also diminish or repress expression of the gene. An animal generated as such serves as an animal model of CA that finds use in screening bioactive drug candidates. Similarly, gene knockout technology, for example as a result of homologous recombination with an appropriate gene targeting vector, will result in the absence of the CA protein. When desired, tissue-specific expression or knockout of the CA protein may be necessary.
[0226] It is also possible that the CA protein is overexpressed in carcinoma.
As such, transgenic animals can be generated that overexpress the CA protein. Depending on the desired expression level, promoters of various strengths can be employed to express the transgene. Also, the number of copies of the integrated transgene can be determined and compared for a determination of the expression level of the transgene.
Animals generated by such methods find use as animal models of CA and are additionally useful in screening for bioactive molecules to treat carcinoma.
Of 227] The CA nucleic acid sequences of the invention are depicted in Tables 1-112.
The sequences in Tables 1 (SEQ ID NOS:1-460) and 2 (SEQ ID NOS:461-952 depict mouse tags, i.e. the genomic insertion sites. SEQ ID NOS:953-1612 include genomic sequence, mRNA and coding sequences for both mouse and human. N/A
indicates a gene that has been identified, but for which there has not been a name ascribed. The different sequences of Tables 3-112 are assigned the following SEQ ID
Nos:
Table 3 (mouse gene: Fscnl; human gene SNL) Mouse genomic sequence (SEQ ID NO:953) Mouse mRNA sequence (SEQ ID N0:954) Mouse coding sequence (SEQ ID N0:955) Human genomic sequence (SEQ ID N0:956) Human mRNA sequence (SEQ ID NO:957) Human coding sequence (SEQ ID N0:958) Table 4 (mouse gene Map3k6; human gene MAP3K6) Mouse genomic sequence (SEQ ID N0:959) Mouse mRNA sequence (SEQ ID N0:960) Mouse coding sequence (SEQ ID N0:961) Human genomic sequence (SEQ ID N0:962) Human mRNA sequence (SEQ ID N0:963) Human coding sequence (SEQ ID N0:964) Table 5 (mouse gene Fosb; human gene FOSB) Mouse genomic sequence (SEQ ID N0:965) Mouse mRNA sequence (SEQ ID N0:966) Mouse coding sequence (SEQ ID N0:967) Human genomic sequence (SEQ ID N0:968) Human mRNA sequence (SEQ ID N0:969) Human coding sequence (SEQ ID NO:970) Table 6 (mouse gene cmkbr7; human gene: CCR7) Mouse genomic sequence (SEQ ID N0:971) Mouse mRNA sequence (SEQ ID N0:972) Mouse coding sequence (SEQ ID N0:973) Human genomic sequence (SEQ ID N0:974) Human mRNA sequence (SEQ ID N0:975) Human coding sequence (SEQ ID NO:976) Table 7 (mouse gene: Ccndl; human gene: CCNDl) Mouse genomic sequence (SEQ ID N0:977) Mouse mRNA sequence (SEQ ID N0:978) Mouse coding sequence (SEQ ID N0:979) Human genomic sequence (SEQ ID N0:980) Human mRNA sequence (SEQ ID N0:981) Human coding sequence (SEQ ID NO:982) Table 8 (mouse gene: Ccnd3; human gene: CCND3) Mouse genomic sequence (SEQ ID NO:983) Mouse mRNA sequence (SEQ ID N0:984) Mouse coding sequence (SEQ ID N0:985) Human genomic sequence (SEQ ID N0:986) Human mRNA sequence (SEQ ID N0:987) Human coding sequence (SEQ ID N0:988) Table 9 (mouse gene: Wnt3; human gene: WNT3) Mouse genomic sequence (SEQ ID N0:989) Mouse mRNA sequence (SEQ ID NO:990) Mouse coding sequence (SEQ ID N0:991 ) Human genomic sequence (SEQ ID N0:992) Human mRNA sequence (SEQ ID N0:993) Human coding sequence (SEQ ID N0:994) Table 10 (mouse gene: Batf; human gene: BATF) Mouse genomic sequence (SEQ ID N0:995) Mouse mRNA sequence (SEQ ID N0:996) Mouse coding sequence (SEQ ID N0:997) Human genomic sequence (SEQ ID N0:998) Human mRNA sequence (SEQ ID N0:999) Human coding sequence (SEQ ID NO:1000) Table 11 (mouse gene: Irf4; human gene: IRF4) Mouse genomic sequence (SEQ ID NO:1001) Mouse mRNA sequence (SEQ ID N0:1002) Mouse coding sequence (SEQ ID N0:1003) Human genomic sequence (SEQ ID NO:1004) Human mRNA sequence (SEQ ID NO:1005) Human coding sequence (SEQ ID N0:1006) Table 12 (mouse gene: Notchl; human gene: NOTCH1) Mouse genomic sequence (SEQ ID N0:1007) Mouse mRNA sequence (SEQ ID N0:1008) Mouse coding sequence (SEQ ID NO:1009) Human genomic sequence (SEQ ID NO:1010) Human mRNA sequence (SEQ ID NO:1011) Human coding sequence (SEQ ID N0:1012) Table 13 (mouse gene: Myc; human gene MYC) Mouse genomic sequence (SEQ ID N0:1013) Mouse mRNA sequence (SEQ ID N0:1014) Mouse coding sequence (SEQ ID NO:1015) Human genomic sequence (SEQ ID N0:1016) Human mRNA sequence (SEQ ID N0:1017) Human coding sequence (SEQ ID N0:1018) Table 14 (mouse gene Bach2; human gene BACH2) Mouse genomic sequence (SEQ ID N0:1019) Mouse mRNA sequence (SEQ ID N0:1020) Mouse coding sequence (SEQ ID N0:1021) Human genomic sequence (SEQ ID N0:1022) Human mRNA sequence (SEQ ID N0:1023) Human coding sequence (SEQ ID N0:1024) Table 15 (mouse gene Wnt 1; human gene WNT 1 ) Mouse genomic sequence (SEQ ID NO:1025) Mouse mRNA sequence (SEQ ID N0:1026) Mouse coding sequence (SEQ ID NO:1027) Human genomic sequence (SEQ ID NO:1028) Human mRNA sequence (SEQ ID N0:1029) Human coding sequence (SEQ ID N0:1030) Table 16 (mouse gene Rasgrpl; human gene: RASGRP1) Mouse genomic sequence (SEQ ID N0:1031) Mouse mRNA sequence (SEQ ID N0:1032) Mouse coding sequence (SEQ ID N0:1033) Human genomic sequence (SEQ ID N0:1034) Human mRNA sequence (SEQ ID N0:1035) Human coding sequence (SEQ ID N0:1036) Table 17 (mouse gene: Nmycl; human gene: MYCN) Mouse genomic sequence (SEQ ID N0:1037) Mouse mRNA sequence (SEQ ID N0:1038) Mouse coding sequence (SEQ ID N0:1039) Human genomic sequence (SEQ ID N0:1040) Human mRNA sequence (SEQ ID N0:1041) Human coding sequence (SEQ ID N0:1042) Table 18 (mouse gene: Myb; human gene: MYB) Mouse genomic sequence (SEQ ID N0:1,043) Mouse mRNA sequence (SEQ ID N0:1044) Mouse coding sequence (SEQ ID N0:1045) Human genomic sequence (SEQ ID NO:1046) Human mRNA sequence (SEQ ID N0:1047) Human coding sequence (SEQ ID NO:1048) Table 19 (mouse gene: Sox4; human gene: SOX4) Mouse genomic sequence (SEQ ID NO:1049) Mouse mRNA sequence (SEQ ID NO:1050) Mouse coding sequence (SEQ ID NO:1051) Human genomic sequence (SEQ ID N0:1052) Human mRNA sequence (SEQ ID N0:1053) Human coding sequence (SEQ ID N0:1054) Table 20 (mouse gene: Tcofl; human gene: TCOF1) Mouse genomic sequence (SEQ ID NO:1055) Mouse mRNA sequence (SEQ ID NO:1056) Mouse coding sequence (SEQ ID NO:1057) Human genomic sequence (SEQ ID N0:1058) Human mRNA sequence (SEQ ID N0:1059) Human coding sequence (SEQ ID N0:1060) Table 21 (mouse gene: Pim 1; human gene: PIM 1 ) Mouse genomic sequence (SEQ ID N0:1061) Mouse mRNA sequence (SEQ ID NO:1062) Mouse coding sequence (SEQ ID N0:1063) Human genomic sequence (SEQ ID N0:1064) Human mRNA sequence (SEQ ID N0:1065) Human coding sequence (SEQ ID NO:1066) Table 22 (mouse gene: Wnt3a; human gene: WNT3A) Mouse genomic sequence (SEQ ID N0:1067) Mouse mRNA sequence (SEQ ID N0:1068) Mouse coding sequence (SEQ ID N0:1069) Human genomic sequence (SEQ ID N0:1070) Human mRNA sequence (SEQ ID N0:1071 Human coding sequence (SEQ ID N0:1072) Table 23 (mouse gene: Ly6e; human gene LY6E) Mouse genomic sequence (SEQ ID N0:1073) Mouse mRNA sequence (SEQ ID N0:1074) Mouse coding sequence (SEQ ID N0:1075) Human genomic sequence (SEQ ID NO:1076) Human mRNA sequence (SEQ ID N0:1077) Human coding sequence (SEQ ID N0:1078) Table 24 (mouse gene: Rasa2; human gene RASA2) Mouse genomic sequence (SEQ ID N0:1079) Mouse mRNA sequence (SEQ ID N0:1080) Mouse coding sequence (SEQ ID N0:1081) Human genomic sequence (SEQ ID NO:1082) Human mRNA sequence (SEQ ID N0:1083) Human coding sequence (SEQ ID N0:1084) Table 25 (mouse gene: Gatal; human gene GATAl) Mouse genomic sequence (SEQ ID N0:1085) Mouse mRNA sequence (SEQ ID N0:1086) Mouse coding sequence (SEQ ID N0:1087) Human genomic sequence (SEQ ID N0:1088) Human mRNA sequence (SEQ ID N0:1089) Human coding sequence (SEQ ID N0:1090) Table 26 (mouse gene: FkbpS; human gene FKBPS) Mouse genomic sequence (SEQ ID N0:1091) Mouse mRNA sequence (SEQ ID N0:1092) Mouse coding sequence (SEQ ID N0:1093) Human genomic sequence (SEQ ID NO:1094) Human mRNA sequence (SEQ ID N0:1095) Human coding sequence (SEQ ID N0:1096) Table 27 (mouse gene: Rel; human gene REL) Mouse genomic sequence (SEQ ID N0:1097) Mouse mRNA sequence (SEQ ID N0:1098) Mouse coding sequence (SEQ ID NO:1099) Human genomic sequence (SEQ ID NO:1100) Human mRNA sequence (SEQ ID NO:1101) Human coding sequence (SEQ ID N0:1102) Table 28 (mouse gene: Icsbp; human gene ICSBP 1 ) Mouse genomic sequence (SEQ ID NO:l 103) Mouse mRNA sequence (SEQ ID N0:1104) Mouse coding sequence (SEQ ID NO:1105) Human genomic sequence (SEQ ID N0:1106) Human mRNA sequence (SEQ ID N0:1107) Human coding sequence (SEQ ID N0:1108) Table 29 (mouse gene: Bmil; human gene BMIl) Mouse genomic sequence (SEQ ID N0:1109) Mouse mRNA sequence (SEQ ID NO:l 110) Mouse coding sequence (SEQ ID NO:1111) Human genomic sequence (SEQ 'ID N0:1112) Human mRNA sequence (SEQ ID N0:1113) Human coding sequence (SEQ ID N0:1114) Table 3 0 (mouse gene: Runx 1; human gene RL1NX 1 ) Mouse genomic sequence (SEQ ID NO:1115) Mouse mRNA sequence (SEQ ID NO:l 116) Mouse coding sequence (SEQ ID NO:l 117) Human genomic sequence (SEQ ID N0:1118) Human mRNA sequence (SEQ ID N0:1119) Human coding sequence (SEQ ID N0:1120) Table 31 (mouse gene: Il2ra; human gene IL2R.A) Mouse genomic sequence (SEQ ID N0:1121 ) Mouse mRNA sequence (SEQ ID N0:1122) Mouse coding sequence (SEQ ID N0:1123) Human genomic sequence (SEQ ID N0:1124) Human mRNA sequence (SEQ ID N0:1125) Human coding sequence (SEQ ID N0:1126) Table 32 (mouse gene: Nfkb 1; human gene NFKB 1 ) Mouse genomic sequence (SEQ ID N0:1127) Mouse mRNA sequence (SEQ ID NO:l 128) Mouse coding sequence (SEQ ID NO:l 129) Human genomic sequence (SEQ ID NO:1130) Human mRNA sequence (SEQ ID NO:l 131) Human coding sequence (SEQ ID NO:1132) Table 33 (mouse gene: Fyn; human gene FYN) Mouse genomic sequence (SEQ ID N0:1133) Mouse mRNA sequence (SEQ ID NO:l 134) Mouse coding sequence (SEQ ID N0:1135) Human genomic sequence (SEQ ID N0:1136) Human mRNA sequence (SEQ ID NO:1137) Human coding sequence (SEQ ID N0:1138) Table 34 (mouse gene: Nflcbill; human gene NFKBIL1) Mouse genomic sequence (SEQ ID NO:l 139) Mouse mRNA sequence (SEQ ID NO:l 140) Mouse coding sequence (SEQ ID N0:1141) Human genomic sequence (SEQ ID N0:1142) Human mRNA sequence (SEQ ID NO:l 143) Human coding sequence (SEQ ID N0:1144) Table 35 (mouse gene: Flt3; human gene FLT3) Mouse genomic sequence (SEQ ID NO:l 145) Mouse mRNA sequence (SEQ ID NO:l 146) Mouse coding sequence (SEQ ID NO:l 147) Human genomic sequence (SEQ ID N0:1148) Human mRNA sequence (SEQ ID N0:1149) Human coding sequence (SEQ ID NO:1150) Table 36 (mouse gene: Dntt; human gene DNTT) Mouse genomic sequence (SEQ ID NO:1151) Mouse mRNA sequence (SEQ ID N0:1152) Mouse coding sequence (SEQ ID N0:1153) Human genomic sequence (SEQ ID N0:1154) Human mRNA sequence (SEQ ID NO:1155) Human coding sequence (SEQ ID N0:1156) Table 37 (mouse gene: Znfnlal; human gene ZNFNlAl) Mouse genomic sequence (SEQ ID N0:1157) Mouse mRNA sequence (SEQ ID N0:1158) Mouse coding sequence (SEQ ID NO:1159) Human genomic sequence (SEQ ID N0:1160) Human mRNA sequence (SEQ ID N0:1161) Human coding sequence (SEQ ID NO:l 162) Table 3 8 (mouse gene: Tbx21; human gene TBX21 ) Mouse genomic sequence (SEQ ID N0:1163) Mouse mRNA sequence (SEQ ID N0:1164) Mouse coding sequence (SEQ ID N0:1165) Human genomic sequence (SEQ ID N0:1166) Human mRNA sequence (SEQ ID NO:1167) Human coding sequence (SEQ ID N0:1168) Table 39 (mouse gene: StatSb; human gene STATSB) Mouse genomic sequence (SEQ ID N0:1169) Mouse mRNA sequence (SEQ ID NO:1170) Mouse coding sequence (SEQ ID NO:1171) Human genomic sequence (SEQ ID N0:1172) Human mRNA sequence (SEQ ID NO:l 173) Human coding sequence (SEQ ID N0:1174) Table 40 (mouse gene: Sema4d; human gene SEMA4D) Mouse genomic sequence (SEQ ID N0:1175) Mouse mRNA sequence (SEQ ID N0:1176) Mouse coding sequence (SEQ ID NO 1177) Human genomic sequence (SEQ ID NO 1178) Human mRNA sequence (SEQ ID NO:1179) Human coding sequence (SEQ ID N0:1180) Table 41 (mouse gene: Mdm2; human gene MDM2) Mouse genomic sequence (SEQ ID N0:1181 ) Mouse mRNA sequence (SEQ ID N0:1182) Mouse coding sequence (SEQ ID N0:1183) Human genomic sequence (SEQ ID N0:1184) Human mRNA sequence (SEQ ID N0:1185) Human coding sequence (SEQ ID N0:1186) Table 42 (mouse gene: Prlr; human gene PRLR) Mouse genomic sequence (SEQ ID N0:1187) Mouse mRNA sequence (SEQ ID N0:1188) Mouse coding sequence (SEQ ID N0:1189) Human genomic sequence (SEQ ID N0:1190) Human mRNA sequence (SEQ ID N0:1191) Human coding sequence (SEQ ID N0:1192) Table 43 (mouse gene: Top 1; human gene TOP 1 ) Mouse genomic sequence (SEQ ID NO:l 193) Mouse mRNA sequence (SEQ ID N0:1194) Mouse coding sequence (SEQ ID N0:1195) Human genomic sequence (SEQ ID N0:1196) Human mRNA sequence (SEQ ID N0:1197) Human coding sequence (SEQ ID N0:1198) Table 44 (mouse gene: DusplO; human gene DUSP10) Mouse genomic sequence (SEQ ID N0:1199) Mouse mRNA sequence (SEQ ID N0:1200) Mouse coding sequence (SEQ ID N0:1201) Human genomic sequence (SEQ ID N0:1202) Human mRNA sequence (SEQ ID NO:1203) Human coding sequence (SEQ ID NO:1204) Table 45 (mouse gene: Flil; human gene FLI1) ,Mouse genomic sequence (SEQ ID N0:1205) Mouse mRNA sequence (SEQ ID N0:1206) Mouse coding sequence (SEQ ID N0:1207) Human genomic sequence (SEQ ID N0:1208) Human mRNA sequence (SEQ ID N0:1209) Human coding sequence (SEQ ID N0:1210) Table 46 (mouse gene: Tk2; human gene TIC.?) Mouse genomic sequence (SEQ ID N0:1211) Mouse mRNA sequence (SEQ ID N0:1212) Mouse coding sequence (SEQ ID N0:1213) Human genomic sequence (SEQ ID N0:1214) Human mRNA sequence (SEQ ID N0:1215) Human coding sequence (SEQ ID N0:1216) Table 47 (mouse gene: Nuprl) Mouse genomic sequence (SEQ ID N0:1217) Mouse mRNA sequence (SEQ ID NO:1218) Mouse coding sequence (SEQ ID N0:1219) Human genomic sequence (SEQ ID N0:1220) Human mRNA sequence (SEQ ID N0:1221) Human coding sequence (SEQ ID N0:1222) Table 48 (mouse gene: Zfhxlb; human gene ZFHX1B) Mouse genomic sequence (SEQ ID N0:1223) Mouse mRNA sequence (SEQ ID N0:1224) Mouse coding sequence (SEQ ID N0:1225) Human genomic sequence (SEQ ID N0:1226) Human mRNA sequence (SEQ ID N0:1227) Human coding sequence (SEQ ID N0:1228) Table 49 (mouse gene: Vdacl; human gene VDAC1) Mouse genomic sequence (SEQ ID NO:1229) Mouse mRNA sequence (SEQ ID N0:1230) Mouse coding sequence (SEQ ID N0:1231) Human genomic sequence (SEQ ID NO:1232) Human mRNA sequence (SEQ ID N0:1233) Human coding sequence (SEQ ID N0:1234) Table 50 (mouse gene: Nfatcl; human gene NFATC1) Mouse genomic sequence (SEQ ID N0:1235) Mouse mRNA sequence (SEQ ID N0:1236) Mouse coding sequence (SEQ ID N0:1237) Human genomic sequence (SEQ ID N0:1238) Human mRNA sequence (SEQ ID N0:1239) Human coding sequence (SEQ ID NO:1240) Table 51 (mouse gene: Syk; human gene SYI~) Mouse genomic sequence (SEQ ID N0:1241 ) Mouse mRNA sequence (SEQ ID N0:1242) Mouse coding sequence (SEQ ID N0:1243) Human genomic sequence (SEQ ID N0:1244) Human mRNA sequence (SEQ ID N0:1245) Human coding sequence (SEQ ID N0:1246) Table 52 (mouse gene: Gnbl; human gene GNB1) Mouse genomic sequence (SEQ ID N0:1247) Mouse mRNA sequence (SEQ ID N0:1248) Mouse coding sequence (SEQ ID N0:1249) Human genomic sequence (SEQ ID N0:1250) Human mRNA sequence (SEQ ID N0:1251) Human coding sequence (SEQ ID N0:1252).
Table 53 (mouse gene: Ccnd2; human gene CCND2) Mouse genomic sequence (SEQ ID NO:1253) Mouse mRNA sequence (SEQ ID NO:1254) Mouse coding sequence (SEQ ID N0:1255) Human genomic sequence (SEQ ID N0:1256) Human mRNA sequence (SEQ ID N0:1257) Human coding sequence (SEQ ID N0:1258) Table 54 (mouse gene Tnfrsf6; human gene TNFRSF6) Mouse genomic sequence (SEQ ID NO:1259) Mouse mRNA sequence (SEQ ID N0:1260) Mouse coding sequence (SEQ ID N0:1261) Human genomic sequence (SEQ ID NO:1262) Human mRNA sequence (SEQ ID N0:1263) Human coding sequence (SEQ ID N0:1264) Table 55 (mouse gene IrfZ; human gene IRF2) Mouse genomic sequence (SEQ ID N0:1265) Mouse mRNA sequence (SEQ ID N0:1266) Mouse coding sequence (SEQ ID N0:1267) Human genomic sequence (SEQ ID N0:1268) Human mRNA sequence (SEQ ID N0:1269) Human coding sequence (SEQ ID N0:1270) Table 56 (mouse gene Morf; human gene: MORE) Mouse genomic sequence (SEQ ID N0:1271) Mouse mRNA sequence (SEQ ID N0:1272) Mouse coding sequence (SEQ ID N0:1273) Human genomic sequence (SEQ ID N0:1274) Human mRNA sequence (SEQ ID N0:1275) Human coding sequence (SEQ ID N0:1276) Table 57 (mouse gene: Runx3; human gene: RIINX3) Mouse genomic sequence (SEQ ID N0:1277) Mouse mRNA sequence (SEQ ID NO:1~278) Mouse coding sequence (SEQ ID NO:1279) Human genomic sequence (SEQ ID N0:1280) Human mRNA sequence (SEQ ID N0:1281) Human coding sequence (SEQ ID N0:1282) Table 58 (mouse gene: Bcll lb; human gene: BCL11B) Mouse genomic sequence (SEQ ID N0:1283) Mouse mRNA sequence (SEQ ID NO:1284) Mouse coding sequence (SEQ ID N0:1285) Human genomic sequence (SEQ ID N0:1286) Human mRNA sequence (SEQ ID N0:1287) Human coding sequence (SEQ ID N0:1288) Table 59 (mouse gene: Arhgefl; human gene: ARHGEFl) Mouse genomic sequence (SEQ ID N0:1289) Mouse mRNA sequence (SEQ ID N0:1290) Mouse coding sequence (SEQ ID N0:1291) Human genomic sequence (SEQ ID N0:1292) Human mRNA sequence (SEQ ID N0:1293) Human coding sequence (SEQ ID N0:1294) Table 60 (mouse gene: Ptprk; human gene: PTPRK) Mouse genomic sequence (SEQ ID NO:1295) Mouse mRNA sequence (SEQ ID N0:1296) Mouse coding sequence (SEQ ID N0:1297) Human genomic sequence (SEQ ID N0:1298) Human mRNA sequence (SEQ ID N0:1299) Human coding sequence (SEQ ID N0:1300) Table 61 (mouse gene: McmdS; human gene: MCMS) Mouse genomic sequence (SEQ ID N0:1301) Mouse mRNA sequence (SEQ ID N0:1302) Mouse coding sequence (SEQ ID N0:1303) Human genomic sequence (SEQ ID N0:1304) Human mRNA 'sequence (SEQ ID N0:1305) Human coding sequence (SEQ ID N0:1306) Table 62 (mouse gene: Matn4; human gene: MATN4) Mouse genomic sequence (SEQ ID N0:1307) Mouse mRNA sequence (SEQ ID N0:1308) Mouse coding sequence (SEQ ID N0:1309) Human genomic sequence (SEQ ID N0:1310) Human mRNA sequence (SEQ ID N0:1311) Human coding sequence (SEQ ID N0:1312) Table 63 (mouse gene: Tnfsfl l; human gene TNFSF11) Mouse genomic sequence (SEQ ID N0:1313) Mouse mRNA sequence (SEQ ID N0:1314) Mouse coding sequence (SEQ ID N0:13 ~15) Human genomic sequence (SEQ ID NO:1316) Human mRNA sequence (SEQ ID N0:1317) Human coding sequence (SEQ ID N0:1318) Table 64 (mouse gene: Itk; human gene ITK) Mouse genomic sequence (SEQ ID N0:1319) Mouse mRNA sequence (SEQ ID N0:1320) Mouse coding sequence (SEQ ID N0:1321) Human genomic sequence (SEQ ID N0:1322) Human mRNA sequence (SEQ ID N0:1323) Human coding sequence (SEQ ID N0:1324) Table 65 (mouse gene: Fish; human gene: N/A) Mouse genomic sequence (SEQ ID N0:1325) Mouse mRNA sequence (SEQ ID N0:1326) Mouse coding sequence (SEQ ID N0:1327) Human genomic sequence (SEQ ID N0:1328) Human mRNA sequence (SEQ ID N0:1329) Human coding sequence (SEQ ID N0:1330) Table 66 (mouse gene: Egr2; human gene EGRZ) Mouse genomic sequence (SEQ ID N0:1331) Mouse mRNA sequence (SEQ ID N0:1332) Mouse coding sequence (SEQ ID N0:1333) Human genomic sequence (SEQ ID N0:1334) Human mRNA sequence (SEQ ID N0:1335) Human coding sequence (SEQ ID N0:1336) Table 67 (mouse gene: Sosl; human gene SOS1) Mouse genomic sequence (SEQ ID N0:1337) Mouse mRNA sequence (SEQ ID N0:1338) Mouse coding sequence (SEQ ID N0:1339) Human genomic sequence (SEQ ID N0:1340) Human mRNA sequence (SEQ ID N0:1341) Human coding sequence (SEQ ID N0:1342) Table 68 (mouse gene: Pou2afl; human gene POU2AF1) Mouse genomic sequence (SEQ ID N0:1343) Mouse mRNA sequence (SEQ ID N0:1344) r Mouse coding sequence (SEQ ID N0:1345) Human genomic sequence (SEQ ID NO:1346) Human mRNA sequence (SEQ ID N0:1347) Human coding sequence (SEQ ID N0:1348) Table 69 (mouse gene: Mef2c; human gene MEF2C) Mouse genomic sequence (SEQ ID N0:1349) Mouse mRNA sequence (SEQ ID N0:1350) Mouse coding sequence (SEQ ID N0:1351) Human genomic sequence (SEQ ID N0:1352) Human mRNA sequence (SEQ ID N0:1353) Human coding sequence (SEQ ID N0:1354) Table 70 (mouse gene: Map3k8; human gene MAP3K8) Mouse genomic sequence (SEQ ID NO:1355) Mouse mRNA sequence (SEQ ID N0:1356) Mouse coding sequence (SEQ ID N0:1357) Human genomic sequence (SEQ ID N0:1358) Human mRNA sequence (SEQ ID N0:1359) Human coding sequence (SEQ ID N0:1360) Table 71 (mouse gene: Fgfr3; human gene FGFR3) Mouse genomic sequence (SEQ ID N0:1361) Mouse mRNA sequence (SEQ ID N0:1362) Mouse coding sequence (SEQ ID N0:1363) Human genomic sequence (SEQ ID N0:1364) Human mRNA sequence (SEQ ID N0:1365) Human coding sequence (SEQ ID N0:1366) Table 72 (mouse gene: CbxB; human gene CBX8) Mouse genomic sequence (SEQ ID N0:1367) Mouse mRNA sequence (SEQ ID N0:1368) Mouse coding sequence (SEQ ID NO:1369) Human genomic sequence (SEQ ID N0:1370) Human mRNA sequence (SEQ ID N0:1371) Human coding sequence (SEQ ID N0:1372) Table 73 (mouse gene: Lmo2; human gene LM02) Mouse genomic sequence (SEQ ID NO:1373) Mouse mRNA sequence (SEQ ID N0:1374) Mouse coding sequence (SEQ ID N0:1375) Human genomic sequence (SEQ ID N0:1376) Human mRNA sequence (SEQ ID N0:1377) Human coding sequence (SEQ ID N0:1378) Table 74 (mouse gene: Itprl; human gene ITPRl) Mouse genomic sequence (SEQ ID N0:1379) Mouse mRNA sequence (SEQ ID N0:1380) Mouse coding sequence (SEQ ID N0:1381) Human genomic sequence (SEQ ID N0:1382) Human mRNA sequence (SEQ ID N0:1383) Human coding sequence (SEQ ID NO: 1384) Table 75 (mouse gene: Sell; human gene SELL) Mouse genomic sequence (SEQ ID N0:1385) Mouse mRNA sequence (SEQ ID NO:1386) Mouse coding sequence (SEQ ID N0:1387) Human genomic sequence (SEQ ID N0:1388) Human mRNA sequence (SEQ ID N0:1389) Human coding sequence (SEQ ID N0:1390) Table 76 (mouse gene: Dpt; human gene DPT) Mouse genomic sequence (SEQ ID N0:1391) Mouse mRNA sequence (SEQ ID N0:1392) Mouse coding sequence (SEQ ID N0:1393) Human genomic sequence (SEQ ID N0:1394) Human mRNA sequence (SEQ ID N0:1395) Human coding sequence (SEQ ID N0:1396) Table 77 (mouse gene: Pap; human gene PAP) Mouse genomic sequence (SEQ ID N0:1397) Mouse mRNA sequence (SEQ ID N0:1398) Mouse coding sequence (SEQ ID N0:1399) Human genomic sequence (SEQ ID N0:1400) Human mRNA sequence (SEQ ID N0:1401 ) Human coding sequence (SEQ ID N0:1402) Table 78 (mouse gene: Blm; human gene BLM) Mouse genomic sequence (SEQ ID N0:1403) Mouse mRNA sequence (SEQ ID N0:1404) Mouse coding sequence (SEQ ID NO:1405) Human genomic sequence (SEQ ID NO:1406) Human mRNA sequence (SEQ ID N0:1407) Human coding sequence (SEQ ID N0:1408) Table 79 (mouse gene: Blrl; human gene BLRl) Mouse genomic sequence (SEQ ID N0:1409) Mouse mRNA sequence (SEQ ID N0:1410) Mouse coding sequence (SEQ ID N0:1411) Human genomic sequence (SEQ ID NO:1412) Human mRNA sequence (SEQ ID N0:1413) Human coding sequence (SEQ ID N0:1414) Table 80 (mouse gene: Ptp4a2; human gene PTP4A2) Mouse genomic sequence (SEQ ID N0:1415) Mouse mRNA sequence (SEQ ID N0:1416) Mouse coding sequence (SEQ ID N0:1417) Human genomic sequence (SEQ ID N0:1418) Human mRNA sequence (SEQ ID N0:1419) Human coding sequence (SEQ ID N0:1420) Table 81 (mouse gene: Mcm3ap; human gene MCM3AP) Mouse genomic sequence (SEQ ID N0:1421) Mouse mRNA sequence (SEQ ID N0:1422) Mouse coding sequence (SEQ ID N0:1423) Human genomic sequence (SEQ ID N0:1424) Human mRNA sequence (SEQ ID N0:1425) Human coding sequence (SEQ ID N0:1426) Table 82 (mouse gene: Jak2; human gene JAK2) Mouse genomic sequence (SEQ ID N0:1427) Mouse mRNA sequence (SEQ ID N0:1428) Mouse coding sequence (SEQ ID N0:1429) Human genomic sequence (SEQ ID N0:1430) Human mRNA sequence (SEQ ID N0:1431) Human coding sequence (SEQ ID N0:1432) Table 83 (mouse gene: Fusl; human gene FUS1) Mouse genomic sequence (SEQ ID N0:1433) Mouse mRNA sequence (SEQ ID NO:1434) Mouse coding sequence (SEQ ID NO:1435) v Human genomic sequence (SEQ ID N0:1436) Human mRNA sequence (SEQ ID N0:1437) Human coding sequence (SEQ ID NO:1438) Table 84 (mouse gene: Rassfl; human gene RASSF1) Mouse genomic sequence (SEQ ID N0:1439) Mouse mRNA sequence (SEQ ID N0:1440) Mouse coding sequence (SEQ ID N0:1441) Human genomic sequence (SEQ ID N0:1442) Human mRNA sequence (SEQ ID N0:1443) Human coding sequence (SEQ ID N0:1444) Table 85 (mouse gene: Pik3rl; human gene PIK3R1) Mouse genomic sequence (SEQ ID N0:1445) Mouse mRNA sequence (SEQ ID N0:1446) Mouse coding sequence (SEQ ID N0:1447) Human genomic sequence (SEQ ID NO:1448) Human mRNA sequence (SEQ ID N0:1449) Human coding sequence (SEQ ID N0:1450) Table 86 (mouse gene: Braf; human gene BRAF) Mouse genomic sequence (SEQ ID N0:1451) Mouse mRNA sequence (SEQ ID N0:1452) Mouse coding sequence (SEQ ID N0:1453) Human genomic sequence (SEQ ID N0:1454) Human mRNA sequence (SEQ ID N0:1455) Human coding sequence (SEQ ID NO:1456) Table 87 (mouse gene: Tle3; human gene: TLE3) Mouse genomic sequence (SEQ ID NO:1457) Mouse mRNA sequence (SEQ ID N0:1458) Mouse coding sequence (SEQ ID N0:1459) Human genomic sequence (SEQ ID NO:1460) Human mRNA sequence (SEQ ID N0:1461) Human coding sequence (SEQ ID N0:1462) Table 88 (mouse gene: Nek2; human gene NEK2) Mouse genomic sequence (SEQ ID N0:1463) Mouse mRNA sequence (SEQ ID N0:1464) Mouse coding sequence (SEQ ID N0:1465) Human genomic sequence (SEQ ID N0:1466) Human mRNA sequence (SEQ ID N0:1467) Human coding sequence (SEQ ID N0:1468) Table 89 (mouse gene: Nr3 c 1; human gene NR3 C 1 ) Mouse genomic sequence (SEQ ID NO: 1469) Mouse mRNA sequence (SEQ ID N0:1470) Mouse coding sequence (SEQ ID N0:1471) Human genomic sequence (SEQ ID N0:1472) Human mRNA sequence (SEQ ID NO: 1473) Human coding sequence (SEQ ID N0:1474) Table 90 (mouse gene: Dadl; human gene DAD1) Mouse genomic sequence (SEQ ID N0:1475) Mouse mRNA sequence (SEQ ID N0:1476) Mouse coding sequence (SEQ ID NO:1477) Human genomic sequence (SEQ ID N0:1478) Human mRNA sequence (SEQ ID N0:1479) Human coding sequence (SEQ ID N0:1480) Table 91 (mouse gene: Lck; human gene LCK) Mouse genomic sequence (SEQ ID N0:1481) Mouse mRNA sequence (SEQ ID N0:1482) Mouse coding sequence (SEQ ID N0:1483) Human genomic sequence (SEQ ID N0:1484) Human mRNA sequence (SEQ ID N0:1485) Human coding sequence (SEQ ID NO:1486) Table 92 (mouse gene: Git2; human gene GIT2) Mouse genomic sequence (SEQ ID N0:1487) Mouse mRNA sequence (SEQ ID N0:1488) Mouse coding sequence (SEQ ID N0:1489) Human genomic sequence (SEQ ID N0:1490) Human mRNA sequence (SEQ ID N0:1491) Human coding sequence (SEQ ID NO:1492).
Table 93 (mouse gene: Anp32; human gene N/A) Mouse genomic sequence (SEQ ID N0:1493) Mouse mRNA sequence (SEQ ID NO:1494) Mouse coding sequence (SEQ ID N0:1495) Human genomic sequence (SEQ ID N0:1496) Human mRNA sequence (SEQ ID N0:1497) Human coding sequence (SEQ ID N0:1498).

Table 94 (mouse gene: Map2k5; human gene MAP2K5) Mouse genomic sequence (SEQ ID N0:1499) Mouse mRNA sequence (SEQ ID NO:1500) Mouse coding sequence (SEQ ID NO:1501) Human genomic sequence (SEQ ID N0:1502) Human mRNA sequence (SEQ ID NO:1503) Human coding sequence (SEQ ID N0:552 1504).
Table 95 (mouse gene: Cd28; human gene CD28) Mouse genomic sequence (SEQ ID NO:1505) Mouse mRNA sequence (SEQ ID N0:1506) Mouse coding sequence (SEQ ID N0:1507) Human genomic sequence (SEQ ID N0:1508) Human mRNA sequence (SEQ ID NO: 1509) Human coding sequence (SEQ ID NO:1510).
Table 96 (mouse gene: Sept9; human gene Mss Mouse genomic sequence (SEQ ID NO:1511) Mouse mRNA sequence (SEQ ID N0:1512) Mouse coding sequence (SEQ ID N0:1513) Human genomic sequence (SEQ ID N0:1514) Human mRNA sequence (SEQ ID NO:1515) Human coding sequence (SEQ ID N0:1516).
Table 97 (mouse gene: FzdlO; human gene FZD10) Mouse genomic sequence (SEQ ID N0:1517) Mouse mRNA sequence (SEQ ID N0:1518) Mouse coding sequence (SEQ ID N0:1519) Human genomic sequence (SEQ ID N0:1520) Human mRNA sequence (SEQ ID N0:1521) Human coding sequence (SEQ ID N0:1522).
Table 98 (mouse gene: Calm2; human gene CALM2) Mouse genomic sequence (SEQ ID N0:1523) Mouse mRNA sequence (SEQ ID N0:1524) Mouse coding sequence (SEQ ID N0:1525) Human genomic sequence (SEQ ID N0:1526) Human mRNA sequence (SEQ ID N0:1527) Human coding sequence (SEQ ID N0:1528).
Table 99 (mouse gene: Ncf4; human gene NCF4) Mouse genomic sequence (SEQ ID N0:1529) Mouse mRNA sequence (SEQ ID N0:1530) Mouse coding sequence (SEQ ID N0:1531) Human genomic sequence (SEQ ID NO:1532) Human mRNA sequence (SEQ ID N0:1533) Human coding sequence (SEQ ID N0:1534).
Table 100 (mouse gene: Rac2; human gene RAC2) Mouse genomic sequence (SEQ ID N0:1535) Mouse mRNA sequence (SEQ ID N0:1536) Mouse coding sequence (SEQ ID NO:1537) Human genomic sequence (SEQ ID N0:1538) Human mRNA sequence (SEQ ID N0:1539) Human coding sequence (SEQ ID NO:1540).
Table 101 (mouse gene: Mbnl; human gene MBNL) Mouse genomic sequence (SEQ ID NO:1541 ) Mouse mRNA sequence (SEQ ID N0:1542) Mouse coding sequence (SEQ ID N0:1543) Human genomic sequence (SEQ ID N0:1544) Human mRNA sequence (SEQ ID N0:1545) Human coding sequence (SEQ ID N0:1546).
Table 102 (mouse gene: mCG10516; human gene N/A) Mouse genomic sequence (SEQ ID N0:1547) Mouse mRNA sequence (SEQ ID N0:1548) Mouse coding sequence (SEQ ID N0:1549) Human genomic sequence (SEQ ID NO:1550) Human mRNA sequence (SEQ ID NO:1551) Human coding sequence (SEQ ID N0:1552) Table 103 (mouse gene: Rorc; human gene RORC) Mouse genomic sequence (SEQ ID NO:1553) Mouse mRNA sequence (SEQ ID N0:1554) Mouse coding sequence (SEQ ID NO:1555) Human genomic sequence (SEQ ID N0:1556) Human mRNA sequence (SEQ ID N0:1557) Human coding sequence (SEQ ID N0:1558) Table 104 (mouse gene mCG15938; human gene BAT1) Mouse genomic sequence (SEQ ID N0:1559) Mouse mRNA sequence (SEQ ID N0:1560) Mouse coding sequence (SEQ ID N0:1561) Human genomic sequence (SEQ ID N0:1562) Human mRNA sequence (SEQ ID NO:1563) Human coding sequence (SEQ ID N0:1564) Table 105 (mouse gene: Iqgapl; human gene IQGAP1) Mouse genomic sequence (SEQ ID N0:1565) Mouse mRNA sequence (SEQ ID N0:1566) Mouse coding sequence (SEQ ID N0:1567) Human genomic sequence (SEQ ID N0:1568) Human mRNA sequence (SEQ ID N0:1569) Human coding sequence (SEQ ID N0:1570) Table 106 (mouse gene Zpf29; human gene: hCG27579) Mouse genomic sequence (SEQ ID N0:1571) Mouse mRNA sequence (SEQ ID NO:1572) Mouse coding sequence (SEQ ID N0:1573) Human genomic sequence (SEQ ID N0:1574) Human mRNA sequence (SEQ ID N0:1575) Human coding sequence (SEQ ID N0:1576) Table 107 (mouse gene: Kcnj9; human gene: KCNJ9) Mouse genomic sequence (SEQ ID N0:1577) Mouse mRNA sequence (SEQ ID NO:1578) Mouse coding sequence (SEQ ID N0:1579) Human genomic sequence (SEQ ID N0:1580) Human mRNA sequence (SEQ ID N0:1581) Human coding sequence (SEQ ID N0:1582) Table 108 (mouse gene: Ppp3cc; human gene: PPP3CC) Mouse genomic sequence (SEQ ID NO:1583) Mouse mRNA sequence (SEQ ID N0:1584) Mouse coding sequence (SEQ ID N0:1585) Human genomic sequence (SEQ ID N0:1586) Human mRNA sequence (SEQ ID N0:1587) Human coding sequence (SEQ ID N0:1588) Table 109 (mouse gene: mCG9110; human gene: hCG27579) Mouse genomic sequence (SEQ ID NO:1589) Mouse mRNA sequence (SEQ ID N0:1590) Mouse coding sequence (SEQ ID N0:1591) Human genomic sequence (SEQ ID N0:1592) Human mRNA sequence (SEQ ID N0:1593) Human coding sequence (SEQ ID N0:1594) Table 110 (mouse gene: mCG2257; human gene: PRDM11) Mouse genomic sequence (SEQ ID N0:1595) Mouse mRNA sequence (SEQ ID N0:1596) Mouse coding sequence (SEQ ID N0:1597) Human genomic sequence (SEQ ID N0:1598) Human mRNA sequence (SEQ ID N0:1599) Human coding sequence (SEQ ID N0:1600) Table 111 (mouse gene: mCG17918; human gene: hCG23764) Mouse genomic sequence (SEQ ID N0:1601) Mouse mRNA sequence (SEQ ID N0:1602) Mouse coding sequence (SEQ ID N0:1603) Human genomic sequence (SEQ ID N0:1604) Human mRNA sequence (SEQ ID N0:1605) Human coding sequence (SEQ ID N0:1606) Table 112 (mouse gene: Lfng; human gene: LFNG) Mouse genomic sequence (SEQ ID N0:1607) Mouse mRNA sequence (SEQ ID N0:1608) Mouse coding sequence (SEQ ID N0:1609) Human genomic sequence (SEQ ID NO:1610) Human mRNA sequence (SEQ ID N0:1611 ) Human coding sequence (SEQ ID N0:1612).

Table 1 SEQ SEQUENCE{tc "SEQUENCE"~ CLONE CLASSGENE

ID

{TC . {TC
{TC

NO:

"CLONE "CLAS"GENE
"

" \L SIFICA\L 2{
2~

TION
"

\L
2}

MUTATION

GATCAAAGCAATCTCTATGTCTTTCTCTG

CTGTCCTCCTCAGACATCTCCAGAGAGC

TGGGATATTTTTCTTTCCCATTTGAGATT

ATGAAGTTGTTTCTAGAGTGCATGACGC

AGGTTGAAGGATAAGTACACAGGTCCC

AAGGAACCAAGCGTTTTCACTGACGGTG

ATGAGTCTTGTTCGTGAGATTGTTGTGA

TTCTCAGCCTTTCTCTTCCCCTGTGTGTG

CTCTTCATTTTCTGGTTCTGTCTGCCTAG

I IM0006I9 CACCTCCTGGGGAAGCTGCTGTGCTTTp000632A Spy GATCTTTGGAGCCCAGTTGTTAATCATA

AGAGCTGATATTTTGAAAGAGTGTGTCA

ACCTAGATGCACAGGGAAGCCAAAGCA

2 IM000620 TTCAGCC p000633D

ATATGACCACAAGGAAATAAGATAAAG

TGTTCATACTGAATTTATAATGAAAAGT

GATC

3 IM000621 p000634C

GAACAGGCATGGCTTTACTTGTACAATG

AGGAAACCAAGGCAGAGATTGCAAAGC

GGGTCCTACACGTTTGCTCCATGCCCTG

CTTCTCTGACCACAGTGTACTGAGAATA

TGCTGAGCCCTAGTTCCTGGGGAGGAGG

CAGAAGAGAGCAGCATCCTGCCCACTTG

AAGGCGTGCACACATAGTTCCTGTCTGA

4 IM000622 T~ p000638D

GATCAGGAGACCACACCCAGCTAGCCTT

CTCTGACTGGGTATCCTTGGTCAGCCAG

CCTTTCTTCACCTCATGTTCTCATTTGCA

AACTCACATGAACACTATTTGACCTACA

CACTTCATAAAGCTGTTTTTAGAAAGAC

GAGATAATACAGGAGGAACGCTACAAT

IM000623 ATTAAATGATATGTATTTATAT p000639D

AGTGTTTAGGTCAGCTGGTGCAGGAGAA

GCTTCTTGAGGAAGACGACCATCTGGCA

AGGCCTGATGGTAGAAAATAATGGACTT

CTCTCCAACTGAGTAGGAACTTGATGAT

6 IM000624 C p000640D

SEQ SEQUENCE{tc "SEQUENCE"} CLONE GLASSGENE

ID FTC FTC f TC
.

NO:

"CLONE "CLAS"GENE
"

" \L SIFICA\L 2}
2}

TION
"

\ L
2}

MUTATION

ATCAGTAAGTTAATCCTAAGAATTACTA ' TGCATTTTTCCCCTCTTTTTTAACAACAT

TCCTCCTTAGCTTATATGAGGCTCTAGTG

CCCGGAGACTTTAATACTGCCCTAACAT

GATGGTGGCTCTTTGTCCCTCTTTCTCAG

CCACTGAAATCTGACAGTTTGGGGAAGA

ATAATAAGAATTTAAGAAACTAGATGGT

TTTAAATATAGATATAAAAACAGTTCTT

CGACTATTCTCAATAAAGAAATTCAGTC

IM000625 C p000641D

GATCATCAGAGTCCTGCATCTTATGTGT

GCAGTGTTTTCAGCAATACAGGCTTACC

TTCAACCTCTAACAGGCAACCAGATGCT

ACAATAGCTTATATTGTTTTAGAAATCA

CTTGGACTACTCTAAACAACAACTTGAG

TGAAGGCTCTTTGTATCTGATACTGGAG

TTTGTTAGTCTATGACACTTGTGGGGAG

ACATGTCTGCACAAGTAGCATATGTGTG

TACATGTATATTGTATACATATATAGTTT

TGCTCTATGTATGTATGTGTATATGTATG

IM000626 AG p000642D

AAGGGACCTGATAATCGTGTTGGCAACT

GGGCTACAATTAGTTATCAATTGCTTGC

TTGCCACCTGCCCTGCTCCATAGAGAAT

CATAGTCTGGGGAGTGTGGAGGAATAG

CGGAGTCATCTAAACACATCACTGCTGC

CCCCACCATTTGCCTGCCACCAGGCCCC

CAAGCAAATGGCGCTCACTGATC p000643D

GTTTGGGGATTGTACAGAATGCACAGCG

TAGTATTCAGGAAAAAGGAAACTGGGA

AATTAATGTATAAATTAAAATCAGCTTT

TAATTAGCTTAACACACACATACGAAGG

IM000628 ~~TGTAACGTTACTTTGATC p000644K Myc , GATCTCATTACAGATGGTTGTGAGCTAC

11 IM000629 CATGTGG p000647R

SEQ SEQUENCEftc "SEQUENCE",~CLONE CLASS GENE

ID FTC . FTC {TC

NO:

"CLONE "CLAS "GENE
"

" \L SIFICA\L
2~ 2~

TION
"

\L
2,~

MUTATION

GATCTCAGGAGGCACCGAGAGACTCAG

CATGGACTCAAATGAGTACCCTGGCAGC

CCGCAACACCAGCTGTGTAACACTACCG

TGAGGGATGTCTTCCCTGCCTCCCTCCA

GCCCCTTCTCAGGCCCTGAGTCCAGTGT

GCAAAGCTCATCATGGTTAGTCCCCTTC

1~ IM000630 ACCT p000649K Gfil AGAGCACCCGACTGCTCTTCCGAAGGTC

CAGAGTTCAAATCCCAGCAACCACATGG

TGGCTCACAACCATCCGTAACAAGATC

13 IM000631 p000650R

GATCAAATCCTGTCAGGGAGAGGGGCTC

CTCCCAGTAGTGCCATCCCATAATAATA

AGAAGGACTCCTGGGCCTCAGTGAAGTC

AGGCTGACCACTACTGCAGGTTAGTCAT

GACCAGTAGCCAGAATGGAACGAAGGG

TGACCCAGTGTGAGGACACAGCCCCAG

GCAACTGCTTCTGCTTTGAGCCAAGTTG

TTACCCCAAAGCTCGTCATTCCGCTTGG

TTTCTCATGTGTGTGAGCTGCACATATG

14 IM000632 GAGGTCCCCCTTTGTTCCCTT p000651D

GTGAGGAAGGTCCCTCTGCATTCTAACC

TTCCTCAACTCCACCAGCCTCGGCGTTT

AAGGGAGAAATATTACCGTTCCCTTTGG

GCCAAGTTGGAGCCAGTGAAGTAGTCG

GAAATGTACAGTCACAGGAAATTGCTGC

TACCAAGGCTGGAGGAACAAAGAGAAG

ACTTGTCACAAGAGGCCAGAGAGGAAG

TCACCCAGTACAAACTGAAGCGCGCGCG

CACACACACACACACACACACACACAC

15 IM000633 GCACACACACACACACACGATC p000652D

TGGCCGCCTAGACAAGCTGACCATCACC

TCCCAGAACCTGCAACTGGAGAGCCTTC

GCATGAAGCTTCCGAAATGTGCGTGCTC

CACCTGTCCCTCACCTCACAGACATCAT

16 IM000634 TTCTCCATTTAGCCCCTCCCGATCp000654A Ii GATCCCCTGGAATTTACAGTCGGTTCCA

17 IM000635 p'C~TCATGTAGATG p000656C

SEQ SEQUENCE{tc "SEQUENCE"~ CLONE CLASS GENE

ID FTC . {TC {TC

NO:

"CLONE "CLAS "GENE
"

" \L SIFICA\L
2} 2~

TION
"

\L
2~

MUTATION

GATCGGCTATAGCATTTGTCAATGTTTA

CCCAGAAGAATAGCACAGATATATTTGC

ACATCAATGCTTATTGCAGTATTATTCA

CAGTGGCTATGTAATGGAACCAACCTAC

ATGGCCAGCAACTGAATAGATTAAGAA

AATATATATACACAATGGTGCTTTTTTC

GGCTATAAAGAAGAATGAAGTTATGTTG

TTTGTTAGAAGATGGATGAAAGTGGAGA

TGATAATATCAAGTGCACAGTCAACCTC

TCTCTCTCACCTCCCCCGCCCCGCTCTTT

CTCTCTCATATACATTTGAGAGTAGCAG

TAAACTGTCTGAGAACAAAGGGGATTA

ATGGGAGGGGAGAAGATTAAGGAGCGG

18 IM000636 ~GGGTAGTAGGTAGTAT p000659A Cr2 GATCGGCTTCTATGGACTGAGTGTGTAA

19 IM000637 G~cATT p000661D

TTAGGAGGGTAGAGAACATTCAGGAAT

CAAGAACAAGCATTTTAACACCCACTGA

GCTATCCTGTGGATGGTGGTGGTTTTGTT

TGTTTGTTGGTTTTGTTTTAGGAAGTCAG

GGATGGGGTGGGAATCTCACTCTGTGGC

TTAGACTTGCAACAATCCCAAATTCTGG

AATGATAAGCAAGAGAGCTGTCTAGTCC

CAGTCTCAGATACATGCTGTTAATTTTCT

ACTACTGCTATAACACATAGGCTCAAAT

GCGGTGGCTTACCTAACACACCCTGTGC
IM000638 TC p000662D

ATGCTAAGCTGTGACTCCTCTCGATACG
21 IM000639 AGACCCTGGCTGCCCTCCTTTCCCGATCp000663D

GATCGTCTGGAAGAGCAGTCAGTATTCT

TAACTGCTGAGCCATCTTTGCAGCCCCC

AGTTCTTTGGGGTTTTTTGTTTGTTTGTT

TGGTTGGTTGGTTGGTTTGGTTTAGTTTG

GTTTGGTTCAAGACAGGGTTTCTCTGTG

TTGCCCTGGATGTCCTGGAACTCTCTTTG

TAGACCAGGGTGGCCTTTAACTCACAGA

AATGCGCCTGCTAGGATTAAAGCTGTGT

CCCACCACTATATATATATGTGTG
22 IM000640 p000665R

SEQ SEQUENCE{tc "SEQUENCE"} CLONE CLASS GENE

ID ~'TC . f FTC
TC

NO:

"CLONE "CLAS "GENE
"

" \L SIFICA\L
2} 2}

TION
"

\L
2}

MUTATION

GTCACAGTGTTAGAGCCACAGACGGGG

GAACCTACTGGCTGTCCTGGGTTCCTGT

AAACTAGGGGACAAAGCTGCCACAGCC
23 IM000641 AGACTTAGCTGCGATC p000666D

GATCGCTGCTTCTGTAAATCCGCAACGA

CAATTGTTATCTTCTCCTTTTCTTTCTTTT

ATTTGTTTTATTCTATTTTATTTTTCAGAT

GAACTCTCATGTAGCCCAGGCTGGTCTC

AAACTCCCTCTGTAGCTGACGGCAACCT

TGAAC
24 IM000642 p000668R

TTCCTACACCATAGCATTTAGTTGTAGG' 25 IM000643 CAGAAGCGATC p000669D

GATCGGCTCAAGGGCTCTAATTTAGTCT

AGGAAGTCCTTAGGAAACATGAAAATCT

CCGAGATAAGACCCGGGGTAAAAAGCT

TGAGCCACGGAGTTAGACATGCCCAGG

GTGGAGTCATGTTCAGAGGTTCAAGACC

CGAATCAGCTACGTAAATAAAGCATTTG

AGGCCTACCTGGGCTACAAGAGAGTATC

TTTAAATAAATAAGATGATTTAAAAAAA

ACTGTTTTCCCCTTAGATGGATTAAAAA

AACAAGACAAAACAAAACAAAACAAAA
26 IM000644 ACCCGTCTTTCCTTCTTAA p000672D

CTGTCCGTGTGGGAAACGTTTAGCAAGT

CCGAGCGTGTTCGATC
27 IM000645 p000673I~ Nna~c ATGCGTTCGTATGACAGTTCTCCAAATG

ACTGTCCCAAAGTCCCAGATTCCTGGAA

ACAGTAAAGACTGCCTCAAACTGTAGTC

ACTAGTCTATTATCTTAATCATAGTAAC

CATTTGGGTTTGACTTGAAAACCTGTGA

CAGGGAGATAAATTTCTGCCACTGTAGG

TGAAGCTTGGAAGGGCTAACCCAATGA
28 IM000646 ATATGCTCAGTCGATC p000676C

SEQ SEQUENCE{tc "SEQUENCE"~ CLONE CLASSGENE

ID FTC {TC FTC
.

NO:

" CLONE CLAS "GENE
" "

" \L SIFICAL 2}
2~ \

TION
"

\

MUTATION

AGATGAAGCTATCCCCAGTCCCTAAGCT

GAGTTCTGCCTGAGACTATTTGAAACAG

GGTACCCCTGGGTCCCAGTTCAGTTGAC

AGGTAGTGGACGCATGAGAACGCCATA

CCTGGTGGCCGTGCCCGAGAGTGCTGTC

CCTGACCTGCCACTGTGTTCTCCAGAGC

AGCTTTCCAATCTGCCTGCTCCTGTCTCC

CCTGCCTGTTGGCACCAGGCAGCCAGAA

TTCCATTTGTTTGTTTGCTTCGCGATAGG

CTCTTGCCATGTAGTCCTTCCTGGCCTAG

AACTTGATATGTAGACTTCCCCCCTTGG

ATC
29 IM000647 p000678C

CCGTGTCCGTGGGCATGTGCGTGTACAG

ACAGACATACATGCCCCCGCATGAGTGT

GAACACCAGAGGTCAACCTCAGGTGTCC

TTTTGATGTTATCTACCTTGTTTTTTGAA

GCAAGGTCTAGGATTGACCAATGAGCCC

CAAGTAGGGATC
30 IM000648 p000679D

GATCCATAGGCAGAGAAGGCAGTAATA

GGACATTGGTCATTGTACCTCATTTGTG

AGGGGTCACCTTGGAAATGTGCTGAGAC
31 IM000649 TAGGTTCTAGGAGAAGCTCGCCA p000682D

CTGGCACTGTGTGGCAGAAACAGTGAAC

AGTGTAGCGGTGCAGAATGTGTGTGCTG

TGGGTTTTAGCACCAGGGCTGCATGAGA

CTGCAGACATGCTTATGACGCAGGAAGG

CTCAGGACACAGCACACATGTGTGCTAA

CATACATGTTTCACCTCAGACTCAGCTC

CCATTTGACTTTTAATTAATTTTTGGCCA

TTCCACAACAGAACCTTTTCTTGCTCCCT

TTTTTCAATCTTATGTATATATCTCCTAC

ATTTAGTTACAGGACTGTGACCTACAGT
32 IM000650 TTAAAACTCGGGGATC p000684D

SEQ SEQUENCE ftc "SEQUENCE"}CLONE CLASSGENE

ID FTC . {TC
FTC

NO:

"CLONE "CLAS"GENE
"

" \L SIFICA\L 2}
2~

TION
"

\L
~~

MUTATION

GATCCCTCCCCTCCCTTCTTTTTCCCGCC

AAGCGTCGGCGAAGCCCTGCCCTTCAGG

AGGCAGGAGGGGAGCTGAGTGAGGCGA

GTCGGACCCAGCAGCTGAGAGCAGCGC

AGCCCAGGGGTCCTCGGCCGCGCAGACC

CCCGGAATAA
33 IM000651 p000685K Myc CTACCACAGCCCCAGTGCTCTGGAGGGA

CTCTAGTAGCCAGGGCTGGCAGCTTGGT

TTGGGCCAGCATCTCACTATGTAGCCTA

GTTGTCCTGGAATTTGCTATGTAAATGT

GGCTACCCTCAAACTCATAGAGAGCCTC

CCACCTCTCCTGAGATTATAGGCACATG
34 IM000652 CTACCATGCCCTAAGTGGATC p000686D

GGAGCAGGCCCTTCTGAATCAACTTGGC

AGAGTGAAGGAGGCACTCTCCACACAA

ACAGGAAAAGGGCAGTGGTGACTTTCTA

GGCAGGGAACTGGTTACATTTTGTTTAT

TTGAAGGTGAAGAGTCGTGACATTCTGG

GAAATAGGCAAGATGGCCGTTTCCCCTC

AGCTACAACCAGCCATGCAGACCTCCTT

GCAGGGACCTGGCTATCTACACTGGAAC

CAGAAAGGCACGCCCTGCTTTAGCCTCA

GGCAGAACGATAATAACAGCGTGCTAG

CTCAGTAGTCTGTGTGCTGGAAGGGTTT

ATGAGGAGGAAGTCCGCAATTACATATT

TCTGGGCAAACATTAACCAAGATTGAAA

CCTAGATTTGAAGAGAAGTAGCAGGCTG

GGATC
35 IM000653 p000687D

SEQ SEQUENCE~tc "SEQUENCE"} CLONE CLASS GENE

ID

NO: f TC . {TC FTC

"CLONE "CLAS "GENE
"

" \L SIFICA\L
2~ 2~

TION
"

MUTATION \L
2~

AGATGAACTTATAAATGCATCTGCAGTC

CTCAAATAAAGATGAATAGTAACCCAG

AGGCGTGGTAGTGCGCTCTTCAAACCCA

GTGCTCAGAAGGTGCAAACAAAAGGAC

CGGGAGTCCAAGGCTAGCCTTGACTAGA

AGGGGCCATGTCTCAAAGAACAACAAC

CAAGAGCTGCTTATGGAGGTCAGTCTGT

GTTCCCAGGGGGACAGCATCAGTCTAAG

TTGGCGGTTGTTGTTGGCTGAGCATGCA

CAAATCCCTAACAGCACATAAAGCAAGT

TGTGTCACACACTCACAGTGCCCAGATT

CACTGGATC Mm.1313 36 IM000654 p000688B 36 GTCCATTGTGTACTGAGAGAGGAGTTAG

GTTTAGAAAGCCTTCCTCAGATGTCCCT

CAAAGAAGCTGCTACAACTGCCCTCATC

CCACGTTGCCAAGGATC
37 IM000655 p000689D

AGCTGTAGGGAAGCCCAAAGCACAGAC

GACTGCTGCTGCTGCTGCGGTTCCCACT

CTGGGTTGACCTTAGAAACGGGGGTTCA

TCTCCTCCAGCAGCTCCGGGAAGGAAGG

TGAAGGGGACTAACCATGATGAGCTTTG

CACACTGGACTCAGGGCCTGAGAAGGG

GCTGGAGGGAGGCAGGGAAGACATCCC

TCACGGTAGTGTTACACAGCTGGCGTTG

CGGGCTGCCAGGGTACTCATTTGAGTCC

ATGCTGAGTCTCTCGGTGCCTCCTGAGA
38 IM000656 T~ p000694K Gfil SEQ SEQUENCE{tc "SEQUENCE"~ CLONE CLASSGENE

ID {TC . {TC
{TC

NO:

"CLONE "CLAS"GENE
"

" \L SIFICA\L 2{
2{

TION
"

\L
2}

MUTATION

GATCGCCCCAGTTACCTCAAATTGTGTG

AGTGTGTGTGTGTGTGTGTATGCATATA

TGCATACAAGCATATACATGCATGCATA

TATATAATACACATAGACATATATACAC

ACATATAGACGCATACATGCATTTGTAT

GCATGCATCTATGTATGTACATATCCAC

AACCAAATATACCAAACACGCAGACAC

AGCACACATAGGACAATAGTAATTGTGA

ATCTAACTGGTGGGGTTTATGGGTCAAG

AGCCAGGGTAGAGGAAACTGGCTAAGG

CTCTAACCATCCTAGAGCAGGCACATCT

ACCAGGAAAAGAAACAAGGAAAAGAGC
39 mjQ00657 AGAGTTGAGGGTTACTTAACATG p000695D

ACAGAATCTGTGGGTCATTATTACGTTT

ATAGGAACAGGATTTTCTTTCCTTTCTGA

CTCTACCTTCTAGAAAGGCCGACTTTTA

AATCCTCATGCTCTTGTCTATTGACAGG
40 IM000658 ~GATGGGCTTCCACACTGATC pOO0700D

GATCAGGCTGGCCTTGAACTCACAGAGA

CCCACCTGCCTCTGCCTCCTGCATGCTG

GGATTAAAGGTGTGTGCCACCACTGCCC

AGCTCACAAAGTAGTAGTAGGACTAGTA

CTAGTACTAATAATAACAAACATTACAA

CAATCTTAATTATTTTTGTTTCTACCTTT

AAAATCTCCCAACTGTCTTTTTATATTGC

CTCAAGTCTTCCCTCAGTCCCTGGCCTTC

ATAGCTTGACTTTTTTGCTAGAGGTTATC

AGTGGCTCATCTCTCTCCTGAGATTGAG

CTGGCTAAGACCACTATTCAGAGGGAGA

ATGTAATGTCTCAGACATCATAGCCAGT

CCTCAGTTCTCCTTTTGCTGACTGACCAC

TTTGCCAAACTAGTTTTCCTAAGCCATA

CCTTTTCTTTTTAAAAAATAGTCTTTCTT

ATAGTGGGTGCTGGCTTTGAACTTCTGT

CCTCTTGCCTCACCTTGCACTGGTAGTA

GAGGCTTGCAATTTCACCG
41 IM000659 p000702C

SEQ SEQUENCE{tc "SEQUENCE"{ CLONE CLASS GENE

ID {TC . FTC {TC

NO:

"CLONE "CLAS "GENE
"

" \L SIFICA\L
2{ 2}

TION
"

\L
2,~

MUTATION

GATCAAGAACGAAACCCCTGAAAACAT

AAAACAGTAAGATAACAATAGCGTGCC

TGATTTTGTCCAAACCTTCTTGTCACCTG

TCACTGAGATTGTCAACTCCTTTTCACCA

CCCTACATACGTTAGTTAGCTCAGTTTA

CGAGAGTTTGCAAAGGCCCCCACCAGTA

CCCTGCAACTTTACCCACCCCTGCATGG

GACTGTGAGAAAATGGGACTGGAGAGT

AACCCTCTTCAGGCTCACAATCTGAGCT

AGTCAGAGCATCTCACGGGTCCCGGGAC

TTTCAGTGTGCTTTCCTCTTGGGTATTGG

ACTTTAAACAATGTGTACCGATATGGGT

GAATAATACAACATCCATGGAGAAATA
42 IM000660 AGCCAAATCAAGACACTTCTTCAGAGGp000703D

GATCAAAAACATCAACGTAAGGAGCCC

TTAATGACGCTTTGTGACGGTTTAGAAT

GGTCTACCCAAACCTAGCCAAGTCTAAC

TATGTTATGGAGGTGGTAAAAGCAGTTA

ACCTAAACATCTGGGACACTCACAGAAT

GATAGGTAGGTAGGTAGATAGATAGAT

AGATAGATAGATAGATAGATAGACAGA

CAGACAGACAGATGTTGAATAAAAAGT

GACGTTTACAGTGATGTTAGCTCAAGGC

AGGGCTTTTCAGGCCATTTCCCCTGGTCT
43 IM000661 CACCC p000704D

CTACTAAGTCCAGAGCAGAGAAGGAGG

CGCCGCCTGTGTGCACAGCGGAGTCTGG

GAGAGACCACCGGCCCAAACCAGTAAA
44 IM000662 CACAGGGCACCCACCGTGCTCCGATCp000706D

SEQ SEQUENCE{tc "SEQUENCE"} CLONE CLASS GENE

ID

NO: {TC . {TC f TC

"CLONE "CLAS "GENE
"

" \L SIFICA\L
2} 2~

TION
"

MUTATION \L
2~

ACAGTAATCTGATTATCTTGCAGTAGAT

AATTTGTCTACCTGTTAATGACTCTGCTT

CTTGAACTACGTCCCAGTAGATGCCATG

CTTTCAGCCTGGTAAGTGACACTAATAC

TACCTCCAAACTGTCACTTGGATTGTCA

GGGTTTTGGTGTGGTGATGATACAGGAG

AAATGTAAAACACGGAGTTGATGATAG

AAAGGAGTCACTAATACATTTTCTTAGG

AAAAGTCAAGTGACACACAGCAGAATC

TAGCTGAAGGAGCTCCGCCAATAGGGCT

GGAAGATAACTCTCGCACTAACCTGCTT

TATTAGGAACTGTAGGAAAGGCAGGTCT

GCAGCACAGTTGAAGTTTAGGTTGCTGA

GAAAGTTTCTGCTCATATTTATTCACCA

GTGATGATC
45 IM000663 p000708D
46 IM000664 GTTTAGCAAGTCCGAGCGTGTTCGATCp000709K myc AGGCAAACCCATGTGAGGCCTTCTCACA

TCTTTCCTTGGATGCCTGCACACACCTG

ACTTGACAGACTTCAAATCAGACTTATC

AACTCACCTCTTCAGTCCTGGGCCTCTTC

CTGTATTTCAATCTTAGATAGAAAATTG

GTTCCACTGTCTACCAGCCTTGAACCAG

GAATGCAGAGCCAACCACCCCTGGGGT

GTCCCAGGCAGCTGGGCTGGATGCTACC

TGTCATGCTCTTGATC
47 IM000665 p000710C

SEQ SEQUENCE{tc "SEQUENCE"} CLONE CLASS GENE

ID f TC . FTC {TC

NO:

"CLONE "CLAS "GENE
"

" \L SIFICA\L
2~ 2~

TION
"

\L
2,~

MUTATION

ATGTATGAGTGTGGGGCTGGGTTTGAAC

CTGTGTCACCTTAGGACTCTCTGAACCT

CGGTTTCCTATTAGACGGAGGGGCTATT

CGGAGTCCTCATCTAATGGAGACACTTT

GTGGGTATCAGAGGGCAACACTGTGGTA

TTGGGGGTGGGGGGTTGCTGCTTAGAGC

TCAGAGAAGAGGAGTTTGGCTTGCTCTA

CAGAACATGCAGGCTGAGGTGTGGGTG

CAGGGTTTCCCTGAGGCCCCGGCTCTGA

CCCTCTCCCCACTCCATTTCCTGCGCAGG

TGAGCGACAAACGTTCCAACAGCTTCCG

CCAGGCCATCCTTCAGGGAAACCGCAGG

CTGAGCAGCAAGGCCCTGCTGGAGGAG

AAGGGGCTGAGCCTCTCTCAGCGGCTCA

TCCGCCACGTGGCCTACGAGACTCTGCC

CCGGGAGATTGACCGCAAGTGGTACTAT

GACAGCTACACCTGCTGCCTCCGCCCGG

TTCATGATC
48 IM000666 p000711C

GATCATTTTTCTCTCGAGATGGATTAAA

GCTATGCTGCAGAAGGACCCGTGTGTGT

CCTGTGTGTGTGTGTCCTCGCCGGCGAG

ACTCCTTATCACACATGACAGCTTCAAA

GCCCCCAGATTCAATAGGTTCCAGGAGT

TCACATTTAACACTCATGGGGTCAAAGT

GCAGGCAGATGGTGGAGCCTGTGGAAG

GTCATCAGACAAACAACCTGGTGGTTGC

AGCAGAAATCACCAGGCAAGTAG
49 IM000667 p000712R

GATCTGGCTAGCAGGGAGCCATTTACAG

SO IM000668 CTCAGACATCTATCATCCTTA p000713D

SEQ SEQUENCE{tc "SEQUENCE"} CLONE CLASS GENE

ID

NO: {TC . {TC {TC

"CLONE "CLAS "GENE
"

" \L SIFICA\L
2} 2}

TION
"

MUTATION \L
~}

GATCATTGTACCTCACCTGTCAGTTTGA

CAGGTGGGAGGTGATATCTCTTTTCATT

CATGTATTCTTTGAAAGTTTGTTCATGCA

TATAATACATTCTGGTTCAATTCACCACT

CCACCCTTTTGTATCCCCTGCGTACCGA

GCCCCCATTTTCTCACCAAGTCTTACTGT

TATCTCAGTTTTGGGGCTTAGTTTTTTGT

TTGTCTTGTTTTGTTGTTTTTGAAACAGG

GTCCCGTTATGCAGCCCTGGCCCTGAAC

TTGCTAAATAAACCAGGTTGGCTTTGAA

TTCAGAGTTCTGCACACCTCTGTTACCC

AAGTGCTCAGATTAAAGGCGTATACTAC

51 X000669 CAC p000714C

GATCAATTCAATCTATTGCAATAACCTG

GTTTTTTTTTTCCGCAACTCCAAGATGGG

GGGGGGGGGGCCCAGTCAGGAGAGGTT

TCAACACAAACGCACTAGTATTTACACA

CAGAATCTCCTCCACTGTTCTTCTTCTTT

GCTTTAAAAGTCTTTGTTCCGGAATCTAT

AGATAGGGAGACAGATGGCTAGCTCCC

CAAGGCTGAGAGCAGAGGAGAGTATAA

ACAGGGAAGTCAAGGGGTCTGGGAGGG

52 IM000670 CAAGGTAAGGAAGCCACAG p000715D

CAATGCCTTCCCCGCGAGATGGAGTGGC

TGTTTATCCCTAAGTGGCTCTCCAAGTAT

ACGTGGCAGTGAGTTGCCGAGCAATTTT

AATAAAATTCCAGACATCGTTTTTCCTG

53 IM000671 CATAGACCTCATCTGCGGTTGATCp000716K Myc TAGTATTCAGGAAAAAGGAAACTGGGA

AATTAATGTATAAATTAAAATCAGCTTT

TAATTAGCTTAACACACACATACGAAGG

54 IM000672 CAAAAATGTAACGTTACTTTGATCp00071~K Myc GATCAGAAAAACAGCCCATTATTCAAGA

55 IM000673 TTCAGGT p000719D

SEQ SEQUENCE{tc "SEQUENCE",~CLONE CLASS GENE

ID {TC . {TC {TC

NO:

"CLONE "CLAS "GENE
"

" \L SIFICA\L
2~ 2~

TION
"

\L
2}

MUTATION

TAACTTCAATTTAATAATTATCACATGCT

AGGAACTAAAGAGGTGCACAAAACAAA

CCAACAGTGGTTCCTATCCTGTCTAACA

GAAGAAACTACAATTGTGGTTTGGGATG

CCACATAAATGACAGCAACGGGACCTA

CAGAAAATTAAGTCACAGAGAGAATGG

ACCATTTCTGCAGAGACCTGGAAAACAG

ACAAGGGAAGAAACATGGTGTGTCTAA

GTGATGGGGCAGGTGGTGCAAACGCTA

GAGGCAAGCAGAGGGGATATGAAACTG

TGCTGCACAGCTGGACAGAAGGGAGGC

TGGAAGGGAAGAGAGGACCCTCTGTTTT

GACTCAATGGCTAGATGCCATGTGCCAA

ATAAGAAAGCACTTGGGGGGTTCTGTGG

GAAATCGGAACAGAGGGACTGGAATCA

AACCTCAACGTTCCTTGCATACTCCAGA

TAAGAACCAGGCTTTGAGCCAGGGCCTG

GGAAGAGGGCTGGCCTACATATCTCATT

TTAGAGATGAGCAAACAGGACTGGGAG

CTCTAGGTCTTCAGTGACACGCTTGCTT

GGCCCGCAGGAGACCCTGGGTTTGATC

56 IM000674 p000720D

GATCATGTCATGGGTCAACAGAAATAAT

TCTGAAAGGCTAAGTCATTTCTTCTACC

CCCAAGAAAAATCAAGAACACCCCACA

TTACAAACCTTCCGTAGTAAACTGAGAA

TGGAGCCATGGCCAGAGCCCCTCTGCTC

TCCCATCCCCCAACCAAGAACCAAAC

57 IM000675 p000721D

ATATAACTTCTTTTTTTTTAAAAAAGAAT

TATTTATTTTATGTATATAAGTTCCTTAT

AGCTGTATTCAGAGACGCCAGAAGAGA

58 IM000676 GCATCTGATC p000722R

SEQ SEQUENCE{tc "SEQUENCE"~ CLONE CLASS GENE

ID {TC . {TC {TC

NO:

"CLONE "CLAS "GENE
"

" \L SIFICA\L
2{ 2{

TION
"

\L
2{

MUTATION

GATCATAGCACACTGGGGTGCCATCTGT

CACCCCTAGACAAACATCTTTAACCNGC

ATCTCTTCCTGAAGCCCACTTGGACCAC

CCTTTGGAAAACCATCACCAAGGCCAGT

AAGGTACCCGTGGTGACTCACCTCAGCC

TAGCCCACCATAGACGCTTAGCAGAGCA

GGTGTGTGTAAGTCAGAGCCAGACAATC

AGAACACTCTCCCTGCTCCAAAGTAGCA

ATGTAAAAAATTGAACCCAAAGTTG

59 IM000677 p000724D

GATCAAAGTAACGTTACATTTTTGCCTT

CGTATGTGTGTGCTAAGCTAATTAAAAG

CTGATTTTAATTTATACATTAATTTCCCA

GTTTCCTTTTTCCTGAATACTACGCTGTG

CATTCTGTACAATCCCCAAACGTATACA

TACACACTTTATATATACACGATAATCT

AGCTTATTAACCAACCAGAAACATGAGT

CTTTTGCTCTGTGCATTGGTTCTAGATTT

ATTATATAATGCATATTCCCTCGGGATTT

60 IM000678 GCTTATCC p000727I~ Myc GATCATTTGATGCTTCAGATAAATATGT Mm.1278 61 IM000679 ~TGGTGAC p000728B 81 GATCAAGATAATCCCCCACAGGCATGCC

CAGAGGCCCATTTCCTAGGTGAGACTAT

AGTCTGTCAAGTTGACAATGCTAACCAT

TGCAGTGAGGGAGAGAAAGAAGGCCAG

GATGGTGCCTCTCTGTTACTCTGCTTACC

CACGGGGTGCAAGGACAGTGGGGGATG

GGCCTGAGCTTCCTCATGAACACACACA

TGAGAGCAGTCAGCACATGGCCTCTTCC

TCTAAGCTTCACAGTGGCAGCCGCACCT

CTGCTGTTAAGACCTAACATGTGGCCGG

GCAGTGGTGGCACACGCCTTTAATCCCA

GCACTCGGGAGGCAGAGGCAGGTGGAT

TTCTGAGTTCGAGGCCAGCCTGGTCTCC

AGAGTGAGTTCCAGGACAGCCAGGGCT

ACACAGAGAAACCCTGTCTTGAAAAACC

AAAACCAAAACCAACCAACCAACCAAC

CAAACAAACCATCTAACATGTACATCCT

ATCCATGTGCACGAATCATAC

62 IM000680 . p000729R

SEQ SEQUENCE{tc "SEQUENCE"~ CLONE CLASS GENE

ID

NO: {TC . {TC {TC

"CLONE "CLAS "GENE
"

" \L SIFICA\L 2~
2{

TION
"

MUTATION \L
2{

AGACCAGTGCCGGAGCCGTTCCTGGCTG

AGGCAGCCCAAGTCCTTGAAGAGCTTGA

AGAGGTCGCTGCGGAACTTGACGCCGAT

GAAGGCATACAAGAAAGGGTTGACGCA

GCAGCGGACGGAGGCCAGGCTGTAGGT

GACGTCATAGGCAATGTTGAGCTGCTTG

CTGGTTTCGCAGCTGCTATTGGTGATGTT

GAAGTTGGCCACCGTCTGAGCCAGGACC

ACCCCATTGTAGGGCAGCTGGAAGACTA

63 IM000681 TGAAGACTACCACCACGGCAATGATCp000730A Cmkbr7 CCCTCTCAAGCCTTCCTTGTTACTTAGCC

TCTATAGGTCTGTGCATTATACCATCATT

CTTTTAATTTACAGCTAATATCCATTTAT

ATATGATTATGTACCATATTTGCCTTTTG

GGGTCTGGATTGCCCTACTCAGGATGAC

CTTTTCTAGTTTGATC

64 IM000682 p000731D

GATCATGATGTTTGTTGAAGCAACAGAA

ACTATAAGACAGTGCCCAAGAGCCTCTC

TGGAGATAGCC

65 IM000683 p000732D

GATCGTGTTAGACACAAGTAAGAAATG

AATGAGTCTTCCTGATTTTTTAAATTAAC

TTCTCCCCATATTGGCTGTCACTACTTTT

TAAATCAGAAAGGAGAATCTGGACGGT

TCCAGGCCTGCAGCGCCATGCTTGCAAA

AGGTTTACAGAATCGCTCTGGACAACT

66 M000684 p000734D
I

CTACCACAGCATCTTTTGAGTGTATATA

GTCAGTGTGCTACATGTTATCTATGAAC

ATATGCAAATGAGGTTTGAGAATTAAAG

TTGCTGATAGACTCATGGGTTAGGGGTT

TGATTGCCTGCTAATGATC

67 M000685 p000735D
I

SEQ SEQUENCEftc "SEQUENCE"~ CLONE CLASSGENE
ID
NO: FTC . FTC
MUTATION "CLONE f "GENE
" \L TC "
2~ "CLAS\L 2~
SIFICA
TION
"
\L
2}

GATCACGAAACGGTTGACTAAAGCAAG

ACTGAACCACAGGCAGATACCAAACCC

AAAGCTCTATGTCTAGTGTCTAGAATAC

ATAGGTTTGGGTAGCCATGCCCCTGTGA

CCCTGCCACCTGCAGCACACATAAGACA

ATACTATAGACAACCACTTCTGAGTCAG

AATTGCAATGATGTCTTTGGCAAACTAC

TCTAGTCTCCTTTGGCCAGGAGCTGCTA' AGTGGTTCAGGCTGAGGTACAATCAACC

TAGGTAGGTGGGACTGTGTGCCCCTGTG

CTCCTGGGTGGCCTTCATGTCTGCTATGC

TTGCCCTTT

68 IM000686 p000736D

GATCATGTCAACTATACCTGGACACGGA

CCTTCATCCTTGCTGGTTTCACTACCTCT

GGCACCCTGCAACATCTTGCAGTTTTTG

GAACCCTGTGCATCTATCTCCTCACACT

GGCAGGGAACTTGTTCATCATTGTCTTG

GTCCAGGCAGATTCAGGGCTGTCCACTC

CCATGTACTTCTTTATCAGTGTCCTCTCC

TTCCTGGAACTCTGGTATGTCAGCACCA

CAGTGCCCACCTTGCTGCATACCTTGCT

CCATGGGCCTTCACCCATCCCCTCGTCT

GCATGCTTTGTCCAGCTGTATGTCTTCCA

CTCCTTGGGCATGACCGAGTGCTACCTG

CTAGGTGTCATGGCTCTGGACCGCTACC

TTGCTATCTGTCGTCCACTGCACTACCAT

GCACTCATGAGCAGACAGGTACAGAAA

CAGTTAGTTGGGGTTACATGGTTGGCTG

GTTTTTCAGCTGCCTGGTGCCTGCAGGT

CTCACTGCCTCTTTACCTTATTGTTTGAA

69 IM000687 AGAAGTGGCCCATTACTT p000737C

SEQ SEQUENCE ftc "SEQUENCE"} CLONE CLASS GENE

ID

NO: ' {TC . f FTC
TC

"CLONE"CLAS "GENE
"

" \L SIFICA\L 2~
2~

TION
"

MUTATION \L
2~

CTGTCAATTCATCCAGCTCTAGGCCGCT

GTCTGGCTCGATGCTTATTGGTTTAACA

GTGCCGATGCATAGGATTCTACAGTCAG

AGTGGCCTAAGCAACAGCTAAATATTGT

TTTCTTGCTGTTCTGGGAACTAGATGTTC

AAGGTCAAGGCGTCAGTAGCTCTGTTAT

GAGACCTCTCTGCTGTCGGGCTGTGTCT

TCAAGTTTTTTCCCCCCTCTGTGCATGTG

TGTTCCTATTTCCTCTGCATGAAAGACC

AGTAGAGCCAAGTGGTGGCACACACCTT

70 IM000688 TGATC ~ p000738D

GATCATGAGAGGCGAGAAACCCAGACA

TCTCTAACTCTTCTTGCCAACTCAGGAG

CCACCTGTGGCCCCAGCTGGCCACCAGC

CGTTCCTCCCTCAGAGGCCTCCATTTCCA

CAAAAGGCCTTCCTGGTTGTTCAGGACA

GAGCCTGGTTTCCCTGATACCCCTTCTCT

CAGTGGCCACTGAAGTTACAGGGATGCA

GCCAGCCGTGGTTGCCATGTCTGTATAT

GCTAATCTCCGAATTCCACTTCCTGTTTA

71 IM000689 GATTCTCAG p000739D

GTTTGTCCGCATGAGTCCCAGGGACCAC

TCAGAGTGGCTGGCAGGCATTGTGGAGT

GGAATGTGGGAAGACACATTCCCAGCCT

TGTTTGCAGCTTGGGACTGTCTGTGTTTT

72 M000690 GGGATGATC p000740D
I

GATCACCTGGGAAGGGGGAAAAGGACA

AGTCTGAGCTCCCAGCCCACATTCTCCT

AGGGTAGCAGCTCCCTCACTTAGTGT

73 M000691 p 000741D
I

SEQ SEQUENCE ftc "SEQUENCE"}CLONE CLASS GENE

ID f TC . {TC {TC

NO:

"CLONE "CLAS "GENE
"

" \L SIFICA\L
2~ 2}

TION
"

\L
2~

MUTATION

GATCAGTTCTTATTAAACAATACAGACT

TAGGCAAAATGAGTCAGAAATAAGGAT

ATCGCATATCCCGAGACCATTTGAACTC

TAAGAAGTATTTTCTATTATTAAAGTAG

TTCACCAGGCAGTGGTGGCACACACCTT

TAATCCCAGCACTCGGGAGGCAGAGGC

AGGTGGATTTCTCAGTTTGAGGCCAGCC

TGGTCTACAGAGTGAGTTCCAGGACAGC

CAGGGCTACACAGAGAAACCCTGTCTGG

IM000692 AG p000744R

GATCATCACAGATGACATAGAACCAAA

CTGTAACTTTCTAGACTACATGTAGCAG

ACATTT

75 IM000693 p000745D

GATCATACATGAATACAAGCAGGCTTCT

GGTATACTCTTAAGTTGAATTCTGTTTTC

TGTAGTCGTAGTCTTGTCTTTTCCAGTTT

TAAATTCTAGAACAGGTATACTGTAGAG

CACCCGCCTCCCCTTGCTCTGGAGGTAG

76 IM000694 p000746B 8 ATTTCTCTTGTAAAACTCACTTTCTGTTC

ACCCATTTTGTCTGTGTCCTTACTAAATT

ATTTCTATATAGGAATCTTTGTATCTTCT

GATATAAGCTAGCGCATGGGTACCACCA

GCACCCAAGTCATCTGCTGAGGTGCTTC

TAACCTTGCTTGATTCAGTGTCTTCAACA

GAAGGTGGAGTAAACAGGTCATTTTTTA

77 IM000695 CCCTAGAGAGTTCAGATC p000748D

GATCTCCGGGTGCCAGACTTGCCCAGCA

AGCACTCTTACCTGCTGAGCCATCCTGA

GGGCCTGGATTTA,~~.AAAAAAAAAATATT

78 IM000696 GACATATTGTTC p000749D

SEQ SEQUENCE{tc "SEQUENCE"} CLONE CLASS GENE

ID }TC . }TC f TC

NO:

"CLONE "CLAS "GENE
"

" \L SIFICA\L
2} 2}

TION
"

\L
2}

MUTATION

GATCTCCTAAAACTCCCTGTGTCAGGAA

ACTTTCTGTGCTTTTGTATTGCGTTCCTG

TGTTCGTGGAAGGCCCCCACGCCTTCAT

CC'TTGCTAATTCTTTTTGGATAGCTTGTT

GCTTTAACTAGATTGGCCCTTTCTTGGCT

AGTATTTTCTGCTGTACCTATGAGTGGT

GTGGGAGAACTGTGCAGACTTCCAGGA

AGCGCAGCCATGAAGCTACATGTGCCTA

TGTGTAGACACATCATGGATTTTCTTACT

AGTTTACTAGTGGGTGATAATCTGTCCT

TTTGAGCTCTCCAGAACGTTCTAGAAGC

TTAAGGAGAGAAATCACTTAAGAGAG

79 IM000697 p000752D

ATCTGATAGTAAGTAAAAGGACAGCTA

AAGATGAAGGGAAAGCAGGAGAGTCCT

GGAAGAAGAAACTAGTGTTTCTAAGAGT

TCATCATTGATAAAATGCAAAAGAAGTC

AATTACATACATGTTTAGGAAACTGAAT

CCTCTTGTTTTGGGGGATGTTTGTTTTGA

GGCAAAGGCTCTCTTACAGAGCCCTGGC

TGTTCTGGAGTTCTGTATATCAGGCTCTG

GCCTCAAACTCAAGAGATC

80 IM000698 p000753D

ACATCAAGAGGAAGTTGGAAATGTCATC

. TTTAGCTATCTTATATCCTGGTAGCTTTA

AGATTTCCTTTGTGTGACTTTATAGTTCT

CAAAATATTTTTAAGGGTCAGGGGAGGA

AGCACTTTCAAGAAATGAGATGGGAGA

GGGAATGTCTTTGTGTTGGCCTGGAGAT

81 IM000699 C p000755D

AGCTATACCTGAAATTTGGCCAAGAACA

GAAGCTCAGGAAATAGTGTGATTTAAAA

ACCAAAACCAATTTACAAAAGGAAGAC

82 IM000700 TGTGGTGTAGATC p000756D

CCACAACTGAAAGCAACACACACAGTA

TTTTTCTGTGGGTTTTAGGATGTATCCAC

ACTCCCGAACTTCCTTTCCCTGAAGCAC

CCCTCAGTTTACTCTGAAGCATGGTTTG

AGTCCCAAGGCCAGTGTCAACTTTCTGC

CAAGTCTCAATGGCAAAAGTCTGTTTTA

83 IM000701 ATCTGCTCAGGCTAATGTAGATC p000757D

SEQ SEQUENCE{tc "SEQUENCE"~ CLONE CLASS GENE

ID

NO: {TC . {TC {TC

"CLONE "CLAS "GENE
"

" \L SIFICA\L 2~
2~

TION
"

MUTATION \L
2~

CTTCCAGTCTTTTTAGCTATTTATTGATA

TGAATTCCCTGCCTTATGTATCATCCAA

GATTCTACCTAAAATACTTCCAATAAGT

ATCAAGGACCACTCAAATATTCACTATT

GGACTTAGAAGCTCCACTCTTAAAAATA

GATTCTATAGAAAGAGCCTGAAATGGG

GGCATGAAATGGGTCCATCTCCACCATC

ACGCACACATGAACAAAGAAAAGGAGG

AAATGGTGTTAAGAAAACTTACATCATA

CTATTTAAAAATAAGGAGGAAGGAGGG

AGGGAGAGAAAGAGAGAAAGCTCAATG

CTTAGGCAAGAGTGCTTAAGAAAATTAC

AGTTAACAGATC

84 IM000702 p000758D

GATCTCCTAAAACTCCCTGTGTCAGGAA

ACTTTCTGTGCTTTTGTATTGCGTTCCTG

TGTTCGTGGAAGGCCCCCACGCCTTCAT

CCTTGCTAATTCTTTTTGGATAGCTTGTT

GCTTTAACTAGATTGGCCCTTTCTTGGCT

AGTATTTTCTGCTGTACCTATGAGTGGT

GTGGGAGAACTGTGCAGACTTCCAGGA

AGCGCAGCCATGAAGCTACATGTGCCTA

TGT

85 IM000703 p000759D

GATCTGAGTGCTGGGAACCAAACCTGGG

TCCTCTGCAACAGTTTGTGCTCTTAGCTG

CCGAGCTTT

86 IM000704 p000760R

GTACGGCGATGGGCACAGGCTTCGGGA

CAGTCCGCGCGACGCTCAGGCGGACAA

CGGGAGGCGGGCGGGGAAGGCAGGGGC

TGCAGTGTCAAGTCCCTGACCCGGGAGG

CTCGGAAACTTCACTGCCTCTGCGCATC

C GGCATGGCCCCTCCCACTCGGACTTCG

T CAAAAAACCGCCACCGTGGAGTGTCCC

A GTATGTGCGGTGTGGGACAAACTATCG

C ACTGTTGCCCTGGCTCTTCTCCTAGACC

C CCTTTGTGAGCCAAAAGAGAAACGCTG Mm.2739 87 M000705 GCAGATC p 000761 3 I G B

SEQ SEQUENCE{tc "SEQUENCE"~ CLONE CLASS GENE

ID

NO: f TC . f {TC
TC

"CLONE"CLAS "GENE
"

" \L SIFICA\L 2~
2~

TION
"

MUTATION \L
2}

GATCTCGTTACGGATGGTTGTGAGCCAC

88 IM000706 CATGTGGTTGCTGGGATAA pOQ0762R

CTGGGTTGACCTTAGAAACGGGAGTTCA

TCTCCTCCAGCAGCTCCGGGAAGGAAGG

TGAAGGGGACTAACCATGATGAGCTTTG

CACACTGGACTCAGGGCCTGAGAAGGG

GCTGGAGGGAGGCAGGGAAGACATCCC

TCACGGTAGTGTTACACAGCTGGTGTTG

CGGGCTGCCAGGGTACTCATTTGAGTCC

ATGCTGAGTCTCTCGGTGCCTCCTGAGA

TC

89 IM000707 p000763IC Gfil GATCTCAGGAGGCACCGAGAGACTCAG

CATGGACTCAAATGAGTACCCTGGCAGC

CCGCAACACCAGCTGCGTAACACTACCG

TGAGGGATGTCTTCCCTGCCTCCCTCCA

GCCCCTTCTCAGGCCCTGAGTCCAGTGT

GCAAAGCTCATCATGGTTAGTCCCCTTC

ACCTTCCTTCCCGGAGCTGCTGGAGGAG

ATGAACTCCCGTTTCTAAGGTCAACCCA

GAGTGGGAACCGCAGCAGCAGCAGCAG

90 IM000708 TCGTCTGTGCTTTGGGCTTCCCTA p000764IC Gfl GGAAGAAGTGTGTGCAGGCCATGGTCA

AGTCCTGCATGGCTCCCATCTGGGTCCA

GCAGCACCCAGCCTCCAGTGCTTGCTCC

TGATGTCCCAGTGAACTCAGGTCCTGAG

CAGCAAATCCCAGGGGCCAGTCCTAGG

GAGAAAAAGAACACACTGCCATCTCAG

TGCCTCAACAGAAGCAAACCTAGGCGTC

AGGTCATGTCCTTGTTACCCACATCACA

CCTAGACTTCCCTGGGTATCATGCTCTGT Mm.1535 91 IM000709 GTGAGATC p000765B 12 GATCTAAGGATATATCATTCCTAGGAGA

AAATGAATATTTATGACCTTGGATTTGT

CAATGTTTTTTTAAATATGGCATTAAGC

CACAGAGATAAAAATAAGAAAATAGAT

ACATCGAATTTCAGTAAAATGAGGAAGT

TCTTGTGATTCAACAGAAAC

92 M000710 p 000766A Mtrnl I

SEQ SEQUENCE ftc "SEQUENCE"~CLONE CLASSGENE

ID

{TC . FTC
FTC

NO:

"CLONE "CLAS"GENE
"

" \L SIFICA\L 2}
2}

TION
"

\L
~~

MUTATION

GAGGTAAGTCTGTTCAGTGTAGCTATCC

TTAGCAGCTAACAGTCCTCAAAACTTTT

TAGAGATC

93 IM000711 p000767D

CTACAGATGCATTATTAATATTACTTTTT

AAAAAAACCCAGTATACTGCTTGAAAAC

AGTGAATGCAATGGGTTCTCATTCACCT

TCCTGCTCTCAATCAATCTCCATCTCTAA

AGCAAGAAGTGGGGGCCCTTCTGGCTGA

GCGAGGGGTGAAGGGAGGGGAAGAGAT

94 IM000712 C , p000768D

GATCTGGAGAAGATGTCAAGTTTTAAAA

95 IM000713 TGAGGCAG p000769D

GAGTGAAGCAAGAATTTGGAGCCCAGC

TGCCGCAGCCTTTTTCCTTTCAGCAAAG

CTCGGGAGTGATAGATATGCATGAACCA

AAGCAAAGCCTTGAGAGTGCCACTTGGC

CCTGCCTCCTGAGGGTCTCAGGGCATCA

GCTGGAGACCACCCTGTGACCCACACAT

CACCGACTATGAAAACAGCTCATCAGAG

96 IM000714 T~TAAAGATC p000770D

CAATGAACAGGACACATGCTTCACACGA

CAGTCCAAAAATGCAAAGTGTGGAAGA

ATTCCACAGCCATAGCCTTCATTACTAG

97 IM000715 ATC p000771D

ATGCCTTCCTGGTAGAAGAGGGCCATGC

TGTGGCGGGGAGGGGCCACTCAATTTTT

CCTGCTCCCTTTCCCTGTCCCATATTCTC

AGGAGCTTCTAGAAGCGTAGCCTGCATC

TCATGCCCTGACTTGGCACCAAATGCTT

GCTTTGTATCAACACCGCTTTCTCTTCTG

CTCTTTCCAGCTCGCAGCCATTCAAATA

ATACCACCCGGTACCCGTGGAATCAGGA

GCAGAGATTCCAAATTGAGTCCTAAAAT

9g CAAATCCAAATGGGCCCGTCAGCTAGAT

IM000716 C p000773D

SEQ SEQUENCE{tc "SEQUENCE",~CLONE CLASS GENE

ID

NO: FTC . FTC FTC

"CLONE "CLAS "GENE
"

" \L SIFICA\L 2}
2~

TION
"

MUTATION \L
2~

AGGCGAGCGGATTACTAAGGACTGAAA

GACTCCTAAGACTTGTCTCCTGCTCCCTG

GCCAGCGGTGGAGCTCAAGCAGAATTG

CAAGCTCAGCTCAGGTCTCAGTGATGCA

AAGCACCCTCGTTACTCCAATGTGTGTT

ACTCCTACAGGTGGGCTGCCTTCCACTT

TCAAACACCCGCACAAACAGACCTCCCA

CCGTATGCCAGAGCATCTGTTCGATGCT

TTCTGGAAACTATGCAAGCCCAAATTTA

99 IM000717 ATATCCAATCAGATC p000774D

GTGTGTGTGTGTGTGTGTGTGTGTGTGT

GTGTGTTACAAGGTCTCATACAGAATCC

AGGCTGGTCTCAAACTACTGGAGTCAAG

CCATCTTCTCACCTGGCTTAGCTGGGGT

CACAGACTTGTGCCATCATGCCCAATGG

AATGCTGTTCCTTTTGGAAAGCCTGCTA

CTGTCATATACTGTCATAGGAGTTAGCG

ACTGCTGGCTTATTCCTTCGCTTTGCTTG

GAGATC

100 IM000718 p000776R

CCCCCTTCCTGTCACCTCCTGACCCCTTG

CGCAAAGGAGGCTCGTGGCCCGCTGTCC

CACTGGGGGATGGGGCTGGGGTTGAGA

AGGCTAGTGAGCGCCTCTAACGCTCAGG

AAGTGAAGTTTGTGGTTTTGGGGGCTGA

GCTCCGAAGGAGATTAAAAAAAAAAAA

101 IM000719 AAAAAGTCAGAGAGACAGATC p000777D

CTTTGTATAAGCAGCAAACAAAAAGCCA

GAGGCAGTCCACAGATC

102 M000720 p000778D
I

ATACAACAGGAGCAAAGCTGGAGGGGA

ACAGATATAGAGGACAGTTCAGGGCAT

C TGCAGAGGTGCTGTGGAATGGGGAGG

G GACAGTGGATAAGGGGACTTACCCTG

A GCATCTCGGTAATAAGCATGGGTCACA

C TGCGGAAGCGCTCCTGTCCTGCAGTGT

103 M000721 CCAGATC ~ p 000780 R ab37 I C A

SEQ SEQUENCE ftc "SEQUENCE"~ CLONE CLASSGENE

ID

{TC . FTC
FTC

NO:

"CLONE "CLAS"GENE
"

" \L SIFICA\L 2}
2}

TION
"

\L
2}

MUTATION

GATCTATGTCATCTTCCAGGACTCAGAG

TTAAGAGAGTTACCAAGTGAGAGCTCTC

ATCACCTTCTGAAGCAGTTGAGAATTGG

AACCCAGAAAGATGCACATGCACGGGC

ACACACACACCCACGGGCACACACCCA

CCCACCCATGCAGAGAGAGAGAGAGAG

AGAGAGAGAGAGAGAACTCACACTGGT

104 IM000722 ACTGCAGTAAACGGGAGCTTGTTT pp00781D

GATCTTCTTTCTCTGCTCAATTAGTTCAC

TTCTGCTTTCATCTCCTTTTCTTTTGATA

AACCATGAGTTTCATTAGGGCTATTACA

105 IM000723 ATCACATGCAGTTTTTCCTTATAGTAp000782D

GAATTAGGCCTAGAAACATTAGAATCCA

106 IM000724 GACCACGGAGCTCCCCAGATCi p000783D

GATCTTGTTCTAGAACGACCCTGAAGGC

AGCAGAACAGAGCAGGACTGAAGGCCA

CCAAGGGGATTTCAACTCTTCAGAAAAA

ATAAGTGACTCACCTTCTCACAAAGAGC

AAGAATCACAGAGGTCAGATTGTCTCCT

CCTGCCCATCAGGGACAGAGTCCCCCAT

CTTTGCCTTGCTCCATCTGGCAGGTAAG

AGATGGGAAGTCTCCTTTCCCTCGGTCT

GCAGCATCCCTGGCATCCCTGGGGAGTG

107 IM000725 TTGGCACAGAACCCCCCTCCCAA p000784C

GATCTGTGTGGGCAAAGCCCATGTGCTG

CAGTGTGTCTGGGTAGAAATGAGTTGTG

TGGTGCTCAAATGTAAATGAAGTCCCTG

108 IM000726 TGTT p000785D

GATCTCATTACAGATGGATGTGAGCCAC

CATGTGGTTGCTGGGAATTGAACTCAGG

ACCTTTGGAAGAGCAGTCAGTGCCCTTA

ACTGCTGAGCCATCTCTCCAGCCCCCCA

CCTTTTTTTTTAAAAGATTTATTTTATAG

TTTTTGCTTTTTTAACAGTACTGGAACAT

CTCAGTAATTGCTAAGTTGTCCTTGCTCC

AGGTGAGCAGTCATATTTTCTCCAATTC

TGGTTTCCTTACTTGTGTCAGAGACCAA

AATAGCTTGTTTAATCAGTTAGAGCTCT

109 IM000727 TTAGTTACCCATATCTGTGTAGTAAp000787R

SEQ SEQUENCE{tc "SEQUENCE"} CLONE CLASSGENE

ID

. {TC . {TC
{TC

NO:

"CLONE "CLAS"GENE
"

" \L SIFICA\L 2}
2}

TION
"

\L
2}

MUTATION

TAAGAACATAAAAGCAAAATTTGGAGG

CTCAAGATTCAGTTTAGTTGCTAGAGGG

CTCACATAGCATGCCCTCCCCACCCGGG

ATTCCATTCTCATTTATCGAGGCATAAG

GCCAGGTGTGGTGGGATATGTGCTGGGA

TGCATAAGATC

110 IM000728 p000788D

GAAAGGCACACTGGTGAAGGCTGAGGA

CCACCAAAGCTGCATTTCTGCTAGGCTA

GGTAGAACAAGAATGGTGCTCCACTAA

GAACTCAAAAAGCCACAGCCCACCCCTG

AGGCCCTCCATCTGACACATGCCGGTCA

CCTGTCCTCCCACAGCCCAGCACAGAGA

AGCCACCATCCCTCCCCTTCCCACCTCCT

GCAGCTGACAGTGTGCATCTTTCCGCAC

ATTCCTCTCTCCTCAATCAGGTCAGAAT

111 IMp00729 GTATTCCAAAGATC p000789D

CACTGAAAATGGCTAGAATTCTGGTGAT

GGGTGAGCCGATC

112 IM000730 p000793D

GATCGGAGTCCCTCGTTTCAGAGGCCCC

ACTTCTATGGCTCCTGCCTTCCTTGGCTA

CATCCATTCCTGCTGAGCTCCTGGAAAC

CTGTGTATCAAGTCTTTTCCAGTTAGTGC

GTTCTGAGTGGCTCTAGAAACCGCTTCC

CATTACAGCGAAAGACCCGTATAAACCA

TGTTCTCTTCCTCTGTGACAAGAGACAA

CAGACACCGCACAAAGGACTGTCTGGCC

TGGGGGGGGGTCCCTGGTTCACAGCTTC

113 IM000731 AGTCCTGA p000794D

GATCGCTCAATATAACAGCAACATGCCA

AGTGCCACTTGTAAAATTTGTTGTTGAG

CAGTCTCATTATCAACTGAAGCACAATG

TCAGGCTAGCAAGAGGCAGGTTCAGTTG

TTGATTAGCGATAGCACACACAAGCCAG

CACATGCTTTTTCTGTGAGTTCTAT

114 IM000732 p000795D

SEQ SEQUENCE~tc "SEQUENCE"~ CLONE CLASS GENE

ID

NO: {TC . FTC f TC

"CLONE "CLAS "GENE
"

" \L SIFICA\L 2~
2~

TION
"

MUTATION \L
2~

GATCGCTGAGTTTGTTTACAGAGCAGGG

ACGCCTCAGCTCGGATGCCAAAGCTACC

AAGAGCTGCAAACGCAAACTTAGCAGA

115 IM000733 AGCACACGTACTCCC p000796A Cited2 GATCGCACAGGTAAAATGGGGACTCACT

TTAGCTAAAACAACAACAACAAACAGC

CTGATGAGTCGAAAGTCTCTTTAGGTTG

CCCTCTGTTCTCCAGCCCCACATCCTGA

AGGCTGTGCATTCCTCCCACAGCAGTCT

CAAAATAACCATAGTGCTCAAGTCCCCT

GTATCAAATGGTGGTATCTGCATCCACC

CTACAGGTGTTCTTTGATTCTTTCTTTTC

TTTGTAAGTGTGTCTGGGTGTTTTGCCTG

AGCGTATGTATGCGCCTAGTACCTGCAG

116 IM000734 AGGCCAGAATAAGGTGTCAG p000797D

GATCGTGAGAGGCGAGAAACCCAGACA

TCTCTAACCCTTCTTGCCAACTCAGGAG

CCACCTGTGGCCCCAGCTGGCCACCAGC

CGTTCCTCCCTCAGAGGCCTCCATTTCCA

CAAAAGGCCTTCCTGGTTGTTCAGGACA

GAGCCTGGTTTCCCTGATACCCCTTCTCT

CAGTGGCCACTGAAGTTACAGGGATGCA

GCCAGCCGTGGTTGCCATGTCTGTATAT

GCTAATCTCCGAATTCCACTTCCTGTTTA

117 rnIQ00735 GATTCTCGG p000798D

ACTGTCCGTGTGGGAAACGTTTAGCAAG

TCCGAGCGTGTTCGATC

118 IM000736 p000799~ nayc I

SEQ SEQUENCE{tc "SEQUENCE"} CLONE CLASSGENE

ID

{TC . FTC
{TC

NO:

"CLONE "CLAS"GENE
"

" \L SIFICA\L 2~
2~

TION
"

\L
2~

MUTATION

ATTTCTTTTTGAGTACTTCATATAAGAGC

TTCGCATCTACACCACTCTTGCTCGCCAC

TCCTCTTTTCTTCTTTCATTAACTACTGT

CCACTCTCCAAACTTCATAATCTCTCTAA

TTACTATTGTTATTTACACACACACACA

CACACACACACACACACACACACACAC

GTATATGTAACCTACTGAATCTTACTAA

ATAGCTTTACTATCTTCCAAGTAACAGG

CACTTGATAAATCTTCTGTCAATCTCCCA

GAACAGAAGCCTTAAGAGTCATTTAAGT

TCTTTTATCTCAGGCTGTTCTGTTCTATG

CCTTTTGCTTTTAATCCATCACCGATC

119 IM000737 p000801D

GAATGTCTAGATGGAGACTGGACAGAG

TTGGATTCCTAGACACCTAACAGAAGCG

AAAGCAGGGGATGGATAAGGTGGGTGC

CTCGTCCTACAGCAGGTTCTGAGTGTCC

GCAGAGACTCCCATGGCTTGGCACCATG

GTTGAAGCTTTCCATCGATC

120 IM000738 p000803C

CTATTTTCGTTCTCTCCGATC

121 IM000739 p000804D

GATCCTCATGTCAAGGCAGGGGCAGACC

AGGGTCAAGGGAAAAACACCTGCTTTCC

TGGGTTGTAAATGCCAGAAAGGGAAGG

CACGGGGTGGGTAGGGTGGAGAACATG

122 IM000740 GCCCAGACCCCTGTCTCTTCTCT p000806D

GCACCTGACTTCCTCATATAAGACACAA

ACATCTTGAGTGCTGCGCAGGTGTACCA

GGATACAGGTGAATCCAATCTGGTGGAG

ATTTGCCCCTGCTGCCCTGATTAGCTGA

AGCTGCGTGCCTGGTGAGGTGGCATGGC

CTGCTGTGCGTGGATGGGAACTGAGAGT

ATAAAAGAGCGAGAGGCCCGGGTTAGA

GGAGGATTATTATTCGAGAGAGGATTGT

TATTATTGGGAGATATGAACAAGGGAG

ATATAAACAGGGGAGATATAAACAAGG

GAGATATATGGAGAAAGAAGAAACAGG

ACTGAATAAATGTGTGCAGAAGGATC

123 IM000741 p000808R

SEQ ' SEQUENCE ftc "SEQUENCE"~CLONE CLASS GENE

ID FTC . FTC f TC

NO:

"CLONE "CLAS "GENE
"

" \L SIFICA\L
2~ 2~

TION
"

\L
2~

MUTATION

GATCCTTCTCCTGTCTTCTCTTCTGGAAG

GCTGGGCTACATGCCAACATGTCAGAGT

TTTACCTGGGTTCCTTCCAGAGGTTTGA

ACTCAGGTCCTTGTACTTACACAGCAGC

TACTTTGCCTATTGAGTCAATATTTTGTG

TGTGTTTGTGTAGGTGTGTTCATGTCTGT

124 IM000742 ATACTTG p000809D

GATCGTGCATGCATGGGTGTGTTTTGGG

125 IM000743 GAGAGGTTCTGTCCTTGCTAAG p00O811D

AGCTCAGCTTGTCAGGCCTGATTGTGAA

CACTTCACCAACCGAGCCATCTCGTCAG

CACAGCCCTGTTTTTTATTCCCATTTTCT

TTTCTGTATTTCTGTTGAATTTCTCACAT

ACTCTCCTTTCTCTTCTGCCTTCTTCTGG

TTTCTGCATCATTTCTATATTGACATTTA

AACAACCCCCAAAATTCAAGATACATCA

ACAAAAATTTATTCAACTAGTCTTTCTTA

CTTCCATATCAATAATGAAAGAAAATTA

AAACCTTTCAAATTCAACAAATCCCTAC

ACTACATATAATCACTTTCCTCTATGCTA

AATCCAACTTGAAATTATATCCTCAATA

CCCTGCTGGTATTTTTACTGTCTACATCA

126 IM000744 CTGCCTAGTCTTCGATC p000812D

CTGGTATATGAACGAAGTTGGTCTCTAA

AGGCCGTCTAGAACAACGGTTCTCAACC

CGAGGGTCGCACCGGGGTCACCTAAGA

CTACTGGGAAAGCACAAATATTTACATT

ACGACTCATAACAGTAGCAAAATTACAG

TTATGAACTAGCAACAAAAAATAGTTTT

ATGGTTGGGGATTACCACAACATGAGGA

ACTGTATTCAAGGGTCGCAGCATTAGGA

AGGTTGAGAACCACCGATC

127 IM000745 p000815R

TTCTAACCTGCTAGGGTTTTCTCACGTGG

GTTCTTCTTTGAGGGCTCTCTGGCTTCCC

TACTGAGCTGTAGCTGCCAAAGTTGAAG

GGCTGCGTCTCCCTTGCGTCTCCCCAGTC

TTTACAGCTCCTGAAACACACTAAGGTA

TTTATTCAAATCCCTGTTTTGTGTGCGAT

128 IM000746 C p000819D

SEQ SEQUENCE{tc "SEQUENCE"~ CLONE CLASSGENE

ID FTC FTC FTC
.

NO:

"CLONE CLAS "GENE
" "

" \L SIFICA\L 2~
2}

TION
"

\ L
2~

MUTATION

AGGGCCCTTCCACCTCTTCTAGAATTCG

GTAAGCTAAAAGTACATGTATCCGATTA

ATCTGAAATAATTTTGTAGACAGTTTGG

TGACGGGTGGAGGGTGTGTGGTTGCGCG

129 IM000747 ATC p000820C

GATCGGCGAGACCACGATTCGGATGCA

ACAGCAAAAGGCTTTATTGGATACACGG

GTACCCGGGCGACTCAGTCTATCGGAGG

ACTGGCGCGCCGAGTGTGGGGTTCGGAC

130 IM000748 Cue' p000823R

TTGGCTGTGGAGATGAACGTGGGAACCG

TGGAAATGACCCTAGAATGGGGCTCAA

ATGTGAAAGGCATGCCAGAGGTTGCTCT

GTTGTTTTAAGTCCCTGCCGAACATTAG

AATTTAGCCTCAGTTTTAAAAGCTGTTA

CTGCCTAGTTGGGTGCTTCTTTCTTAAAA

AGCAACCAAAAAAAAE~AAAGCCGTTTT

CACTCTGAAATGTATTAGAAATTTGCAT

TAGCCCAATGGCTAATAAGCGATC

131 IM000749 p000824D

GTTATAAGGATTGCATACAAATGGCATC

AGGACTGGATGTGGTGGCACATGTCTTG

TATCACAGCACTTGGTGAACAGAGGCAG

GGGAATCTCTTTGAGTTACAGGCTAGCC

AGCATGACACGGTGAGACTCTGTCTTAA

ACAAACAAACAAACAAAAAAACAAACA

132 IM000750 AAGGTAGCATAAGAGCGATC p000825D

ACCTGAATCTTGAATAATGGGCTGTTTT

133 IM000751 T~CGATC p000827D

AACTAATACCTTTCCTTCCGCTGCGATGT

TTCATGAGACTCTGGGTTAGTGCATGGT' CAGGGGCCCAGGCAAACAGTGGCAGTT

134 IM000752 CTGCCCAGGATC p000831D

SEQ SEQUENCE{tc "SEQUENCE"} CLONE CLASS GENE

ID {TC . FTC {TC

NO:

"CLONE"CLAS "GENE
"

" \L SIFICA\L
2} 2}

TION
"

\L
2~

MUTATION

GTTTAAAGAGCCGGTTCGACCCGCTTTC

CGTTTCGCTCCGGGTCAGCTAGTACTGT

GAACCGCTCGGTCGGGTCCGGCGCTGCT

GCGCACCTACTCGCCGGGACCCTGAAGC

CCCCCAACTACATATAGGGGTCTTCCCG

GAAAGTACGCAGGAAGTCGCGTTCGGC

CCCCTCCCCCCAGCACCACACCCAGTCC

135 IM000753 CTTCCACCCCCCGGGATC p000832D

GATCCCAGTAGAGACAGAAACAGTGCC

TTTGGTTAAGAATTCCAGGCAGGATGGT

ACAGGATTGCAATCTCAGCATGGGAGAC

AGAGGCAGGATTTCCAGGCCAGCCTGG

GCTACAGTATAAATGGGACCCTGTCTCA

AGTAATTGA,~~.AAAAAAACAGAGAAAGA

ATTTGGAGACTGTGACTATAGCTTGGTG

ATGGAGTCCGTTTGCCTAGCAGAGTGAA

GCAGCTGTGCTCCTGTGTTCACACCACA

136 IM000754 AAATAA p000833D

GATCCAGTGAATCTGGGCATTGTGAGTG

TGTGACACAACTTGCTCTATGTGCTGTT

AGGGATTTGTGCATGCTCAGCCAACAAC

AACCGCCAACTTAGACTGATGCTGTCCC Mm.1313 137 IM000755 CCTGAGAACACAGACTGACAA p000834B 36 GATCCTCCCTACCGGTCCTCGGGCAGAC

CTCCAGCCCTTCCCCAGACACTGTTGGA

AAGCAGGCACGCCTTCCACAGTATGGTC

TGAGGTTAACCCATGACAGCACTCTGGG

TGCCTGGTGGTGTTCCTGGTGGGGACGT

CAGTAGCTGTAGCTCTGTCATTGGTCCTT

GCAGCGTCTCATTCCAACTATTCTTCCCA

138 IM000756 TCACTCCTCT p000835D

SEQ SEQUENCE~tc "SEQUENCE"} CLONE CLASSGENE

ID

f TC . f TC
f TC

NO:

"CLONE "CLAS"GENE
"

" \L SIFICA\L 2}
2~

TION
"

\L
2~

MUTATION

ATATGTGTTTGTGCGTGTGTGTACATGT

GCATGCATGGCATGTATGTACCCATATA

AATATGTGTATGTGTGTGAAGTGCTGAT

GTATTTCACACAGCATTTTGGATTTAAT

GGAGAAGGTAGCTCAGATGTCAAGTGT

GCCCTCCTGTCAGGAGAGGAAGCCTGAT

GTGCCTGCTGTCATAACTCTGGTTTTGAT

AAATACAGCACGAGTGATTTTTGGCTGT

TGGGTTTGCCGTGTATGGATC

139 IM000757 p000837D

GTTTGCTTGCAACATTGTCATAGCTTAGT

GAACAGTATAGCATTGTTCTGGCTCAAG

AAGCCCTGGTTCTTCAAAGCTCCTACTT

AGATGAAATTATTTGCATCACAAACAAA

AATTGTTTTGCATTTTTTAGATAATGAAG

GATC

140 IM000758 p000838C

GATCCTAGGCCAGTCAGGGCTACCAATA

AGAACCTGCCACACACACAAAAGGAAA

GCAAATTTTTGCAAAAACTCTAGTCTCA

TGGTGTCACGGTCTTTAAACATCTTGAG

GGGCTCGAACTGGTGAGGTGGCTCGGA

GGTAAAAGGGCTTTGATGCACAACCTGA

GTTCAACCCCGTGTTTTAAAGACTTTCTG

CAATGATTCTGGTCTGCAGTCCTAGCCC

AAGCACAGTCAAGGAGAGATTGAGGCT

GAAACGGAAGAATGGAAGTTTGCATAA

CAGCTCAGTGGCAGAAATAACAGGAGA

GACCTGACCTTAAAAACAGGGTGTAAG

GTGAGAAATGATGACAAATGACATCCA

CTTCAACTGTGCTACGAACAGCTACCTG

TTTGCACACCCCAAACACACACACACAC

141 IM000759 ACA p000839D

GTAAGAGGGAATGTACTCTCTGCCATCG

GGACACCCAGTGGAACTGCTCACCTGGA

GTCTTGCCTCCACGAAGACTAGGATC

142 IM000760 p000840D

SEQ SEQUENCE{tc "SEQUENCE"~ CLONE CLASS GENE

ID

{TC . FTC f TC

NO:

"CLONE "CLAS "GENE
"

" \L SIFICA\L
2~ 2~

TION
"

\L
~~

MUTATION

GGGACTTCAGGGCATAGAGCTTAGTTCC

AGACAAAACCAAAGTTAGCAGTCGCCTC

TCTCTTAAAGACGTTCTCTCTAGCCGCA

GATGACCTCAGAAGGGGCTCTGGGAGC

CGACTCCCACCCTTCCTTCTCTGTTTACA

GAATCTGGTTGGGCTGTGAGGAGCGACC

CACGAGACGGGCTCCCTGTAGTGAGTTA

143 IM000761 GGCCAGTGGGAACCAACGAGGATCp000842D

ACACACACTAACACACACTCACTCACAC

ATACTCACACACACTCACACACACTGTC

ACACACACACACACACACACACACACA

144 IM000762 CACACACTTTTCCACCAGGATC p000843R

GATCCCTGGATATGGCAGTCTCTACATG

GTCCATCCTTTAGTCTCAGCTCCAAACTT

TGTCTCTGTAACTCCTTCCATGGGTGTTT

TGTTCCCACTTCTAAGGAGGGGCATAGT

GTCCACACTTCAGTCTTCATTTTTCTTGA

GTTTCATGTGTTTAGCAAATTGTATCTTA

TATCTTGGGTATCCTAGGTTTTGGGCTA

ATATCCACTTATCAGTGAGTACATATTG

TGTGAGTTCCTTTGTTCAAATTTCATTTC

TATCACCATTGTGTGTATATGTGTGTGTT

GTGTGTGTATGTATATGACGTGTGTATG

TTGTGTGTGTATATATAACGTGTGTATGT

TGGGGGTCAAAGGCATGCTCATGCCACA

GTGAATGAGTAGACATCAGAGGACAAC

TTTCAGGACTCAGTTCTCTTGTTCTACCC

TGTGGTTCCAGGACACTAACCCAGGTCA

TCAGGCATGGTGACAAAGGTTTTGACTC

AAGGAGCCATTTTACATGCCTCATAAGA

145 IM000763 AGGGCC p000844R

GCACTAGGAAGGAAATTGACCCGTGTTG

TTGGTTTGTGTTCTGGTTTTGTTGGTGGT

GCTTTTTGTTTTTTTTGTTTGTTTGTTTTT

146 IM000764 TTGTATCAGGATC p000845R

SEQ SEQUENCE ftc "SEQUENCE"}CLONE CLASS GENE
ID {TC . {TC {TC
NO:
MUTATION "CLONE "CLAS "GENE
" \L SIFICA"
2{ TION \L
" 2}
\L
2{

GATCCTGCTTTCTCTTTTGACACAGAAC

ACTTCTCCTGATTGACTCTGGTCCAGAC

ATTTCTTTCAAAGGCAGAGGACTCTGGC

TTAGCTGTGGATGACTTCTCAGATGAAG

TTCATTGGTTGCGATTGGAAACGTAATC

AGAGCAGG

147 IM000765 , p000847D

GATCGCATTAGGGTTTTTTTTATGGTTTC

TCATCTTCTCTTCAAATTAGCATAGAAG

CCTCTTCCTAAAGAATGGATACTTAATT

CTTAACTTGAAAATATCTTTTCTCTGTGT

GTTTTCCTCTCCATTGACTGTTCGCTCTA

TCTATCTATCTATCTATCCATCTATCTAC

TGAAATTAAAAATAAGGGAACGCCTTCT

TCTCTTCATTCTTGTTTGTTGTTTGTTTGT

TTGTTTGTTTTTGAGACAGGGTTTCTCTG

TGTAGCCCTGGCTGTCCTGGAACTCACT

TTGTAGACCAGGCTGGTCTTGAACTCAG

AAATCTGCCTGCCTCTGCCTCCCAAGTG

CTGGGATTAAAGGCGTGCACCACCACCA

CCTGGCTCTCTTCATTCTTTTTAAAACGA

TTTTTGAAACCTTTTTAGTGAGGTCAAC

ATTGTGTACTCCAGTCCCACTCATCTTCC

TGTCCCTTCCCTCTTAGGCCTGCCTGTCT

GGTACCTCACTCATGTTTGTGTATTCTCT

GTGCTGAGCCTCTTCTGTGCTTTCCCAGC

ACATGGCTGCTGGCTCCAGTTTCATTCC

AGTCCCTTGTGATGTGAGCCTAGTTCAG

148 IM000766 p000852R

SEQ SEQUENCE{tc "SEQUENCE"} CLONE CLASSGENE

ID

{TC . {TC
{TC

NO:

"CLONE "CLAS"GENE
"

" \L SIFICA\L 2~
2{

TION
"

\L
2}

MUTATION

CTCTCATGGCATGGGTCTCAAGGTCCTG

CCATTTCTGCTCCATCTTTACCCCAGCAC

ATCCTGTAGACAGGACAAATTGTAGGCC

GGAGGTTTTGTGGCTGGGTTAGAGACCC

AGTTTCTCCACTGGAAGCCCTGCCCGGT

TACAGGAGGTGACCAGTTTCTGGCTCCA

TGTCCCCCATTGCTAGGAGTCTTAGCTG

GGGTCATTCTCACAGATTCCTGGGAGAT ' TACTCTATTTTATCTCCTTGTTCAAAGTG

TTCCATCAGATATTAATTATTCTCAAGAT

TCAATATTCTCAAATATTATTCTCAAGCT

ATGGACCCTTCAAATTACAGATAGATTT

TATGAATGAAAAGTTGTGTGGTTTGAAT

ATGTAGTTGAGGGTGACTTTGAACTTCT

GGTTTTCCTGTGTCTACCTTCCAAGTGCT

GGGGTTACAGGTATGAGCCATCACGCCA

GTTTCTGTAGCACTGAGGCTCAAACACA

GGGCTTCTGTCTGCTAGGCAAGCACTCC

ACCTACCAAGCCAAATCCCCGGGCTTTA

CTGCATCTTTGTGTGTATATGTATGGTAT

GTGCGTGTGTATGTAAGGATATATGTAC

CTGTGT

149 IM000767 p000854R

GATCAACACCTGAAAAGTCGCGCCGCCT

ATACACATCCCTAATTGAGAAGTATGTG

GAAGATTCCATCCGTGAAATTCAATTAT

CATGCAAGCCAAGTGGAAGCGCTTCCCT

GGGGAAGGAACCCAGCAGCCGCATCAA

AACGACCCCACCTGTCTATTTTCATGTC

AAAAGAGTGAGAAGTCTGGGTGATGAA

ATAGAGAGCATACATCAGCTTAATGAAA

ATTTCCAGGGGTCCCTGCCTGTAATGGG

150 IM000768 AGTCCCAT p000858D

GATCACCACCAGGGTGTTGAGAAAAAA

AAAAAGCAAGTTAGTAGATGTTAG

151 IM000769 p000860D

GATCTGACAAAACCTACCTGTTTTTGAA

CACATGTGGGACAGCAGTCTGAGAGAA

TCTATGAATAAAATTCCTTTCTGAGTCTG

152 IM000770 GCACATTGGTACAC p000861D

SEQ SEQUENCE{tc "SEQUENCE"} CLONE CLASSGENE

ID

NO: f TC . FTC
f TC

"CLONE "CLAS"GENE
"

" \L SIFICA\L 2}
2}

TION
"

MUTATION \L
2}

GATCATTATACCCCAAATGGTACTGTAT

CTATATATACCTCAAACATGTCATGTTA

AAGAAAATACTCTGTTGAACTAATTCAC

153 IM000771 TTGTTT p000863D

GATCACAGGACTGAATCACATTTATGCC

154 IM000772 AT p000864D

GATCATTTATTTACTTGTTTTGGTGTTTC

ATGTTTGTGGCTCCTTATGTAGTCTAGAT

ATTAACTTGAAGTCTGAAGTGGAACTAC

155 IM000773 CAAAGATTTTCTTCCATCCTCATCTp000865D

GATCAACCGCAGATGAGGTCTATGCAGG

AAAAACGATGTCTGGAATTTTATTAAAA

TTGCTCAGC

156 IM000774 p000866I~ Myc GATCATCATGTCAAACCTGACACGTGAC

GAGACAAATCTGTGTGCACAGAGGTGTG

ACATCCTAAAAGTACTAACAATACCGCT

GGGCAGGGACACACGCGGCAATTCCAG

TCCTGGTATCCATGGCTCAAGCTCTGCA

CGGAGAGCCCGGCACACGGCAGGAGGG

AGAGCCACAGGCTAAGGAGAGCAATGC

157 IM000775 T~CTAACATGGCACCCGTGTTAG pQ00867D

GATCTGGCTTCCAAGGGCCTGTACTCAT

GTCTACAATGCTCCTACACAGATATAT

158 IM000776 p000868D

SEQ SEQUENCE ftc "SEQUENCE"}CLONE CLASSGENE

ID

{TC . f TC
FTC

NO:

"CLONE "CLAS"GENE
"

" \L SIFICA\L 2~
2~

TION
"

\L
2~

MUTATION

GATCAGCCTTCCTCCAAAGCTACCTGCA

TAGAAGAGACCTCTGCTCTCACCTACTC

TCCTCTACAGTTCAGCCCATATGGCTTC

ACCTGCATCCCCTACACACACACACACA

GACACACACACACACACACACAAACAC

GCACACAGCACACACAACACACACAAC

ACGCACACTCACAACACAAACACACAC

AACACACACTCACAACACACTCACACAC

ACACACAACACACACACACAACACACA

CTCACAAACACACTAGTACACAAAGACT

CCAACACACACATTCCCATGCACTACTC

CCTCAGTATCCGCCGCATTTGTGTTCAC

ACTCATCCACACTCTCACACATGTAGCA

CACACACATCATTCCTACACAGGCATGG

ACACACACATGCTCCTATACAGGCATGC

CCAGTACTCTCACATGCATGTTTGCACG

TTCCCAAACAGGTTCCCACAAGGGTTTG

GCAAAGTACATGCATCCTCACACGCTAA

IM000777 CATGCAC p000870R

GATCAGATGTGGAAATTAGAGAGAAGT

TTTTAACGGCTCATGCACATTTCTGAAA

ACTCTTTGCGAGGTATACTGGTAGATAA

ATGAACATTGGTCAGACTCCTCTAGTTT

AAACCACTCTCTTCCCCGCTATGGGGGG

AGGCGAGAGGCATTTCTAAAGCTTATAT

GTAGTTGCAAAGTGTGTGTGGTGTGTGT

GCATGTATGTGCATGTGGTGTGTGTGTG

TGTGCATGTGGTGTGTGTGCATGTATGT

GCATGTGGTATGTGTGTGAGTGGTGTGT

GTGCATGTGTGTGCATGTATGTGCACCG

TGTTGTGTGTGTATGTGTGCATGTGGTGT

160 IM000778 GTGTGCATGTATGTGCATGTGGTGTp000871R

CTAACATCTACTAACTTGCTTTTTTTTTT

161 IM000779 TTCTCAACACCCTGGTGGTGATC p000872D

SEQ SEQUENCE{tc "SEQUENCE"} CLONE CLAS S GENE

ID

NO: {TC . f TC
{TC

"CLONE "CLAS"GENE
"

" \L SIFICA\L 2,~
2~

TION "

MUTATION \L
2~

GATCATAAGGACTGTTAGCAGGCAAAG

GCGGGTGCCCAATTAAAAGATGGCTTTC

GTTCCAAGAGGAATACTCTGGCAAAGTC

CCAAGCGCTTCGGAAGCCCCTCCCTTCG

CTCTCCCACCCCAGCTTTGATGCTCTGAT

TATCCTAA

162 IM000780 p000874D

GATCAGGCTGGCCTTAAACTCAGGGAGA

TTCATATGGCCCTGCCTTCAGGGTGCTG

G Mm.8363 p000875B 5 CTTTCTTTCTTTCTTTCTTTCTTTTTTTTCT

GAGACAGGGTTTCTCTGTATAGCCCTGG

CTGTCCTGGAATTCACTGTAGGCCAGGA

TGGCTCAGTCTGCTTTCTTATAGAACTCA

GGACCACCAGCCCAGAGATAACACCAC

TCACAGTGGGCTGGTCCTCCCCACATTG

164 IM000782 ATC p000876R

GATCACACACTTCACTGTGGCTTGTCAA

CTGTGATTTGCTGATACAAGGGCTGTTT

ACAAGTCAGCTATAGCTCCGCATTGCAG

165 IM000783 CTGCAAC p000877D

GATCACTAATTGAGAAAATGCCCCACAG

CTGGATTTCGTGGAGGTACTTCCCCAAC

TGAAGCTCCTTTCTCTGTGATAATTCCAT

CCTGTGTCAAGTTGACAGAAAACCAGCC

AGTACACAAGTCGACACAAAACTAGCC

AGTACACAAGTCAACACACAACGCGCA

CAAGCTGAAGGCAAAGAGAACCAAGCA

T CTACCAGGCCTCAGTTGCTATGTCCAC

T TCTGCAGCCACTCCAAAACACCTGTCA

G AAATTCGGTTTGATAGAGAACTCACCG

A GGGATTTCCCTAACACCAGGTCAACCA

G GGCACCTCAAACCTGGAGGCACGACT

X000784 GCACAATACAACCTAA p 000878 C ctS
G A

G ATCACTTGATAAAGATGCTCTGAGCAG

A GGCTCACAGGAACCCAGCCCTGTGTGC

T CCCCAGGAGCGAGATTCAGCAGTCAAC

A GTGCAGTGTTCACGTGACCGTGCGCAG

167 M000785 GCATGAGCACTAC p 000879 A I615991 I G B

SEQ SEQUENCE ftc "SEQUENCE"}CLONE CLASSGENE

ID FTC . f TC
FTC

NO:

"CLONE "CLAS"GENE
"

" \L SIFICA\L 2}
2}

TION
"

\L
2~

MUTATION

CTCCTTTTCAGCAAGCTCCTCACATCAC

AGGCCTTCTCTTGGGATGGCAGCCGCCT

TCTATCTGGAAAGTATGTGACAGCTCAC

ACAATCCTGTAAGTCTTCCATGTAATCA

CATTCCACTGCCTCTCTCTGAACGTGCTC

CATGCCAGGGCCATGTGGAGGGAGCAG

CAAGACTTGAGCTCAGCTAGTCTATGAA

GATGGTGGCAGAACAGGCTCTGCTGCCT

168 IM000786 p000881B 54 GATCAAGAGTTCAAAGTCATCTTCAGCT

ACAAATGAAGTTGGAGACCAATCCAGA

CCCTCTCTCAGAAAAAAAGGAAAAAGG

AGAAAGCAAAAGGAAAGGAGGGGGAG

ACCGAGAAAGAGAAGAGGGAAGGAAA

GGGAAGTCAACAGAACTCAAGGTCAGC

169 CTGGGAGGGTGAATGAGGCATTGTTGTC Mm.1388 IM000787 T p000882B 09 GATCACCTCCACTTTATGGTGGACAGAG

GATGGCAGTAGTAACTGCCCCAAGGAA

ACAGAAACAACAACAACAACAACAACA

ACACCTCCAAAAAGACCAAAGCAGTAA

IM000788 C p000883R

GTTCCACCTATAAGGTTGCAGACCCCTT

TAGCTCCTTGGGTACTTTCTCTAGCTCCT

CCATTGGGGGCCCTGTGATC

171 IM000789 p000884R

SEQ SEQUENCEftc "SEQUENCE"~ CLONE CLASS GENE

ID

NO: FTC . FTC {TC

"CLONE"CLAS "GENE
"

" \L SIFICA\L 2~
2~

TION
"

MUTATION \L
2~

GATCACATGGACCGATTGCCGCGGGACA

TCGCACAGGAGCGTATGCACCACGATAT

CGTGCGGCTTTTGGATGAGTACAACCTG

GTGCGCAGCCCACAGCTGCATGGCACTG

CCCTGGGTGGCACACCCACTCTGTCTCC

CACACTCTGCTCGCCCAATGGCTACCTG

GGCAATCTCAAGTCTGCCACACAGGGCA

AGAAGGCCCGCAAGCCCAGCACCAAAG

GGCTGGCTTGTGGTAGCAAGGAAGCTAA

GGACCTCAAGGCACGGAGGAAGAAGTC

TCAGGATGGCAAGGGCTGCCTGTTGGAC

AGCTCGAGCATGCTGTCGCCTGTGGACT

CCCTCGAGTCACCCCATGGCTACTTGTC

AGATGTGGNCTCGCCACCCCTTCTTCCC

TCTTCATTCCAG
172 IM000790 p000885I~ Notehl GATCATACGCAATGATTTCTTACCTTAT

GATATAATTATGTTTAGAGGGAAAACTT

TTTTTTAAATTGAAGTTCATTTATTGTAT

173 IM000791 GAAATTATTTCATAA p000886C

GATCAGCATGGTCTACAGAGTAAGTTAC

AGGACAGCCAGGGCTCCGTGGAGAGAC

CCTTTGTCAGAAAACAAACAAACAAAA

AATTAGAAAGAGACCCTCTCTCTGATTT

GACCAATCACCCGTGTCAAATCTTGCCA

CAACCGAATCACCACCAAATTGCCAGAC

AAGCGGCTATGCTGGGTTTCTGAGGTTG

GACTCCTCAGGTAGCCCGTGTCTAGGCA

GAATGATGCCAGCAGCTACACTTTTGAG

AACAAGGTCAGGTCAGGACTTGCCGCCA

174 IM000792 ~CCTAGGAATGCAGC p000887R

GATCAGTCATGTCCTTTAGACGTTTACTT

I T p SEQ SEQUENCE{tc "SEQUENCE"} CLONE CLASS GENE

ID

{TC . {TC {TC

NO:

"CLONE "CLAS "GENE
"

" \L SIFICA\L
2} 2}

TION
"

\L
2}

MUTATION

TTACAAAGGCAGAAATATCAGAAAGAG

CCTGAAGTAGCAGCTGTTAACCTGTACC

AGGAACTGGCCGAAGTACACACGCGTT

AACTCAGCCCTAATTATTCTCGGGAGAT

ACAGTTGATTATCATACACATGTCAAAA

TGGAAAATAAATGGGTAACTAAAAATT

GAGGAAAATAAGATTAACACTTAAACA

176 IM000794 ACCTAGTTCATTATGCCACGGTGATCp000890D

177 IM000795 GATCACAGTGGGACAGATTAAATGTTAp000891D

AAACAAATACAAAGTGATAATTGTGTGA

CATCTGAACTTGTCAATGAGATAGGTAA

TTATCTCTGGGCAATGGGTAAATGTGCT

GGCCAGCAAACCTCACAGCCAGAGTTCA

ATCTCCAGGAACTTAGGTGGGGAAGGA

GATAACTGACTTCCAAATGCTCACCCCC

AAATATACAATTAAAATAAAAATCTTCC

178 IM000796 TTTTATGAGTAGCAACTGATC p000892D

179 IM000797 TACCCCTGGTCCTCCAACACTCCGATCp000893D

GATCATGACATAGACTTGAGTCACTTCT

CTGCAGTTTGTCAATAAAAGCCCCTAAG

GGACAGTGTGGACTTTAGAGATAAC

180 IM000798 p000894D

AATGCCAGCCATAGTGGCACACACTTTT

AATCCCAACACTCAGGAGAAGTTAAGTT

TCTCTTAGCTCAAGGCCAAGTAGCTTGG

TCTACTCCGTGAATTCCAGCCCAACTAC

ATAGTAAAACTAGCCTTAAAAAAAAAG

GCACAGGCAGAGGGAGATAACAAAAAT

GCCCAACTCCTAGCTACAGTAACTGTAG

IM000799 ATCATTATCGTGATGATC p000895A li GATCATGGCTTGATTGTAACATTATCAA

AGCTTCCTTGGCACACTGCAGGGCTGTC

TTCGGGAAACTGCGTATTGTGCTCTTCA

GGTACAAAGCATAGAGCCCTTACATGAC

AAACGCTGGGGTTAACTTCTTCTAGTTC

CCTCTGCCCCACTTGTGGCGCTTCCCACT

182 IM000800 CATGACTTCTTCAGTGTGTATTCACTTp000896D

SEQ SEQUENCE{tc "SEQUENCE"} CLONE CLASSGENE

ID

FTC . FTC
FTC

NO:

"CLONE "CLAS"GENE
"

" \L SIFICA\L 2~
2~

TION
"

\L
2~

MUTATION

GATCATGCTGAACTCTTGAAAGTATTCT

AGCAAAATGTGGCTTAAAAGAAAGAAC

AAACATTAACTAGGTATGCTTTGAAAAA

TTACCTGTGGTAAAATTTCCACAAGCAT

IM000801 GAC p000897D

GATCATATATCAATTTTATTTTTAACTTT

IM000802 AGACAGGGTTTC'TCTGTGTAGCCCTGGp000898R

ATTGTGTATCCAGAGTGTGACAAGGTAT

185 IM000803 ATATGGTTGTGTGATC p000899D

GATCTTCTGTCTGGAAGAGTGCTTGCTG

GTTCCGACTACTTTTTTTTTTTTTTTTTTT

TTTTTNGCTTGGGTTTCANATTGGCTTCA

GGTTCTGGGCCCTTTCGTGGGTTGTGCT

186 IM000804 GCANAGCCCCANACAATGTCTTGGGp000900R

CAGGAAACCAGGGGAAATGGGACACAG

TGACATCTGAGTCCTTAGAAGAGGTCCC

ACAAAGGTCTATATGACCTAGCAACGTC

ACTTCTGAGTTATTTCTCAGACACAGTG

GATGTTTGTCACAGCACACTGTAGGACA

TCCCAGAACAGCACCATGGGAGACCAT

GGTTGGTGCAACAGAGAACATGCACACT

GAGACAGTACAAGAGTTCCCAAGCAAG

CAGACACAAACAATGGACTCAATACAC

187 IM000805 ATACAGTGGCAGATC p000902C

GATCTGCTCACCAAAAATCTTGTCCTAG

IM000806 TGGCAAACACGCGGTGCCCAAATTTAAAp000903D

ACAGTTCCCCCTGGAAATGGTCCCTGTA

189 IM000807 ~CAGAGGAGCAGATC p000904D

SEQ SEQUENCE{tc "SEQUENCE"} CLONE CLASSGENE

ID

FTC . FTC
{TC

NO:

"CLONE "CLAS"GENE
"

" \L SIFICA\L 2}
2~

TION
"

\L
2~

MUTATION

CTGGGGCCCAGACTCCAATCCCGAAATA

TCATTAGCTGCTGCGCACTTCTCCGAGG

AAGTTTACACCAGTACCCTAAGTTCAAG

TCTCAGAAGCCTCCAAATCCTCGTTGCA

CCCCTATATTTCACTTGGTCATCCGACTG

TAACTCACTCACCGACAAGACAAAGAAT

ATCTTAGGCTCCGTCGTAAAAGAACGAG

CCCGGTTCACCGCAGCTCCTTTTATAGTC

TCCTTTGTGCGAGATC Mm.2179 190 IM000808 p000905B 8 GATCTGAAGATATTTTGACAACAGCTAA

CCAAAAAAAACCCCTT

ATTACTAACCAAGGGAAAATGCAAAAA

TAATTAAAAGTTCCTCAATTTTAAGTAA

ATATCCAAAAAGATTGGTTGTATAACAA

AGTTGAAGAGTCAAACAGTATTTGAATA

191 IM000809 A p000906D

AGCTCATTGCCGTTAATTTTCCTCAGCCT

AATGAGAATCTAAGCCTTGATTTGTATG

TACCATAGCATCTAGATC

192 IM000810 p000907C

CCTTGAACCTAGTTCAGGGAATAGGCCA

CCTGGGTGGGACTAGTGCTGGTTGGGGA

TGAAAAGACAGTTGGCTCAGGTGAACCC

TGCTCGCACCCTGGTCATCCTCTGAGAC

TGCTTTGATTGCTGACCCCAGTGCTCCA

GCAAGAACTTGCGTTCTTGTTCTCTCCAC

TCAAGCCGGAAGAAATCTGAGGAGAGG

GTGTGAATCCTGAGCCAGGATGTCCAAA

ACAACGGAGTTGAGCCAGAAGGACGTC

TAGTTGGGCAGAGTTAGCTCAGTCCCCT

GACCCCCAGTCCGTGCAAGCTCGAGGGT

GTTATATAGTGATACAGATC

193 IM000811 p000909D

GATCTCTTCTTATCTCTACCTTTTGGGGC

ACAATCTTATCTGGGGACACCACAGAGC

CCAAGAATTGTCCTGTATCAGAAATTTG

GACCTTTTCTGTGGCTATCTGTAAACCCC

ACTGACTTAAAGTTTTAAGTAGAAAAGG

ATATGCCTTTTGTAGCATGGTAAGGTCT

194 IM000812 TTATGGCACAGGAGGATGTCATCCATGTp000912R

SEQ SEQUENCE{tc "SEQUENCE"~ CLONE CLASS GENE

ID FTC . f FTC
TC

NO:

"CLONE "CLAS "GENE
"

" \L SIFICA\L
2} 2~

TION
"

\L
2~

MUTATION

CTTCCTTTCCTTTTTTGAAACAGGGTTTC

TCTGTGTAGCCCTGGCTGTCCTGGACCT

CAATCTGTAGACCAGGCTGGCCTCGAAC

195 IM000813 TCAGAGATC p000913R

GATCTGCTCCACTTTACACAGCTGACCA

196 IM000814 TGAGACCATGTNCACATAG p000914D

ACATGACATATCACCCTCATTCAGAGTT

CAGAGTCTTCAGAAAACTGGGCGCCTGA

AAAACCTGACCTTTTAAATTTTCGTCCAT

AGTTTCTTCTGTTGAATGAATATTCATTT

197 IM000815 ~GCTTCATAAATGCCAAGATC p000915D

198 IM000816 GATCTTCACAGCGCACCCAGGGATCp000916D

CTTTTTCTTGGTATTTAGGGAGTCAGGA

AAAGAAAAACCATTGGGTTTTTACATTA

GCTTTCAGGTAGGGTTGTGGCTTTTGAG

CAACAATAACGTATGACCTTGTGGTCGG

199 IM000817 TTCTAGATC p000917D

GATCTTCTTATATCTGGTTTCCTGGGCGC

200 IM000818 TTCCTGGTAT p000919D

GATCTCTGACAGGGTTTCAAAGAACTGT

TACTGATGTTTAGATTGCCTCTGAAGAC

ATCACATATACTGTGCTACTCTGCCTTGT

CAGAGTCCCGGGCCCTGGGCACCCCAGA

CGGCAGCAGAGGAAGAGCGGGGTATCA

CTTTCTATACTTCGGTAAAGTCATTGGG

201 IM000819 ATATGTGCCCT p000920C

GATCTCCTCTATCATTTATCTTTCTTCCT

202 IM000820 TCCTTCCATCTGTTTGTTT p000921D

SEQ SEQUENCE{tc "SEQUENCE"} CLONE CLASS GENE

ID {TC . {TC {TC

NO:

"CLONE "CLAS "GENE
"

" \L SIFICA\L
2} 2}

TION
"

\L
2}

MUTATION

GATCTGCTCACCAAAAATCTTGTCCTAG

GGAAGTTGAGTTTGAACTGCGTGCTTAC

TGGCAAACACGCGGTGCCCAAATTTAAG

GAGTGCCAACGACTTCGCGGGCCAGCA

AGGTGAAACCGGAGCGCGCACGAGTGA

GCAGTGGCCAGGAGGCCTGGCCAAGAG

GCCAGGGTCCCTGAGCATGACCGAGAG

CTGGCGTGCTCTCTGTAACCCCCAATCA

GTTCACCTAATCTCGGGTCGAAACCTGA

GCCCTGCAGGAGGCGGGGCTGAGACTG

CATCCCAGCTCCTGGCCCGCTCCAGGGG

CGACCC

203 IM000821 p000922D

204 IM000822 CCAGGCATCTCCATTCTTAATCCAGATCp000923D

CATAGACTCTTTCATTTAGAATAAAGTG

TTCCACCTAACATCCTGTAGGAAGTGAT

GAAACTAAAAAGAAAAATAAACGCATT

TTCTCTTTCTCTCGTTACTTTTTCCATTCA

CTAAACAAAATTGACTTTTTTTTTTCCAT

GAGAGTTCACACTGGGTCTGCCTCAGTA

AGAGTCACACTGTTCAGCCCACACACGC

TGTGATATGTTATTTACTCATTCTCTTCT

CAGGAACCACTCTCACATGTGAACCCTG

205 IM000823 AATACCAGCTCCCTCCCTCTTCAGATCp000925D

ATAGGTTCTGTCTCAAAACAAACAAAAA

ACCAAAACATGTCCACAGGGTCCAACA

GACACAGTCTCCGCCACTCACAACTAAT

GGGTACACAAATACACACCTCAGCCTTA

CATGGTTACAGAGAGAAGCAGGACCAC

AAGGTAGGCAGGCACCTAACACTTGCTT

CTTGGAAGTTGGAGCACACACACACACA

CAGAAACACACACACACTTTCTCACACT

CACACACACATTCTCTCTCTCTCACACA

CACACACATGCACACATGGTCTTGTACA

AGCTCCTCCTGGGATGGGCACACACAGG

GGTAAGAGGACTCCAGATC

206 IM000824 p000926D

GATCGAACACNCTNGGACTTGNTAAACG

207 IM000825 NTTCCCACACNGACAGA pp00928D

SEQ SEQUENCE{tc "SEQUENCE"} CLONE CLASS GENE

ID

{TC . f {TC
TC

NO:

"CLONE "CLAS "GENE
"

" \L SIFICA\L
2~ 2~

TION
"

\L
2~

MUTATION

GATCGTCTGGCCCGACCGCGCCTCAGTA

GATTTGGGTCCTGGTCTGAGCAGCCGGG

CTGGTGCGGGTGTCCTCACTAGGATAAT

GAATACAGCTCCACTACCTATACTACCC

AAGACGACCCCTCACACGCTCTGCGAGG

AAACCGGTCTTCGGAC

208 IM000826 p000930D

GATCGACCGCAGATGAGGTCTATGCAGG

AAAAACGATGTCTGGAATTTTATTAAAA

TTGCTCAGC

209 IM000827 p000933K Myc AGTAGACTGAGATTTGTGAGCGCTAAGA

TAAAGATGAGCAAAGCTTTGGCAGCTCT

TAGGTATCTGAGGGCCACCGTCCTCTAC

AAAGCAACGAGAGGCACGGCGGATTAG

GATAGACTGGTTGCATCCAAACACTACC

TTGCTGCCTCAAAGGCTTATTGGACACC

ACAGAAAGACCTCTGCTGGAGGCAGAA

210 IM000828 GTCACAGGACTCCTCGTCACAGACGATCp000934D

GATCGGCCTTCCTCCAAAGCTACCTGCA

TAGAAGAGACCTCTGCTCTCACCTACTC

TCCTCTACAGTTCAGCCCATATGGCTTC

ACCTGCATCCCCTACACACACACACACA

GACACACACACACACACACAAACACAC

ACACAACACACACAACACACACAACAC

ACACTCACAACACAAACACACACAACA

CACACTCACAACACACTCACACACACAC

ACACAACACACACACACACAACACACA

CTCACAAACACACTAGTACACAAAGACT

CCAACACACACATTCCCATGCACTACTC

CCTCAGTATCCGCCGCATTTGTGCTCAC

ACTCATCCACACTCTCACACTTGTAGCA

CACACACATCATTCCTACACAGGCATGG

ACACACATGCTCCTATACAGGCATGCCC

AGTACTCTCACATGCATGTTTGCACGTT

CCCAAACAGGTTCCCACAAGGGTTTGGC

AAAGTACATGCATCCTCACACGCAAATG

CAAGCCGTCACACCCCATACCACAAGCA

211 IM000829 TGCAC p000937R

SEQ SEQUENCE{tc "SEQUENCE"~ CLONE CLASS GENE

ID FTC . f {TC
TC

NO:

"CLONE "CLAS "GENE
"

" \L SIFICA\L
2~ 2~

TION
"

\L
~~

MUTATION

ACACCACATGCACATACATGCACACACA

CCACATGCACACATACACACACAACACA

TGCACATACATGCATACACATGCACACA

CACCACTCACACACATACCACATGCACA

TACATGCACACACACCACATGCACACAC

ACACACACCACATGCACATACATGCACA

CACACCACACACACTTTGCAACTACATA

TAAGCTTTAGAAATGCCTCTCGCCTCCC

CCCATAGCGGGGAAGAGAGTGGTTTAA

ACTAGAGGAGTCTGACCAATGTTCATTT

ATCTACCAGTATACCTCGCAAAGAGTTT

TCAGAAATGTGCATGAGCTGTTAAAAAC Hs.17043 212 ~Q00830 TTCTCTCTAATTTCCACATCCGATCp000938B 4 GCTGGACCCCGGTGACAGACTGTGCAGA

213 IM000831 TGGATC p000939I~ Pim1 214 IM000832 TTAGCAAGTCCGAGCGTGTTCGATCp000941I~ myc 215 IM000833 ACTGCACACATTGCCGGTTGTCGATCp000943I~ Notchl CAAGTGTAGACATTGCAGGAAAAAAAT

ATGGTGACAGTGAACAAAGCCCGTGAA

GGTGACAAAAGCCAGTTAAAGTAGGAC

AAGGCAGAGCGAGGCCCATGACCGGGA

CCAGGCCCAAGAAAATAAACGAAGGCC

216 IM000834 p000944B 68 GTCGGAGGAGCTGGCTGGACCGGTACAT

GCCCTGGCCATCCAGGCGAAGACCCCCG

CCCAGTGGAGAGAAAACCCACAGTTGG

ACATTAGTCCCCCCTGCCTAGGTGGGAG

CAAGAAAACTCGAGGGACCTCTTAATAA

ATACCTGGATTGGGAGAACGATC

217 IM000835 p000946R

GATCGCGGGGCTATCTATAGAGTCCCCG

GGATGTCTGAGAAATCAGCCCTAGAAAT

GACTAGAAAGAAAATCGAAGTATTCTTG

GCTCCTGGAGACTTCCGCAGCGAGAAGT

CACAGATTCAGGACACAGATTGACAGG

AGCTGCGGGCGCTGGTAG

218 IM000836 p000950D

SEQ SEQUENCE ftc "SEQUENCE"~CLONE CLASS GENE

ID

{TC . f f TC
TC

NO:

"CLONE "CLAS "GENE
"

" \L SIFICA\L
2~ 2~

TION
"

\L
2}

MUTATION

GATCCCAGGATTTGGGAGGCAGAGGCA

219 IM000837 GTTGGCCCCA p000953R -CAGGCTGGCCTCAAACCTGCAGAGATGC

TCCTGTCTCTGAGTGTTAGATTTAATAA

AGGGGTTCACGATC

220 IM000838 p000954K Lck GTTGCTGGGCCCTAAGCGCCCACATTTC

ACAGCTCCGATGCTCATCAGCATGACTC

TCCTGAGCACATTATCTGGTGGTGGCTG

ACACTCTCTTCAGTACCCCCCCCCCTCCC

AAAAAAGAAAAAAGAAAAAAAGGACTG

GTTGCTAAAAGAAGTAAAAGTCAAGTC

ATCAAAAACAATGTAATATCCTGTGTGA

AAGTCACGAAGCCTTGCGGTTTGAGTCC

CTCGATC

221 IM000839 p000955D

GATCGGCCGGCTGTCCAGCGACCGGAG

AAAGGAGAGCACTCGAATCGCAGAAGC

TATCAGGTGAGTCCGACCTCTCTCTGAA

TGAACGCTTTGGGGAGCCTGCCAACGGT

GACCAAATTTAGCCAGTTAAAAGTACAG

GCTGCCCAGCTGTAAACGTACATCAAAC

222 IM000840 AATGTGCGATTTTATTTTTAGTGTGAAp000956D

ATAGTAACACTTGGGAGGAGCCATTCCC

AGTGAGGCTCGTATAGCATAGCCCTGTC

CAATAGAGCCTCTGTTGCACTCTGTGTA

CACTTAGCTCCTTGCTTAGGGATTTTTTT

TACATGGGTGACTACAGCACCCCAATTT

CACATTGGACAGACTCCAGGACACCCCT

CGGTGTCCTGTGACGCATACAACAGCCC

CCCACGGGGCTGCACCGAAAACGCCAC

AGTACTGAGGCTGCACCTCACTCACTCA

CACACACCTCTATGGCTCAACGTCCTGG

AGAAAAGGCTGCGACAGATTCCCACATC

TGGGAATGCAGTGAAAAAGCACTCACA

CTGGGGGTGGGGTGGGGCTGGGGGGGC

ACCCTGTCTTCCCGTCTTCCCATGACCCT

CTTCCCTTCCAGGAGACCATAGCCAGAG

CTGACAGGAGATTCAGTCGCAGCTGCAC

223 IM000841 ACGCTGCTGCCTTGCCGATC p000957D

SEQ SEQUENCE{tc "SEQUENCE"} CLONE CLASS GENE

ID f TC . FTC FTC

NO:

"CLONE "CLAS "GENE
"

" \L SIFICA\L
2} 2}

TION
"

\L
2}

MUTATION

GATCGGGCAGGACACACATTGGGGAGG

CCCATCAAGCCCGAGCCTGCCTTGTGAG

CCCCCGGATTGGCAGGGCAGAGAGGAA

AGCTGCTGCGTGCTTTATAGACTTTGGG

GAAGTCACAGGCTCCGCTTGCTTGGGGG

AGGCAGGAAACCCCCTCCACCTAGGCGT

CTGCCAGAGCACCCGCAGGCTTCCTCTT

GTCTCTGTCCCCCTCCCCAGCACCTCTTC

CCCTGAACAGCTTCCCTCTCCTGGCCCT

GCTGTCCCTTTAAAGGAACTTGAATCAG

AGTTGAGAATGATGGTGACTCAGGGTGG

AAGGGGTGGTCACTTG

224 IM000842 p000959D

CCAGGGCTACACAGAGAAACCCTGTCTC

GAACAAACAAACAAACAAACAAACAAA

CAAACAAAGTTAAAAATAAAATTGATAT

225 IM000843 ACGATC p000960R

GATCCAGGACATGGCAGAATATGGTCAT

CTTCTTTGCTTGCATGTCACACGAATGG

CCTCTGGCTCCACCCCTGATTGCTTGCTC

CCCTTGGAAGCCTCTTGAGCCTAGCTAA

CTTTTCCTGTTCACCTTTGTATTATGTGC

TCCCACCATGGCCCACCAGGCTCTGCTT

GCAGCACTGCAGCCTGCAGCTCCAGCGG

CCTTTACATGGCTCCTGTAAACAAGTCC

CAGAGGCCTCAGTGTCATCATTTCAGCA

ACCGCCTCACTTCTTGGTGCCGCCTTCCT

TTATTACTTTCATATTTCTGTGACCGAAA

TACCCCCAAAGAAGCTACTCAAGGAAA

GCAGTATGTGTGGGCTCACCATTAGAGG

TCAGTCCCCTGCAGCAGTGGAAGCATGT

GCTGGTGACGC

226 IM000844 p000976D

SEQ SEQUENCE~tc "SEQUENCE"~ CLONE CLASSGENE

ID

{TC . FTC
f TC

NO:

"CLONE "CLAS"GENE
"

" \L SIFICA\L 2~
2,~

TION
"

\L
2,~

MUTATION

GATCGCTACTTTTTCAGAGACGCCTTCA

TTAAGGGGAGAATGGAAAGATGCTGGT

TGACTTGAAAGATTTCTCTCTGATTTGTT

TTACAGGAAGTGCATTCTGTACACATGA

GAGACTCCGGGTGGAGAGGCATTGTGG

CGGTTGAGATGCACCTGGGAGTGCCAAC

TGCCCCCGCTTCTACCACAGCTCTGCAT

AGCAGGCTGGAGCAAGCAGCCAGCCAA

CCATTGTGCCCTAGCCTCATCTCCTCCAG

AAGAGGTTATCTGGGCTCTGTGTAACCT

CTGCTCTTTGGCTATGGTATTCCTTCTTG

GTGCTTTCTGTGGTCAACCTCCAGGTAC

ACTTAGGGCCTATCCTAGACAGACTGGG

AAGAAAGAATGACATTCCCATTGACCTC

TGTTTTTATTTCCTGGAAATCCAGACCTT

GTTCCAGTTAGTGGAGCATGGGGTTAGA

CCAACCACACTGCTAAGAGTTTTGGCCT

GTAGACATATCTGG

227 IM000845 p000983C

TAGCAAGGTAAGTACTTGTCTCAATTTC

CAGGTAGTATAGAAGAAACATATATGTT

ACAGCTTTAACACCAGAACAATCACACA

GTGTTGTATTTTAGCTAAAATATGACTCT

GTGGTTTTCAAATGGCATAGTTGTGGAC

AACTTAATTAAGCACGCTCTTATAAGAC

GTGATAGAGTATGTGCCATCCAGATACT

AAGAACTGTGTCCAAAGAGCTTGGGAC

ACACACTAAGGGGCCTGCCTCTTTCATA

ACGGGGATGAAAATGACTGAGGCTTCA

228 IM000846 CATTTGCACAGTACGATC p000988D

AAGCCATCTGGGTCTCAAGTTGCTAAAA

CTTAATAACTCCCTCCCTGTGTTTGTCCT

TTATCTAATGGTAAAATATGACCTAATG

AAATAGGTTCCTAAGGCTTTCATATAAG

GCATGATGTTGAAGGATGGAGGACAGA

GTGGGATGGAAAATCAGAGCCTGCACA

GAAAACCACAAGCAGCTAACAAAAGTC

CACAACCAAAGCCTGTGCCTGAAATGTC

ACCTACAATGCAGTGGACTATTCATATG

229 IjVj000847 CCAGCCTGGTCCTCATGCGATC p000991D

SEQ SEQUENCE{tc "SEQUENCE"~ CLONE CLASS GENE
ID {TC . {TC {TC
NO:
MUTATION "CLONE "CLAS "GENE
" \L SIFICA"
2{ TION \L
" 2{
\L
2{

ACCAAGAACAGAGCCCCAAACTAATAG

GATGGTTTGTTGCACGTGTACATGTGTA

TGCATGCGTGCATATACGTGTGTGTGTG

TGTCTGTGTGTGTACACCCACACGTGTG

CATGTGTGTTGTGTGTTTTTTAAGCAAAC

CTCAGTGTGTCATACATACTCTCCTATAC

TTCCCCTCCCTTGTTCCATATGAGGGTGC

CTTCTTATCTCACAGGGTTGTTTTGTTTT

TTTTCTATAACAGAATGCCGCTGATGCT

CTTTTTTCTATATGAACCCTACATTTAAT

ACTTATCCATAAGCAAAGGAACAGTATC

TTATCTTGCGGATC

230 IM000848 p000992R

CTGGGGGCTCTGCTACGCGTCAAACGCC

TGGAGAACCCCTCGCCCCAGGCGCCGGC

ACGCCGCCTCCTGCCTCCCTGAGCGCTG

CTGCATCCTGCACGCCCTGGAACCCAGG

AGCGCCCCAGCGACCCTGACTCCCTGCC

AGCACGTCCAAGGCTGCTTACCCCAGCA

ACCTCCCATCCCCTGAGCCCTCAGTAAA

TGCCATCTGTAGCAGCTGTTTGTCTGAG

CGCCCTGTACTAGGGGGCCGGTGGGCTG

GGTGACAATGATAATGGAATAGTGGCTG

TCCTACTGAGGACAGCACAGTACTGTTT

GGGACCTGTACTGGTAAGGAATACATGC

CTGCTTCCTCTGGACTTTGCGGGTCTCAC

CGGGTGCCTGGGCTACCCTTCTAGGCTT

CACTGAGGCGGGTTCCCTGGGAGGCTCT

GAGGTTACTTTCAGCGTCTGCCAGGGGT

CCACAGCACTTAGCCAAGGGGCTATGGA

TTCACTCGTGGTCTGCCAGGACCAGGCT

TGTTGTGAGGGCCCCAGGTGGATC

231 IM000849 p000993A Saas SEQ SEQUENCE}tc "SEQUENCE"} CLONE CLASS GENE

ID

FTC . {TC FTC

NO:

"CLONE "CLAS "GENE
"

" \L SIFICA\L
2} 2}

TION
"

\L
2}

MUTATION

GTGTTTCTTTTCTTTCTTTTTTCTTTTTTC

TTTTCTTTTCTTTTCTTTTTTTTTAAATCT

AAGTAAGGTGCAACAATGTAATTCGAA

GGGGCAGTGTCTTCCCTTCCTGTAGTCTC

TGCTTAATTCCTGAAGTTTGCCAAACCA

GGAGTTAGGAAAAGTTGGAAACCTGCA

GAGAGAGCGTTTGAGAGGTTTGAGATGT

TATACGAGAGGGTTTGGCAATGTGTGGA

GTACAGGTAACTTGCGGTTATTGTTTTCT

TGGCCCTCTATCTTCATCCTTTGTGCTTG

232 IM000850 CTATTTACCTTGCTGTCGGATC p000994R

GATCCTTGAGTCTGTACTTAGCCTGAGA

GCGCTATAACACTATATACAAAGTACCG

ACTAGAAACTCCACACACATTTGTTGAC

TGACTTAATGTGTAGCCCTGCAATGGTT

GACAGTTGGGGGTCAGGGGGCTCTTGCA

CTGAGGGTAGTGTATAGCCTAAAGAGAT

AATCAAGATGATAAGTACATCCACACTA

GGACAGGAGCTTTAACAAGAGCTTTTAG

TGAAGGGAACTTTCTGGGAGCCTCAAGG

233 IM000851 AAGGCATAT p000995D

AGCAACACCTCATGTGGGAATTCATACA

TTGTAGGTAATCAGTCTACTAGCTGAAC

TATATCTCCAACCCAGGAGGTCAGGTTT

GTTTGTTTGTTTAACAATCTAGTTTTGAA

ACAGTCATATCCTAGGCTGGCCTCAAGT

TATGTAGTCAAAGATGGCCTTAAAAGAT

GACTCTTGGTTATTTTCCAAGTGCTGGG

ATTATAGATATGCACACCACCACACCTC

ATTTGTCTCGGGGCTGGACTCAAATCCA

GAGCTTCATGCATGTGAGGCAAGCACTG

TACCAACTCGACTTTTGCATACTCCATTG

AAAGTCATTTTTATAACAGGATC

234 IM000852 p000996D

SEQ SEQUENCE{tc "SEQUENCE"~ CLONE CLASSGENE

ID

{TC . {TC
{TC

NO:

"CLONE "CLAS"GENE
"

" \L SIFICA\L 2~
2~

TION
"

\L
2~

MUTATION

CTACTTATCTATCATCTATATGTCTATCA

TCTATCTATCTATCTATCTATCTATCTAT

CTATCTATCTATCATCTATCATCTATCAT

CTATCATCAATCATCTATCTAGCATCTAT

CTTCCAGAGCTCATGTTGTGGCTTGGGC

TTCTCATTTCACCATCATCGAAGGTAGTT

GCATTTTTTCTATTGGCTTCTTAGAAGCA

GGAGGCACATGAAACAACTTGCTAACCC

TTTCCTGGTCTTTTGTTGTTGTTGGTGGT

GGTGGTGGTGATGGTGGTGCTGGTGGTG

GTGGTTGATGTGCACAGGAGACCTGTCC

GGTATGGAGATATGGAGAGCGTCTACGT

235 IM000853 CCTCATGGGATC p000997R

GTGGGACGCGGAGGGTGGAGATGAATT

GAGAAGCAGTTGTCGATTTCCTCCTTCTT

CCAAACATCAAAGGCAGCGGTGGATGA

CAAACTGAAGGACAGAGGGTTTGATGA

TGCAAGAGGAGCCAGCAGCAACCAAGG

CCAGCCTCTTGCGGGTGTGGGCAGGGCC

TTCTTTACAATGAGTTCACACACACACA

CACACACACAGAGAGAGAGAGAGAGAG

AGAGAGAGAGAGAGAGAGAGAGAGAG

AGAGAGACTGCTCTTTCAGAACAGCCCT

AGGAGGTTAGCTTCAGACTAAGACAGG

AGACAGAGAGTCCTTGATTTTGCCAAGG

TTGCACAGCTGGGGAGAAACCCAGCTAT

GGCTTCACCTTGGCCCTTGTTAGGACTC

CTTCCTAGTCCGGTTGCAGTCTCCTGGAT

236-vX000854 C p000998R

GTATTAGAGGCCAGGCCATTCAGAAGAT

GTGGCAAGATTGTCATGTGGAAAATATT

TGAAACCATTCTAACCTAGTCATTCCAT

CATCAATAATAATAATAATAATAATACT

ACTAAAATG~~AAAAACCTAGATATTTTG

AGACTGTACTGCTGTATTTTAAGAAATA

CACGGAAATTTAGCACTGAAATTTAGTG

CTAGTTTTAAGAATACTTTGTACCGTTAC

TTGGACCCACAATTGCTTAGAGCAAGGG

237 IM000855 ATC p000999C

SEQ SEQUENCE{tc "SEQUENCE",~ CLONE CLASSGENE
ID
NO: {TC . FTC
MTJTATION "CLONE FTC "GENE
" \L "CLAS"
2~ SIFICA\L 2~
TION
"
\L
2}

GATCCTGAGACAGTACAGGAACTAAGA

AGCCCTGGGCAATTTGCAGTGTGCACAC

CCAGCCTGAATTTGCCTGGTTCTCACCA

GCCTACCAATAGAGCATTGTAGTGGCAG

GGATGTCTGCTGGTGTCTCGCAGACAAC

TTTTGAGGTCCTGCTTCTCCAGAAGTGT

GCAGCTGGCAATTAGCAGCCTGGTCTTT

TCCTGTCCCCAAGACCAGTGCTTCCACC

AACCTGGTCTCTTCCCACAGCCCAGCCC

TTTCTCTTCCTCTTTGACACCCACTTCCT

CTAAATGGTGGTCACATGCTTTGTCTCTT

GAf~AAAAAGTTGTATGAGTCAGGGTATT

TTCAACGCCGGGACAGAAAAATTGACTC

AACCTGGCTTTTTCAATTAACCACTAAT

GGGTTTCACTTACAGTCCTGACAAATAC

CAGGCACAATTCATCCAGGACAATAGTG

AAGAATTTCATCTCTTCCCCCCAAGCCA

GTCAGTCTGGTTTTAATATGCACGGTGG

ATAGCCCATAGCATGCAATGAACTGTGA

GCACCCCTCTGGGAGTCAGCAGAGACAC

ACACACAGGCACCCATACCACACACTGT

GCTTTGTATCA

238 IM000856 p001000D

SEQ SEQUENCE{tc "SEQUENCE"~ CLONE GLASSGENE

ID

{TC . {TC
FTC

NO:

"CLONE "CLAS"GENE
"

" \L SIFICA\L 2}
2}

TION
"

\L
2~

MUTATION

GATCAAAACAATATTCAAATAATGACAT

CAGTCAAAGTATGATTTGATGGCCATCA

CTCATGTCAATAGGCAACACATAAGCCT

GAGAGTAAGTTAAGGAGAAATTCAGCA

ATAAACAAATTGACATACTATGTCCACT

ATGAGTAAAACCTGCCTCTCTTAAAACG

TTTTACTGTACTCCATGGCTCTCCCCCAA

TGTGCGTTCGTGAGAGTCCCCACCCCTG

TGACTCCATCTGTGTGTGGGTTCAGGAG

AGACTCCTGTGTGTATTCAAAAGAGCCC

CCCATGTGTGTACACACAAGAGACCCAG

TGTGTGTACATGAGAGGCCCCACCCCAT

GTGTGTTCATGAGAGACCCAACCCCTGT

GCGTGTACATGACTCTCCCCATGTGTGT

TCATAAGAGACTTGTGTGTATGGGAGAC

TCCACCCTGTGTGTGTACATGAGAGACT

CCTGCCTCTCCTGTGTATATGGAATACCT

TCAGAGTATCAAATATTTTCACCCACTG

AGCCATCTTAGAACTTCTCTCCCTT

239 IM000857 p001001C

ATACATATGTACACACACACTCACAAAC

ACACATATATACACATACATACATACTC

ACACATATATATACACACTAGTACACAC

ATACGCAAATACACACATGCATATACAC

GTACTCACACATACATACCCATACTCAC

ACAAACACATATATACACACATACTCAC

ATATACATTCATACATACACACACATAT

ATACATACACACACTTGCATACACACAG

CACACACTCACACACAGAGACACACAG

ACACACAGACACACACACAGAGGAACC

CAAAGGATTGGAAGAATAATTTCCTGTG

CTCAGTGGGAAAGTTTACCAGAAAGAC

240 ~jO00858 AAGTGGTCATGTGGGATGATC p001005C

GATCAGGGACCCTGTACCCTCCCCCGTG

241 IM000859 ~AGCCTGTGATTC p001006C

SEQ SEQUENCE~tc "SEQUENCE"~ CLONE CLASS GENE

ID

FTC . f {TC
TC

NO:

"CLONE "CLAS "GENE
"

" \L SIFICA\L 2~
2~

TION
"

\L
2~

MUTATION

GGACTGTAACCAACTCGGAGAGGAAAG

GGCTTATTTCATTTTAGTCTTTACAGTCC

ATCATTGACGGAGGTTAAAGCAGGACG

CTGCTTACTGACTTAGCTCCCCGTTGCTT

TATCAGCTACTTTCTTAATACAACGCCA

CCCCCGCGGCCGCCACCTCCCTAGGCAA

GACCCACAGGTCAATCCAACAGAGAGG

ATTCCTCAAGTGACACTCCTATGTCAAC

GCTATCAATGGCAAAGGTATATTGAGCT

242 IM000860 AAGAATTGATC p001007D

GATCTCAGGCTGCCCGTGGGCGGGGCTG

ACGGAGGGAAGCAGACTAGGCCTCTAC

CATATCCGTGGGAGGGACTTCCAAGGAC

CGAGACTGAAGAAACAGCGCGAAACAG

GAGACACTGGGAGGAGAGGCGGAGACC

GACACTTAGTAG Mm.7675 243 IM000861 p001009B 3 AGAGAAAAGACTATCTTGACCTTTGGAT

ATGCGGGTGCAAAAATGAGAAGACCAC

AGTGCAGCTGTGTGCCCTGCACGGGGCA

GCGAGAGGAGAAAGAAGCATTTTACAT

GAAGCACAGAACACGCCTGACAGTTCTC

AACAGCAGCACGTCAGACCACCGCAGC

ACTGCTCGTTTTTCTCAGCAGACCCCCA

GGAAGCACCACCCAGGATGGACATGTA

GGGGTGCATCCGAGAGAATCAAAATCA

CACAGGGGCCATCCTTTTGGTTCGGCAT

GAATGATGGGGGCCGCCTGCACTGGCCT

CCACCTTCTATGGTTGTTCTTCCTTGTAT

CAATGTTTCAAAAAAAATCCTTGGGCTC

ACAACTGCCTAATGACATCTTCAGGAGT

CAAGTCAAGAAAGAGAAAAGTAGCCGA

CCTGGCACGTGGTAGATAAGACTCAAGG

GTGCAATAAGCAGATGAACTGGCTTAGT

TGGGCTTTCTATTGCTGTGATAAAACAC

CATGACCAAAGCAACTGGGGCGGGGGG

CGGGGGGTGTCATCTTACACTTCCATAT

CACAGTCTATCACTGAGGAAGTCAGGGC

AGGATTCAGGCAGGAACC

244 IM000862 p001011R

SEQ SEQUENCE{tc "SEQUENCE"~ CLONE CLASSGENE

ID {TC {TC {TC
.

NO:

"CLONE CLAS "GENE
" "

" \L SIFICAL 2}
2~ \

TION
"

\ {

MUTATION

GATCGGCCAACACAGGATAGATACCAC

ACAGGATAGGAGGTACAGTGTCTGGAA

GATTATTATCGAGCCCCTGAACGTAGTA

GAAGCTGGCTGTCGTTCCAGTGCAAGCT

245 IM000863 GAGCAGATGGTCC p001013D

GATCCACATGAAAGCCAAGCTGCACATT

TGCTTCATATGTATGGAGAGGCCTAGGT

CTAGCCCATGTATGTTCTTTGGTTGGTGG

TTCAGACTCTAAGAGTCCCAAGGGTCCA

GGTTAGTTGACTTTGTTGGTCTTCCTGTG

AAGTTCCTATTCCCTTTGGTGCCGTCAAT

CCTTCCTCCTATTCTTCAATAAGAGCCCG

CAAGCTCCATCCACTGTTTGCTTGTGGG

TATCTGTAA

246 IM000864 ' p001015R

CCCTCAGCTACATAGTCAATTCCCATCT

AGCCTGGGTATGCGAGATGGCAGTAAA

GACACTAGCTGCAAAGCCTTACTGCCTG

247 I1VI000865AGTTTGATC p001018D

GATCCAGTCACAGGAGAGCAACTGGGG

GAGGGAGCAGGACAGAAGCACACCATA

GCCCTTTCAGGGGGCCGGGGGCGAGGG

GTGGACAAGAGAAGACAGATAATGACT

CACAGGATGAAGAAGCCTCCCACAGCC

CCTCCCTGAACTGGCCATCTGTTCTGGG

GCCCCAGAGCAGGCGAGTACCGTGAAG

CTTGGGGACTAGCAGCCGGACCACTGAA

CAAGGTCAACCAGCCAGTTGTCCCACGA

GGGGAGAAGCTACCATTGAACTGTCACT

TTGGAAAGTAGCCAGAGCCCATCCCTGG

TCACCACCCAAC

248 IM000866 p001019D

SEQ SEQUENCE{tc "SEQUENCE"~ CLONE CLASSGENE

ID FTC FTC FTC
.

NO:

"CLONE CLAS "GENE
" "

" \L SIFICAL 2~
2~ \

TION
"

\ L
2}

MUTATION

GATCCCTAGAGCTGCTGGTCAGCTGGCC

TGGCTGAAACTACTTCTGTGCAGTGAGA

GACCCTGCCTCAAAACACAGATAATGGA

GACAGATAAATGACATCGTCCGCTGTGT

CTGCGTGTGTATATGTAACACAACACAC

AGTATACACACATACACACCACACTCAT

ACCGTCACACATGCACTCTCAGTGCATG

TGCAACACAACACAGTGTACACACATAC

ATACACACCACACACATACACATACCAC

249 jM000867 CACACACGCGCACACACACACATAAp001020R

GATCCTTGTGCATCACTGAGCCATCTCC

CCAGCCTACAGTGTAAGTATTCTATACA

TATTAATTTAATCCTGCCGGGTGGTGGT

GGCGCACGCCCTTAATCCCAGCACTCAG

GAGGCAGAGGAAGGTAAATTTCTGAGTT

TGAGGCCAGCCTGGTCTACAGAGTGAGT

TCCAGGACAGCCAGAGCTACACAGAGA

AACCCTGTCTCAAAAAACCAAAAAAAC

AAAACAAAACAAAACAAAACAAAAATC

CTATGGAGTATTCTAAAAGTAAAACCGT

ATCATTAGCACTGCCAAATAACAGAAAG

GAAGACCAAAGCAAA

250 IM000868 p001021R

GATCCTCTGAAAATGGAGTTACAGATGG

TTGTGAGCTGCCATGTGAGTGCTGGGAA

CTGAACTCGGGACCTTTGGAAGAGCTGC

TGGTGCTCTTAACAGCTGAGGTGTCTCT

CCAGCCCCTTTGGGTGTGTTTTGTTTTGT

TTGTTTTGTTTTGCTTTTTCAAGACAGGG

TTTCTCTGTGTAGCCCTGGCTGTCCTGGA

ACTCACTCTGTTAGACCAGGCTGGCCTC

GAACTCAGAAATCTGCTTCCCAAGTGCT

GGGATTAAAGGCGTGCGCAACCACTGCC

251 IM000869 p001022R

GATCCAATATATTCATATGGAGATACAT

252 IM000870 GTATATACATAA p001023D

SEQ SEQUENCE{tc "SEQUENCE"} CLONE CLASSGENE

ID S'I'C {TC {TC
' .

NO:

"CLONE "CLAS"GENE
"

" \L SIFICA\L 2,~
2~

TION
"

\ L
2~

MUTATION

GATCCAGGTCCTTTCCCCCTTATGGTCCT

ATACACCCCTGGGTACTTAGAGGCTTTC

AGCTCTGACTGGTGGTGTGGGGAGAAGT

GAGGGGTTACACATGTGACACAGGTCCT

AAAAGCTGTCGCCATTGGCACATGACCA

TCCTAAGTCTGTGGCAGAAGGCTGCTCA

GAGCCTCTGTCCAGGAACAACCCAACAC

ATTGCAGAAATAACTGTGCATCTGGGCA

ATGGGGCAACTACTACCTGTCCATCCAG

ATAGCTCTTCTAGAGGCATTCGAAATAA

CACGTAAAGTGGGGTGGTGATGAACAC

ATATAATCTCAGCCCCTGGGAACCGGAG

ACAGGGGAGTCACAAG

253 IM000871 p001024D

GTCACAGTACTTGCTCACTTGCCTCTCTC

ATGGTTTACTCGCCCCTCCTTCTCGTACC

CCCTTTCCTCCTACAATCCTCCTCGTCTA

CTTTCATGCCGTATATGTCAAACACCGT

CATATATAACAATGTATGCATGCAGCAT

TTCTTTTTCTTTCCCATCAGCCTCCCTTG

CTCCCCATCCTCCCGCCCTTCCTCCTTCC

254 IM000872 TCCCAGGATC p001026D

AGTTATGCTTGCAGACAGGAATGTAGCA

TGGCTATCCTCTGAGAGGTTCCACCCAG

CAGCTGACTCAGACAGATACAGATACCC

ACAAGCAAACAGTGGATGGAGCTTGCG

GGCTCTTATTGAAGAATAGGAGGAAGG

ATTGACGGCACCAAAGGGAATAGGAAC

TTCACAGGAAGACCAACAAAGTCAACT

AACCTGGACCCTTGGGACTCTTAGAGTC

TGAACCACCAACCAAAGAACATACATG

GGCTAGACCTAGGCCTCTCCATACATAT

IM000873 TGGATC p001027R

SEQ SEQUENCE{tc "SEQUENCE"} CLONE CLASSGENE

ID f TC . FTC
{TC

NO:

"CLONE "CLAS"GENE
"

" \L SIFICA\L 2}
2}

TION
"

\L
2}

MUTATION

GATCGTGGTCTCTTCTCTTTTTTCCCTCT

ACTTCTTCTTCTTCTTCTTCTTCTTCTTCT

TCTTCTTCTACTGTCTTCTTCTTCTTCTTC

TTCTTCTTCTTCTTCTTCTTTCTTCCTCTC

TCTCTCTGTCTTTCTCTGTCTGTCTGTCTC

TGNCTCTCTGTCTCTCTCTATCTCTGTCT

TTCTCTGTCTCTCTGTCTCTGTCTCTCTTT

CTCTGNGNCTCTCCCTGTCTGTCTGTCTC

TCTCTTTCTCTCTCTGTCTCTCTCTCTCTG

NCTCTCTNTCTCTGNCTCTCTCTGNCNCT

CTGNCTCTGTCTCTGTCTNTGTNTNTCTC

TCGCTCTCTNACACACACACAGATGTAC

ATGCAC

256 IM000874 p001028R

GATCGGCGGTATCATATTTTATGTGTTTT

ATTTCTGTGTCAGAAAGTTTAAAAGGCC

TCAGATTGGAAGTCTGGTTTGCATGGAA

TGCATATGAGCTTTTTCATCTTATTGCCC

AACAGATTTAGTCTAAGAACCACCTCTA

TTATATAGGGTATGATAAGTAATATAGG

TAAGGGAATGCATCCCATTTGATAAGTG

AAAGTTGAACACACATAGAGTTGGCTCA

CCCCGGGGTCTAGGCTCTAATCCCCTGG

GGATACCCAGGCCAACTAAACGCTATAG

CAACAGGCATTGGGGCATGAAGATACTT

TTTGTTGTTTGTCTTGAATTTATATAGGG

GCTTATATCTCATTACAATTAATCATGA

GTTGCAGTCAATAAATCTTCATTGCTCA

ACATATTTGTACCCTCAAATATTTTTTTC

TTTTTTTGTGTGATAT

257 IM000875 p001029C

CTTGTAAACACGATTATTTTAAAGATAT

AAATGGCTCTTTACTCTGTTTAAAAATT

GTTTCTTTACCAGTTCTTCGTGTACATTG

GTCTCCATTTCACATGAAATAAAATATT

TTGTTTAATGTTAGATTTTCAATACCAGC

TGAGTGTTCGATGTGTGCCTTTTGGACA

IM000876 ATC p001031D

SEQ SEQUENCE{tc "SEQUENCE"} CLONE CLASS GENE
ID {TC . {TC {TC
NO:
MUTATION "CLONE "CLAS "GENE
" \L SIFICA"
2~ TION \L
" 2{
\L
~{

GATCAGATTCAACTCCCGCATTTCTAGC

CCCAGCATCGTGGAAGGGCTACTGTGTC

TTTTCAAGCACTATGGTGGATACACATA

ATGCCAGCTTCCCTCATTACTGGTGATG

TGAGCTGTTTGCCTAAGGTCCTTTCTGCC

AGGCTTCTCTGCTGCCAAGGCTCTGAAT

TTCCCTTTGTAGCTAATGCGTAGCCCTAT

TGGCAGACTCTTCCCGTGGCTGACTTCT

GCCTCCCGTCACACAGCAGTACCTTGTT

TGTTCTCACCTTGATGTTTCTTATATGCA

TTGATGATGGTGAACAGCCCAGCAAGTG

CGCCTGTTTCTTCCCTTCCTCCCACTTTT

GTTCTCAGTTGTACATGGCAAGGAAAAC

CAATTCCTTCTTTCATATTTCTCCCAGAA

AAAAAATCCTCTTTATAAGAGTTCACAT

CCTTGAGCACACATGATAGGAGCTGGTA

259 IM000877 GCCAG p001032D

GATCATGATATTGTACTGCTGAAGACAA

ACATATTTAAGATATAAGACTTGGAGAA

ATCAAGTTGGTATTGACATTGGAGATTA

ATCTCTTTTGGCTAGCTTTTGTAGAGCTA

GAAGTTGGTATGTAAGCTATAAGGAAG

AGAAGTATTCATAAGACTTACCCAGTTG

TCTCTCCTGTAAGCTAAGACCAGCCTAA

GAAGCTAAAATTATCTTTAATGTAGAAC

CACAGAGAAAGAAATTGTGGTATGAATT

TTGCTTGTTCGTGGACATTAACCATTAA

CTCAATGATAATCAAATGACAATACATA

GAGACAAAGATATGCATACTAGTAAAA

260 IM000878 TAGTGATAA p001033D

SEQ SEQUENCE{tc "SEQUENCE"{ CLONE CLASS GENE
ID {TC . {TC {TC
NO:
MUTATION "CLONE "CLAS "GENE
" \L SIFICA"
2~ TION \L
" 2~
\L
2}

GATCGTGCTAGAGAATGGTACACTTGGG

TTATATTAAGAAATCTTGGTTGAGTGGT

GGTGGCACCCTCCTTTAATTCCAGCACT

CAGGAGTCAAAGGCAGGCAGACATTTG

AGTTTAAGGCCTGCCTGGTCTACAAAGT

GAGTTCCAGGAAAGACAGGGCTATAAA

GAGAAATCTTGTCTTGAAAAAAACAAA

AAAACAAAAAACGAAACAGTAACTGAA

ACCG GAAAGAAAGAGA

GAAAGAAAGAAAATCTTACAATGTGGG

AGCTGGAGAGCTGGCTCAGTGGTTAAGA

GCATTGGCTGCTCTTCCAGAAGACCCAG

GTTCAATTTCTAGCACCCACATGGTGGG

TCACACCTGCCTGTGGCTTCAGTTCTAG

AGTTTCTGACACTCACACACAAACATAC

261 X000879 ATTCAAGT p001034R

GATCTTGTATTTCTTCTTGGCTTGTCTCC

ATAGGAACAGGCAGCACAGCAGAGGTC

TGGGAGATGGCTCCGAGGGTAAGGGAC

CAAGCAAGGTCACCTGCGCTCACTCCCT

GGAACCCACACAGTGGACAAGAGAGAA

AGACTCTATGGCCTCCACGTGCGTGCGT

GCGTGCTGTGGTGTGCACGTGCCCCTCC

CCCAAATAAAGAAAACTTAACGAAAAA

AAATTAAAAGTAAAAAAACAGCACTGC

AGTAGCTCCAGGAATCAACTGGTCAATC

AGTGTATCACATTTGACTATCCGATGAT

GGTTTTATTTTACATGTATGCACGTGTTT

GCATGTATGTGGGTGCACATGTACAAAC

ACATGTGCCAAGGCCAAAGGACAACTTT

GGGTGTCCTTTCTCAGGAGTCATCGACC

TTATTTTCTGAGACAGGGCCTCTCACTG

GAATCTGACTGGCCAGCAGCCTCCCAAG

GATGCTCCCCAACCTCAGAAGGATGCGC

CTGTCTCTGCCTCCCAGCCCCGGGGGTT

ACACTGGTGGACCACTGGGCTCTTTTCA

Mm CCTGGGTG .

262 IM000880 ' p001035B 34 SEQ SEQUENCE{tc "SEQUENCE"} CLONE CLASS GENE

ID

FTC . {TC f TC

NO:

"CLONE "CLAS "GENE
"

" \L SIFICA\L 2}
2~

TION
"

\L
2~

MUTATION

GATCTCTTCTTAAAATTACATTACAGTA

GAAAATGTTTATGAGGCCGTTTTTATCT

CTAATATTATTTATTACCACTCTCCTACC

CCCAGAGTCTTACAGGCATCAGGGAGTG

GACAAAGGCCGGCGGTACTGAATGGTG

ATGTTATTTTTGAAATAATGAAAAG

263 IM000881 p001036D

TACCTGTTGCTCCAACATGGTCAGAAAT

CAGTTTGTTTCAATTTTAAGATACAATG

AGAGTAACACCCTAAAGACTTCACATTT

TATGCATATTTGCTACTCTGTGAGCACA

264 IM000882 TGAACGCTTCTCCTTGGGCACGATCppp1066D

GATCGCAGATACTGCAGGTATGTAGTAA

TGAAGTCTGTAAACATACAGAATGGAG

AAGGCCAGAGAGGAAAGTGCAGGCATT

265 IM000883 GGGTAGTCAGTAGGTAAAATAT p001067D

GATCGCAGCTCTTCCTTGGTGCTTTTCCC

CTCAGTTCAAGTGCTGTGGCGGGGAGGA

CTACAGAGACTGGAGCAAAAACCAGTA

CCATGACTGCAGCGCCCCCGGGCCCCTG

GCCTGCGGGGTGCCCTACACCTGCTGCA

TCAGGAACACGGTAACTGCATGGGTGCT

GGATGTGAGGGTCACCCAGTTTGCCAAA

CACTGCCCTCACTCTGCCCAAGTGGAGC

AGGCAGTGGGAGTGGGTGGGACGTGGT

GGCCGGGGCTGAGCTTGCCTTAGACCAG

GGGCCCTAGCAATGGGAGATGAGTGGG

CAGCTTCCTCTGGGAGTGTGTCAGTGAG

CGTGTGCGTGTGTGGGCCTGGCCCAGGC

GCTTTGGTTGTAGTTACTTGGTTCTTACA

ACAGCTTTGGAGGGTCTCAATTGGGGTA

GTGTTGCTTTAGCCACTTAGGGGGACTT

GCCCAAGGTTGGCAGGGCTCTTCCCAGC

AACAGAGAGCCAGAGTGCCCGGCAGGT

GCAGCAGGCTCTACCCAGTCACTGGAGG

CAGAGTACAGTGCAGGTGCTGTGAGCAC

TGGCAGCAGAGCCCTGGGCAGCGGCAT

GCGGTAATGTAAATG Mm.2811 266 IM000884 p001069B 2 SEQ SEQUENCE{tc "SEQUENCE"} CLONE CLASS GENE
ID f TC . f FTC
NO: TC
MUTATION "CLONE "GENE
" \L "CLAS "
2~ SIFICA\L
TION 2~
"
\L
2~

CCATGTCAGGTGATTAACCTGTGAGTCT

AACTTCCAGGAATGCAATGCCTCTGGCA

TCTACAGGCATAAACATACTTGTGGCTT

ACACTCAAACTGACACACCAACACATAT

GTGCACGCGCACACACACACACACCAA

ATTAAAAATAAAATAACCCTTTTTAAAA

AAAATATAGAACCTATAGATAATTGCTT

267 IM000885 TACTGCACTCACAAACATTTTAGGATCppp1070D

GGGGCACATAGTGAGTTCTAGGATAGCC

AGGGTTATAGAAGCTATAGTGTGAGACC

CTATCTCAAAAAAACAAAACAAAACAA

AAAAACA,A~AAAAAACCTAAGCCCGTGT

GGTGGTGTGTCTCAGTCTGAGCGCTTGG

AAGACAGAGGGAGGTGCATCTCTGAGC

TTGAGGCTAGCCTGGTCTACATAGAGAG

CTCCAAACCAGTCAAAGTAACAAAATG

AAACTGTCTCAACAATGACAACAACAA

ACAAACAAGCACTAGAATAAAAAGAAG

CCAGCATGGTGTCATGTGCCCGTCATCC

TACCACTTGGAAGGAGAGAAGCCAGTG

CAGGAAAATTAGGGATC

268 IM000886 p001072D

SEQ SEQUENCE{tc "SEQUENCE"{ CLONE CLASS GENE

ID {TC . {TC {TC

NO:

"CLONE"CLAS "GENE
"

" \L SIFICA\L
2~ 2~

TION
"

\L
2,~

MUTATION

GATCCCAGGCTTCCTGTAGGCTAGGCAA

GCCCTCTCCCCACCCTGTCCTGGTAGAA

TTCATCCCGAATGTCAGCATTCCTTCAGT

TAAAGGAATGTGCTCCCTCAGGCTCTCT

CCCATGGTGCATTGCTTCAGCACGCAGG

CAGACACTTGTCCAAGCTAGGCTCCCTG

TCTCCCATCTGTAGGAAATGCTTGGTAT

GAAGGCCCTGGTGGACCTGGCTAGATGG

GCAGCGCCCAGTGAAGGGCTGTGTCTGG

AGCCTGGGCTGTAATTAGTGGTTTGAAC

TGGGTGCTCTGGGGAGAGGCAAGTAAG

AATTTGCTTTCTGTTTTTAGAGCAGGAG

GAGCTGGCGGCTGGCTGTGCCTTAGCCG

GCTCCTCGAAGAGCATTTGAGGTGTTCG

CCATCTTAATGGGTTAAGACTCTCCTGT

GCTAATCTGGTGGGTTGCTTTTAGGCAC

GGTGGTCCCACTGTGGTTGTGTGAACAG

TACCTTAATGCCAACACTTTGGAGGCCT

AAGGTATCCCCATCTGCAGGAACTGGGG

269 IM000887 TGCACA p001075D

GATCCTCACACAAATTGAGTAGTACTAA

CAAGAGTGTGATTCACATAGTCAATAAA

GGTATAGGCCATCTGTGCCCTGGCTTGA

CCTCCGCAGACCAGAAGCTAACAAAAC

CAAAACAGACTCAGTTTCTGCATGCTAA

CTTAACCATGATTTTCCAGACTATTTCTT

TTATCCTGTGAAAAATATATTAATCTCT

ATTCTGCAGAGTATCCCTTCTTTAAGAG

AACATGATTTCACTGTTTTTGACAATAT

IM000888 TT p001078B 6 TTTTGAGTGCTCAGTGAACTACTTAGGG

CAGCCTAAGGAATACAGTGACCCACCA

GGAAATGCCTTGTGTTTTGGCAGTCTGA

TAGCATCACTCACAGCTGTCGGTCGTGA

271 IM000889 CTTCATTGGATC p001079A Edar GATCCAGGGACAAAGAGCCCATTCTCCT

GTTCCTTCGTAT

272 IM000890 p001081D

SEQ SEQUENCE{tc "SEQUENCE"~ CLONE CLASS GENE
ID {TC . {TC {TC
NO:
MUTATION "CLONE "CLAS "GENE
" \L SIFICA"
2~ TION \L
" 2~
\L
2~

ACTTTCAGGCAAGCTCTTTGCTCAGTGA

ACCTGCTACCACACACAGACTCCTCCTC

CCTGTTCCCGTCGTTAAAAAAAGTTTTA

TTTGAGGTTTAGAGCAATGGCTCAGTGC

TCAAGACTACTTGCTGTTCTTACAAAGG

ACCTGGGGCTAGTTCCAACACCCACATG

ATGGCTTACAATTCTCCAGTCTCAGGGG

TTCCAGAACTCTTTTTCTGGCATTGAATG

CACATGATGCATATATAGACAAGCAGGC

ACACACACACACATAAAATAAAACAAA

TCTTTTGAATGTAATTTTAAAAAGATTTA

TTAATTTTAATTTTATGTGTATGAATGTT

TTGCCTGCATGTATGTCTATGCACTGCAT

GTGTGCCTGGTGCTCAAGGTGTCTGATA

GCCTGGTGCTGGGCTTGGTTCACTCAAC

AGCTGGCCCTATGAAGGCCAGCCGTGAG

GACACCTATCCATGCTGACAGACACAGA

TGCTCAAATGAGACAGCCCCTTCTCTAT

GAATGCCCTCTTGAGAATGAACAACCTC

CCTGCAGCAGACCTCCTTCTGGATACCC

TGCCCTTCCATACTTTCTGGGTGTCTAGT

TCTCTTCC

273 IM000891 p001082R

SEQ SEQUENCE}tc "SEQUENCE"} CLONE CLASS GENE
ID }TC . }TC {TC
NO:
MUTATION "CLONE "CLAS "GENE
" \L SIFICA"
2} TION \L
" 2}
\L
2}

GATCACACGCTTCACCTAATTACAAATG

ATTTCTTTAGAGGGGTCTGTATATAACA

GAGATGATAAAATTCAACGGCAGCCCTC

CAACTGCATTGATATACAGGAAGTACTC

ATGAAATTGGAGACACTGATTATCTCTT

TGTGTGGTGTCCACATATGTGCCATCAT

ATCATATTATTATTATTACATGGCTAAA

AAATGGGGTCATAGGTTTCATGACCAGA

ACCAAAATATTCCCCTGTAATTTACACA

GGATTGATGGTAAGAAATGAAAACAGT

TTACATTTTTGATAATTTACTTACTTGAC

ATAAAATGTGACTTTCATTTCCTTGCATT

CCTTTTCACAGGTAAGGCTACGACAATA

GATTCTCAGTTCTCCACCTCTCTCTATCT

TGTCTACTCTATCAGCAGCAATAGCAAC

AGTTTTCCATGGTCCTTCCATCTGTAAAA

GCAATAAAAAATAACAAAGAAAACCAT

ACAAACCATTAGAATATGAGTTGGTATT

CACAACTCTCCTCTCAATACTTCATATTT

TAAAAATTACTAGAAATATTCATCAATA

ATATTTCATTTGTTAGCTCTAGATAATGT

274 IM000892 TTCCAGG p001083D

SEQ SEQUENCE{tc "SEQUENCE"~ CLONE CLASS GENE
ID {TC . {TC {TC
NO:
MUTATION "CLONE "CLAS "GENE
" \L SIFICA"
2~ TION \L
" 2{
\L
2}

GATCATGGTTATTTTTGTAGGGTTTATTT

ATACATGTCTACATGAATTTATGTGCAC

CAGATGTGTGCAGGTGCCCATAGAGGCC

TGCGAGGATGCCAGATACAGATAGTTAT

GAGCCACCTAATATAGATGTTGGGAATT

GAACCCATGTACTCTGCAAGAGCAGCAA

GTACTCTTAACTACTGAGTCATCTGTTTA

GCCCTCCTGTTGGGATTTAATGGTCAGT

GTGAAATACTATGAAGATAGAAGGGTTT

CCTAGACTCTGGTGTGTAGGGGTGGGGT

ATCTGTGAGATGGGTAAGCTCTGTTGGC

TTTCTAAGAAGGAGAATGAGCAGAAGG

CACACATAGACATTCACACTTTCACACA

CATGCATGCCAAACACCACACATGCACA

CCACATACCACACGCGCCCTCCTGTTTC

TTACTATGTAATAATGTTCTTGTAATAAC

TTAGTACTCTGCTAATGAAAAGGTCACC

ACTAACTAGATGCTAGCCTTCAACTTTG

GACCAGAACTATGAGCCCAAATAAACCT

CTTGCATTTATAATTTAGCCAGCATGTA

GAACTGTGTCAATAACAATGGAATAGTG

275 IM000893 TTG p001085R

GATCATCTGGCTAAAATTTTATAATATG

ACTCTTTAAATTCCTTAAGAATTCACAA

GGACCTTTATGTTGAAATTACTCATATG

TAAGCTTACTGGAATGAGATGGCTCCCC

AGTTGAAAACACCATTCTTAAAATACTC

AGAAAATAAGAACGAGGCCAGCCCGGT

CTACAAAGTGAGTTCCAGGACAACCAG

AGCTATACAGAGAAACCCTGTCTCAAAA

CAAAAACAAAAACAAAAACCAAAAAAA

AAACAAAAAAGAAAAAACAAAACAAAA

CAAAAAGAATGTAGATATAAAGAAAGA

ATAGTGTTTGCTGGAAATAAATAGTAAT

ATAAACTTAACAGCAGCCTGTCAATTGC

AGGGTTTTTGCACTTGCAGCTCAGAAAG

AAGTGACCCTCCTCAGGAAGTAG.

276 IM000894 p001086R

SEQ SEQUENCE ftc "SEQUENCE"~CLONE CLASS GENE

ID

NO: FTC . f f TC
TC

"CLONE "CLAS "GENE
"

" \L SIFICA\L 2~
2~

TION
"

MUTATION \L
2~

GTGGGTTGTGTGACTCAGAGAGCAAGCT

TCTACCTCCACAGGCAAGGATGCCTGTG

CACACAGAAATGAGATGAAGTCATATGT

GGGGACTGGAGTTGCAGTGGCTCCCAGA

AGGAGGTGTGCAGAGTTCAGGCTGGAG

TCCAGATGAGGAACATCAAATAGAGAG

GCCTTTGGAGGGAGTGGGTTCTCTTGAT

AAGTAGGACTGCCACCCATATCAAGTAT

AAGACTGCCAATCATACTGAATCTCAGG

TTATTTCCCATGTAGCATTGGGAACATA

TAGCATTTGTCACACTGCTATAGCAAAG

AATCTGTGATGAGGTTGGGAGTGGAGG

GGAACGCCTTTGGTCCTAGAAAAAGAAC

277 IM000895 ~~GGTAGGCTGATC p001087D

CCTGCCCTTGCCAGACCCGACCGCAGCT

CATCGAGGAGGTACCCTCTAAAGTCGTC

ACCTTGAGGAGACAAGCTCTGTCATAGT

GCTCGCAGCCCCGCGGCCCCTGCGCCAG

GTTGCGGACGCCATCTTCCCGCGCCGTC

GCCGCCATCTCCTCCTCCTCCTCCTCCAC

CACCTCCCCCTCACCTGCCACTGAACCT

TTCCCCCAGCTTGGAAGCCACGCCTTAA

GGAAGCAGAGTCGGTCGGACACCCGCT

CCTCCTCAGAGCAGCGGCCACCAGAGTC

AGGAAGGGGGGGTCCAATCACGTGATC

278 IM000896 ~ p001088R

GCTCAATTAGTTTATTTAAATTCAAAAC

AAAGCTAAAAGCCTGATGTGTCAGTTGC

CTTCAGCAGAGCTGTTTGGGGCCCATTG

TTAATGTTGTGAATTAAGTTCTGATGTA

AGTAACCAAGCCACTCCCCACACTCTTA

CTTGCAAGAGTTCCAGGCAGATGTTAAG

279 IM000897 GTCAACCCACCTGACTCTGATC p001089D

SEQ SEQUENCE~tc "SEQUENCE"} CLONE CLASSGENE

ID

FTC . FTC
{TC

NO:

"CLONE "CLAS"GENE
"

" \L SIFICA\L 2}
2}

TION
"

\L
2}

MUTATION

GATCACAGTGTTTATCTCAGCAACAGAA

AGCAAATGAGGACACACCTGGGTCTCAC

TGATATACTTGGTGATATGTGTAGTTATT

ATGTCTCACAGTAATTGGACAAGGAAGA

GAGTTCATTGTTTTAGAATGTTGTAACT

GGCATTGTTCTTCTCTCTCTTGTTTTCAT

AAAATCTCACAATATCTACAGCTGTGAG

GTCCAAGGGGCTCATTGGTGATACCCAC

TCTTTCTACTTTGTGTGACCAACCTCTTT

280 IM000898 TGGATGTCAAGGGT p001091C

GATCAGTTGCTATTGCTTGATTGATTGC

GAGACTTTCTTAACAAGAGTCTTTGTCT

CCTCTCACTCCCTAGCTTCATCTTAGAAC~

TTAAACCCACAGCCCAAATGAGTAGTTG

TATGTCATATGCCTCGGCCAAAGCACGA

CTGAAAGGAAAAGAAAGGCAGACACTG

GAGTGCAGGAAGAAGACACAAGGCAAA

GCCCAGAATTCAAAAGTAGAAGCACAG

ATTGTTTTCTTTGTTT

281 IM000899 p001092C

GTACCCTGCATCCCCGGTGTGGCCTTGG

AGTCTGATGCCAGCACTACAGAGCCAAG

CCATAATACAAACCAAATAGAATTAACA

282 IM000900 AGAGCTCCATATGATC p001093D

GATCACCTTCCTAGGATGAACGAAGAAG

GATGGCTGGAGGTTAGGGACCCAAGGG

ACTTCCCCCTAGAGCTGGCTGTGTACCC

TAGGCATGTGTGACTGCAGCTGTACAAG

CAGGGTATTCTGGGATTCACAGTCCTCA

GGATAAGATGACACTACAGATTCTAAGC

TTTATACCCAACATGGTGGAACCCCATG

GTCACACTCTTTCACAGATGGTCACTCC

CATTGCCCGAAGCCCAGCCTTTATCCAA

283 IM000901 G p001094C

GATCAATAACAGCAAAAGAAAAAAAGA

AGTTTACTTTTCATGTAGCAATGTGGAT

AATTCCCATCCAGAGAAACAAAACCAGT

284 IM000902 TCCAG p001095C

GATCAGGGAAGATGTCACCTCCAACCCA

285 IM000903 GCCTAGACATGGTGCTGTGACCA p0p1096D

SEQ SEQUENCE{tc "SEQUENCE"~ CLONE CLASS GENE

ID FTC . FTC FTC

NO:

"CLONE "CLAS "GENE
"

" \L SIFICA\L
2~ 2~

TION
"

\L
2}

MUTATION

GATCAAGGAGCAACCCAATAGCTTCTAT

TCCCCCCCTACTAAAATATGACCCACTG

ATGGATTCTGGGGATGCACAGATGTTCT

CAGAAGTTACTGATGAACACACCATGCT

CTAACAAATAGTATCAAACCCACAGTCA

CAGATGGCCCTAGTTAAGCACAGTGCAT

CACAAAGCAAAGCAAAGAGCCTTGACT

GTGGGAAAGGTACTTGTGGTGAGGACTA

GTGGGGTATGAAAGAAATTAGAGAGGA

TGAAGGTAGTGATATTCAGTGTGTGTGT

GTGTGTGTGTGTGTGTGTGTGTGTGTGT

GTGTGTGTAAGACTATTAAAGAACACCC

TTTTTTAAAGAAAGGCTTTCTTGAGTGTC ' 286 IM000904 ACC p001097R

GGTTAATAAGCTAGATTATCGTGTATAT

ATAAAGTGTGTATGTATACGTTTGGGGA

TTGTACAGAATGCACAGCGTAGTATTCA

GGAAAAAGGAGACTGGGAAATTAATGT

ATAAATTAAAATCAGCTTTTAATTAGCT

TAACACACACATACGAAGGCAAAAATG

287 IM000905 TAACGTTACTTTGATC p001098K Myc , GTGAACGACAGCAGAATCGGGTTGTACC

TCAAAGCACTTACCTTTCCCAATACACC

TGATC

288 IM000906 p001099D

GATCAGTGACAATGTAGCTTTGCCTGGA

289 IM000907 AGGATACTTGAGTC p001100D

GATCAGCAAAATGGGACATCGAAGTTG

AACCAAAGTCATAATAAAACATCCTGAG

GTACATAAACACTCTGTAATAGACTAAT

ACAGTTCCTCCAGGCACCAACAGAAACC

TTGACTACTTCCCTTGACTACTTCAGTCA

AATCTTCTGATAAAACCAGACCCAACTT

290 IM000908 GGAAACGTCCATGTATACAATG p001101D

GATCATCTGCTTCTACCCCCAATTAAAA

GACGGACTAAGAACATAAAAAGAATCC

AGGCACCTAGGTTTGCAGAAATCTAAAG

291 IM000909 GTTGAGTTCCTTT p001102D

SEQ SEQUENCE{tc "SEQUENCE",~ CLONE CLASSGENE

ID {TC . f TC
FTC

NO:

"CLONE "CLAS"GENE
"

" \L SIFICA\L 2~
2~

TION
"

\L
2~

MUTATION

GATCACAAGTTATAGTTGAATAACAAGT

CCTGTGTGTGTCTATGTATCCGTATATCA

TATTTTCTTTATCTGTTACTCTATTCATG

GAAACTAGGTGGATGTGTTAACTTGGCT

292 IM000910 ATTATGAGTTTTGCTGCTAT p001103D

CTACAATGGTTCAGGCTTTGGAATATCA

CTCTATAGGCTGTCTGCCGGCCACCACC

CTTCAGACTGCCACTCACAGGTGCCCGT

GAAGGCTGCCGAGAGGCAGTCCCCATC

AGCCTGTCTCCTACACCCACACACTCTG

TGTGGAGACCACAGGCGCCCAAAGGGT

ATGCTAGTCTCTGCTCTACCGCGTACCCT

CTCCTGAAGGCAGGCATTTCAGAGATTC

CAGTTTCACCAGGAAGCTCAGATC

293 IM000911 p001104C

GATCTTTTCCCCCTTTGTAGTATCAGAGA

GAAAAGCCATGGCATGCATGGCACATG

CTAGGCAAACACTCAAGCATCCTACTCT

GTGATGCAGTTTGAAACAAACTTTTTTTT

TCTTTTTCTTTCTTTTTTTCTTTTTTCTTTT

CTTTTTCTTTTTCTTTTCTTTTTTTTTTTTT

294 IM000912 TTGAGT p001105R

GATCTCTCCCCATCCTCCTGTTGCCTCTT

GTCTGTCATACCTCTACTACTCCATCAGT

TTGCTGCCTCTGAGTCCCTC'TTCTTCCTC

TCCTATCCCTCCTCCCATCTTCCTCATCT

CCAGGTCTCTCCAGGTCTTCCTTCTTCCC

TCTTTTCTTCCCCTTTTCCTCTTTCCACTG

TCTTGTATTCCCTTCCTTTCTCTGTTGGT

CCCTTCCCTCGCACCTCTTTCCTCCTGTC

CCTCCTTTTCATGTACCATATTTCTCTTC

CTCTTTCTGTGTCTCCTCTTTCCTTCCTCC

TTTACTTTCCTTCTAACCTTCCTCTTTCTC

CTCCTCCGGCAAGCCTTTGCTT

295 IM000913 p001106A Gatal SEQ SEQUENCE{tc "SEQUENCE"} CLONE CLASSGENE

ID

{TC . f TC
FTC

NO:

"CLONE "CLAS"GENE
"

" \L SIFICA\L 2~
2~

TION
"

\L
2}

MUTATION

GGTTGTTCCAGTTAAATTGGCTCTCTAC

AGGAACATGGCTTAGTTCTCCCTTAGCC

TTTCATGACCCTACACCTCAGACACTAG

TCAAAGTCTAGCTTAATAAAGTGTTCAG

GATGTTGGTGGAGGGGGGGAGATTGTTA

ATACAGATC

296 IM000914 p001107D

GGACCACTTTAGTATGGGTCATATGTTC

TAACTTTCTTTCATTTTCTAATTCTTTCC

ATCTGCATTGATTGTGCCCAGTTATCATT

AGTGACTTATTTTAGTAACTTAAGGGAA

AGTTGTCTATGCTCTACTTAGTGTCGATT

TAACTTACTCTCCAGACATGGGAGTGCT

TATTTTTGTTTGCCTTACCTCATCCAGGA

297 IM000915 GCTTGTAGATC p001108D

298 IM000916 GATCCGATTATGAAACCGGTTTTGAACp001109D

GATCTGTGGAATGCTATCCAGCTCTTCC

299 IM000917 ~C~'TAC p001110D

TTAGTATCTGCATCTGACTCTTTCAGCTG

TTCGTTAGGCCTTTCGGAGGGCAGCCAT

GCTAGGCTCCTGTCTGCAAGCACACCAC

AACATCAGTAACAGTCTCAGGGGTCTGA

300 IM000918 G~CTCCCCTTGAGCTAGATC p001111R

GATCTGTGGTAATGATTCTGTAAATACA

GATAAACAACGTACACATGGGAATTGTT

CCCTGTGTGAAAGTGTTCATCATAAGGT

GTTTTTATTTTATCTACAATATCTTTGGG

301 IM000919 TTTTTAG p001112D

ACTGCCACATTCCCTAACACCTCATCAA

AGAAAACAACACCACAGGTCTCAGGCT

GCCACTCTAGACCTCCGAGTTGACTCTG

GCTCCTGCTCTCTGCAAGCAAACACGCA

TCCCTCAAGTCTTCATGCTGGTTCTCTCA

AGTCTTCATGCTGGCTCTCTGTAGTTCTG

TAAGCTTACCCTTTCAGTGGTGATTTGG

302 IM000920 GGAGATC p001113D

SEQ SEQUENCE{tc "SEQUENCE"} CLONE CLASS GENE

ID {TC . FTC f TC

NO:

"CLONE "CLAS "GENE
"

" \L SIFICA\L
2~ 2}

TION
"

\L
2}

MUTATION

GATCTCCTGGCTTTGTAGATAAATGAAG

AGAGTTCGTTACCAACTGAACTAAAGAG

CGGCACAGGAAATTAAAAAAAACAAAC

AAACTGATAGTTAACTCAATTGAGTAAG

TATGGAGTTTTGGGACCAAGACATATTA

GGCAAACAGACAGTTTAAGGCCTAG

303 IM000921 p001114D

GTTCCTGTACTTTATCATGTCTTACCCCT

ACCTCCCTCCATTTTAATCATCTTTACTG

GGATGTAATGCATTCCTTTGTCCATTCCA

GGATGCTATAACAAGATACCTTCAGCCT

GTAAGCTATAGAACAGTGTGGTCCTCAA

CCTTCCTAACTTTGTGACCCTATAATATA

304 IM000922 GATC p001117D , --CCANCGTGCCANACTCANAANGGAATTT

TATTCATAGATTCTNTCANACTGCTGTCC

CACATGTGTTCAAAANCAGGTAGGTCTT

305 IM000923 GTCANAT p001119D

GATCTCATTGCACAGAAGAGTTAGAAGA

AAGAAAGAAAAGCAGACTGGGAAAAAT

TTTTGCAGCGAGCATTCAGAGATTGAAC

ATCTATCTAACTTATGCAAAATTCCTATC

AAAAGA.~~~AAAAAAGCTTCAACAGCTG

GGTAAGTTAAAATGTAACTATAAGGCAA

CACAAGGCAAAGTGTTGTTCTTTTTGCTT

GTTTCCGAGATGAGCTCAATTAAAATAT

CAATAGCGACAACAATTCTGAGCTGGAC

TAACAAAGAGTAGAACAATACTACCCA

ACGCTTGTGGTTAGGTAACCTTACACAA

TATTTTCCTAATGCTATTCGGCAATAATT

306 IM000924 GTCAAGAAAA p001121D

GATCTTTTCCTACAAGACTTCTGGGTGA

CCTTGCCAAGCCCAGCCACTGGCTGTGG

TACCTCACCAGGACACTCGGTGGACATT

AGGTAGTGCTCCCCAAGTGCTAGGTGAC

307 IM000925 AGTTTATGCTTCAAAGTGACTCCTGCACp001122D

SEQ SEQUENCE{tc "SEQUENCE"~ CLONE CLASS GENE

ID {TC . f {TC
TC

NO:

"CLONE "CLAS "GENE
"

" \L SIFICA\L
2~ 2}

TION
"

\L
2}

MUTATION

GTGCTGACGCGCCCTTGCATTTGGGAGA

GCAGTCAAGCTATCTGTACCTTCACCGT

AAGACTACATTGTCACTGCTGGCTTCCC

TCCTGTGCAAGGGACGCATTTGGGTCAG

ACTATGCATGAAACAGGACAACAAAGG

TAGGGCCATTGGTAGATC

308 IM000926 p001123D

GATCTCACTGAATATAAAAAGACATCAG

TCCAAGGGTGGAAATTTAACCAAAATAA

TACAATTGTTGTTG

309 IM000927 p001124D

GATCCTCCAGGAACTAGAGTTACAGACA

310 IM000928 ATGCCCGCCTTGTATT p001125D

GTGGCAGTGACTGTCCGTGTGGGAAACG

311 IM000929 TTTAGCAAGTCCGAGCGTGTTCGATCpp01127K NmyC

CAGGAGAGTGTCTCAAAAAGCAGCAAA

GCACCCAGCACCTTAGGGTGAAGGACC

ACTTCTGGAATGTATCCTCCCAGTTGCA

AATGTACACTGTCTCATTCACTCCTGTG

ACATACTTTGTTTGTGAATGCTAATATC

ACATAGTTCGATC

312 IM000930 p001129C

CCAGCAGAGACCAAGCATCCAAAACAT

GAGCCCATTTCAGGCTTCAACCATAGCA

GCTCCCATCTCAATCCTGTTCACCCCCCA

CCCCACCCCCCGCTTCTCTATTTAAATCA

CCACTCTCAGTGACCAAAAAGATGCTCA

TGGCAAATGGACTCTTGGCTCTCTTTTAC

CTAATACTGAAGGTAACAAGATAATCAA

CTGTTTCCTCTCCTTCCCGGGGACCTCAT

CATACAACATTCTCCCACATGAAATTAT

CACCACGTCCAATACCCACATCCTCCCC

GTCCTGTAGAGAAACCACATGCCTAGCA

GCAGTGGTTTCCCACCTCTGTGCTCCCTT

CCACCTCGATC

313 IM000931 p001131D
~

SEQ SEQUENCE{tc "SEQUENCE"~ CLONE CLASS GENE

ID {TC . FTC FTC

NO:

"CLONE "CLAS "GENE
"

" \L SIFICA\L
2~ 2~

TION
"

\L
2}

MUTATION

GATCGCTGTGGTTGGTGTCTGTGTATAT

GCACTGTACATACTAACCAGGTACACAC

ATAAATATTTAATATATAAAAAATAAAG

TGCTTTCTAAGAGGCCCCTAGGCAGGGA

CGTTATAAAACATTTCACAAAGCAGCAA

AACAAAATTGATACAATCAAAAAAACA

ACACTATAACCAACATAGGTGAAAACA

GCCAAACACATAATGTACAATCTGGTGT

TCCAGGACAAACATCTGTCATATACATG

314 GTATATACATACATACTTTTTCACTCAAT Mm.3669 IM000932 AA p001132B 2 GATCGCTAAGTGTGCGCGGCCGCCGTCT

GCAGAATGAATGGAGGGAATGAATGAG

GGTGCGCGCGCCCGAGGCCCGGCTTGCG

TCAGCCATGCGTGCCCGGCATGGACACG

GCCTGGCCTTCCTGGGAGGATGGGACCG

GATGCAGTTAGTCCAGGCGTTCAGCATC

CCAGGGCCCTTCCTCTGTTGCGTGGTCT

GAGTAATCTGTCTCGCAGAAGATACCCT

Mm.1515 315 IM000933 p001133B 28 GGAGGTCTCTGTAGGTGCTTAGACTCAC

GTTACAGTCATTCCAGAGGAGGGAGCTG

CAGCTGCTAGTTTCTGTGCACACCGATC

316 IM000934 p001136D

GATCGGCTGTCAAGACTGGGGAAGGGT

317 I1VI000935 ~CTCCTAG p001138D

AAGCAAGAGGTAATAAAATACATGTGG

ATGGATGACTCAGGGGTTCAGAGCATAC

ACCGATC

318 IM000936 p001139D

319 IM000937 GGGCTCTCAGTCCTTGGGAAGG p001140B 7 SEQ SEQUENCE{tc "SEQUENCE"~ CLONE CLASSGENE

ID

{TC . f TC
{TC

NO:

"CLONE "CLAS"GENE
"

" \L SIFICA\L 2~
2~

TION
"

\L
2~

MUTATION

GATCGTGATGACTTCATAACCATCACGT

GTGAAAAGACTTAATGGCGCTGAATTCA

CATGACACTTAAAATGCACAAAGTAACA

AATTTTATGTCACATGTATTAAACTACA

GCTAAGTACATGGGGAAAAAGTTAGAC

TTAGAATAACTCATCCAGAGTCATATGG

320 IM000938 TAG p001141C

GATCGAGGAGTAACCCAATAGCTCCTAT

TCCCCCCTTACTAAAATATGACCCACTG

ATGGATTCTGGGGATGCACAGATGTTCT

CAGAAGTTACTGATGAACACACCATGCT

CTAACAAACAGTATCAAACCCACAGTCA

CAGATGGCCCTAGTTAAGCACAGTGCAT

CACAAAGCAAAGCAAAGAGCCTTGACT

GTGGGAAAGGTACTTGTGGTGAGGACTA

GTGGGGTATGAAAGAAATTAGAGAGGA

TGAAGGTAGTGATATTCAGTGTGTGTGT

GTGTGTGTGTGTGTGTGTGTGTGTGTGT

GTGTGTGTGTAAGACTATTAAAGAACAC

IM000939 GTCACC p001144R

GATCGGGCCACATCTCAGACACTCCTAT

AGCTACAGAGAGATACCGTTTCCTGTTA

TCTTTGCAGACAACTTTATCTGTTACTCA

GAGAAAACCTCCAGGTGCCCCTAAAGA

AACTGGGCCCTACATCACATACCCATAC

CACACACATGCAACATGCAAAACATAC

ACACATACATAGACACACACACCACAC

GCACACAGACACATACAGACACACACA

CATACTATACATACAGACACATATGCTA

CACACATACAGACACACACAAGCACAC

ATACTTCACACACAGAGACACACACACC

ACACACACACAC

322 IM000940 p001149R

GCCTGCCTCTGCCTCTCGAGTGCTGGGA

ATAAAGGCGTGCTAGAGCCTTCACTTGG

CTCTCTCTCTCTCTCTCTCTCTTTTAACCT

CCTTTTTCCTTTAATGAGTTATTTATTTTT

ATTTTATGTGCATTTGTGTTTTGCCTGTA

TCCGATC

323 IM000941 p001151R

SEQ SEQUENCE~tc "SEQUENCE"} CLONE CLASS GENE

ID f TC . }TC }TC

NO:

"CLONE "CLAS "GENE
"

" \L SIFICA\L
2} 2}

TION
"

\L
2}

MUTATION

GCTTCAATATTCGAAAAGAATTAGTAAG

324 IM000942 ~GGCTGTTCGATC p001152D

CTACCAGGAAGTCAGGGGTTTCCAGGAA

CCCACACTTGGCTTCCTCTGCACAGAGG

GACCTCATACCAGTGAGATGGTGATATG

CTCCCTTGTTCCTGAGCCTCAGTGGAAG

CGACTTTCTATGGATACTCCCTCCCTCGT

GCCTCTCCTTCTTTCCCTCTCTGCTCTCC

325 IM000943 CCCCCCCCCCTCGCCCTCACGATCp001154D

ATACACACCATCAGATATACCTCATTCT

GATATACCTACAGGTACACCAATCACAC

ACACACATTTACTCACATGTACATGCAC

ACACCACATCGGTTAGAACCAAAGACCT

CACACACACCCCTCACACATGTTTCATC

TCCATTATCAGTGCCGATC

326 IM000944 p001155D

327 IM000945 GATCGTCAGGTTATGAATGCCAT p001156C

AGTTCTCAGAACCAGCTACTGTTTACAC

AGGGCCTCATGCAGCCTTGCTGTCCTCC

ATTCTGCAAGCACAGGATACACACCCCT

IM000946 C p001157C

CTTCAAACCGGTCCTGCGAGGAGTCCAC

329 IM000947 ~~CTCTGCCTGCCGATC p001158D

GATCGAGGCCAGCCTGGTCTACAAAGTG

AGTCCCAGGACAGCCAGGGCGATACAG

AGAAACCCTGTCTCAAAACAAACAAAC

AAACAAGATTCCATTGAGGAACACCCA

GATGGAGACATGGGTGTTCTCCATAGAA

GGGTTAGGGGCTTCCACACCGTTGACAC Mm.8136 330 IM000948 p001159B 6 GATCGGTGTGCTTTCTGCAGTTTCAGCG

AGGACTCTGGGCCCAAA ATGTTTTAAAG

CAGAAAATTGGTAACACTAGAGATATTG

TCAAAATACGATTTCCTCTGGTTCAGAA

ATGGCGAGAGGGAGGGCTGGAAGGGTG

331 IM000949 TTGTTGATAC p001160B 5 SEQ SEQUENCE~tc "SEQUENCE"} CLONE CLASS GENE

ID FTC . FTC FTC

NO:

"CLONE "CLAS "GENE
"

" \L SIFICA\L
2~ 2,~

TION
"

\L
2}

MUTATION

CTGTCTCAGGCATGAAAACACTAAAAGA

TGACCAATTTCAATAAAGATGACCTGAA

TGTCTACTCAATTCCCACCATAAGGTCT

332 IM000950 ACAAGATGTAAATGGGCCGATC p001161D

GATCGTGGAAACAGAGCCTTGAATATAA

TGAAGAAACAGAGGGCAGGCAGCAGCC

GCAGCACAGCAGGGGCACTGTGAGCAG

333 IM000951 GCAGCAACAGGGGG p001162D

CTCCCTACTACCTTCCCTTCCTGGACNTC

CACTGAGATGAGGCAGGATAAAGGGTC

AAAAGAGACCTGACCTTCTCTGCCAAAG

CCAGGGATTTCTGGAAGAATAGAAATG

GTTCTGGAATTCACAGATGCAGTGGTCT

AGGATC

334 IM000952 p001163C

GATCCATAGGTCTCTGCTTTCCCCATTCA

GGGCTGGAGTTATAGATATCTGTCTATC

ACCCAGCTTTTATGTAGGTTCCAGG

335 IM000953 p001164D

TATGTATCTACAAGCCAGAAGAGGGCAT

336 IM000954 TGGATC p001166D

GATCCGAGTTCTCTCCGGCCACGTACCT

TCACATCCCATGCACCCTGGTATGTAAG

AAGAGCCCAGCTCAC

337 IM000955 p001167D

338 IM000956 TCCCATAATATTTCCTCAGAAGGATCp001168D

TATAGTTCTGCCTGTGGAGTGTGAGCAG

AAATGTGTATCGTTTCTGGGTCAGAGCT

TTCAGGAACTGAGCATGACTGCTCTACA

GTGTCTTTCTCCTTCTGCCTGCTGAAGCC

CTAGGGGACAATAGAACCACAGGATGA

AAGGACTCGGGATC

339 IM000957 p001169D

SEQ SEQUENCE{tc "SEQUENCE"} CLONE CLASS GENE

ID FTC . {TC FTC

NO:

"CLONE "CLAS "GENE
"

" \L SIFICA\L
2} 2~

TION
"

\L
2}

MUTATION

GATCCAATGGCAGCTAGCAGAGTCAGA

GAGCCCTCACTCCAGTTAACTAGGGGAC

CCACATGAAGTTCAAGCTACATATCTGC

TACAAATGTTTGAGGGACCTCCTAGCTC

CACGCCACATGCTCTTTGGTTGGTGGTT

CAGTCTCTGTGAGCCCCACTGGGCTCAG

GTTAGTTGACCTACAGTCTTCTTGTGGTA

TCCTTGACCCCTCTGACCCCAGAGTTTA

ACAATAGGCCTTCTGACTCTAGAAATCT ' ACCTACATTTTTTCCACTTTAAATTCCTC

340 IM000958 GGCTCACATAATACCAATGAACT p001171R

GATCCATCTGCACAGTCTGTCACCGGGG

TCCAGCAAGTAGCAGCCTTTCTGCTGCT

GTCTGTCAGACCCTCCAGGGAGGGAGA

GCTTGTCTTCTGGCCTCCCAACAGGACC

CTGCGTGACGATGCAGGGACAGCAATG

ACAACTCATTCCAGACTCCAGGTCCCTG

GAGGAGCCTCCCACAAGGGAAAGAGAC

TACTTCACTGGTCCTGGGCCCCTCTTTGC

GCGCCCCGCCCCCAGACTCAGCGTCTAG

TGTTGCTGGGCTCCCCT

341 IM000959 p001172K Pinzl AGGGTAACAGGCTTAGTTTGGGGCCTTT

CTGTTACAGGAAAACCATGAAATGTCCT

GAAGTGCTCAACAAACAGGGAATATAG

AAAATCATAATGGTTCCTCCCTAGCACA

AGGAAGCATGTTTAAAAATTGCAGCAA

AATAAAAAAGAACAGATTCTTAAGATTG

AGGGATTTTACGGGGTGGTACTTTTTCTT

TCTCTTATAAACATTTATTTACTTTTGTT

ATTCAAGACAGGATC

342 IM000960 p001173D

GATCCAGCTGTTTGCTAACATACGTAAA

GGTATGGATGCTGAGAGAGTATCTATCG

AAAGCGAAGGCACCCTCCCCAAATTCAA

GAAAGCAGCTGTTTCTAGAACCAAAGAC

ACCACCGCCGCCGCCGCCACCACCACCC

GCGAGCGCCCGGACCCTGTTACAGAGTG

343 IM000961 TC p001174C

SEQ SEQUENCE ftc "SEQUENCE"}CLONE CLASS GENE

ID f TC . f f TC
TC

NO:

"CLONE "CLAS "GENE
"

" \L SIFICA\L
2~ 2~

TION
"

\L
2~

MUTATION

GATCCTGAAATTATCACATTTGAATCAA

ATCATGCCCTGCCGAGGATAAATAACCC

AAACGACCGAGAAAACCGAGAAAAAGA

344 IM000962 ACATTTACTGACCATCCTTC p001175D

GATCCAGTCCAGAGCAATGTTCACGTCT

345 IM000963 GTGATGGTAT p001176D

AAAGGTGCTCTCAATACTTAACAATCCA

TAAGCTTGTGCTCTCTTAGTCGTAAAGG

TGGGGTCCATCAAAATCCCATGACACCA

CAGCGAGACCAAACTCCTTTTCTCTTAC

TCCGAATCACCCATCCCATGTGGGAGAC

GAATAAGAACACAAACTACATCTTCAGT

GACATAGAGTAGCATCTGCAACAGAGG

AAGTGGATGGAGACCTTGTCTCTGGTCA

AAGACAAAGCATGTGACAGCTGAGCCT

GGCACTTCCTACTTGGGTCACAGCTCAA

ACCCACCTGAACCAACAGCAGAGCCCC

ACAGGGATGGGACTCACATGTTTCCCTC

TTGCCCTGGAGCTTCGTGCATGTTGTTA

GAAGCTAACTGGCTAACACGCACGGGA

ACAGGCAATGTAGTTGGAGTATGAATCG

AAGTCACTGGGCATGGTCCTCAGTCAGC

346 IM000964 CAGGATC p001177C

CTAGACTAGTATGGCAGAACCTATCTTC

TTCTAATCATTTAGATGAATACTCCACA

TGAGAGAGCCCTGAGAATATCTGTAAAA

AGTAATCCAGGTTCTGTTACTTCTAGCT

AATCTTATCTAGGTAATAATAGATAAGG

AATCGGGATTCACGAACACAAATACCTG

TACAAAGCATGTTGTCTCACACGGGACG

AACACTGTTTCTGCTGTGCTTTATAACGC

TGGGACATACAAAACTAGACTCTGCCTA

AGAAGTGTTTGGAAACATTTGGGTTAAA

TTATAGTCAGATAAAACAACAACCATGA

GTAAATCGAAGAATATAAAACTAGGGA

347 ~p00965 TC p001178C

SEQ SEQUENCE{tc "SEQUENCE"~ CLONE CLASS GENE

ID FTC . {TC f TC

NO:

"CLONE "CLAS "GENE
"

" \L SIFICA\L
2~ 2}

TION
"

\L
2}

MUTATION

TTTCCTGGACAATAATGTTTTCTTCATTA

AATTTACACTTAGAGCATTGTCTTAATC

CATGAATAATTCCCAGCTCCTAGCTCAT

TACCTGTGACACAGCAGGGATTCATACA

TTTATTGAATGAATGGATGAGTGAATGA

ATAAAAGAATGAGCATATCAAGAGGAT

348 IM000966 C p001179D

349 IM000967 GATCCCTTCTGTCTTTGGTTATCTCp001181D

GATCCACCACTGAGCCACTTCTTCAGCC

TGTGACTGTCATTCTTAATCATCCACAC

AGACTTCTCCTTGGCAGATTTTGCCCAC

CTCTTAAGACTTTCACAAAGGTTTTTTTC

TTCTGCAGGGCACATGAGAAAACAACTC

TGTCATAAAGAAACCCAGGAAGAAAAC

CAGCAGAGGCAGGTGAGTTAAGCCTGT

GGTGGACATTCCTTCTGGGGATGACCAG

ATGGGAACAGTAATTCACAGAGGCAGA

GGGGTCTGCAGTCACTCTGCATGCCACA

TGTGTAACCCTTAAGAAGTGAGGAATGC

TCTCAACAGGAAAAACACAGCAGCAAA

TGCTATGATACCAAAGCCACAACTCCAT

GGGTCCCTGGAGCCTCTCGAACTAAGCT

GCCAGCTAGGGAGCTAACACTAGCTTTG

GATGAAACACAGCTCTGGTAGAGTT

350 IM000968 p001182C

GCTGGGATTTGAACTCAGGGCCTTCAGA

AGAGCAGTCTGCTCTTACCCGCTGAACC

ATCTCACCAGCCCCCTTCCGTTCTTCCTT

TCTTCCTTCCTTTTTTTTTTCCACATTGTT

TTCAGACTGCACCTTGTTTAGTAGTCTA

GGCTGGCTTCCAATTCCCCAATGATTGA

GCTATGGGTATACTCTCTTCACCTACTTT

GATTTTTTGTTTGTTTATTTGTTTTTTTGT

TTTTTTGAGACAGGGTTTCTCTGTATAGC

CCTGGCTGTTCTGGAACTCACTTTGTAG

ACCAGGCTGGCCTTGAACTCAGAAATCT

GCCTGCCTCTGCCTTCAAAGTGCTGGGA

351 IM000969 TC p001183R

SEQ SEQUENCE{tc "SEQUENCE"~ CLONE CLASS GENE

ID {TC . {TC {TC

NO:

"CLONE "CLAS "GENE
"

" \L SIFICA\L
2{ 2{

TION
"

\L
2{

MUTATION

GCTTCATTTAATATACATCATTTACCAG

AAACCACAGACATCTTTGTACCAACATA

TAGTAATATTAATCACAATAGCCATCAC

TCTTATGTAAGGATGAGAAGACTCCCAG

CTAATATGCTAATGTGTAGAAGATGCCA

GATGGATC

352 IM000970 p001184D

GATCCCTGCTTCTGTAAATCCGCAACGA

CAATTGTTATCTTCTCCTTTTCTTTCTTTT

ATTTGTTTTATTCTATTTTATTTTTCAGAT

353 IM000971 GAAAA p001185C

GATCCTCCTGCCTCTGCCTCCTTCAGCAA

IM000972 GCGAAAAA p001186R

GATCCCCCTTTCTCTCTGTCTACGGCCTC

TGTCCTGTGTTAGCTGTAGGCCTACTCTG

TATGAACAGACCTCAGCGGAGGGGTTTG

GACTTGGGCTTGTGTTTCTTAAGAGAAT

GGGGCTTCCATGACTGTCCCTCTGTCCCT

TTCATCCTAACCCTGCCTCCCGCTAACA

GGCAGCCTGTATGTTTCTTGCACTGTTCC

TTCCTCCTGACGGTCTGAGTCGTTTCCCT

CAGAGACTGTTGCTGCTGCTTCAGCTTT

CTCTCAGCTTCTCTCAGGGCTTCCGCTCT

GGAGTTTCTCCTGCTTCTCTGTTTACTTT

TCAAAGCTCAGCCTCCATCTTCTGCACC

TGCGGAGTCATCACTGATTCCCAGCTGT

GGCCTGTCACCCTTCCCTTTCTTTCTTCC

TCCTGTGCCACCACCATGCACCCTCCCC

TTCTGTCTGTTGTGTTGTCCTAACCTTTC

TTCTCCCCATGCACCCTCCCCTTCTGTCT

GTTGTGTTGTCCTAACCTTTCTTCTCCTC

TCTGTGCTCTGCAGGTTTTAGGGTCTCTG

TATGATTTGTACCTGCATTTATTTGAACC

TCCACTCTTCTCTTTCCCTCTCTTATC

355 IM000973 p001187D

SEQ SEQUENCE{tc "SEQUENCE"} CLONE CLASSGENE

ID

f TC . {TC
FTC

NO:

"CLONE "CLAS"GENE
"

" \L SIFICA\L 2~
2~
~

TION
"

\L
2~

MUTATION

GATCCTGCAATACCTCTCCTGGGCATAT

ATCTAGAAGATGTTTCAACTGGTAATAA

GAACACATGCTCTACTATGTTCATAGCA

GCCTTATTTATAATAGCCAGAAGCTGGA

AAGAATCCAGATGTCCCTCAACAGAGG

AATGGGTACAGAAAATGTGATACATTTA

356 IM000974 CAA p001188R

ATCTAAACTATAATAGTTGCAGGGCTAG

TTCATTGTCAGGTGCGTGGCGAAAGAGT

GCAAATCCCGGGGGTTCTTTCTTCAGAA

TCAACGAGGCAATACACTTGAACATGTA

TGTTTTTGTAATCTGCGGGGCATCACCC

GTCCTCCAGGATC

357 IM000975 p001190D

GATCCCCCAGAAGTGATAGTTTAACAGT

GAGGTGAATGCAAGCAATAAGCTACCT

AAATCATTAAAACTTCCTATTTTATTAGC

ATCTATTAGTTGCACACAGCAGTGATGG

358 IM000976 GTTTCATT p001192I~ Irf4 GGACCTCTGTACAAATGTCGGGAGATAA

GGGAAGAAAAAGACGACAGAGATAGCA

GTCAGGATGTAATGTGTACTAGATGAGT

GGTTCAAGCAATAGGATGGAAAGGGCT

TAGCAGGAGAGATTTTTAAGGATGGAG

GCAGTAGATTACATCTGGGAAATGTCAC

359 IM000977 TGGAACTGGATC p001194D

GATCACCAGGCTGGGCAGGCCACCTAA

GGAAGTGGCACGGGCACGGGCACTTCC

CCAGAGCACCCTCTGGGCACTCTGAGAG

GGGCACAGATGTACTGCACTAGGCTGGG

360 IM000978 CCCGGAGGAG p001196D

ATATAAAATATCGAACGTCCTCTGGCTT

GTAAATATCATGTTAACCTTCAAAGCGT

TCGAAAGCGCAGGAAATCTGAGTCAAC

AGAATAGTATGTAAGTTTATTTTTATAG

AACCTGCCTGAACTGCAAGGGAGGGGC

GGGGCGTGGACCCAGGCCTGCCTGCCAA

IM000979 C p001197D

SEQ SEQUENCE{tc "SEQUENCE"~ CLONE CLASSGENE

ID { TC . {TC {TC

NO:

" CLONE CLAS "GENE
" "

" \L SIFICA\L 2{
2{

TION
"

\ L
2}

MUTATION

GATCAAGTCCTGGTCAGTACCAAGTTAA

AAAAAAAACTATATAAAAGCTATATTAG

GGGACAGCTGTGGCTTTTGTAGAAAAGA

AGGTCCTGGTGCTATGACCTGCAGATGC

CCATGTGGAAGTCTTCAGATGAAGACTT

TCTCATGGAGTAAACATACTCTGTTGTTT

GACCATGTGGACTTGGTTCAAAATGCCC

ATGGATGCTCCTTTGGGTACCAGGCTTC

AGTGGGAGTCCCAAGCCCATGTCTTTAT

TTGAGCATGAGCAGTACTGATGCTTACC

TAGTCTTATTCTTTCCTTGCCCCCTGCCT

GGACCGTCTCTGGTTACAAGGATGCTGC

AGTGGGAAGCGGTATGACCGTTACCTTT

ATGGGACTGAGACCAACTAAGGGGAGG

CTGAGGAGGCTGCAGTGAAGTTATTGTT

GGGACTGTGGGCTAAGATGGAAGATAA

CATGTTAACAAACTCAAGTGCGGAGGTC

TCAGAAGTAAAATTGCCTGGTTAGTA
80 p001200D

GATCAATTGGTAACCAAGCCTTGAACTG

363 IM000981 ~'C'AGTCGTGAGGTGGGGGACTTTATATp001201D

GTATCTCCCACCTGGCTCAATATAGGCT

CTTTTCAAAGGCTAAATTAAGACCAAGG

ACACAGAAGGGTAGCTCGCTGGGCAAA

364 IM000982 CGTGATCCCTGCTGATAGTGTAG p001202D

CTCTCGTGTGGAGATATTAAAGGTGTGA

365 IM000983 A~CACTAAGCCCTGATC p001203A Scp2 GATCAAGCAGAGGGGTAAAATAAGGGC

AAGCTCAGTGTTAGACAAGCTCATAAGC

CAAAGCTGTGAACTCTCCAACGCCT

366 IM000984 p001205D

SEQ SEQUENCE ftc "SEQUENCE"~CLONE CLASSGENE

ID FTC {TC {TC
.

NO:

"CLONE CLAS "GENE
" "

" \L SIFICA\L 2~
2}

TION
"

\ L
}

MUTATION

GATCACTTCAACATCAAGAAGTTACCCA

GCCCCGGGAAGAAGTACATTTCCAGGA

AGCAGTGTTTTCATTTTTTGAGTCTGCTC

CCATCCCGTTTCTCTGCAGCTGGGTAAA

CTTGAAGCTGGGCTAGCCTCTGGGTAGA

AGGCAGCTAATGACAACTACCTTGCCTG

TCCCACGGAGCCCGGACAGAACCTGAG

ATAACACACCTAGCTTGCTGAGTAAAGG

CAGGTTACTGTGTGAATGACTCTGAGCT

GTTCCAGCTCTGCAGAGCAGGAAGTCTG

367 IM000985 ACTGTGGAGATAAGAGATAT p001207D

GTCATGATTTGTAATTCCCTGTCCAACTC

TCATTGCTTAGGTCAAAATGGCTTAACT

CCTAGCCTACTTCAGTGTAAAAGTCATG

368 IM000986 CGTAATGATC p001209D

GATCAGGCTGGCCTCAAACTCAGAAATC

CACCTGCCTCTGCCTCCTGAGTGCCGGG

ATTAAAGGCGTGCGCCACCACTGCCTGG

CTGCTTTCTTTTTTTTCTTTTTCTTTGTGT

GTGTGGGGTAGTGGTGGTGGTGGTGGTG

TTCGAACC

369 IM000987 p001210A Hsc70t ATGTGTGTGTGTGGCATGTGTGTGCCAT

TGTGTGTGTGTGAGTGAGTGTGTGTGTG

TGTCTGTGTATGTTGTGGAACAGATTCC

TGTGTATGTTTCCTTCTTCACACATGTTT

TCAGAAGTGAAACCAGGCTATGAAGAC

CGCCAGGCAGCTCTGCAAAGCAGTACTG

AGAAGGTGGGACACTGCGGGGGTGAGA

370 IM000988 ACAGTATGCATGATC p001212R

GATCACACTCCATGAAGCTTCTCTTCTG

CAACAGGAAACAAATAGCAAGCAAAAC

CACTGGTAATCATTATGTGGTGTCTAAC

AGAGAGCGGTGACAGGGGTGGAAAACT

GAATGACATTTAAAAGGAGCTGGAGAT

GTTGGTTTAAGGCGTGTGGGGGCAGCCT

371 IM000989 ACAGCATGGAATTGGTCCATAA p001213D

SEQ SEQUENCE{tc "SEQiTENCE"}CLONE CLASSGENE

ID f TC . {TC
{TC

NO:

"CLONE "CLAS"GENE
"

" \L SIFICA\L 2~
2~

TION
"

\L

MUTATION

AACCATCATGGTAGCTTCTGCTTCTCTCC

ACGAAGATGGTTGTTTCCACAGTTGCCC

TCTCTACAGAGTGGTCCTGTATTAAGTC

ACAGGTGCCATCCTGGTGATC

372 IM000990 ~ p001214D

GATCTAACCACCCGTTTCCTGCCCGGTC

TTAGATAGACCTCTTGGCCCCCACGCAC

CTAGACAATGGAGTAGACAAGACTTCG

AGGGGAAAGAGGCTTCCCAAGATGACC

CAGCTCATTGGCTTGACTCCCAACGCCA

CCCACTTACACAGTGAGTATCTCTGGTC

373 IM000991 TTTGCTGT p001215A Farp GATCTATGTCATCTTCCAGGACTCAGAG

TTAAGAGAGTTACCAAGTGAGAGCTCTC

ATCACCTTCTGAAGCAGTTGAGAATTGG

AACCCAGAAAGATGCACATGCACGGGC

ACACACACACCCACGGGCACACACCCA

CCCACCCATGCAGAGAGAGAGAGAGAG

374 IM000992 p001216D

TAGGTTGTGCCTGGCCTGTGCAGGACAT

GCCTATGGGGTCTTCATCCCTCTCACTTA

CTCTAATGTTCACTACTGACAAGCACTA

. GTAAGAAAGTAGGTGCCTGTAAGAGAC

TGGAGCAGCCTGCTGCTGACTTCAGCAC

CTGGGAGGCCTCAGTAGCAAAGCTTAGG

GTTAGCAATCCTTGGGGCTGTGGCTGGC

TGAGCTCTGGGGTACCGTTTAAGAGGAA

AGCTGGAGTCCAGGTTCTCCAGGCCCTG

GGTGCATCCCACAACCTCTCTCTCTCTCC

TTTACCACTCGCAGCCTTGGCTAAGGAT

GAGGACCGGGACCTGGAGTTATCTGAG

ATC

375 IM000993 p001217A Sran SEQ SEQUENCE{tc "SEQUENCE"~ CLONE CLASSGENE

ID FTC . {TC
FTC

NO:

"CLONE "CLAS"GENE
"

" \L SIFICA\L 2~
2}

TION
"

\

MUTATION

GATCTCTCCCCATCCTCCTGTTGCCTCTT

GTCTGTCATACCTCTACTACTCCATCAGT

TTGCTGCCTCTGAGTCCCTCTTCTTCCTC

TCCTATCCCTCCTCCCATCTTCCTCATCT

CCAGGTCTCTCCAGGTCTTCCTTCTTCCC

TCTTTTCTTCCCCTTTTCCTCTTTCCACTG

TCTTGTATTCCCTTCCTTTCTCTGTTGGT

CCCTTCCCTCGCACCTCTTTCCTCCTGTC

CCTCCTTTTCATGTACCATATTTCTCTTC

376 IM000994 CTCTTTCTGTGTCTC p001218A Gatal GATCTTAGATGGCCAAATGTTGTGAACG

TTTCCTAGATGTGTCGTGAGCACTCAGG

GTTGAGAGCCCTGGTTATTTAGCAAGTG

AAGTGGATGTATACACAAGCAGAAGGC

TGAAACTAGACCCCGGTCTCTAATCCTA

TATAAAAACCAACTCCAAATGGACAATA

GAAATAAGTGCAAGACTAACTCCAGGG

377 IM000995 TCACTGGAGGGATACAAAGGGAGATGCp001219D

GAATGAATATATATATGGGACTAAATGC

CATGCCATAACCAAGAGAACTTAAAGA

AGAAAGTGTTTAGTTATGCTTACTCTTTC

AAAGAGTCCAGCTGCCAAAGGGATGCT

GTCAGGAGTAGCTGAGAGCATACATCTG

GACCCATTAACAAAGAAGGGATGCTTCC

378 IM000996 CCAGCAAGATC p001220D

379 IM00099 7 GGAGGAGGGGCACCTTCTCAGAGATCp001221D

GATCTTAAAGCTAATAGGTGTGTGTGTG

TGTGTGTGTGTGTGTGTGTGTGTGTGGTC

AGTGGTAAAATTGTCTACCAAGCTCTAG

GTTCACCCCTCACAGAGCCGGAGAGAA

AAGGAGAAATCAACTCAAGTCAACCCA

AACAAAACAAAGGACTCAACA

380 IM000998 p001222R

SEQ SEQUENCE{tc "SEQUENCE"} CLONE CLASS GENE

ID FTC . FTC FTC

NO:

"CLONE "CLAS "GENE
"

" \L SIFICA\L
2} 2}

TION
"

\L
2}

MUTATION

GATCTGTTCCCAAATCCTCAGTTACTCTC

TGGGAAATGGCTTCTGTATGTACACATG

TTCTCTAGCTATGTAATAAAAGACCTCT

CTTCCTTGGCAAAACTTAACTCTACCTTA

GAAAACTCTGATGAGTACTAGAAAGAT

GACATGTTCCACAAACGTCTTAAGTGAT

TCAGGGTTCACAACAAAGAAGGAGATG

CTATATTGTCTTTCATGACATAGCGTCTA

AGTCCCATAGCATAACTTCTATAACACA

381 IM000999 CAAGTGGGT p001223D

ACACTAGCTTCGAAACTTCTTAGTTGTCT

GTCCCTGAGCCCTTTGTGGTACTTCCTCC

TCAGAGCCCAGCTCCAGCAGTCCCCTTA

GCGGCTGTTTTTAGCAACCACACCCTCT

GACTGTGGGTTTGCTCTGCAGTGGCTTT

AAGGTTTGAATACGAAATGCCTTCCACA

AACAGACACTACAGAATCTTAGGTGTCG

AGACAATGGGCATTTGAGAAGGAATTG

GAACCTTCAGATC

382 IM001000 p001224D

GATCTAAAGGGAAACCCTTGTCTTTTTG

AATCTGAGCCAGCACAATATTGTATTTC

CTTCAATACGTGGTGAATGTTGTATTAG

CAACAATAAATGGAAGCAGGGAATCTC

TCATCTCATGAGTGATATTTACAATGTCT

GTCTGGAAACAAACGGCTAATCAAGTTA

GTCACTTACTGTTCTTTAGAAAACACAG

TACTTTGAAATGCATACCTAGCAGAGAA

TATAAAGTATTTACTGTTGGACTAGACT

383 IM001001 GGGCCCCCGGGTGTGAGGG p001225D

GATCTATCTCATCCTGTTATAGCCGGAA

ACATGATAGCAGGATTGGGCAACTCTCC

AGTCCCTTTCTCTTGGGTAAAGTCTGAA

AGCAAATCGCCCGGACCCATCTCCTGTC

TCTGCAGCCTGTCCCAGTTGCCTCTGCC

ACTCACTAACTTCACTCCTTAATTTAAA

384 IM001002 AAGCCAGCACATTTATTGACCGTCTp001226C

SEQ SEQUENCE{tc "SEQUENCE"~ CLONE CLASSGENE

ID

f TC . {TC
f TC

NO:

"CLONE "CLAS"GENE
"

" \L SIFICA\L 2~
2,~

TION
"

\L
2~

MUTATION

GCATGTCTCCAGACTCTCAGCTGCTTCCT

GTCTGCTCCTGCTGGATGCTTCATGAAG

ATGGAGTGAAGCAGTGGTCAGCTTGTCT

GTCTCAGCTGTTCTATGTGCATGTGTGC

ACTTGCTGGAGCTTATGTGCACCACAAG

CACGCAGGTGCACACAGAAGCCAGAGA

385 IM001003 TC p001227D

GATCGAACACGCTCGGACTTGCTAAACG

386 IM001004 TTTCCCACACGGACAGTCACTGCCAAp001229K rnyc GATCGTGAGTTCAAGACCAGCCTAAAAT

ACACAGTGAGCCTCTGTCTTTAAGAAAC

AAACAAACAACAACAGCAAAAACAAAA

ATATTGCTCAAGACCCAATGTTCCTCGG

ACTATTTATAGGAATCAGAGTTGCTGTT

CTTCTCAGGGCATGCCAGTTAATTTGAA

AGACAAGGTGTAGAGGCAAAGGAAAAG

TGATTTTACTTGGATAACCACCTCATGG

AGCAGTCAGGGGAACTCTAGCCTCAAA

GCTCTTGCAGAAGTTATAT

387 IM001005 p001230D

GTAGAAGCTTTTTAGAAATACGTTTCTT

ATCTATCTATCCATCTATCCACCCATTAT

CATCTATTATCTATATTTAACATCTATCT~

AAGTATCTGTTTATCTATCTACCTGTCTA

TACCTACCTATCTACCTACCTACCTATAG

CGATC

388 IM001006 p001233R

GATCGTGCATGCATGGGTGTGTTTTGGG

389 IM001007 GAGAGGTTCTGT p001235D

GTTACTATTCATCTGAGGTTCTCTTTTGT

TGTATTTGAACAGGAGGAAGGAACCAG

GAGCTCAAGGATGTAGCTGGAAATGCTA

TAAAACTGGGATGCCCTAGAGAATCACA

CGGACAATCCTGCTAACCCATGGATTGT

ACACTCCAATATACAAGATAACATGTTT

IM001008 C p001239D

SEQ SEQUENCE{tc "SEQUENCE"} CLONE CLASS GENE

ID {TC {TC }TC
.

NO:

"CLONE "CLAS "GENE
"

" \L SIFICA\L
2} 2}

TION
"

\L
2}

MUTATION

GATCGACCGCAGATGAGGTCTATGCAGG

AAAAACGATGTCTGGAATTTTATTAAAA

TTGCTCAGCAACTCACTGCCACGTATAC

391 IM001009 TTGGAGAGCCACTTAGGGAT p001240K Myc CCAAGTATACGTGGCAGTGAGTTGCTGA

GCAATTTTAATAAAATTCCAGACATCGT

TTTTCCTGCATAGACCTCATCTGCGGTCG

392 IM001010 ATC p001242K Myc GATCGTAGAGAGATGGACCCAAATATC

AGCCAGAGAATTAGACCAGAAAATGGA

ACCAAAGTACCTGTCAGTCCAAGGATGT

393 IM001011 AGTGGCACTAC p001244D

GTCCCCAAATGTAAACAAAACTATCAAA

AGAAATTGGGCATGCCAGAATTTTGTTC

TTCACATTAAGGGAATTCTGAAATTGAA

ATCTTGCTAAGGGAAGGGTGGCTTGAGA

ATATTAACAGAATCCTAGGTTGAAGGAG

CAGGAATAGAGGATC

394 IM001012 p001246D

CAGCTAGCCCATGGAGCTGCTGGGACAC

GAGGCCGCAGGCTGAGCATAATGGGGA

AGAGATGGCAGATTCATTCACCCACTTG

AGGAGACCACAATTAGTCAGAGGCATG

CTGGGCCTGGTCAGAGTGCTCAAATAAA

CATTCACAGGACCAAAGTAATAAGCATT

GGTGTTACAGAGATAAATCCTTTAGCAG

GGACACGGGACCCCAGAAAACCGGAAG

GACATCGTTCCCATCATGAGAACAAGGA

CAGCAAACAGTCACTGAGGGTATACTAC

TGACCAGTTCCAACAGGGATGGTCAGAA

GTTGAACGCTGGATATATCATGAGCTCT

GACCTAAATATTCTGAGTATTCCCCATG

TTTGAATGGACTGAATACTCACATTTTCT

AAATGCTGAATACTGAATTTTCATAGCA

ACCATCATAAGGCATGGTGGCAGAATA

ATATCTCTCACTCAGAAAGCAAACTATT

CTAAGTTGGGGATC
395 IM001013 p001247D

SEQ SEQUENCE~tc "SEQUENCE"} CLONE CLASSGENE

ID {TC . f TC
{TC

NO:

"CLONE "CLAS"GENE
"

" \L SIFICA\L 2}
2}

TION
"

\L
2~

MUTATION

GATCCCGTGGGGACTGAGCCTGCAGCTC

AGTGGTAAAGCAGATGTCTAACGTGGTA

CAGGGTCCCAGATGAGATGACACAAGT

ACCTGTCAGTACTCCGGGAACACTGGGT

GGGACTTTTATATGTTTATTTGTATTCTT

AA

396 IM001014 p001248D

AGTCCATTGTGTACTGAGAGAGGAGTTA

GGTTTAGAAAGCCTTCCTCAGATGTCCC

TCAAAGAAGCTGCTACAACTGCCCTCAT

397 IM001015 CCCAAGTTGCCAAGGATC p001249D

AGATTGCGTGAGTTCTGATGCATGCTGG

CCATGATGTGAGGCAGGGGCAGTGGTTG

GATTCGGAGTCAGAAAACTTTCCCGTCT

ACTGCCGTAATTCCCAGCTAAATTCCTA

398 IM001016 TCCTCGTTGTAGCTGTTGGTGAGGATCp001250D

GATCCTTCCGAATCTGCCATTTATTGAAT

ATTTAAAACACACCTCACTGCAGACTAA

ACACATTGCAAGCACTGGGAGCAGAGG

TGGCTAGTGAGCACCACTCTAGATGGTC

399 IM001017 CTTC p001253D

GATCCTCCTGCGTCTACCTTCGGGTGGG

ATTGCAGGCATGCACCACCATGCTTGGC

TTTGTGTGGTACTGGACATTGAACCCAG

AACTCTTTGAGCACTAGGCAAGCACATC

CTGAACACCAGTAAAACATTTTCAAAGA

GAAAAGAAAATTTAAAACATACACCTAT

CTACATCCATTTCCACCATGTTAGTAAA

CCAGGGACATTTTGAAGTGTGGTCTTTA

TAAAAACACCCGGGTGCTTATCTCCCAC

400 IM001018 GCTCT p001254R

CCAGCGGTGCTCACTACTGCATGTAACC

401 IM001019 AGCTCCAGGATC p001255D

SEQ SEQUENCE{tc "SEQiTENCE"}CLONE CLASS GENE

ID {TC . FTC FTC

NO:

"CLONE "CLAS "GENE
"

" \L SIFICA\L 2~
2~

TION
"

\L
2~

MUTATION

GTCTCAAAGAACAAAAATAAAAGAGGA

AATTAGTAACGAGTCCTGAGAGATAGA

AGAGTATTCAGCCTGGGACCAGAGCTCT

GTCTTACAGTCTTGCCATTCTGTGGGGC

CTGGGACACAGCATCCTTGGTCTTTAGA

ATGCCATAGGCCTCCTGAGGGAGCCTTT

TCTGTAGGCACTTCTCCCACATTCTTGGA

TGGATGCGATTTATTCTGTGTCAGGGGA

CTAGGGTGCTGGATGTGTGGGTCGAATG

ACTGTTGTTCTGTCACTTGGGAATTTGG

GATAGGAGAATTCTGAGTGCAAGGCTA

GTCTGCACTTGAACGTACATATCGGGTT

TTAAGCCAGCCTCTGAGCTACCACAGTG

AGACTCTCTCTTAACTAAAATCAACATA

AATAGTCTTAGTATGGAGAGGTTAGGGG

402 IM001020 ATC p001257C

CGTTTTCCTCGGAAAATGTGAAAAGAAG

AAGCACGAGACGAAACCCCCTCGAGAA

TGAGAAAATTAAATCTAGAACCCAAATG

GCGTCCAACAAGAACATTAGCTCTTGAA

AATGAATATTGCGCCTGCGCAGCCACCG

CCCGGCCAGCTGCTCAACTGCAGCTAGA

403 IM001021 GCCCGACCCCAAGCGATC p001260C

GTGTCACATGTATGAACAGCATCACATG

GTATGAATGGTATCATATGGTATGACGT

GAATGTGTGCACCGGCACTGATC

404 IM001022 p001262D

405 IM001023 ATACCACCCACTCCCTTAAGAAATGATCp001263D

GACTGATATTAGTAGGTTGTTCTCTAAG

GGCCGTGAAATTTTTAGCTAGAAGTTCT

TGCTTTCATTAACAGTGCCAAGTATGAG

TTCCATCTCATGGGGTGGGTCTTGAATA

CAATCAGAAGGTGGTGAGTTATCGCCAT

AACATCTGTGCCGCTATTGTACCAGTGG

ACATAGTTGCCAGGCAGGCCATTACTGT

AGCTCTTAGGTCATTCCTGAAGCTCTCT

GGGGTCTGTTAGGTGAGACTGATGATAA

CTCTTCTCTTCCGTTAGTGTACACAGCAC

CTTTTAGCACTATGAAAGCGAGGCAGTA

TTGATC

406 IM001024 p001264D

SEQ SEQUENCE{tc "SEQUENCE"~ CLONE CLASS GENE

ID

{TC . {TC {TC

NO:

"CLONE "CLAS "GENE
"

" \L SIFICA\L
2{ 2~

TION
"

\L
2{

MUTATION

GTTCCGATGTTTGTATCTCGTTTGAATTA

TCCATCAGTTGATTAAGTTGATGGTCAT

CTAGGCTGATTCCCCTACATGGCCATCT

CAATATTGCTTCTTTAATAAGACCTGGA

CAATTAACAGCACCAGTTGACATGCCAA

CTTGGATTGGGGGAGGGGTCTTAAAGGG

CCCCGCCCTTAGATGAAGAGCTATACGC

AATTAATGACTGTCAGAAAGGGAGAAT

GGCTTTCCCAGAGATGAACCCCCTAATG

407 IM001025 GATTACCCAGTACCAAGTGATC p001265A Rad52 ATTCAACCTATGGGGCCGTTAGACCCCT

GGTCTTGGGTGGGGTGGATATGTTATTC

TTTTTTGCTGTGGTGGCAGCAATTTTGTT

TGCTTTCTTGTTTTTTGATACAGTTTCTC

GTCATGTATTCCTGGTTGCCTGGAATTC

ACTTCTATAGACCAGAATGGCCTCAAAT

TTACAGTGAACCCCCTGCCTCTGGCTTC

AGATTACTGGAATTACAGGTTTGTGCTA

TCTCACTAGTTGGTGTGTGATC

408 I1VI001026 p001266C

GATCAAGTCCCCAGTTAAATGCTTTCTTT

GATAGGTTGCCTTGGTGATGTCTCTTCAT

AGTAATAGAAAAGCAACCTAAGACAAG

AGGAGAGAGTGGGTTTAAGAACGAGGA

GAGAGAGGAACTCAGAGGGTCCTGGAG

GTCCCGGGAA

409 IM001027 p001267C

CTCACACATACATTCATACATACACACA

CATATATACATACACACACTTGCATACA

CACAGCACACACTCACACACAGAGACA

CACAGACACACAGACACACACACAGAG

GAACCCAAAGGATTGGAAGAATAATTTC

CCGTGCTCAGCGGGAAAGTTTACCAGAA

410 IM001028 AGACAAGTGGTCATGTGGGATGATCp001270C

GATCATCACCAGTGTAGTGTTGGCTTTA

ACGGTGCACGCCTTTAATCCTAGCACTT

GGGAGGTGGAAACAGGTAGGTGTGCTT

ACTTCAGTGAGTGAATTCCAGGCCAGGC

AGGGATACAGAGTGAGAACCTGTTATCT

AAATAAATAAATAAA

411 IM001029 p001271C

SEQ SEQUENCE{tc "SEQUENCE",~CLONE CLASS GENE

ID f TC . FTC {TC

NO:

"CLONE "CLAS "GENE
"

" \L SIFICA\L
2~ 2~

TION
"

\L
2}

MUTATION

CACCCACGGCTTGCTTCTTTTCTCTATGT

GTAATTGAAGCACATACCCGGTGGGAGC

CATGTAAAGCCTGTGTCCATGATC

412 IM001030 p001272D

GATCATGTGTTAATGAAACTGTCAGGGG

TTGGGTAAGATGGCTCAGTAGGTAAAGG

CACTTGCCTCCTAGCCTGGAGACCTGAG

GTTCCTCCTGGGGCCCACAGGGAAAAGG

AGATAACCAGCTCTCTGTCCTCTGACCT

CCTGGGCCCCTCCCTCACAAACAAACAA

ACAAACACACACACAAACGACCAGACC

ATTTCCCACAGTAGCTGTGGTGCGTTAC

ACTGTAACGGGCACCATGTGAGGGTTTG

GGCTTTATCACATCTCCGCTAGTCATACT

TGGTGTTTCCTGCGTCTTGCTTACAGTTG

TTCTAATGGGTGGGCGGTGATATCGAAT

TGTGGTTTTAGCATGTATTTCCTGTGCTC

413 IM001031 TGCTAAGACCACTTACAATTACAGp001274R

CCTTAACGCTCCCTTGATGTCCACTCCCG

TTTTCTCTGCAGCGATTTATTGCTTAGTC

TATCTATAAGGTGTATGCAAGCTGCAAA

GTCAAGTATTTCCTTTGTACTTGAGCAA

GTCTCCTAAGTATTATGCTTCATAACGTT

GTGATATGCTTGAGCAAATTTGAGTCTA

TTTCATAATTAAGCCACTGTTCTGATAA

414 IM001032 ~GACCCTAGAGTGCTATATCTGATCppp1277D

AAAAGAGTGTCAGATGTCAGAACTGACT

AGCTGGGCTGACACTGAGGAATGAAGG

TTGGGGATATATGCACCTCCTGAAAACA

415 IM001033 GGAAGCCTTTTGTTGGTTGATC p001279D

GATCAACCTTAGTACACAGCAGAGTGTT

TTCTGGGAAGCTCATGGAGACCCACTTT

TGTCATCCCATAGAGGTTACTACAAATC

TGAGCATGAGAATAACTACTTGCTGTTT

AATACAAAGAACCATTAGCAGTCAATGC

CCCAAGTTCTAAGGGCACAGACTTCATA

CGAGA,~~.AAAAAAACAAAGCAAAACAAA

AACTATCACATGCTACTATCTGTACTGG

GGAATGCATACAATTTTGTAGGTAT

416 IM001034 p001281D

SEQ SEQUENCE ftc "SEQUENCE"~CLONE CLASSGENE

ID FTC . {TC
FTC

NO:

"CLONE "CLAS"GENE
"

" \L SIFICA\L 2~
2~

TION
"

\L
2~

MUTATION

GATCAGTAGAGAGCAGAGGGGTCTATG

AGGGAGGTAGAGCAGCCTGGGAGGCCT

GAGGAAGGAGGGACAAGGGCAGAGTCT

TGGTCACTCTTTGGTCTAATTGCCTTCAG

AAGGCTTGCAGACTCTGGTTTGGAGTTC

CAGGTGGGTGGCTG

417 IM001035 p001282C

CAAGTAGGGTTTGTGTGTGTGTGTGTGT

GTGTAGCCAGTGTCTTTCTCAATCACTCT

CCACCTTAATATTTTTTTTTGAGACAGAA

TCTCTCACTGAACCTGTATGCTGTCAATT

TGTCATGGCTGACTGGCCAAGGAGCCCG

AAGAATTTATCTCTATGCTCAATCCAAC

418 IM001036 CCCCAGATC p001285R

GATCACATGGACCGATTGCCGCGGGACA

TCGCACAGGAGCGTATGCACCACGATAT

CGTGCGGCTTTTGGATGAGTACAACCTG

GTGCGCAGCCCACAGCTGCATGGCACTG

CCCTGGGTGGCACACCCACTCTGTCTCC

CACACTCTGCTCGCCCAATGGCTACCTG

GGCAATCTCAAGTCCGCCACACAGGGCA

AGAAGGCCCGCAAGCCCAGCACCAAAG

GGCTGGCTTGTGGTAGCAAGGAAGCTAA

GGACCTCAAGGCACGGAGGAAGAAGTC

CCAGGATGGCAAGGGCTGCCTGTTGGAC

AGCTCGAGCATGCTGTCGCCTGTGGACT

CCCTCGAGTCACCCCATGGCTACTTGTC

AGATGTGGCCTCGCCACCCCTCCTCCCC

TCCCCATTCCAGCAGTCTCCATCCATGC

CTCTCAGCCACCTGCCTGGTATGCCTGA

CACTCACCTGGGCATCAGCCACTTGAAT

GTGGCAGCCAAGCCTGAGATGGCAGCA

CTGGCTGGAGGTAGCCGGTTGGCCTTTG

AGCCACCCCCGCCACGCCTCTCCCACCT

GCCTGTAGCCTCCAGTGCCAGCACAGTG

CTGAGTACCAATGGC

419 IM001037 p001289K Notchl SEQ SEQUENCE ftc "SEQUENCE",~CLONE CLASS GENE

ID {TC . FTC {TC

NO:

"CLONE "CLAS "GENE
"

" \L SIFICA\L
2~ 2~

TION
"

\L
2}

MUTATION

GATCTAACTCAGGCTGTTCAGCTTGGCC

AACAAGCTCAAATATCCATTCCGCTGTC

ACATCGGGCCCCATGTGATGCTTTATAT

ACTAAATAGAACAAGCAAATTGATACTA

GATGGGACAGTCTGCTTACCCAGTTTGG

TGTTTGGTGGGGGAGGTGAGACATATCC

CACAGTCCCAGAGCAACTGTCACTGCAG

GGTCCCAGGGGAGGAGCCAGGTGTGAA

GCTGGCAGTGTGTGAGGTACCCTGGGGA

420 IMp01038 AAATGAATGGTTACT p001292D

AGGCCTGGTAGTGACCAGCAAGTACTGA

ACGCTCGCTCTATGCCAGACACAGACCC

TCTTCTTCCTTCGTCTTATCCTATTATCC

ATACTGAACAGACAAGGAAATGAAGGC

IM001039 C p001293D

AGTGGGGCCTGAAAATCACATCTGGGCA

AACCCTGAGGCCTGCCAAGTCCTCATCA

GAGGGATGCCCTCTTCATCCCAGGTGCT

TTCTGACTATAAAATAAGGTGAATACTA

CCTCCCCTGAGGTTACACCTCCAGGGTT

AAGCTGGTTAGAGAACCCAGGGACACA

CTGGGAAACAGCCCACAACAGCAGGAG

CTGGAGCACTCACCCACGGATGTCCATG

GGGTCCAGCTCCCTGCGCTGGCGCCCAC

CACTGGTACCAGGAAGCAGTGAAGAGG

TGGCCCAACCCACTGTAGAGCGCTTGAT

TGGGTGCTTGCGCAGCTCTTCCTCGTGG

CCATAGTACGGGAAGATC

422 IM001040 p001297I~ Notchl AGTGGAACCAGATTCCTCCTACGCTTTG

CACTCCACTTTCGTTTTCTCTTCTGTACC

ATTCTAATGGAGGCCAGAGTAGCAACTG

TATAGACAAATCAAATCGTTTACTCTTC

CAGTCTTGCCCCTTAACAGTCTTTCCTTT

GTTCTTCCTCTTAGCCTCATTTTCTCCTTT

423 IM001041 CTCAGATC p001298B AI604147 SEQ SEQUENCE{tc "SEQUENCE"} CLONE GLASS GENE

ID f TC . {TC {TC

NO:

"CLONE "CLAS "GENE
"

" \L SIFICA\L
2~ 2~

TION
"

\L
2}

MUTATION

GATCTTCTGCTTCATCTGAGTAGGCTTA

GACTGGTTTGTATTATTATTATTATTACT

TGTTGTTGTTGTTATTTTGGTGGGAGTAG

TAGTAGCAGTAGGTGTGTGTGTGTGTGT

GTGTGTGTGTGTGTGTGTAGATGTCACA

GCATGTATATGGAGGCCAGAGAACAGC

TTCTAGCGGTTGCTTCTCTCCTTCCTTCC

ACTGTGGTCCAGGGAATAGAACTCAGGT

CATCAGGCTGGGCAGCTGTCACCTTTAA

TGCTCTGAGTTATCTCACCAACGTTAAT

AAAAGGCTTTTCAAACAGCAGTTTGGGC

TGGGCCTGGTTGTGCAGACCTGGAATTG

CAGCTTCTTAGGATGCTGAGGCAGGAGG

ACTGGAAGCTCAAGTTGTGTCGGGGAAA

CTTAGTAAGTCCCTATTCTCGTCCCGCAC

GCCCCCAAAAAGCCAAGACCAAGACCA

AGCAGTTTGGTACAGCAGAAAAAGCAC

GAGAGTCTCCTCCTCCTCCTGCTCCTCTT

TAATGATGCAGAACCC

424 IM001042 p001300R

GATCTGTGCATTATTCTGTTGGAAATGT

GACAAGATTCTGTTGAGAATCTCATACT

CTATGAACTCTT GGTTTC

TGCTGTTTTGAGACAAAATTACTTATAA

AGGTTTATGATGTAGTTAAGGCCCTGAA

TGTCCCCCAAAGACATGTGTGTTGAGGG

TTTGGTCTCCACTCCGTGGTCTTTTGGGA

GGTGTTTTATGTTAGCTGGTGAGGCATA

GTGGCAGGGGAGGAGAGTTGGGTCATA

GTCCTTTTGAAGAGGCTATTCAGGCTCT

425 IM001043 GGTGCCTAA p001303D

GATCTGACTGTGATAGGAGGGTCCTGGG

GCCACCCTGACATAGGCCTGGTCTATGA

ATGCTCTCATGGACTGGGCCTGTTTGTC

426 IM001044 A p001305D

SEQ SEQUENCE{tc "SEQUENCE"} CLONE CLASS GENE

ID
}TC . f }TC
TC

NO:

"CLONE "CLAS "GENE
"

" \L SIFICA\L
2} 2}

TION
"

\L
2}

MUTATION

CTGCCTCTCTCCCTGGTCCCTCTCTGAGG

TTCTGGACCCTCAAAAGGCCCTTTCCCA

CCCCAGCCTTCAGGCCTGTAACCCAGCC

TCGGTTTCTCTCCCATTGCCAAAGCACA

ATGGCTGTTATAATTAACGGATTATCTC

AGCGCGACAGCTGCGCCCCTTTGAAAAT

427 IM001045 TAGGTTGAATAACAAGATC p001306C

GATCTTGGACCACCACGTCAAGCCTCTT

GTACATTTCTTTGAAAAACAAAGCTTGG

TTCCCCCTAGTCACCACGGTGAAAAAAA

428 IM001046 CCCAGGACAGTAAAGGTCCCAA p001307D

TTAGTACCTCTGGTGGAATCACCATGCC

TGACCTAAAGCTTTACTACAGAGCAATT

GTGATAAAAACTGCATGGTACTGGTATA

GTGACAGACAAGTAGACCAATGGAATA

GAATTGAAGACCCAGAAATGAACCCAC

ATACCTATGGTCATCGATC

429 IM001047 p001308R

GATCGCACCGATTGCCAGTATAGTACCT

AGAGTGTCAAGTTGGCCTCTCAGGGAAG

AGAGAACATGTATTAGGGTAAGACGCA

430 IM001048 AGCCCCAGTAAAAACATGTGAG p001311D

GATCGCTTCACCAAGTGTGAACTGTTGG

TAGGGACAGAGCAGACCACAAGCCCCT

CTTTGCATTTACATGGGGGCGTCCTAGT

GTAGGTGGCTAGGGATGGTGGACAGGA

GAGGAGGGAAGACAGTATCACATAAGA

ACAATAGTGGAGGGCAGGGGAGGAAGC

CTTCTCATGGCTGGGGTGAAGTCACTTC

CGTAGCCAGAGCTGACTGAGAATATCAC

TGCTTTCCTAGTAAGGAAACACCGGAAG

TCGGAAGATGATAAACGCGAAACTCACT

ACATCATAGACACCATTCTGTCTTCATC

AACAGAGAAATTTATAA

431 IM001049 ' p001313D

GATCGTCCACTTCTGTGTTTGCTAGGCCC

CGGCATAGTCTCACAGGAGAGAGCTATA

TCTGGGTCCTTTCAGCAAAATCTTGCTA

432 IM001050 GTGTATGCAATGGTG p001316R

SEQ SEQUENCEftc "SEQUENCE"} CLONE CLASSGENE

ID FTC FTC FTC
.

NO:

"CLONE CLAS "GENE
" "

" \L SIFICA\L 2~
2~

TION
"

\

MUTATION

AGGGTACAGCGAAGCTTGAAAAAAGCA

AGGAGTGCTCTGGGACCGGGAGTGATG

GAGAAAGTCTGAAGCCCCTTTGCACACC

CCTACAATGGGTTTGCGCCAAGAGAGGC

GCCGGCAACTCTACGCGGCGTGGGGCTC

TCCCCAGCGCTCTAGGTTCTACTGTGCT

GAGCCACACTAGTTTCTCTCCCTAGACC

TGAAGAGACCCCAGAAGTCTGAGAGTC

CCTTTGGTTCTCCATCTCTCACCACCCCC

CACTCTCGTGCTTTAACTCTGAGGAGGG

CCACTCAAGTTCATTCATAAGAACAAGG

GCTTTGCTCTTAAAGGAGCCGCATACCG

AAAGCGTTTGTGTGACTGAGGGTTCACA

TGCACAGAGCTCCGCGTGTCTCGACATC

CTCTCTCTCCGATC

433 IM001051 p001317D

ATCTCAGGAAACTCCTAGCAGCTTTAGT

IM001052 ATTTTACACAGGTTTTGAGCGATCp001318D

CCTTCAGGATTACTTTGGATGATTCATTA

GAGAATCTTGTCTTTAGACTATAAAGCA

CTTGTTGAACAAGGTTACAATGTAGCAA

GCAACCTTGTTTTGGAATGTATTTTGCTA

CATTGTGCTCTTCCCTGGTCTGGTGCTTT

CATTTCACATATTTTGCTCTTAATAGAAG

TAGGGTTCAGTGCTGGGGATTTCATTTG

CTGTTTTCTCCATTGACCTCTTGAGCTGA

AGTTATTCTTATTAGAAAGTCAGGGTAG

435 IM001053 GCGATC p001319D

CCAGCAGGCAGCGAGACGCATTTTCGCG

TGGCGGTGGTGAGCTCTCGTTTCGAGGG

GATGAGCCCCTTGCAACGGCACCGGTTG

GTCCACGAGGCACTGTCGGAGGAGCTG

GCTGGACCGGTACATGCCCTGGCCATCC

AGGCGAAGACCCCCGCCCAGTGGAGAG

AAAACCCACAGTTGGACATTAGTCCCCC

CTGCCTAGGTGGGAGCAAGAAAACTCG

AGGGACCTCTTAATAAATACCTGGATTG Mm.1045 436 X001054 GGAGAACGATC p001321B 31 GTTTTTCCTGCATAGACCTCATCTGCGGT

437 IM001055 CGATC p001322K Myc SEQ SEQUENCE{tc "SEQUENCE"~ CLONE CLASS GENE

ID {TC . {TC {TC

NO:

"CLONE "CLAS "GENE
"

" \L SIFICA\L 2{
2~

TION
"

\L
2}

MUTATION

AAACTAGGAAAGGGTATAGCATTTGAA

ATGTAAATAAAGAAAATATCTAATTTAA

AAACAAAAAAGAAAGACAAAGGAAAAT

TAAAAAAAAAAAAAAAAGAAACAAAAG

CCACTGCAGGACTGCCCAACAGTCTACT

GAAAACTGTGAGCCTTATTCCTAGATGA

GCCTCTGATGCCTCCACTTACAAGCTAC

CTTCACTCCTCCATCTATCTCCTTTTGTT

ATGTCCCGCGATC

438 IM001056 p001324R

GATCGGACTCGAAGAGCAGAAGAAACA

AAACTCAAAGCAGGGATTAGGTCAAAA

TTAAAAAGGGTTTGCACACAAAAGGAA

ACCATCCGAAGAGACAACCTACAAAGT

439 IM001057 GAGAGAAACTTGTTTTGAAC p001325D

GTCTGAGAAATTGTCTTTAATGTAGTGA

CTGTGGAGCCTTGCAGGGATACCCACGA

TGGGGGTGTCATTCATATGTCACTGCAC

440 IM001058 CTGGAAGACCGATC p001326D

GATCGCACAGCCTGCTTTCTCAACAGTA

GGTAGGACCAACAGCCTAGGTGGCACC

ACCCACAGTGAGCTGGGCCTTCCACATC

AATCATCAATCAAGAAAAATAGCACAA

AACCCTTTCCCGAAGGCCAATCTGCTGG

AGGCATTTTCTCAGTTGAGATTCCCTCTT

CCCAAATGACTGCATAAAACTTGTGTCA

IM001059 TGT p001327K Pvtl GATCGGGTAATTTAGTAATAGTTCATGA

TATTCATTACTCGGCGTAAATCAGGAAA

AACATTTCTAGATGAATGTGGTATTCTC

IM001060 AAAT p001328D

GATCGAGGAGGGGAAGTCCTTCCTTCCT

443 IM001061 TCCTTCCTTCCTTC p001329R

SEQ SEQUENCE{tc "SEQUENCE"} CLONE GLASS GENE

ID {TC . {TC {TG

NO:

"CLONE "CLAS "GENE
"

" \L SIFICA\L
2} 2}

TION
"

\L
2}

MUTATION

GATCGGGGGTTCAAGGTCCTCCTCGGGG

TACCTATTAGGAGGGCAGCCCAGGCTAC

GTGAGACTCTGTCTCAATAAAAATAAAA

ATAAAAAGCTGGGTGGTGGTGGCGCAC

444 IM001062 G~ p001330R

GATCGACCTGCCTCTGTCTTAAGCAAGA

AGGGAGATAGATATGCATAGTATTTAGT

GTAATGAAAGTTACGTTGTATTACGCTG

445 IM001063 AGGTTTATCACA p001331D

ATCTAAGTAGTATAATGTTTAAGACGAT

446 IM001064 C p001332D

GATCGTCGTCTAACTTAGCTGGCTTTAT

AGTGATATAACAAAATATTAGAGGATGC

TTTGGTTGAAAAAGAAGTTTATTTGCAT

447 IM001065 CACAGTTC p001333D

GATCGAACACGCTCGGACTTGCTAAACG

448 IM001066 TTTCC p001334I~ nayc GATCGTCATCATTTTTATAACAGTAGTG

AGGAGATGTCCCCTGGGGCCGCCCTGGC

TCTGGAGAGGGAAGCCACATGCTCCAA

GGGGCTATGGTGAGGACCACAGCCTTTA

449 IM001067 CATTTGGCTT p001338D

GATCATGCACTGTCTGGGATAGTGATGG

GCTGTGTCCTTTGTTGGCCAAGAGGAAG

TGGCAAAAGGCAAAGTTGCTGTTGGCTC

CAGGAGTCAGTCTGGGGACGGGGCTGA

GATGCTGTGGGACAGACTCTGGAAAGG

GCAG

450 IM001068 p001339D

SEQ SEQUENCE{tc "SEQUENCE"} CLONE CLASS GENE

ID {TC . {TC {TC

NO:

"CLONE "CLAS "GENE
"

" \L SIFICA\L
2~} 2}

TION
"

\L
2}

MUTATION

GATCGTGGCCACTGAGAGACCTTCTTCT

GGCCACCAGATGCACACAGCTGCATGA

ACATCTGCATACACATTTAACACATACA

AAGTTGAAGAGAAGCACGTGTGTCTTGT

GGTCTGACCACTTCCTGGGCACCACCAA

GCTGCTCTGACAACGGATTCCCACTGGG

TTCGGCCATCTTGCTTCCTCCCCTCAGAG

TTTGCCCATGTCCTCTGTCTTTTCATAGC

CACAGCCTTGCCCAAGATAAGATACATC

451 ~I001069 CAACTGTACAGTGCTCCAT p001341D

GATCGTACCAGGAGCTCCAAGCGTACCC

CTGATGCTACAACCTCATTCCTGAGCCT

TGATTCTGTGGACTCTAG

452 IM001070 p001342C

GAACAAGGAAGGAAATAAAGAATAAAG

GACATCTGACACTACCAAAGTTAGGTCA

GGATGTGTCTTACAGATGGCCACTCAAC

AGCCTATAGAAAGCACCGCACAGACCA

GCACGGTCTTTTTCTCCCAGGTGTCTCTG

AGGTACTGCTTTCTTTCCAGGGATC

453 IM001071 p001344D

GATCCCGAGTCCTTTCATCCTGTGGTTCT

ATTGTCCCCTAGGGCTTCAGCAGGCAGA

AGGAGAAAGACACTGTAGAGCAGCCCC

454 IM001072 CAAA p001345D

GATCCTGGGATTTTCTGGGCAATTGGAG

GCCACAATTTAGATAGTTTCCGGAATCG

ATGTCCCTTAAAGACCAGCGCCTGGACT

CTACTGAGTAAACTCCCATTTCAACTTC

CTCCTCTTCCTCTATTTGAACAACGTGTA

TCATTAAATTATAAAATTGTTGTTGTTGT

TGTTGTTGTTTCAAAAATTAACTTTATTG

GGGGAGGGGCAGTTGCCCGAGGACAAC

TTGTGAGAACCAGGTTTTGCCTTCCACA

IM001073 T p001346R

SEQ SEQUENCE{tc "SEQUENCE"~ CLONE CLASSGENE

ID {TC {TC {TC
.

NO:

"CLONE "CLAS"GENE
"

". \L SIFICA\L 2~
2~

TION
"

\L

MUTATION

AGAGGAGAAATGGGGGTGCGAGAGGAC

AAAGTCTGTGCCCCACAGCGCTGGGGCC

AGAGCCCAGGAGGGCCTCATGGGAGAG

GTTGCCTGAAGGCAGTAAGAGAGGCAG

AGGATGCTTGGGCCAGAGAGGTTCCCCA

CAATTGCTTGGATC

456 IM001074 p001348D

GATCCCAAACAACTGGAACAGGGGTTAT

457 IM001075 CCCAAAAGCTGTTGCCTG p001349D

GATCCAACTCCTCTTCACAAAGAGACTA

TGTGCAGGATGGAGAAGAAGATGTATC

CAAGCATATCCTGTGAAATTTATGTCAA , TGCTGTGAAATTTGTCCCAGCACTCACA

ATCCAGATTTCTGCTTTTTAGGTGGCTTT

TTCTATTTCATTTCTTCTGGCTTCATAGA

AGTTTGAGGTGACATTTTTAAGACCTGT Mm.1238 458 IM001076 GCCACTAAAATTTCAGACCCTATTTGpQ01350B 02 GATCGGTTAGTTTGACCAGCCATACTAT

AACTTTAGTGCAACCCTTTACTTGGTGG

GTGGTACTAGGAATTAAACCCAGGACCT

TCACATATACTACTATCATTGAGTTACA

TTTCTAGCCCTTTTAACCAATTTCCCTTT

AACCCTTTTTATCCTTTG

459 IM001077 p001351D

CTCAAGATTCTGTTGTCTGAGAATCTCTC

CCTCTGCTTGGGGACCCATTTATAATGA

GGTGATACTTCATCTGAAGTAATGGCCA

GGCCACGGTGTGAGACTCTTGAATGTCA

460 IM001078 CATGCTGGATC p001352D

Breast SEQUENCE{tc "SEQUENCE"} SEQ
ID

SAGRES . # CLASS. GENE
#

CATGTGAGACTTGTTAATTTAGATTT

ATTCTGTAGTGTTTTTGATATGAGTAT

AAATAAGACAATTAAATTCTATATTA

GAAAGTGGCTTTTTACATTGAATATG

CTTTCAGGATATGCGTGAGAATTTGG

CCTTACTGCAGAGATGACTCGGCCAA

CGGCTNCGAGCTCCTGACCACTTCCT

CAGGTTTGGTTTTGTTAGTTTTTTCTC

ACAGCAATGGGAAGCATAATCAATA

CAACTTCCCAGAATGCGACCTGTGAC

AAGACCAATGAGCAGACTCAAGGCT

GGGCACATAAAAGCACCAAAAAAAA

AAAAAAATTCCCTTGCAATTATTGTT

GCTGCTCATCACCAAAGGAAGTCAGG

ACTGGAACTCAAGCAGGTCAGGAAG

CATGGCAAGATGGAGACTTTGTCTAC Fgf3/Fgf GTGAAAGGGCAGAAATAATTCCTGA

CATGACTATGTTTCTTTTAGGTATATC

TGAATAGTATGGATCTAAATGATGAA

GTTACACCATTTTCTACAAATGGGCA

CAGAACACAGGGCATAGATACAAAT

GGCAAGGTGAACCCAGATCTCTGTGC

TTATCTGCAATATAACAACACTAAGA

AATATTAGGTCTCTCTGTGGTTTTCCT

GTATTTCCTGTCAGAGGAAAAGAGTT

TTCAAAAAACTTTTAAAATTTTTATTT

GTTAGCCTGGACCAGTTTCATAGCAA

CCTGTCATCCATATCCTCAGATTCACT

TATGAGTTTGTCTGCCCATTAAGATC

TTTAAAATGGTTCTAACAGCTTACTT

CATTGTTCATTAGTAAAGGGTTTATA

TCTACACTTTGATATTTGCTTACTCCA

CATGAGATGAAAAAGAACCTTTTGGA

CTTGAATTTTGTTGCTTCAAATGCGTA

AGGGTCCCTTCAACTTCCTCAGAGCC

AAGGCTGACTTACTACCGTTCCCCAA

CATGCCTCTGGAAAGTACCTTAAACA

IM000136 TAGAATCCCCTCCCTAGTG 470 K Myb CCAGATCCCATTAACAGATGGTTGTG

IM000137 AGTCACCATG 471 K Wntl CATGACTTCTTTCATTTCTTCTGTGTG

TCTGTCTTCCTGTGTTTGCCTGCCCCT

CTCTTTCTCTTCTAACAGCCCCCTTGA

ACCAACTGATGCGCTGTCTTCGGAAA

TACCAATCCCGGACTCCCAGCCCCCT

IM000138 CCTCCATTCTGTCCCCAGT 472 K Braf CATGGGAATGTAATGTATTAATGAAT

ATTATATAAAAGAGGCTAAATAGCTT , GGCTTTAATTTCTCACTTTGCCTACTC

AATTGAGAAGTTTATGGATCACCAAA

CATGTCCTTATTCTAGGAAGCCCCCT

TTTTTACCCCTGCCTCTGAGAGAAAC

CATGAACACCCAAATCCATATGAATA

CACACATAAAATATTTTATTTTCTCTA

GAAAGCATTGAAATATACTGGCCTTA

CATGTGCACACACCCCACAAATGACC

TCAGATGTCAGTGGTACTGAAACTGA

GAAACTGATGATAGAGCCAGTAAAA

ATACTGAAAGTGCCTGTTTTGAGAGT

TTATATTTTACAATACTTTAATATCTA

ACTACACACACATACACCTGAAAAG

GGCTCAGAATACACAGGCCTGAGAT

GGCCTTCCACTGCTCAAAGCTCAGAC

TGCAGAAAAGGTTGATAGCCTCCCAG

GGGCAATGACACCCTTTCTGCTTGAG

CTTCCCCCCCCCCCCTCTCAGGATGT

IM000144 AGTCATG 478 K Wntl CATGCCAGTCCACATCTGCTTCTATG

ACAAATGCCACATCCCAACGACAAA

CTCACTCATTCTTCCTGTATCAATTTA

CGCATACACATAATACTTTTGCTCAA

GGTACATTCATATTTCCGGCAAACAG

CATGTCACTCACTTGGAGAAAGAGTT
Mm CTAATTATTTATCACGGCATTTTTCAC .

IM000146 ~CTATAGAAATAAAGTTAATTTCTT 480 B 52 TGGAAATAAAGTTGAAGTTGTAATTT

CCAGATGGGCTCAGGTTGCTGTT

CTCCTCCTAAAAGAAAAAAGGAAAA

GAAAAGTTAAACCTGCAACAGCATC

AGCAGAGCTCACCCCTCCTCACCTGC

AGCCCTGGTTGCCTCTCTTCCTTTCAT

GAAAACACTGTTCTGGGTTCAGGGGT

TACTTAGCCTTGGAATCAGAGTCTAC

CCAGAGTCTACCTGCTTCTACCCAAA

GCAGGTGGAAGAAGCTGCCCAGGAC

GGGGCTCAGAGTCTACATTTGAACTC

CCTGTGCCAAGAAGTCTGGATAGAGT

ATAGTGTCTGTATATTCTAAACTTTCT

GGAACAACCCCTGCTTACAATACTCT

ACCTCTGTGCCAGCTTCTCGGACATT Fgf3/Fgf CTGGCAGTAACACACTTAAACTGCTA

GCACCTGGGAAGTGGAAATAAGATC

AGGAGCTCAATCAAGGTCATCCTCAG

CTAAACAAGACCCCCCCCAAAAAAA

AAGAAGAAGATGGCCTAGAAAGAGA

ACTCAGCAGCTGCTGATCTTACAGAT

GACTAGAGTTTGGTTACCAGCACCCA

CATGCCTGGTCCCTGCTGAGTGCAGA

AGAGGGTGTCAGATTCCTTGGAACTG

GAGTTATATACAGTCGTGTGTCACTG

TGGGTGCTGGGAACTGAACCTGTGTC

CTCTGCAAAAACAAGAGGTCTTGGTT

GTTGTTGTTTTGTTTGAAACAGGGTTT

GCAGGAGCCCTTGTGCAGGCCACAAC

CTGCACAGCTGTACAAGGCCTGCCTG

ACTGCCTGAACAGATGTGTGGGATCT

TGCCCCCCTTGTGCAGGCGTACAGAT Fgf3/Fgf CATGGGCTAGACCTACACTGAGTTGT

CATGTCCTCCACAGCTGAGCACCCTC

AACTGTCTCCCAGGGCCTCTGTTCTA

TCCAGGGTCTGCAGGGTCTCTGCCCC

ACGCCTAGCCCCTGAGAAATCTTAAG

CAGTCTGAAAACTACGCCACTGAACT

GCTAAAACCCTGGAGTCACTGATGGA Fgf3/Fgf TAGTGCTAGACTCTGCCTTTTCACCTG

I

CCAGGGCACTTGCAAAGAAGCCAGG

CATCATCAGGGGTTTGGACTTCCAGC

CAGAGTCTGAGTTGTCACTTGAATGT

GCTGCATTTTGTTGGATTCAGCCCCA

GTCTCCCGACTCTTTGTGAGTTTAGG

ATAATAATCACAACAGCACCCCTTCT

TATTTGATGGCTAATAAGCTCTAGGC

CAGTGTCTTAGCTCCATTCATG

CATGTATTCTGAGAGTAGAATTTATA

CCCAGAGAATACCTAAGAAGTGAAC

TGACGCCGGGCGTGGTGCCGCACGCC

TTTAATCCCAGCAGTTGGGAGGCAGA

GGCAGGTGAATTTCTGAGTTTGAGGC

CAGCCTGGTCTACAAAGTGAGTTCCA

GCCTGGTGTGGTAGCTCACACCTTTA

ATCCCAGCACTCATCTCTGTGATTTG

CTAGGCCAGCCTGGTATACACAGTGA Fgf3/Fgf CGACATCCAACTTCTGGAAGGAGAG

ATGGGAAGGGGCATTTGGGGTGCTA

GGAAGGGATGGGAGGTGTCCCTAGA

IM000158 GCAGTGCTCATG 492 I~ Wnt3 CATGAAATAATGCCTTCAGAACTGCA

TTAGAAATCACAAATAGCCCTGAATG

CCCTCTAGATGCTTTTCTTGAGAACA

ATTATGTGTTAAAGTCCTAAGGCCCT

TGTCAGCCCACCATATGGAAAGGGA

ACTGACAAGAATAGAGAGAAGTTCA

GTGTCCTGCTCCTGTCTGGGTCAAGG

TCATAAAAGATGAGCCAAGGCTGACT

TCAGTGCCCACCTGGGGAGACTGATG

TCTTCACAGGAATGCTCACCTGGAAG

GTGTCCTCTGGGTGCATCTGTGTCAC

ATTCGGTATAGAAGGAAGAATGCCA

ACAATACTCTAAAAATATTAGAGGCC

TTGAGAGTCCTCAGTGGTATTCCACC

AACATCAAAGCTGCATCGTAATATGC

CAGCCTGGTCCTCACCTTTCCTGCCCT

TCCCAGGAAAACATCAGCCTTTAACC

AGGATCTTATAAAAATAACAGTGACC

CAAAACATAATTTTTGCCATCAAGAA

TCTCAAAATCAAGTCTCATCCAAGTC

TACTCTTCTTTATTGTATCTTAAACAC

ACACACACGCACACATCACACAAGC

ACACACACAAGAATTCACACACATAC

IM000162 ATG 496 I~ W~tl CATGGTATTCTGATGATAGTACCAAC

ATACTGCTGCAGCTAGCTGTATCTGG

AAATCCCAACCTCAGCCAAGTATTTG

TGGTTGAAATAACCTATACTTCTCAC

ACTGTGACCTGAGCACTTCTTGTCTT

ATCAATAGCTCACGTGCCCAGGCCGG

GTGACCAGTCTCTAGGATGTTCTCCA Fgf3/Fgf CATGCACACAAACTGGCCCTGAACTT

TTGACTTCCAGGCCTCTGCCTCTCTGC

GCGCACACACACACTCGCACTCCTGT

ATATGAAGCGTATATGTGTTTCTCTG

GGAACTGTTTTTATCAGGTGAAGCAC

TTCCTTTGTTCTTGCTACCCACCTCCA

GGGCTCCAGGATCTCCAGACAGCCAA

CCCTAAGACAGGCCCAGCTTCCTCTG

TATCTCTGTGATGAGAACCTTGGCAT , AGAGCTGCCCTCACCCTCGGGATAGG

GCTTATGTTCCCCGGAACGAGCCAGG

CACCTCAACAGCTCCTGGGGAGGAAT Fgf3/Fgf CATGGCACTATGAAGGAAATGAAGA

TACAAAAGATTTCCCATACAAAGGGT

CATGATAGAAGACCACGTCTGGGATG

GGGTAAGGGTTTCTCAGAGTACCTTG

CCCTGGGGCCACATCCTAAATCTACA

CATGCAAAAGAATTCCAAATGATTTT

ACAGATCTTAGCCCTCTAAGAGATAG

ATATAGCACAAGTCCTGACTCCTGAG

GTAGGTACACACTGACTTCCTTCCAC

AAGCACTGCCTCAGCCCGGAGATGA

AGGTCACATCAATAGAGACAAGTCA

GGTTAACCGTGAGCAACCTCAAGACA

AGGAGGAGCACAGCATAGGTCGGTG

GAAGTGTTTGCATAAGCCTAAGGCCT

GGGCCCAGTCACCAGCATTGCAGAG

GAAAAGGAAAAACAGATAGTAGGTG

CATGCAGTTTACCAATCTTTTTCCACT

CTTTAAAAAGACAAAAAATATTAGA

ATACTGGGCTGAGGAATGGCTCATCA

GTTAAGAGCGCTGCTCTTTTGAAGGA

CTCCCGTTCTGTTCCAAATGCCCACCT

AGGAAGTGCTGAATAGAGAGGTTTG

GGGAGAGCCCAACAATCTGACCTATT

IM000170 TATACCCTGCCAGGCCCTGCCCATG 504 K S100a4 CATGGTGCTGGAGGATCATCCATCCT

CTTTAACCCATTTATGGTGTGACCAG

AAACCACAGATCTTACCTAGGCTTCA

GACACATCACCCGAGGAAAGCTCCAT

CATGTATTCATAAGTGGATATTAGCA

CCTCTGGAAGTCAAGTGCAGCTTTGC

TTATTTGTTTAAGCCATCCACCATCCA

GTTATTAGATCTGAATTCATCTTTTAG

GGTCAGCTTTGTTGTAGATTTAGGAT

GTGGCCCCAGGGCAAGGTACTCTGAG

AAACCCTTACCCCATCCCAGACGTGG

GTTTTCTTTCTTTTTTTTTTAAAAGAA

ACAGTCTCAAGTAGCCCAGGCAGTCC

CTAAACTTATTATATAGCCCAGGACA

GTCTTGAATTCCTGAACCTCCCTCCTC

TACCTCGTAGTCCTGAGACCGATTGC

AGAGACCCAGAAATACCAAGGTGAT

TTCCAACTGCCTGACCTGGGAGGCAA

CATGTAAGATCTTCACTTTTCCAGTGT

CTGTTTGTGCTGCCTTCAAACTGTTGA

CCTGATGTAAAAATGTTTGCATCAGC

TCAGGTGTATAGAATTGGACTGATTC

CAGGAGAGTCAAATATACAGAATAT

CATGCTAATGGAGTTTATTCTTAGGA

CTGCCTCCTGCATCCATTGATTGACTT

IM000178 AAATATGTGCACACT 512 D . --ACTAGGTGACTGTCTCAGGGTCTCAC

TGTGTAGTCCTGGCCTAGAACTCTCT

ATGGAGACCAGCCAGACCTCACACTC

AGATCCAGATGCCTCAGCCTCCTAAG

TGCTGGGATTAAAGGCCAGTCCCACC

ATACCCTGCCCCTGTTTCTGACATTTG

AACCCCTCCTTTAGACAGTAGGGAAA

CTGAGGCCCTGAGATATGACACTTTT

AAACTTCAGAAAGCGGGGGCTACCA

AGGAGACTCAATTAAGATCTCTCCTC

GATCTTGAAACCATCCCCAGCCCTTC

GCAAAGCACATTTGACGGACAGGGTT

CTCTTGTCTTGGGCAACACATCCCGG

CTACGCTCTGCAGGGTGAAGCTGTTA

IM000180 AGAACGTTCCATG ~4 514 D --GATAAGCCTCTACAAAGCTGGAGAG

GGCAGTCCAAAGAAACTTGAAAAGA

TTAAAAGACAGTGCCTAAGGACACA

AACGTTTTTCCATAAAGAGCCTATGA

CATATTTTACTGCTGCTAATGAAACT

GACCTTGAAGGAACAAGTGTTTAGGG

TTAGCCTAAACTTTGGAATTGGTGAA

GGCAATGTGTCAGCTAGACAAATTAG

AGAAAGAACTCAACAGATGAGTCAA

TGAATTGTTCTAAACTAGCTTGACTT

AGGATTTTCAGCACAGGAACAAAAG

CATGGAAAATGATAAAAACCACACT

CTAGAACATATTAGAGGAGTGAGTTA

CCCTGAAGAACACATTCGTTGGAAAC

CATGCCCGGCTCTATTACTATTTCTTT

CTTTCTTTTTTGTTTCAGGATCCAGTT

TCCTTGATAAATTTTTCTTGAATGTTG

TTGTTGTTTTTTCTTTTGCTGAGTTTTT

CTTCAATACTGCTGCTTTTTCTCTCCA

CATGCTGTCACTAAGCTGTGCTCTTC

CAAGGAGATGAAGAGACTAGCTGGT

ACCCTTGCTATGCCAGGCTTTCTTCTT

CATGATCTAATCTGAACTTGTATCCC

AACCCTTTATAAACAAGTGAATGTGT

AATCTAAACTAGTATAAGCTCTTGAA

TAATAGCTGAGTGAATTGCCTTTGAT

GTCAACCACAGCAGTACTGTTACTTT

CTGTGGGGGAGACGTCTCCCCTCCTC

GGCAGTGAGCTTGCCCACTCTGCTACAGGACC

TCGGTGACCCACTATATACAGCCCTCTTCACT

ACGGCTCACAATCGGAGTTTAAGACCCAGTG

AAGTAAACCCAGCAGGACCCTTTACAAAGCC

CTTGTCCAAACCAGCTTAGTCAACAG

CCTCCTATCTGGGCTCCATCTTACCCT

CCTCATCTAGCTGATGAATGTACCTG

CCTTCTGTTCCCTTCCTCCTGGTCTGA

GCTGAGCCTTCTTGGGACTGAGAGCC

TTCATCCACCACAGGCAGACTATCTT

TAGATCATCATAGCCCCAGGTCTTCA

TTGCAGTGCAAAAGTGCAGACCTTAC

ATTTCCATTTTTATGCTCCCTTTGTAA

CGGCTCCTTACCGGACTGCAGCATAA

ACACTTAGTTGTTTGCTTGTCTAACTC

TCTCAGTTACACCATTGAGTATGTTA

CACAGGGCTGCTTTGTAGCTGTCACT

GAGGCCACAAGGCAAGGGGACTAAG

GCAGGACTCAGATGAGCCTGTTTTTA

CTTCCCGTTGTCCCTTTCACTTTGGGT

TGAGCATG

ATATAGACTCAATCAAGGTATTATTC

TGGAACAAACAACTAGTAACAAAAA

TAGTGCAATTGCAAGTATGATAACAC

AAGGCAGCCTTTACCAGCTTTGTCGG

AAGGAAATTGTTCTTTGAAATCTGAA

TTCCAGAGAAAAAGTCAAATGTAAA

CATGTATGTGCGTGTGTGAGTGCATC

AACACAAGTGCATAGATGCGTGTGTG

TTTGTGTGTCTGACTGTTTAAGTAGGT

GGCATCTGTCCTAGTCCTGACTTTTG

ATAAGTCTACACGTTTGATAAGAGGA

TCTCTCTCACCACTCAGGTTCCTCCCC

CCACCTCCACCCCAGTACACAGCCAT

AACTATAAACTCCCCACGCAGATGAA

GCCCCTCTGATCCCATTTTAGGGACA

TAACACCCCCCTCCCAGACTGAGCTA

ATGCCTTGGACCCTCCAAAACTGATC

CATGATTTTCAGTTTTCTTGCCATATT

CCACGTCCTACAGTGGACATTTCTAA

ATTTTCCACCTTTTTCAGTTTTCGTCG

AAGTATGTCTGCTATGAGTCAAAAGT

CATGCCGCAGTGGCCAGCAGCCCTGG

TTCCAGCATTCTCAGAGATAACAAGG

AGCCAGTGACCCTTTCTTCAAGCACC

AAAGAAAAGCTAACCGACCCCACAA

AGACCTGAGTATGAATGGTTTCTGCA

GCTAAGGCACTTCCTTTGAGGTCAGC

GCAGTTCGGGGCTGAGAAAAGAGCT

TGCCCTGGCTTAGAGCCTTTCTCTGG

CTCACTGTCCCAGCCAGGACCCATCC

ATCAGCCCACAGTGGGGTGGCATAGT

GCAATCCTAGAGAGATGTTCAAAGG Fgf3/Fgf IM000193 GACATATC 527 I~ 4 ATTCTCTGGGTTTTCCTGTGGTGCTCT

GGACCCCTCTCGCTCCTACAATCCTT

CCTCCCCATCTTCCACTGCTCTGCCTA

GTATTTGGCTGTGAGTCTCTGCATCT

CATGCCCCTCTCGACCCTGGGAGCAT

TCACCATCTTTATAAACTGATTCTTTC

CATGAAACACACTTTTAACTTTCCAC

ATACTTTTTAAAAGTGTACCTTCCCAT

TTTTTCGCCCCTAGACCCAAATTGGA

TGTTTCTGGCTCCCTCTCGTTCGTAGC

TTTCCTGTGATGTAGAAACCTCTTAG

GTTTCCCACGGTGGAAGAGGCAAAC

AAGATCCCTTGGGCCTGCCTTCTTGT

IM000197 GGCACTAA'TCTTACTCATG 531 D --ATGTGGTGTTTAAATGAGAATGTGGC

CCATAGGCTCATATGTTGAATACNTA

TTTTCCAGTACTTGGAAGTATTTGGG

GAGGACTAGAGGTGTGACTTTTTGAA

GGGGGTGTATTATGTGGATGTACTAA

CATGGGTTAACAGTGGGCCCTAAACT

IM000200 TGAACTAGAAAACTTAAAGATG 534 K Wi~tl CAAGTCTGTCTGTCTCCTTACTAGCCT

TTTGCTGTTCTGACTCTCAAATGGTTC

CTTAATTGGCCATTTGTCCCCTAAATT

AGGGGCGATTAGGATCAACACTCAA

GCAATGTTCCAGATGGGGTCTGACGT

TCCTCACTGGGGTCCCAGGGCTCCTC

TGACTTGGTCACAGAAAGGTCAGCCC

TCTGACCTGGCATAGATGTCTGGATG

ACCTCTGACCTCAGCTCATAAACCTG

ACTGTGGAGATTGAGACTGGAGGGA

CTCAGGGCAGTGGCTCACTGGACAGT

GCCAGGGTGTGCAGTGGTAGGCAGA

CTTCTATGTCAGGTCCTCCTGTGCCTC Fgf3/Fgf IM000201 CATG ~ 535 K 4 GCACATATCTGAGCATCTCAAGAAGC

TGAAGCAGCAGAATCATCCGCTCGAA

GCAAGTGTAAGCCAATAAGAAGACT

CTGTCTCAGAAGAAACTGAAACGAA

GAGAGACAAAAACAACTTCTGGGGC

TGAAGAGATGGCTCAGCAATTAAAA

GCCCATTCTGCTCACTCAGAGGCCCT

CTGTGAGCTGTCTCCAGATGTTTAAC

CACATTCATTAAAGAGACTTTATTAA

AGCTCAAAGCACATATTGCACCTCAC

ACAATAATTGTGGGAGACTTCAACAC

ACCACTTTCATCAATGGACAGATCAT

GGGGAGAGGCTTCAATGAGCCCCCTC

ACATTTGCATTTAAATAGCAGCATCA

AGCGCTTCGCGTGCCACACACCAGTG

GGCTCCCAGATGTCAAGCCGGAGTCA

GTCAGATGGCCAGTGCCCAGCTGTCC

TCCCTATGTCGTGCCGGAGCAGGCAG

TGACCTTAAAGAGACAGCGCTCACCG

CTCCTGGAGCCCGACTCTGGGTCCCT

CTTGTCCGCCACCCCGCCTGCCTCATT

ACCTGGCTCACTCACTAACGTGAAAG

CCTTACAGAAATCTCCAGGTCCTCAG

CGGGAAAGGAAGTCATCTTCTTCCTC

ATCCTCGGAGGACAGAAGTCGGATG

GTAAGCATCTGTGCTGTGCTCCTCTA

ACTGTGACGCCGGGTTCCCATCACAT

IM000205 G 539 I~ B~af ATATAGTATGACTGCCTCAAAACAAA

ACAACAACAACAAAACCCCAAGATA

TCTAAAGGAGGAACATTCCAAAAGA

CAGAAATGTCCATAGACCTTGACAAA

GTCAAGTGGATGTTTCTCATTTTCAAT

GATTTTCAGTTTTCTTGACATATTTCA

CGTCCTACAGTGGACATTTCTAAATA

TTCCACATTTTTCAGTTTTCCTCGCCA

TATTTCACGTCCTAAAGTGTGTATTTC

TCATTTTCCGTGATTTTCAGTTTTCTC

GCCATATTCCAGGTCCTTTAGTGTGC

ATTTCGCATTTTTCACGTTTTTTAGTG

ATTTTGTCATTTTTCAAGTTGTCAAGT

CATGAAGTTAGAATAATTGGGATAAA

GCTTTTATCATTATCAATTGGTTTTGA

AATTATTGTATTGATATCTTGTAAACT

GAATATTTATTGGTACATAAGTCTGG

TTATGGTTGACTACTTTAAGTTTTAAG

AGTTTTGATTCTTCCAGGTAAATGGG

CATGCAGCCGGGGTGGGATTTGAAG

ATTATGCCTAGTGAATATTTAATATT

AAACACGGTGTGATCGAATTGATAGC

GGACAGGGTCTCTCTCTCTTGTTGTTC

ATTGTTTCATATATCATCGTCGGCCTG

CTTACAGACTGCATTGTGTTCCCCTGT

CTCTGCCTCCCATCTCACTGTAGAAG

TAATGGGATTACAGATAGATGCTACT

GTGTCTGAAAGTTAAATTCCTAGGCC

AGTGGGAGGGAGCGCCACTCTTGGA

GCTAGGCAGGAACTGTTGTTACTTCA

AAAACTAACAAGACAATCTCACATTC

CTGAGCTGAAGACCAGATGCAGCCA

GGGACAGGGTTCTGCCCTGGCCACTA

GATGGGCTCTCTGGCCCTGCTAAAGC

ACTGCACAAAACTGGACGAGGTGCA

CCAAGAGTCCCGTGTTTGGCCCTCAG

GGCAGACTAGAGAGCAGGACTTTCTC

CTGGGAGCAGAAACTGAGCCTGGGG Fgf3/Fgf CATGCTCATAATTCTGCAGTGCCTTCT

CATAACACAGGATAAAACACTCTAAC

CTTTAACATTATACTTGAAAACTTAT

GTGGTTTTTTCCTACCAGAGTCATATC

AAACCAGTCTCCCTCTCCACTCACAA

CTGTAGGACCTGGAATATGGTGAGAA

AACTGAAAATCACGGAAAATGAGAA

ATACACACTTTAGGACGTGAAATATG

GCGAGGAAAACTGAAAAAAGTGGAA

AATATAGAAATGTTCACTGTAGGACA

CATGGCGAGATTCTGTGTCCAAGCTG

CCTCTACTCGTGACATTCCAAGATGC

CTCTGAGGTGGGAACTGTGAAATAGG

IM000214 ACAGAGCCCCACAGTCCCCTCTT 548 K Wi~t3 CATGGGGGGGGGTACCAAGAAGGGA

CTGCTGTGATTGGGATGTAAATAAAT

AAATAAATAGAATAAACAAAACCCA

AAAACAAACAGAAACCTAAACTCAA

TAACTGCAGAAATGACTCTTGCTCTT

TTCTGGTAAGGTTAGAAGCAGGTTAC

AAATCTATATTAGAGATGGAGGCATT

TCACACCAGCATAGGTATAGGAAGTA

GATGAAATGAGGACTACACTAGAGT

CTGTTTGTCACAACCAATTCTGAGTG

CTCTGAGAAACCTACCCCATTCTCCC

TCCTTTCTCCCATAAGCAACCACCTC

CACAGCATTATCAAAAGACTGCTGAC

AGATTGGTGGCTCAGCAGGGAGAGT

CAGAGCTGTTTCTTAGGTCTAAGTTG

TAGCTCCACAGTAGTATGTTCTCCAT

CATGGAACACTCAAAGCTGGCCAGG

GCCCATTTACCAGGTATCCTTTGCCTT

CTCAGCTGATGGGCATCAACACATTA

ATTCACATATGACTCGTTTGTGTCAT

GTGGTTTTTGTGGTAGAGAGACACAG

AAGAAACTGAAGTCCTTGGAACATA

ATTATCACTGTGGTTGAATGTTTGTGT

TCCTATAACATCCTATGTAGGAACTG

AACCTATAAAAGTAGTGGCTCCGAAG

GTGGTGTCCTTAAATGTGAACTGGGC

TACAAGATTTTGCCCTTGTGAATGGC

TTTATGGAAGAGGCTGTCACTTTTCT

GTCTCTTCCTCCATTATCTTGGAAGAC

ACAACAGTTCAAGGTCTCATCTGGGA

AACAGAGACCTTTACCAGACCCTAAA

TCTGCCAGTGGTGTCTTGATCCTGGT

CTTTCTGTCCTTAGGAGCTATAATGC

GGCCACAGCCAGTCCACCTGTATGCA

GCTGGGTGCTTGGAGTGGCCCTGGTA Fgf3/Fgf IM000219 GACAAAGTCTCCATCTTGCCATG 553 I~ 4 CCTTAGGGCCCAAAATCCTTCCTCCC

ATTCTTCCATAAGAGTCCCCAATCTC

CATCCACTGTTCACCTGTGGGTGTGT

GTATCTGTCTAAGTCAGCTGCTAGGT

GACAGTAAAGAAGACAAAGAAGTGA

GTAGAGCTGGATGAAAACTAGGAAG

TTCAGACAAAGACTGCGGGAATGAN

GTGTAGAGTCTAGAGCCCAAACAGTT

CTGCTACATTCTTAGCTCTAGCTAACT

AGCATCAATTGTCCCAACCCCTTCTA

TGTATGACTCCAAAGCCAGTGTCACA

CATGGTCTCTAGAGCTAAGAGATACC

AATGCTGCGGCAGGCAGTTTTTATTA

CAATCATTACAGTTTTGACAGTGTCT

GGCCGTGTGCCAAGGCTGGCCTTCAT

CCCTGAGCTCGGTGATGCTTCTGTCC

TGGTCTTCTGGCTCGTCACAGCTTAA

CATGGAAAATGATAAAAACCACACT

GTAGAACATATTAGATGAGTGAGTTA

CACTGAAAAACACATTCGTTGGAAAC

GGGATTTGTGTATATCAATGAGTAGT

CATGGAAAGATAATGTGTAAATTTGG

GTTTGCCGTGGAAAACTTTGGTTTCT

CCATCAATGGTAATTGAGAGTTTGGC

TGGGTATAGTAGCCTGGGCTGGCATT

TTTGTTCTCTTAAGGTCTGTATGAAGT

CTGTCCAGGATCTTCTGACTCTCATA

TCTGACAGGCCTGCCTTTATATGTTA

CTTGACCTTTTTCCCTTACTGCTTTTA

ATATTCTA

GGTAAGAGTGGGAGAAAATGGGGGT

GGGGGGTGGGGACACTGCAGAAACC

TGGGAGAAAAAAAATCCAACTAAAA

IM000226 TcAGGAAACACATG 560 D --CACCCCCATCCCGCAGTTCCCAGAGG

CATGGAGATGCAATGAAAGCACACA

ATATTGCTGAACCAAACAGAAAGCTC

AAAACTAGGCACAGAAAAGAGATAC

AAACACAAATCTGAACAAATTGACCT

TCTCCCTATAGCATAACTAATATCTC

AGAGATAAAAGTGGTCTTTATATACC

AGGGCGAAAGAGGTCTAAAAAGAGA

GGAATAAAAAATATGGCATATTTCCT

GTCATATGCAGAACCTATATGAGTCT

TTTTGTTTGTTTCTTTCAATACAGCCT

ATGTAGCTCTAGCTGTCCTAGAACTT

CTGTTCTACAATGCCGGTTTCCAACG

TATGTGTTTTTCAGTGTAACTCACTCA

TCTAATATGTTCTACAGTGTGGTTTTT

GACAGGCTCCAATCAGATATACCAAG

GGCAGGAAGCACGTGACAAAATCAG

ATGCCTGGAGACAAGTGTAATAAAA

GAAGCAACAGAAAACAAGGTTACTT

GGCATTGTCACAACCCAACTCTCCCA

CCATAGCAAGTGATGGATACACCATC

ACACCAGAAAAGCAAGATATGGATC

CATGGGTCCCTGAAGGGTCTCTCCTT

TAGCAAACCCCTGTACAGTTGAAGTG

ANTTTTCAGGTACCCATTGGTCTTAG

CCCCACTCCTCACAGGGCTCCCCACA

TCTGCCCTGGGACACCCCACTCCTCA

CAGGGCTCCCCACATCTGCCCTGGCA

CCCCTCCATTTTTCAGGCACCTGAAG

TCCCTACTTTCTAAAGGCCATTCTTCT

ACCTCAGGTCTTGCTCTAGGACTGTC Fgf3/Fgf IM000232 AACATG 566 I~ 4 CAGGACAGCCAGGGCTACACAGAGA

AACCCTGTCTCAAAAAACAAACAAA

CAAAAAAAAGACCATTATGCATTCCT

I I I

TTATAAGTGTCCTCCAGTCAGGTCAA

CAGCGTAAGAT

CCTGTACATTCTGTGTTAAGGACAGA F'g f3/F'g f CATGGAGGCGCAGGAGTTATTGTCTA

AAGTTGTGAAGATGAAGCCTAGATTG

GCAGATATTTCCACCTCTGCCTTCCA

CATACGCTTACAATGTGTTGTTATTTC

TGGTTCTCGTCTGCCTTCTTTATAAAA

ACAAATCCACTAAGGTGGAGTAGCC

AGCCTTTACTCAGGGACTGTCACCAT

IM00023~G 572 D --TTCTGTATATATTGTGTGGTCAGAAA

ACCGTGGTTTTCCTGGTGTCAAGAGT

TAACACTTTCAGTAATCACTCATTCT

AAACCAGACAAACCTTTAATCTTTCA

TCTGGAAAGGTACTCATTCAAACCAA

TGCTCTCTTAAAACCAGAGTATTTAA

ACAGCCAACTGCATCTTCAGGGTTTC

ATAGAAAATCAGCTTGATCTAAAATA

GTCACTGAATTCTGATATCATAGACA

TCCACCCACCCACCCACCTGCCCACC

CAGACAAATGTTCACTGAGCATTCAT

ATACTCCATTCACTTCTAAGTACAGA

GCCTAAGAATATGAGAAAATCCTCAT

AGCAAAGAAATGCCTCTTGCAACTCG

AGTAAAAACTCGAGTATGGGATGGA

AGAGTTGAGAAAACAGATGATAGTA

AGGAGCCTAGCAGAATTGCCCTCTGA

GAAGCTCCACCCAGCAGAAACAAAT

GCAGAGACCCATCGATAAACACTGG

ACAGAGCACAGAGTCTTGTGGAAGA

GTTGGGGGAAGAATTGAGGAACCCA

AATGGGATAGGGACTCCACAAGAAG

CATGTCCTACAGTGGATATTTCTAAA

TTTTCCTCCTTTTTCAGTTTTCCTCGC

CATATTTGAAGTCCNAAAGTGTGTAT

TTCTCATATTCTGTGATTTTCAGTTTT

CTCGCCATATTCCAGGTCCTACAGTG

CATGTGGAGGCCAGAAGTCAACATAT

AGTCTCCTTCCCAATTACTTGTCACTG

GTTCAGTAGCCAGCAGGGGGGATAG

GACCAGCCCAAATTCTCCCTTTGCTT

GGCCTTGACTACTAGTCTGGGAAGGG

ATAAGTGGGCTAACCAGAAGTCTTCC

ACATCTCTAAGTGATTAAAAATGGAA

GACGTGATCTCTGGTCATTCATAAAC

AGGCATTTCTCAAAGTTGGTCTGTGC

AGTTTGTGGGAAAAAATGAAATGTAC

CTACAGAGTGAGGTCAAGCTCGAGG

ATAGCCAGGCAGGGATGCACAGGGA

AACCCTGTCTCAAAAATCAAAACCAA

CCCAACAAACAAAAACAAAAATGGA

CATGTACTGAATCCCTGAAGTTGATG

CTGAGCACCATCTTGTGCTGTTCTAC

IM000246 CGCATTTACTGGGG S80'~ D --CATGTGTCACTCAAAGGCTGCTGAGA

ATCAGGCTGTACCTGTATTCCTAAGC

CATCCACAGCCATCCTGACCCACAGC

AAATGCTGGCAGTCGCCCCACAGCTG

GACTCCGTTCCTCCCTCCACTCCTATA

GCCGAGGCTATCCACACAGGCTATTT

CAGTGCCCTAAGCCTTGCTACCCTTA

AGAAACCACTGCCAAATCAATACATT

TTAATTGGAAGTGTTTATGAAGCCCA

GGAGAGATCCCTAAATGTATTAATTG

CTTCCTGAGGAAATATAAAACTCACA

ATCTTCTACACAGATGAAACTGACAA

AGTACAAATAAAGATTATATACCAAA

ATGAAAAAAAGTAAACAGCACACAT

TTATAGATGCATCTAGCATCCCCCAA

AGCTCAACACCATCCATACTTGAAGA

CTGCAGTGGTCCCTCTAGACAGTATG

CTCCAGGTCAGCCCTCAGCACTTGAG

AATAAACAGCTTCATTTACTCAGCCT Fgf3/Fgf' ACTGCCTCAAAACAAAACAACAACA

ACAAAACCCCAAGATATCTAAAGGA

GGAACATTCCAAAAGACAGAAATGT

CATGAGCTGTCGATAGTGACCTGCAGTCAAGG

AAATCTGAGGGCTTCCTAATTAACAGAGGAG

CTCTAAATGAGAGTAACGCGCTCCACAAACCC

CCTCACACTCGGTAAGTGTCACGGTGCAGATA

GCCGCGTATGTGTTTCTTTTTCATAGAAGAAT

IMOOO2S2 ITAGCACATAATGGAATGTGCGTATCTGAAGTGI Sg6 I D

CACAACTGAGGAGTATTTATTATTACATACCT

TTACAAGATATCTTTTCTCAGGGAGCAACCTG

AAAACATAAGGAGAAAAACATAAGAACTGCC

ACTCTAAGGGTTGGTGAAATGGCACAGCCTG

GCGGTAGGACACACACATG

CATGGAGAAACCTGGGCTTATTCAAGCAGTTT

CCTTTGTTTACCCTGCCCAGGGTTGCCAGTGA

AGGGGCTCCTCCATCACTAACTAAAGGTCTTA

TATAGGAATAGAAATTCAGAACTTATCAGTTT

GTTTTGCTTCAAATGTCAACACATAATTTAAA

IMOOO2S4TTTACAAACCCCTTGCACATTTGCATG Sgg C --GAAGACAAAAGATGTGTCAAATACCTGGGCA

AAAGGGGGTGGTGGTGCTCTCTTTCCAACTCC

TGAAAGACACCTCTGCTCAGCACACTAGTTTC

CAGGTTCCTGGGTTAGGATTTGGGTGAGATTG

GTCGGCGATGGTTTGGTTCCTCCATTCTGCTG

CTTCTCCCTGATACATTGAGTTACAGCAGCCC

IMOOO2SSACGCGTACACACTCTCGCACATG S89 I~ Wiztl GAAGAGGAAATAAGGCAATAGCTAGACTGGA

AAAACGAGCCAGCCTAAGAAGCTGCAGAGTA

GTCTGTGGGGTTCTGCTTTGGTTAGCTGCCTTT

CATGGATAGAGGATGGAAGTTGAAA

ACCTGCTATTAAGAACATAGCCCTGT

CATGTGGCCCAGGGGCACTTGGAGCCTTAGAT

AGCTGCCTTTATGGCTCCTGGTGGCCTTGGAT

GTGGGTGGGTGACAGGAAACAGGAAGAGCTG

GATAGTGGGGGGTCCCCAGGAGGAGCTAGCT

GTGCTCTCTATCACTTTTGCTCTCCTGGGGCTA

CCCCCGTCTCAGGGGAAGGCCTGTGACTGGCT

AAGCAACAAGTGTGGGCTGAGACCTTTCTCTG

TGACACTCTGGTGCTACTCTGGCCATAGCACA Fgf3/Fgf IMOOO2SgGATCTCTAGGAACGCACTCT S92 I~ 4 TATATGGATATGTTTATGTGAGGGTAGGCACT

CCTGGAGGGTGGAGGCATTAATTAGATCCTCT

ATATGTGGACTGTAGTCATCTTGAACATCTGT

AACAAAATATATAGATTAGGAGGTTTAGACA

GTGCCTCTTGTCTGCCAAGCTGGTATTGTAGC

ATTTGTGACATCTTAGGAGCTTAGGTTGGTCT

TCGAGACACAGGGCTGTCCCCTGTAAAGCAG

GTTCCATCAGTGACTCCAGGGTTTTAGCAGTT

CAGTGGCGTAGTTTTCAGACTGCTTAAGATTT

F~/Fgf CTCAGGGGCTAGGCGTGGGGCAGAGACCCTG

IMOOO262CAGACCCTGGCTAGAACAGAGGCCCTGGGAGS96 I~ 4 ACAGTTGAGGGTGCTCAGCTGTGGAGGACAT

G

CATGACGACTTGAAAAATGACGAAATCACTA

CCTAAGTCTGACCGTGCCACTTCCCAGTCTTC

CCTACACTTCAATGCTTTTAGGCACAACAAAT Mm.lO2 CCCCCCAGCCTGCTCCCTCCCCGGAGGGAGTC

GTTTAGGTGATAGGGTACTTGCCCAGCAGTAG

GTGGTGCCCAGGATTCTATCCTCAAAATTGCA

CATGTTGTGTAGATACCTACATAATTATAATT

CATGGGTTTGAGCCTTGTCCTGAGCTGGAGGA

AGAGAGTGACCCAAAGGGACCTTGGTAGCAG

CCAGGGATGTGTTGGGGAGCAGAGAAACTTT

TATGAACTTCAGTTTCAGTACTGAAACTTCCC

CATGGGACAACTCCTTTTTCCTTCTGGGTCAG

GGGAGAGAGACCTCCTATCTAAACTGTATAG

GCCATTGCTGTAGCCCTTAGCTCACTTCCGGG

CATGAAATGAAAGAACAGAGTAGCAATTTGG

GGAGAAAAGCCTGCCGAGCGGACTTAATCTTT

ATGCTTGTCTTTCCCGCCCATTACCTGCTTTTG

TTTGAGATAATAGTTTTGTTACTTTATCAACTA

GTAGCGACTAGTTTACATTTGGTTTCATAAAT

AAGATCCATTTTAATCTGAGTTTTCCATCCTTG

ATTTATTTTGATTCATATTTTAATTGTCTAGTT

CCCATCCCTGGGCAGGACTTTTTGGGAAAGTC

TTGCAGGTGACTATGTTGAGAATGATTTATGT

TGTATTAGCACAGGTACATTCGACAGTGCTGG

TTCCTTCTGGAGCGCCTCGGGTGTGGGTCCTT

CATGAGTTTGATTATTTCCTGAATTCTACCTCT

GGGATAAGACTGGATAGTAAGCCGGGCGTGG

CAGAAGGTAGTGTTTCACAACAGTCCTCCCGA

TGATCAATTGTTTTACACTAAACCATATAGGA

ATTCACCCTGAGAGGAGTTCGAAAGCCTTTCA

AAACCTGTACTGATATAAAGCAAATCTCTTTT

GGATTCCCAATCAAAATGATTTGGCAGAACTT

TAAGGCCACAAAAATTGTGTCTGAACAACCCC

GCCATG

CCTCAAACTAAGAAGCATCCATTTCGAAGCTG

CTGGGATTAAGGGAGTATGCCACCACCACCA

GCTATGGCATTTTTTTCTTTAATTTTACTATTT

TTTTGCTTGTATATTATGGTTTCCAGTTTTGTG

GTCCACTTTAGGACGTGGAATATGGTAAGAA

CATGGTCAGCTCTCACTGCCCCATCCCCTGTC

TCCAGTTCACGCACTGTATCCTGTGTCTTTCTC

TGTGGCTAGACTCTTCTCTTGGGGGAGGGGAG

TCTTGTATATCGATGTGTGCTCACGCACATAG

AGGCTAAAGATTAATCTAGGTGTATTCATTCA

CATGTGTTTCCTGATTTTAGTTGGATTTTTTTT

CTCCCAGGTTTCTGCAGTGTCCCCACCCCCCA

ATGGTGTCTGTTCATAGCAGTAAAACCTTAAC

TAAGACACTGATATAACTCACCTTTCCCAGCC

TCAAAGTCTCTACCATCTCAGGATCCACTCAC

TCATTCACCAAACTTCATCAAATGCCCACTGT

CATGAGACTGTCACAAGCTCCTGGGATGGGG

ACCTTACCAGAAAGCCACCAAATCAGAGGCA

TCCCTGTTTGGTGAGGGTACATTTGTTTTTCCC

CAGGCCCTGAGTGCCAGGCAGGAGCAGGCAA Fgf3/Fgf GTTTTGGTTCTTTTCAAAGAAAAACAAAGGTC

ATTGCAGCTTTTTGTACCATTGAGGTGATGGT

AGGAATTGAGATATATAATCTACTTGAAGATA

CCGCTGCTCTCTCACCAACCCAGTGTGTCTGC

TTTTAGCCCAGACGGGGGAGGGGGTAAGGGG

IMOOO282 GTGGTCTGTCTCATG 616 K Wntl GTGTCCCTCCTGTCGTTAGGCAGTACTTCCAA

AGCTGGTACAATGCTTAGAGCAGAGCTGCAG

AAGCAATACAAGAGATCCTGGCTCAGCTAGG

TGCAAGCTGGAATAGACTCCTGACAGTTGTCC

ATGGATCCCTGGGGGGCAGTCTCTGGATGGTC

CTTCCTTCTGTCTCAGCACCAAACATTGTCTCT

CATGATGCACTTAGCAATTCCTCAATTGAGAC

TCAAGTGAGCCTAGGCTGTGACAAAATGACT Fgf3/Fgf I I

TTCAGTTGTAGAAGAGGTGAGGTTATCTCACT

GCCAGGATAAGCTATTGAACAAGCAAGGGTT

CTCACTTACTGTTTAAGTGGAAGTGTTTTCTTA

CTTCAAAAAGTCATTAATGAATTTTAAGCTGC

ATAAATATTTAGTTATT

TAAGCTTTTCTCTTACACAATCCCCCGGAAAC

CCACAGTTTAGGTCACAAAGACCCAGGCACCT

ATTCCTAGGCCTGGTAAGTGGGCACCCACCAT

IMOOO28gTTACAAAGAGCTCAGCATTTGGCTCACACATG622 D --CATGAAGATGAACCGGGCTTGTTTCTCTGGCA

ACTAGGCTCAGAAAGGATAGGACCACCAGCC

GAGTAGCTGTCAGATGGAGCTGAAGACCTGA

GGGAAAGAATGCTTGTGGGAAGAAGCTGGCT

CCTTTTGGTTTTGTTGTTGCTGGTTTTGTGACC

IMOOO289GGATCTTGCTGTGTGACCCTACCTAACAT623 K Whtl CATGGACTTAATTTTACTGCATTTGAATTATG

GAAAATATATATGAAAAGTCTTTAGAAAAAG

GCAGAGGACGAAAAAAACCAAAGAACTTTAA

TTATCTGAGACCAAGAAAACTCTTTAAGAAAA

AGCAGTAGATTTAAACTACGTGTTGTTQ~AAAT

AGTCCTGTATAGATATAAAGTCCCTCAGAGGG

AAGAGATTTGTTGAATAAATTCAGACACTCAA

ATTAAACAGCCCAGTGCACTCAGAAGTGAAT

GTTGAGAAGTGGGTAATCTGGGGACAAACAG

AGGGAAGAATAGTGCCCTTGGCACGTGCAAA Fgf~lFgf IMOOO291GGAGTTTGGGAACAAACATG 62S I~ 4 CATGTATGACAGTGAGGTCAGGAGTGCCCAG

GGAGCTTGCATTGGCAGAACAGCCTTTCCTGG

CCAAGCCTAGTGTCATCAAGTATATATTGGAC

CAGACCTTATAAAACTTGGGTTCCACTCTGGC

TGGACCAGCCTCAAGGCGTCGCCTCTCCAGGC

CTACCTCCCAGACGCAGAGGCAGCATTTGGA

CATGGGAACTTGTTCCAAGCAAGGGACTCTGC

TACACCTTCAAGGGACGCTGCTAATACTGGGT

TCAACCTTGGGCAGCGTGCACAGCAGGAGTG

GGAGGGCTCTGATGAGGAGAGCCACCCACAC

CCCTCCAGCAAATTGAAATACGAAAGACTCA

AACACATTAGAACCATTCCAATAAAAACTTGC

CAAGAGTATATATCCAAGAAAAATACAGCTG

GGTAAAAACTCTACCAGTTAAACTAC

ATTCCCAGCCTGCCTCCAATGAATTT

AATTTGTGTTTTTAGGGTTTCTGTTAT

TGTTGTTTTTGAGACAGGGATTCACA

IM000296~,GATCTGCCTGCCTCTGCTTCCTGA 630 R --GTGCTAAAATTAAAGGTATGCATG

GTTTAGTAACTGTTTTCTGTATTACTTTTGTTG

AAAATTAGATTGTTCCTGGTGACTTTGTGTGC

IMOOO~97 TATATTCTCTGCATG 631 D --CATGTTTCTGCTTCTACTTTATCCACCCTGCAC

ACACTGACTGCTATGTTCCTGTACCTTTTCCAT

CTCTCCATTGAATATTCACTCCAACAGTGGCA

IMOOO29g TTGGAAATTGCAGTGGAGATACC 63~ D --ACGATGGTCTTGCCCTTTCTCACACCATCAAT

AGTCACTCAGAGCTGTGGTTGTTATCTGAAGT

GGAGTGTAAGCGTCGGTGTGTCACCCGTGAG

IMOOO3OO ATTAAGTCAAAGTGTACATG 634 K Whtl TAGACCCAGTCTTGCACTGGCCTGGG

ACTCGCTTATTAGGTTTGACTGTTATC

TGGCCAACAAACACCAGGAAATGGG

GTGACAGGTGGTTGTGAGCCCTCTGA

AATGGGCATTGGGACCTGAACCTGGG

TCACCCCAGCTGGGGCTGTGCTGAAGACTCTG Fgf3~Fgf IMOOO3O~ AAGGGGAAGATAGGCCTATGGTNACATG636 K 4 GTTGGGCTGAGCCACAAGTACACCTCCACTCA

CTGAGCCATCTAGCAGGTCCCAAACAAGGTG

ACTTTTGTCATCCAGCAAGACATAGCCATCTA Fgf3~Fgf IMOOO3O3 TGCCAGTCATCCTTGTCATG 637 I~ 4 TAACATATTTGCTTGTTATGAAGGAAAATGTT

GGATGTGTGTGCCTGTGGTTGAGTACTGCAAG

TAGTGTCAGGGAAGAGAAACCTAGCTTGAAC

AGTCCCCTCATCTCCTTCATATCCTCACTCCTT

GTCAGGCCCTGTATTAGGTAGTGCTTCCCTAC

CTCCCTAATGCTGTGACCCTTTCTTTAATAGA

CATGTGAGCACAGGTACCTATGGAAA

CCAAAAGTGTAGGATCCCTTAGAACT

GGAATTATAGGCAGCTGTACGCTATT

GATGTGGGTGCTGGAAACTGAACTCC

AGGCTTCTTGAAGAGCATCAACTGCT

CATGTAGAGACTGCCATATCCAGGGATCCACC

CCATAATCAGCATCCAAACGCTGACACCATTG

CATACACTAGCAAGATTTTATTGAAAGGACCC

AGATGTAGCTGTCTCTTGTGAGACTATGCCGG

GGCCTAGCAAACACAGAAGTGGATGCTCACA

GTCAGCAAATGGATGGATCATAGGGCTCCCA

ATGGAGGAGCTAGAGAAAGTAGCCAAGGAGC

TAAAGGGATCTGCAACCCTATAGGTGAAACA , IMOOO3O~ ICATGTCCTAGAGTTGTTCCAGCACAGAAGCTTI 641 I D

TTGGGAGAGACCACCATTACTGAAACGCAGC

AGATGCTGCAGCT

CTGCTTGTTGTGGGGACCAGCCAGACACCCTC Fgf~lFgf IM0003Og CACAGGTGCAGTGGTGCAACATG 642 K 4 CATGATGTTTGTGCAGGAATAGAAACCCTGAC

TAAGACAGAGGATATTCAAGATCCAAACTAG

CATGAAGCACACATTACCCTGTGACTTGCTTT

CATGTGTCCTCTTGTCTTGTAGTCTCTATTCTT

TGTGATTCCGCAGCTCTCCATAGAGTGCAGTT

CTATGTCCTGCCTGCAAGGTCCATTGGCTTAC

TAGGGTCTGCCCCTCCCAGAAGAGTAGCTCAT

TTAGAATGCATTACTGGTGTGCTGTCTTGCAT

ATCTATGTTTATGCACTACTAATTACTGTTTAG

TTTATATATGCCCTAATAATTACCCCATTGAA

AACTTAAATTTTGTTTCAAAAGTGTGGTCTCA

TTGGAGGTGTTAATGTACAATGTCTTTCTCAT

CATGGCCAGCTGAGCGGGCTGGAACCTGCCCT

TCTGCTTCCTGTCCCTGCACCTCAGCACCGCT

CATGTGCGTCCCCCCCAAACACGCAAGCGCAC

CATGGCCACTTGGAGAGAAGGGGGAAGGGAA

CTTAAGCACTGATCAATGGCCAAGGTTTGCCG

ACTTGGGATCTGGGGTATAGACATCCACCCAC

TGAGACCCTCTAACAAAACCAGATGTGGAGG

TACGAAGCCTGGCTCAGGGGCCTGTCCTTTGT

CATCAGAATTCACCAGCTGCAGCTCCTGGGTC Fgf~~Fgf~

GTGTATTGATATGCAAATGTGTTAAAATATGA

GCAAAGTGTCCACACTTTGGTCTTCGTTCTTCT

ATAGCAGGTCCTGGATACCCCAACATACCAG

AAAAGCAAGATTCAGATCTAAAATCACTTCTC

CATGTCCTGGCTTTGTAAAGGGTCCTGCTGGG

TTTACTTCACTGGGTCTTAAACTCCGATTGTG

AGCCGTAGTGAAGAGGGCTGTATATAGTGGG

TCACCGAGGTCCTGTAGCAGAGTGGGCAAGC

TCACTGCCTGCTACCAGCAGTTCACTATGTTTT

ATGGTCTGCTGCCTGCTGGTGGTTTATAGATG

GGAGTGAATGGAGTTGGGGTATCAGGGAGGT

CTTTGTACACTGGGGTGAGCTAGGCCTCTGGA

AAGCTTCTGGGGGTTCCCC

CATGCTCCCAGGCACCAGGCTTGCTTTGCATA

GGTGGGACAGGGTCCCAATACTCAGCCTGGG

GTGCCAATGAGGCTCAGGCCACACACCCTCTT

GGTAGGAGTCACTGTAGTGGGGTCTGTGAGA

GCCAGTAACTTGTGAGGGTGTGAACTTAGCTC

AGGACAGAGGCCAGCAGGAAGCTTTCCCTAC

AGAGAGTGTTTTCGTCTTTTCCTTTTTCTGGTT

TGTTTCTTGGGAAGGGAACAATTTTCGCTTTT

AGTTGGCTTGTATTATTCGCTACTGAAACCTT

CATGTATTAAGTCCCTCGTGAGGAAG

CATGAGTCAGAGGCTTCTACTCCAGTTAAAAC

TGATCTGGGTATAGAATTGTGTTCTCAAGAAA

TAGTAAGTTATAATCAACTAAGTCATCTCCTG

TCTCATTTTTTTCTTCCAAATCGGGTCCTCGAA

TTGTTATAAGAAGATTCAATCAATCAACAGTA

TCCCTTTCCCAATTTGTGTGCTAAGTGGAAAC

AGGTCTTAGCACATCAATCACATAAAGTTCAA

GCTATGAGTCTCCACTTGTAAACAAT

TATACTCAAACATATTCAGGACACAC

TTGGGCTTCCTCCATCAAGCCAGGCA

GGTTTGTTTTCTTGTTTGTTTTGAGAT

CCCACCCCTAGCAACCAGTTCCTCCTCTGAAT

GGAAGACATCTGATACCAACTTTGAGCTTTCA

ATCNNCGAATCATTCTAGGCTTGTGG

ACTATTCTCAACAATAAATGAACTTCTGGGGG

AATCACCAATCCTGATTTCAAACGGTACTGTA

CCTAGGCACCCACCACAATAGTTAATCCATCT

TTGAATTTTTGACCCAGTGTTGCCAAGTATTC

ATTGCAACAGCTTTTCAAATGTTTTATTCTTTC

AGAGGCTACCCCTTCAAGTGGCTTGCCTAGTA

TAGCTATTACAGACAGAGAACTTCCAGTAATT

ACTCTGAACTTTGCTTTGCCTGGTATTTTTGCC

TCTCTTATCCCATTGACCCTGTACAGAAAAGC

TGAGGAAGCAGGTGCAACCAGGCATCTCAGG

CACCCAGTTAAGAAGTAGATGAAATACTGTA

CATGATTTTCAGTTTTCTTGCCATATTCCACGT

CCTACAGTGGACATTTCTAAATTTTCCACCTTT

TTCAGTTTTCCTCGCCATATTTCACGTCCTAAA

CATGAGACAGTCCCAGATCCCTCACCATAAAG

CATGCGACCATCCATCAGGAGTTGGAGGTGCC

ATCGGCTCTGCCTTACAGAAAAGGAATCTGAG

ATTTAGAAACCCCAGGTGACCCACTCAGGGCC

ACCGGGGCAGTAAAAAGAATCTAAGATCTAA

AGTCAGTGGAAACTCCTCCCAACCAGCAGAG Fgf3/Fgf GGGAAGCAAGAGGCAGTAAGAAAGGGGAAA

CATGCTAACAAAGAATGGGGAAAGCTCTCTA

GGCTTCCACCTTAAACAATGAGGAAGGGAAG

CATGTTGGTGGGACTTTATGGGTATTGCTTCT

GATATTACTAGGAGGCACAATCTCACAGAAA

ACTCCCTGATCTTACAATCCTTCTGCCCCCTCT

TTTGCAATGTTCCCTGAGCCTCAAGTATGGAG

TTATTTTATAGCTGTATTCATTGAGACCAGAA

AGAAGTGATCTTTCTTCTGTGTGTCCCTGTCAC

IMOOO33gCCTGGGAGGCAATCAGACGGTCCCTCATG672 D --CTTTCCTTTTGTTTTGGACGAATATTATTGAAA

CATGAGATATGATTTTAGATCTGAATCTTGCT

TTTCAGGTGTCTTGGCATATTCAGAACTCGCT

CATGGAAAGGTATTTGGAAATAGGCTGTTTTG

CCCTAGGACTCACCTGGTAGGAAAGAAGTAA

TTCTTCCAAGTTGTCCCCTGACATCCACAAGC

CATGCCATTCATACATACTGGCAATGGATATA

TAGAAAATGAGACTCCTTCTAATATTGTGTGA

AGAAACCATTTACACTGCCAGGTTTGGGGCCT

IM000344GCCTATGCATG 67~ D --GATCCCTTTAACTTCTTGGATAGTTTCTCTAGC

TCCTCCATTGGGGGCCCTGTGATCCATCCAAT

AGCTGACTGTGAGCATCCACTTATGTGTTTGC

ATATCAGGGTCCTTTCAGCAAACTCTTGC.TAG

TGAATGCAATGGTGTCATCATTTGGAGGCTGA

TTATGGGATGGATCCCTGGATATGGCAGTCTC

TAGATGGTCCATCCTTTTGTCTCAGCTCCAAA

CTTTGTCTCTGTAACTCCTTCCATG

AGGGTGGTCTCTGCAACCCAGGCTGGAACCC

AGCACAATAAATAGTTTTATTTACATAACCGA

ACGCGTGGCTCTGCGGCCACATTTCGGTGCAA

ATTATTTACACAGTGATGAGGAGGCAGGACA

GGAAGGGGTGGGAGGAGGCTGAGGGAGGCAT

IM000346 G 680 K Wi~tl CATGTGTGTTCTTTTGTGATTGGGTTACCTCAC

CATGAGGCCAAGGGAGAGGCAAATTCCTGTG

AGTAGTATGCCACAGGGAGAAAGGGTATTTA

TCAAAGGGACAGGAGCTAGTTGTGGTGACCTT

ACCTATCTGCTTGCCTCTGCCTCCACGGTGCT

GGGATTGAAGGTGTGCACCACCACACCCAGC

TTCAGATTTTTGTTTTTATTTATTGNGTATTCC

CATGCATATACAGGATATAACCTTTGTAAGTA

AGAATAAAGCACATAAAAAATACTTTCAGTA

CATGTGTGTGTTTGTGTTTGCGGAGTGTGGGG

GCGGCAGGGAAAGGTGGCCAGGCTGTCACTC FGFB

AGAGATCAGGATGACAGGCGCTCCCTCATCTA ~.L~

GGCGCGGGAGCTCTGATTGCAGATTCGAGGA

AACAAAATAGCAATTG "FGFB
"

\L 2~

CATGAAGATGAACCGGGCTTGTTTCTCTGGCA

ACTAGGCTCAGAAAGGATAGGTCCACCAGCC

GAGTAGCTGTCAGATGGAGCTGAAGACCTGA

IMOOO3S2 GGGAAAGAATGCTTGTGGGAAGA 686 K Wi~tl TCAGTTCCAAGAGATGACACAGCCGC

CAGAGACTGAAGGAAAGACCATCCAGTGACT

GGCCCAACTTGGGATCCATCCCATTTGAAAGC

CCCTACAGTGACACTTACTCCAATAAGGCCAC

GGCCTCTATTCTCGGTTCAGATTAAGTACCTG

GCTTCACTGAGAGCGGCTCTTTCATTCCTAAA

CTGAAATTAACCATG

CCAACCCAACAGCTGGGAAGGGTTGGAAGTA

GCCCCGAGGCTGGTTAGTCCCCTTCCAGATGG

GGAGGTTAGACTGGGGCTAGCCAGGCTGCTC

CACATAGACTTCCGATTCGCATTAGAAATGAA

AAGAGGAGAGGAAAGGGAAAAGGAAGAAAG

CATGGGGTCTGGAGCCAGCTATCAAACCCAG

GATTGTCTTAACTGTGGTGGCTTGGATGAGAA

TGGCCGCCATAGGCGCATAGATTTGAATTCTT

ACGGTGGGCTGATATTTTCTAGATCTCCTAGT

CATGAATTTTGAGATATTCTCTGAAC

GGAGAAATTATGCCTTAAATTAAAAAGCAAA

TATTGAAAAATTAAATATAATTTCCATTAAAT

CATAATGGACCAACAACAGAACACATCTATCT

ATGTATCTATCTATGTATCTATGTATTTATCTA

GCAAGGACAACTGACAGTTTGAAGCAACTAT

TTTCATCTTGACTCTCACTCGGCTTTTAACGTC

CATGAGAAGTCACAATTCCACCACTT

AAAATCAGTGCTTGGAAGGATACTGT

AGGCCAAGAGGTAAGTAGAGGGGAC

AGCAGTGCACGTTTTTCAAAGTGTGG

GTGTGTGTTTGTGGGTGTGTGTCTGTC

TGCCTGTGCGTGTATGTGGGTCAGTA

CAAGATAAACTCTTAATGGGATTCTAGGGAGT

CATTCTGTAGAGAGCACTTGACTAGAAGGTTA

AGTCTTAGATCCAGATCCCAGCACAAACATAA

TACATCCTATACTCACACACACACACACACAC

CATGTCTCAAAAAAAAAAAAGAATCACTTGG

ATTGTACATAGTAGTTAATAATATGTAATTAG

TCTAACTGTGAAGGGGCACTTATTAGTTTCTA

CTATGTAGTGTAAATGAACTATGTTGCTATTA

GAAGGTTGAAATCTGTAATCTATCTTCTATGG

CATCATTCACCTCTCTAATACAGCTGTAGAGA

AAAATGTCTGAAGATTCGGTTCTACTCTCGTT

CATGGCTGGACTATAGAGCTCTAGCTTCAGTT

GCTGGGATGTTCAGTGCATCACCACAGAGAG

GGTTCTTAAGTGGTGATGGTGGTAGTGGAAAG

ACGACCCTGCTCACCTGTGAACCTTTCCTTTC

AGACTGATTCCTGAGATCAGCCAGGCAGGGC

TACCAACCAGGGACTCGTAATGAAAATTTAG

GCATATGG

CATGGTCTGGTGAGTATGGCACCAGATAGGAT

GTTATGCCCGTTTCTTATCTCAAGAAACAAGG

AATCTTGTTTCTTATCATTAATAGGAAGAATA

GAGCAGTCCTGGCTAAATGAAAGGTGGNAAA

IMOOO3C)9GTTGGTTTGAGTATCTCTTTCC 703 D --CCCTTTGTTGTGCATTTCAGCTAATCTCATCCC

TGTTTGGGTCCTGGAACCCTCTTGCTTCCCTGG

CATCTAGGACTTGCTAGTGGCTACCCCCAGCT

CCCCATTCCCCATTGCTACACACCTCTGTTCA

AATTCCTGACCCTCTGTATATCATCCCAGTCTC

TTCTAATACCTGACCTGAACCCCCTTTTTCCCC

TCCCTCTATTCTCTTCCTTGCAAGTCCCTCCCA

CATGGGTCATTTCTGATCTTTACCAAGCAACA

GTGATGAATCTATAAATAGAACCATCAGTTCA

AGAAACACAACTTTAGATTCCTTTCCATACCT

TGCTTTTGTTTCTTACATCTTCCCCCTGCCCTG

TGGTTTTTCTTTTAATCTTGTTTTTACAATCCA

TTGGGCCTTTGCATACCCTGTTCTGGCTAAGA

TATAAGCAATCCCAAAAATTCTACCTGGGAAC

TCCTAGAGCTGATAACACCTTCAGTGAGCCAA

GTATCTGGGTATAGGATTAATTTTAAAAAAAT

AGAAAATCAGTATCTCTCTTACATACAAATAA

CAAAAGGGCTGAAAAAGAAATTAAGGAAATA

AAACCCTTCACAATAGCCATAAATAATATAAA

CTATCTTGGGATAACTCTAACCAGGCAAGCAA

AAGACCTGTATGATCAAATCTTTGAAGAAGA

AAATTGAAAAAGGTATCAGAGGAGGTAAAGA

CATGCTTTTAGGCCTTTTCACGATCTTANNGG

GGACCGNGAGAGNTNGCTGCTGGATGATCTC

TGAGAGAGCTTATCGTCCTCAAACTGCTGATA

TTCAAGCTGTTTCGCAGCTGCAGCAGCAAAGT

CCCGGTCTTTGTCACCGATCTGTGAACAGCAA

CAATGAGCACCTTTCATAACAGACAGGAAAT

IM000377 GGATGCT 711 A mDall GTGCTAGGCTCACTCAAGATAAAATT

AATCTATCCTCTCACAGCTGTGACTC

TCACAGGGGTGCAGGCAGGACGACA

TCAAGAGAGTGATGGCCTCTAACAAG

TGTTCTGCCCACTTCCTCTTCCGGGTC

AAAGACTAGATCTAGACTGGTGGGG

CTGTTGATTCACTATGAATGTGCCTG

ACACCATCCCACACTTAGCATCATAG

ACACTTGGGGGACTGGTGATACACTA

TGATGCCTGACACCATCCCACACTTA

ACATCATG

CTATCCCGAGGGTGAGGGCAGTTCTA

TGCCAAGGTTCTCATCACAGAGATAC

AGAGGAAGCTGGGCCTGTCTTAGGGT

TGGCTGTCTGGAGATCCTGGAGCCCT

GGAGGTGGGTAGCAAGAACAAAGGA

AGTACTTCACCTGATAAAAACAGTTC

CCAGAGAAACACATATACGCTTCATA

TACAGGAGTGCGAGTGTGTGTGTGCG

CGCAGAGAGGCAGAGGCCTGGAAGT

CAAAAGTTCAGGGCCAGTTTGTGTGC Fgf3/Fgf IM000380 ATG 714 I~ 4 GGGGTTGACTAGAAGAAGGAGGCGATTAGGG

TGTATCATATGAGAGAAGAATAAATAAAGGA

AAAAATAAATTTACAAGGATTAAAAAGTAAT

TACATACATACATACATACATACATCCATACA

TACATACATACAAGTTAAACTGTTATGGTAGC

AGGATGATATTTTCTAGTTCCATCCATTTGCCT

AAGAATTTCTTGAATTCATTGCTTTTAATAGCT

GAGTAGTACTCCATTTTGTAAGTATACCATAT

TGTCTGTATCCATTCCTCTGTTGAAGGACATCT

GGGTTCTTTCCAGCTTCTGGCTATTATAAATG

CATGCCTGCAGGTCACAGCCTTGCGCGCCTCC

AGTGCCCAGCGTTCAAAGTGACACAGACTCTG

TCAGGATGGTTCAAATGCAAATCTCTGCAACT

GCGTTAGCCGCTTCTAACCAAGACAGAAAGCT

GCCGTCCTGTCCTTCGTGTCTGTCCCCATACCC

CATATCGGGTAGCTTTTCTTTCAGCATTGTCCA

GACACCATCATATGCCTACATCGCACAAGTTC

TCTGAGGCCAGATAATTGGCAGCACTCCTGTT

GTGTGCCGAGAGTGCAGAAAAGGGCTATCCC

GAAAAGGTGTGATCTGGAAAGAAGGAAAAAA

ATCTTTTGGCCAGAGCAAGCAGGGACTGAGT

GAGCAGAGGTGACAGGAGCGAGCAAGGCTGA

CAAAGTCTTCCATATTCCTACTAGGATGACCC

ATTAAGCCCCATTTAAAGCATTCCATTGCTTT

CCAAATACAAAGTCCCAAAATCCACATTCTTT

CATATGATAGAGAAGTCATCAGAGCTCTTCAG

CTCCACATCATCTGTCCCCAGAAGTATTACTA

CTCCTAACTTGCTGAGCCAAGGCACAGATATT

CTTTGTGTAAGCATCTCTTCTTTATCCTGTGTT

GCCACGCAGGAGCACGCACACTGCTTCCTGTC

TGAGGTTGTTCCATATCAGCATG

CATGCCAGGGCTTGAATTAACACAAGTGCCCC

CATGGAAAATGAGAAACATCCACTTGACGAC

TTGAAGAATGACGAAATCACTGGAAATCGTG

AAAAATGAGAAATGCACACTGTAGGACCTGG

AATATGGCGAGAAAACTGAAAATCACGGAAA

ATGAGAAATACACACTTTAGTACGTGAAATAT

CATGAAGGTAAATTATGACCATCAGGGTTCAG

ACCTCAGCTCGACCGGAGACCAGCCTGCAAN

TCCCCACAGCCCTCCCTAAAGTGGGTTAAAAG

CATGCACTAGCAAGATTTTGCTGAAAGGACCC

GTAAATGTATTAGGTTCAGAACTGGCACTGCT

CACTTATGTTCACAGTTGTTTGGGTAAAACTA

GAACCAAACACAAAAGCAAAAGAGCCAAGCA

GCAGAGCAGGGAGCAAGGGGCTTGGGGAAAA

CACTCACCTCTGTTGTGTCTTCTTCTAGCTGTC

AGGGCATTGAGTGGCAAGGAGTGGAAAGGAA

CTTTGGGCATTCCGAGTCAGGAAAAGTGTACC

AAAATAACACTATGGAGGTTAGCAAGTGTTCT

GTTTAGGTCATTGGTGGTACACTCTCCAAGGA

CAGTATAAATTGATTTTTTTCTGTATCCTTCTT

TGTTCTTGGCCATAAGGCACTTGGAGTGCATT

AATATGTACTTATTATTACTATGTCTTTTCTTG

TCTTTGGCTTAAAAGAAACAGGGTCAAGTGAC

AGTTTTCTTTAAAAAAATAAAGTAGGAATGAA

ACTGGAACAAAAATGCAATAAATTTTAAACC

GAGAGGAGCCTGGGGAAATGAAGGT

CCAGCAACAGGCCCAAAGTGGGATC

CAGCTTAAGGGGAGGCCCCAAGGCC

TGACACTATTACTGAGGCTATGGAGC

CTGTTCCCAATGTGGGATGCAGAGGG.

CACTGCCAGCCTGGTTATCACGCACC

ACTGTCACACAGGGAAGCGCCCCCTT

CCC

GGAGTTCTTCTCTTCAATAACAGAGTAAATTC

TCCCTCAGCAGTTCTCCCAGGAAACCCATAAC

CCTTAGATGTTTGTCTAATCGACAAAATACTT

AATAATCAGATTTCCAGAGCTCCCAG

GAACTAAACCAACAACCAACGAATA

ATCCAGTAATCATTCATCTTATTGTTTCCACAC

AGGAAAACCTGTAATAGATGGTTCATCAGCTT

TATTTATAACTTTCTATCTTGAAAGCAACTGG

AATGCCCTTCAGTAGGTAAGCAGATACACTAG

GCTCACCTCAACTATAGGCACAATGAAAGGA

ATGAAATGTCAACTCACGAAAGGTAAGTACA

CCTCGCCATATTTCACGTCCTAAAGTGTGTAT

TACTCATTTTCCGTGATTTTCAGTTTTCTCGCC

ATATTCCAGGTCCTTCAGTGTTCATTTCTCATT

TTTCAAGTTTTTTAGTGATTTCGTCGTTTTTCA

CATGCAAGAACAGGACAAATGTCTGTGAAGA

AAATGAGTGAGCGTGAACAGGAGGTCAAGGA

TCCGGTCCCAGGCAGCTCTCAGTCTGGGCAAG

CATTTCTAAACTTTGCCTTCCTTCCTGTTGGGG Fgf3/Fgf AATAGGAGTAGATGAGAATGAAGATTTTTCA

ATTTAAAGGACCAGCAAATAGCTTCAGCAAA

ATTATAGAAGAAAACTTCCCATACCTAAAGA

CATGCAGCCCCATTAGTGATTGATCCTGTTCC

CATGGGCTCTCTGCTGATAATGCTGA

GGCTGTTTGTGCTGTAGTCTGCGCTTT

TTGCCCCCTCTCAGAAAAACTGTATG

TCATAGGAGTTGCTGGCTATTGGGTA

CATAAGCAAAGCCACCCTATTGTGCC

AGTGCCTTAGACAGTGAGACAAGAA

AGGCCCCTGGTTAGAAATCTTATCAG

GACTGGGAATGTAACTCAGTTGATAA

GAGTGCTTGCTTAGCGTGCACACAGC

CCTGGGTTCAACCGCCTAGTACTACA

GAAACTGAGTGTGGCTTCACACACCT

GTAATCCCAGCACTTGGAGAGATAGA

TGCAGGAGGATTAGAAGTTCAAGGTT

CAGCCAGCCTGGAATACTTGAGATAC

TTACAGGAAGGAAGGAAGGAAGGAA

AGAAGGAGGGAGAGAGGACAGGAG

GAAGGAGATAGATATACACAGAAAG

AGACAGAGAAACAGAGATTCAGGAG

ACACAAAGACATACGGAGACACAGT

GAGA

CATGTGGTTGCTGGGGATTGAACTCAGGACCT

CTGGAAGAGCAGTCAATGCTCTTAACCGCTGA

GCCATCTCTCCAGCTCCCTTTTAGACTTCTTAG

TAGCAGCATTAATTCTTGCTTGGTTTCAGTTCT

GACAACCACAGCAGTCAGGAGTTTGAGTAAG

CCTCATAATGTTTGTTTGAGCATTTTT

TTAAAACCTAACTTGTCTTTTGCTTAT

CTATTGTGGTTTCTTAGTGTGTGTGTG

TGTGTGTGTGTATGCGCGCGTGTGCT

ATTTGTGACATCTTAGGAGCTTAGGTTGGTCT

TCGAGACACAGGGCTGTCCCTGTAAAGCAGG

TTCCATCAGTGACTCCAGGGTTTTAGCAGTTC

AGTGGCGTAGTTTTCAGACTGCTTAAGATTTC

TCAAGGGCTAGGCGTGGGGCAGAGACCCTGC

AGACCCTGGCTAGAACAGANGCCCTGGGAGA Fgf~~Fgf CATGTATGCACAACCAAAACTTATAAATATGA

GAATTCACTTATAGTCCTAGTCCTTTAATACA

GAATTTAGCATTCCGATATAAAACAACAGATT

AATAGGAGTAGATGAGAATGAAGATTTTCAA

CTTAAAGGGCCAGCAAATATCTTCAACAAAAT

AATAGAAGAAAACTTCCCCAACCTAAAGAAA

CATGCACACCCTACTCCTGGGTGATCGTACCA

GCTCCAGCCTCTGTTCTGCACGCTGTGCCTTC

IM000412 AACCTGGCAACCTCC 746 I~ Wi~tl CATGAAAACCTGTCTCAGAAAACAAAAACAC

GTTGAGAGCCAGCATAGAAGCCATAGGAGGT

AATGTGTGTGTGTCTGTATATATGACAAGAGC

CATGCTACTAACCAGTTGAGGCAGTACCAGTT

GTTGAAGATGCTGTCTTTTATCCAATGGATGG

TTTTAGCTCCTTTGTCAAAGATCAGGTGATCA

TAGGGTGTGAGTTTATTTCTGGGTCTTCAGTT

ATATTCCATTGATCTACTGGCCTGTAATTGTA

GGTTAGGAATTCTGGACAGTTGGTACTTGGTT

TGAATATAGTAGGTGACAAGCTGTGCCTTGAG

ATGCAGTGTACATG

CATGAAAATGTTAAGTCCTGACAGACAGGGT

GCCATCTGCCAAGAATTTGAGTAATCTAGAAA

CAGAACAAATAAGCTGGAAAGGATGAAGCAG

CCACAACATAACTGCTGTTGGCTTCTTTGTGT

ACATTTTAAACCTTCCTCTGAAAGAGTGACCA

ATGCTTTTAACTGCTGAGTTATCTCACCCGAC

TTACTTTCTCTCTCTCTCTCTCTTTTCCTTCTTC

CTAAAATTAATTGTGTGTGTATGTGTGTGTGT

GTGTATGATTCAGAAACCTTTTATGTGGTGGT

CATGGTCCCACAAGCCTAGAATGATT

GGGGTCCAGGAGAGAAACTTGAGTC

GGAAAGAGATACTCAAGACCAACTTTACCAC

CTTTCATTTAGCCAGGACTGCTCTATTCTTCCT

ATTACTGCTAAGAAACAAGATTCCTTGTTTCT

TGAGATAAGAAACGGGCATAACATCCTATCT

GTCCTTCCCAAAGAATAGTGTTAACTGAGCTC

TTTGGGTGGCAATAAATGAATTGCTCTGGTGG

GACAGGCAGTGCACATATGGGGAGGGGGAGA

GGGTATATGAATTATATATATATGTGTGTATA

IMOOO424TATGTATACAGGCATG 7Sg D --CATGCGCCCTAAGACTCATCTCCACGAATGAC

GTGACGACCTAATTGCATTCCTTCTAACCCAC

TGATTAGGCAAACCACCCTCCAAAGGGCTCGC

TGAGTTCCTCTTCGGGAAGAGGTGTGTTGAGT

CATCTCTCGAGCCCTTGCCCAGCCTTTTTTCTT

AAAATTGTATTTTTAAAATTTATTTTCTGTACA

IMOOO42C)CAGGTGTGTGAGTGTGAACATG 760 D --CATGTGGACCTGGGGGCTAAGTCAGGGTGAA

GCTTCCACAGCTAAGTGGCTGGAGGCTGCCCT

AAAAGCTCAGGAGGCACCGCAAGCAAGCCTT

GAA.AAACCTTACCCACCAGCTTGACCTTAGAC

TTCTGGCCTTCAGGCTGTGACAATACATTCCT

GCTGTTTAAAGAACCATATGGTTGGTGATGTT

TTGTTTGTTTCTGGTTCTTTTGTGTTGGTGTTTT

TTGTTTGCGGGGTGTGTGTGTGTGTGTGTGTG

TGTGTGTGTGTGTGTGTGTTGCAGTGCTAGAG Fgf~lFgf IM000427ATAAGATCTGA 761 I~ 4 GTCTAAAGTTTTCAAATGATGGATAAGTTGTT

AAACCTCCTTTAAGATCTCAAGCACAAAAAG

AAAGACATCAAATACGAATAGTAGAAAGGAA

AGGAGATTTGGAACTAGAGGCCCCAAGAGTC

ATAAAGAGAAGAATTTAAACAACTGTACCCA

CAAATTCATTAGCATAGATCAAGTAGTCCATT

CATGTATGTTCTCGATGCCTTGGCCT

AAAGACATTAACTCTTGAGAACCAAGGGGTA

GGACAGTATAGACTGAATTTTGCCTCCCCTCT

TCATAAGTTGTCACTGCTAACCTCATTTCAGA

CATGGAGAACTAGCAAGAGCAGGATGGCGTT

CATGGTGACTTTCCATCTTTAGAACCATAATC

CATGCTTATATCCCTCAAAAATTTTACAGTTA

AACTGAAAATGCTTACTTACTTTTTTTTCTTAC

TTATATCTAGTATCGATAAGAACTGTCCCAAA

CTGGGTCTTAGTCCTCTGAGGTCCCTAGCACA

TCAGAGGTTCATCAGTTCCAAGAGATGACACA Fgf~lFgf IM000434 GCCGCAGTCATG 768 I~ 4 CATGGAGAATGCACAGTCAAAACGCTTGCAT

CACCCCCTCCCGCCTTACATCAATCC

TGGGTGCACAATGGGACTGTGGATGA

CTGATGTCTGCGCAAACAACTTGCGG Fgf3/Fgf ATGTATCCAATGGCAAAGCACGGGGGAGGCT

TCATCTTGAAGAGAAGAGTGCTCTTGGTAGGC

TATCCTTTTTTTGAGACAACTAGAAATAGGAG

CATTTCAACAATCTGGACATATGTCCTCCCAC

AAGAACTTGTTGAGAATGGGTCTGAATTAACT

GGAAATAAAAGTGAACACATTCTCCTATACAC

TCACTCCATTTTAGTTCAAATGCTAC

AACTCCTTTGAGCACCACTGTCATTT

CATGCTTAGCCCAGGGAATGACACTATTCGAG

GTGTGGCCTTATTGGAGCAGGTGTGGCCTTGT

TGGAAGAAGTGTGTCACTCACTGTTGGGGTGG

GATTTGAGAGCTTCCTCCTAGCTGCTTGAGGA

CATGAGCTGGGTGAACGACAGCAAAGGTTTG Mm.202 TGGTTGATCCTTTGGGGGAAATGTTGGCCCCT

T

CATGATCTCACTGTGAGGGCTGGCTACCTTGG

AGCTCACTGTACTGAAATATTCTGGCCGATTG

CCTCTTCGCTGGGTTTATGGGCACACACAGTA

CTTGTCTATGAGTCTTTGTTAGGCTGAGCCTA

GTGGTGCAGGCCTGTCATCTCCCCTACTTTAC

TCTGGTAACTTGGGGGTCTGATAAAA

CAGTTGGGGGATTTCTTTTCTTTTCGC

GTCTGAAGCCAATGTTATTACAGGTG

TGTGCTTGTCTCTCCCACACCCTGCCC

CTGTTGCCTAACACACGCGGCACACA

CATGACTCTTCCTCCAGAGTTAGAGGTGGAGC

CAGGACAAACTCTAAAGAAAAGAAACCCCAA

TCAAAAAGGGAAGCTGGTATCATCCAACCTTT

CATGTCTGTCCCAAAAGGAAGTTCCTTCCTCT

GTCCTCCACATCTGACCAGCACCATCATTCAA

TCTGCAACCCAAACCAGACATTTACATCATCT

ATGCCTCCTTTCCTGCTTGTCTCCCCTCAACCA

GCACCCAGCAAGCTTTCAGGTATCCCCTTAGT

GTTGTCAGGATCTCTCCAGTTCTCCAGACCCC

IMOOO444 AATTCTGTTCTCACTCTACACTGCTAGC77~ D --AAAGCTAACTTCTCATCACCTACCTAATAGCC

TGAGAGCCCTGTGTAGAAAAATTAAGGAGTTT

CATGCAGACAAAGTAAATAAGAAAACAAATT

IMOOO446 AAATGTAGGCTGGACGGATAGATGGT 7gO D --CTCAGCTCCTAGGCAACACTTGTAGACCCACA

GCCCCTTCACACACACACACACACACACACAC

ACACACACACACACGGCTGGGGATCCAACCC

ATCTCGTCCTTACACGTGCTCTACCATCACAC

CACACATTTCCAGCACTTTTATCTGAAGTGTTT

IMOOO447 CCTTTTATTTGTGCATG 781 K Wntl CATAACCACTATAACCAGCCTGCTTACTTGGC

TTTGTTTCGAGGGCTTTTGTTTTAGAGCTCTTT

CTTTTTACCCTTCTCCGTGTGTGTGTGTGTGTG

TGTGTGTGTGTGTGTGTGTGTGTCTGTCTGTCT

IMOOO44H GTCTGTCTGTCTGTCTTAGTGTTTGTACATG7g2 C --CATGTGGTCCACGGTTTTACTTTACTAGGGAG

CAACCTGTACCACAGGGAGAGAGGCCTAAGG

ACAGGAAAGGAGCTGACCCAGAACTGAAAAG

IMOOO449 GCACACACCATTCTGCCAGCACTTCCC 7~3 C --CATGTCCTACAGTGGACATTTCTAAATTTCCC

TTCTTTTTCAGTTTTCCTCGCCATATTTCACGT

IMOOO4SO CCTAAAGTGTGTATCTCTCATTTTCCGTTATTT7g4 R --TCAGGTATCTCGCCATATTCCAGTTCCTACAG

TGTGCATTTCTCATTCTTCACGTTTTTCAGTGA

TTTCGTCATTTATCAAGTCGTCAAGTGAATTTT

TTTCATTTTCTCTGATTTTCAGTTTTCTCGCC

CATGTTGCCTCAAGACAGATCTCCACTTTAAA

GACATACCTAAAGGCCTGGAAGCTTAGTCAAT

TAAGCTTTCCTGCCCAGACACTCCTCCCTGAA

AAAGGTATTTAACCTCAGGCCCACCCTGAGAA

CATGGTTTCTATTACTGTGTTGAAGCACCCTG

ACCAAAGCCAATTGGGGGACGAAAGGGTTTA

TTTGGCTTAAACTTCCAAATCAGTGTTTATCAT

GCAAGTGTCAGACGGCTCTCAGGGAGATACA

CATAGCTTTATTGGATAACTGCAGCTTGAAGA

CATGTACCTATGTGTGTGTAACATTTGCCTATT

TTCACACAGTTAAGAAAGCATCGTTATGAAAA

TCATTACAACTTTCCAGATAAACAGATCCACT

GCCCTTCTCTCTGAACTTTTCAGTTCCTGGATA

AAGTCAGTGTTCCACCTCTATACCTGACTAGT

GACCTCGTGGGCGGGCCTGAGGAGACAGTGC

AGATGAGGTGTCAGTAAGGAGGATGCAAGCA

AGAAAGATGCAGGAGATGATGGAGAAGCTGA

AGAAGGCACTGAAGAAGGCACAGGGAAGAA

CTTGCCGTTGAGAGCGTCCAGATCCCCTGACT

TGAGTGGGTCCACCTTGTTTGGTTTGGTTCGC

TTCTTATCCACTGAGCCACACTGCTAATACTG

GGGTTCAACACATTTTTGGAGATTGATCAAAA

CATGAAGGAGAGTCTGAGGCTACATCCACCA

GGCTCTATGATCTCCCTCTGCTGCATCCAGGA

CATTCTCCTTCTGGATGAAGATGATGCTGGCG

CTGGCGCTGGCGCTGACGCTGATGCTGCTCGC

CCTTGTCCTCAAATTACAAAACTCCC

TAGGGTCTTTTCTCTGGGCTACAAAA

TTCTGCAAATGGACTCAGGAGGAATC

AATGTGGAAATTTCACTTTGCCTTCC

CAATCAGCAAAATAATGTTTGCCAAA

ATCGTTAGATTTCTTTCCCCTAAGTAG

GCTACTGCCGACTTGAAAGCAGTGGT

ACTTCCTATGCATG

CCCTTGTCCTCAAATTACAAACTTCCT

TAGGGTTTTTTTTTTGGCTNCAAAATT

TTNCAAAGGGCTTCAGGAGGAATAAT

GGTGGGAAATTTACTTTTGCTTTCCA

ATCAACAAAAAAATGGTTGGCCAAA

TCGGTAGAATTCTTTCCCTAAATAAG

CTACTGCCGACTTGAAAGCAGTGGGT

TCAGAACCCGACCCAAGGGCTGCCCT

CATGTATCTTAAGAACAGAGCCAGTGCTCTCC

CATGCAGANTAAAGTACATATATGTAAAAAA

GTGCTCTCCCTTGCCTCTCCTCTCCTG

AGTTTCTCTGTAGGTGTAAGGGCTGG

AGGTGGGCCCAAGAACCAGAGATCA

GAGGAGGGAACTTCCGGAGCAGAGG

CCCTGGGAGCAGTGTTAAGCAGGCTT

TGGCCAGGTCTGGAGGTGTCCAGGCA

GGGAGGTGGAGCTGGAAGAGACCAA

TTAGTCAAACGGCTGCAATTGGCCAT

TTGGAAGCAATTAACAGGGTCTCCAT

TACCATATTATGCCCCTCCACCCCCTC

CACACTCTACTAGGCTCTGCTCTGTA

TGGAAGGGGGAAGGTGGAGGCTCAN

CTCAAGCCAGGGAGACTACAATGGA

GGCCCAGTGCTCGCCAGGATGCACAC

ACTCAGGCACCCTCCGTGTGAGGAGG

GGAGGGCAGGGCAGCATCTGAAGCA

ACCTGTCATTCACAGCCTGANAGANG

GTGGGAACAANGGCTTNCAAAGCCA

AGAANGCANGTGGNTAGAAATGCAN

GAAAACCTCTCTGGTAAGAAAGGCTG

AANGAAGCAGCTAGGGTTGTAAAAC Fgf3/Fgf IM000465 AAGANCAT 799 I~ 4 CTCCCTCTCCCTCTAGCTGGCCTAGCAGGGGC

CAATACAACTGCAGGGAATCAAGGAAGAGCC

TTTTCCTGAACTGTCCTGGATGCCCCAGTCCA

ACAGCAACTCCCACTTGCCCTGGCTTGGTTTG

CTCCACTGTCCTGAAGGCACAGTGTGATATCC

CAGACCTCCAGCGAGACAGCCCAACCTGCAA

GCCCTGATGGGAGGGGTGGCCTGAGACAACA AISSOOS

CATGGACTCCAGGGTCAGGGTGTAAGAAAAA

GGTGGAGCCTGCTAGGTGTGGTGACACACAC

CTTTAACCCCAGAACTCAGAAAGCTGAGGCA

GGTGACTAGCCAGGAGTTCAAGGTCATCTAGT

TCATCAGATCTATAGAGTGAAACAGCCAGGCT Fgf3/Fgf GCTCAACACTTAAAAGCGCCTGCAGAGGGGT

GGGGGTTTAATTCCCAGCACACACATAGTGGC

TCAGGGAATCTGAAGCCCTCTTCTGGCCACTG

GTGGGAAGCTATACGAAAGTAAAACACACTC

TAAGAAAGAGAACAGGCTGCCTGGGAGAGGG

AGGTGCCAGGGGCTTAGACAGGAAGGTAGTT

TTCAAAAACTGAAAACTTAAGCTATCTGAATG

AATGATACAAAATAAAAGAAGACACAAGAAT

TTCCAGTCACCTGAGATATCTCACACTCCTGT

TCTTTCAACCTTCTAGCTGAAAGGAGAAAGAG

CATGGAAGGAGTTACAGAGACAATGTTTGGA

GCTGAGACGAAAGGATGGACCATCTAGAGAC

TGCCATATCCAGGGATCCATCTTATAATCAGC

CTCCAAACCCTGACACCATTGCATACACCAGC

AAGATTTTGCTGAAAGGACCCTGATATAGCTG

TCTCTTGTGAGGCTATGCTGGGGCCTAGCAAA

CATGCTTAGATTGACCGCAATATGTGTGGTAC

TCTTCAGACTTTTAAAGATTTGCTGAATATCCT

ATTCCCCTTAAATTGTGATCACCCTAGCTAGA

TCTAATCTTAGATCTCGAAAGTTCTACAATTT

GCCTCAATTTGATTACTGTTTTCCTCCTTGAAG

CTTGCCTTGGGAAGTGAGGGGTTCTAATGAAG

GTTGCAAGCCTGTCCACCCAGGGCCCTGCTAA

AGAAGGAATGGTCCCCAGCCTGTTTTGTCCCC

TCTGTGGCTTCTTAGTTCTGGACACTGAGCCA

GTCTGGGCAGCAGGCAATTCACACTGTGAATT

TCTGTGGAAAGCATTTTGGGGGTTCTGAAAGC

CCTGTACATTCTGTGTTAAGGACAGAGGGCCT Fgf.~~Fgf CATGGGGGCTATGTCCTAGGGTAGACACCCCC

TTTATCCCTCACCTCCTTCCCTGTCTTAGCAGT

GGTGTCCCCCACTGTGACTCTACTGCATCTGG

GAGCTGTCTCCCGGGGGACTTCCTCCTGCTGG

AGTGAGTAGGTGGCTAGGGCGAAGCCTGTGT

AAGAGGCAGGAGGTGTTTTGCACAACTCCAA

AGGGTGCAGATCCTGCTGGCTCCAGCTTCCCA Fgf3~Fgf GTGTATGTTCTCTGGTGAAAGTGTTAACCAGC

TCACTCCGTGAAGAGCACGCTGCTTTCAGATC

AGTGTTCAGAGTCTTGAATAATTGGTTTTTAG

AATCATAAAATTGCAGTCCTTTACAAAGGACT

CATGTGAATTCTCTATTTGCAATGTGCTTGGTT

CATACTTCCATACTCTACCCAGAGCCTGTTAG

AAAAATCACTCTTCCCCACCCTATTCTTCACC

CCCTCCTAAGGCAGTGGGGAAG

CATGTGTACTCTCACCATCAGAATTATGAGCA

ACCCACAATTTCTTCACATTTATAACTGACCC

AGTCTGAGGTATTGTGCCTTTAGCAACAGAAA

CCATATCAGACCAACCTTCCCACACAACAGTA

GGCCACCAGGTGGGGGCAAAGTCCTGGGTAA

GGTTCTTGGCACTGTAATTTTGAATCCCAATA

TAAAACCTTTAGGGAGCTGATAAAAATCTATC

AAAACAACACTCTGTCTCTCGTATCCAGCCAT

CATGTA CTTCATTAACAA

CTACAACAAAGCAGAGACCTTGGCCC

TTGGATTGGGGCCCCTCTGAGAGCTA

GTGCGTGATAACCAGGCTGGCAGTGCCCTCTG

CATCCCACATTGGGAACAGCAGCCTGATACTC

ATGTCAACATTGAGTCCAGTAAGGACATCGTA

TATGCTGGTCATTATTATAGCTCTAAGGGTTC

ATACATGAGACAGACCACCCCCTTACCCCCTC

CCCCGTCTGGGCTAAAAGCAGACACACTGGG

IMOOO482TTGGTGAGAGAGCAGCAG 816 K Wntl CATGAGACAGACCACCCCCTTACCCCCTCCCC

CGTCTGGGCTAAAAGCAGACACACTGGGTTG

IMOOO483GTGAGAGAGCAGCAG ~ 817 K Wi~tl CATGAGAAAAATTTGTCTCTAATTCTCTTTGTT

GAATTTTTGTGTGGTTTTGATATCAGGTGATT

CCAGTGAAGTAAACCCAGCAGGACCCTTTAC

TCGGGGGAAAGTTATTTTTATACCTTCCCGCT

CTGGATTAAGGGAGGGTAGGAAAGGATTGGA

TGAAGCTAGAGACAGAGTGGCAGGAAGGTGG

TAGACCTGAAATTGTCAGACAACCACTTATCG

TTGGGAAGGGTATAAGGTGACCACAGCACTA

GCAGACTGTTCTGGACGTAGTAAGGAGTTCCT

GCAGGGGAGGAGTGGGTCAGCCTTTGAATCC

CATGTGTTTTTAGCAACTGTGCTCATTTTCTGC

TGCTGCTAGGAATAAAATCAAATCTAGTANA

ATTGCTTTAATACAAAGTTATTGTCATCCATCT

CTGAAGATCTGAAGTATTGCTGGGGGGTCTCC

IM000487AACTCACCCaCC 821 D --CAAGGGCCTCTCCTCCCACTGATGGTCGACCA

GGCCATCCTCTGCTACATATGCAGCTAGAGAC

ACAGCTCTGGGGGGGGGGTACTGGTTAGTTCA

TATTGTTGTCCCTCCTATAGGGTTGCAGACCA

CTTTAGGTCCCTGGGTACTTTCTCTAGCTCCTT

CATTAGGGGCCCTGTGTTCCATCCAATAGATG

ACTGTGAGCTTCTTATAAGCATAAACTTTCAC

CATGGTGTTAGCCTCCAGGCAGGAAGCATACC

AGAGGAGAACTCCACAGGGAAGCCTTTGTTTT

CTGCTGTTAAAAACAAAGTATGATGGGGCTTA

GAAGAGGCTTTAAGAGGTCCTCTGGAGAAAA

CATGAGAGGTTTTTAAGTCCTGAAAGACCATC

ATACCTAGAGTCTATACAACAAATAAACTTGG

AATACAGTGAAGCTAGTAAAAATAACTTCCTG

CACAGTCAGGAAGCAGAAAGATGAACGTTGA

CTCTCAGCTCTCCTTCTCCCTTTAGTTCTATGG Fgf.~~Fgf CATGATAAAAGTCTTGGAAAGATCAAGAATT

CAAGGCCCATAAATAAACATAGTACAAGCAA

TATACAGCAAACACAGTAGCCAACATCAAAC

TAAATAGAGAGAAACTTGAAACAATCCCACT

AAAATCAGGGACTAGACAAAGTTGCCCACTC

TCTCTTTAACTGTTCAATAGAGTACTCAAAAT

CATGGTAGCTTTCTAGTGAGGTCTCT

AGTACCCTTAGCCAATAAACCATCCCTCTAGT

CCCTGTTTGTTTTGTTTTTTTTTTAAAGACAGG F~~l''$f CATGAGCTAGGCCATCTGCAAGCTGGTCTCGT

CTTGACCAGGAGTACACAGAAGCCTGGCTCA

GTTGTTTATGCAGATCTCTCAGCGTTAGCATT

CTATGGGATTCTTTGGAAAGACCTTTTCAGTT

ATCTTCCATTTCTGAGGCTGTTTCTAGGCAAC

GGAGTGGTACCTTCCTTTAATCTTCCCCTGAC

CTTTTCTGCCTATGAAGATGTTGACTAGTGAG

CCCGTGGGGATGTGTATTATCTGTTACATTTA

TTTATGGCTTGGTAGCGACTCCTTGGTTGTTGT

CATGCCTCCCTCAGCCTCCTCCCACC

CCTTCCTGTCCTGCCTCCTCATCACTG

TGTAAATAATTTGCACCGAAATGTGG

CCGCAGAGCCACGCGTTCGGTTATGT

AAATAAAACTATTTATTGTGCTGGGT

IM000497TC 831 K Wntl TCTAAGTCCAGTCTTTCACACACACTGACTTT

CATGCACACAAACTGGCCCTGAACTTTTGACT

TCCAGGCCTCTGCCTCTCTGCGCGCACACACA

CACTCGCACTCCTGTATATGAAGCGTATATGT Fgf3/Fgf GGGCTGAAGGAAAATGTTGTGTCATC

CATGTACCACTTTTGCTAATCCCCTA

ACCGCCCCTTGGTAAGCATCTAAAGT

GATATATCTCTTGGTCTACTGAAGTT

CTGCCCTGTCTCCATCGGGGATTCTC

GGGAGGCTAAAATTATAGACTATTTG

CATGTGCCAAGAGCCATTACAGGCTC

AGACTAACATCTGCCTGTAAACAACG

GTTGCTAAGTTTCCAGGGAAGCGTAA

CCAGATGACCTTGAACTCAGAGATCTCCTTGC

CTTAGCCTCCTGGGATTCATAGCCGCTATGCC

CATGTAGTTTGCAAACAAGACATCCCTGGTAT

GGATATAGTGTCAAACAGTCTGATGTATTCAT

AGGTTTGTATCCATAGTTATCAAATCTCTCAT

CATGTACCACACACAGACTTGGTAATAAGTTA

GATGATAATTACAAAAGCAACAAATAAAACC

GTTAGGAGCACGAACTGCTCTTTCAGAGGACC

CATGGTCAATGATAAACATTCCAAAACACCA

AAACCATCCTCTCTGTACAGGCTATGATGATT

CAACTGCTGCCCTTCCTCATTTCTTGTTCCCAA

CATGATAGAAGACCACGTCTGGGATGGGGTA

AGGGTTTCTCAGAGTACCTTGCCCTGGGGCCA

CAAGTTTTTGTAAGGGAGCTAAGAAAGGCATT

GTTGGTTAGGTTGGAAAGAGGGGGCAGGACC

TGGCTCTCGCTTCAGCCCACTCCCCTCTGCCCC

CCAGCCTCAAACACTTTTACCCTAGCATAGCA

CATGAACTCAGTGGGCAGATGAAGAGTTTTTG

IMOOOS12 TGTGAACTGGGGCTTTGCCCTTATCATCCTGT846 ~ Fgf3/Fgf GTGTTCTCCTGGTGACCCTCAAGCTTGGCTGC

AATGATCCCCACTTACAGAT

GTTTATTACTCCAATGATTCGCACAGCCGGGT

TGCAAGTCTAAGGCAGGCTGTCTGCCTTCCTG

GAGGTACTTACCCCACCTCCCCCTCTGGGGGA

CATGATTTTCAGTTTTCTTGCCATATTCCACGT

TCTACAGTAGACATTTCTAAATTTTCCAACTTT

TTCAGTTTTCCTCGCCATATTTCACGTCCTAAA

GTGTGAATTTCTCATTTTCCGTGATTTTCAGTT

GTAACCACTCATTTACCTGCCCCAATGATGTC

TGGGCCAAGGCACTTTTAAATTCATATCTACT

CATGACACTGCTCACTGTTGCTCTCTAACCTT

IMOOOS16 GGTCCAG ~ 8SO D --GNGCTTGGCAGAGTAGAGAAACTCTTTGGGA

CACCTCTGCCTCAGTTTCCCTGATTAT

CATGTAACTCAAGAAAGTCTAGTAGGCGTAGT

GGTAAATGCCTTTGATCCCAGCACTTGGGAGG

TAGAGGCAGGTGGGATCTCTACAAATTCAAG

ACTGGTCTGGTCTATATAGTGAGTTCCAGGCC

AACCTTCACATTGAAATTCATCTCAAAACAAT

GAAGACATTCATTTTTTTCTTGGGAGGGGATA

GACCACGCTGGCCTCGAACTCAGAAATCTGCC

TGCCTCTGCCTCCCAAGTGCTGGGATTAAAGG

CTGTGCCACCACTGTGCTTACTGATCTCTTTGA

TGTCCCAGTTATAGCTCTTGGGTTCCCCACCC

ATTTGTAGGGGGACCCAGGACACCTCAGAGC

TCTCCCAAGTCTAAAAAGGGCAGGGTTCCTGG

CTCCCTTAATGCCTTATCAAGCACAACAGAAC

TCAGGGGCAGAAAATGTTCCCAGGAAGAACT

CATTTTTCTTTATAGCTGAGTGTTATTCCACTG

CAA.AAATTTGAATATTCCACTATTCTGTTGAT

GAATGTCTAGGCTGGTCACGTTCTCTTGCCTTT

GTGAATGGAGCAGCAATAAACATAAGTGGGC

CTCCATTGGGCCGAGTGAAGCTGTGGTTCAGA

GAAACTCTATGGACAAGCTTGACTTCCAGAAC

ATTGACCTGGTCTCTGAGATCAACAAGCGTAG

GGGAAATAAAGTAATATT

CATGTAGGACCCTGAATGCCAGCAATGAACA

ATACCAGCTTGGTTTTCCGACTCTTGCTTTCTC

CTCCCTCCACTACTAACTAGCCTCACCGTTGC

ATCTTGTGACTCAGAGGTCTTGTTTCCAGGGC

TTCCTTCCTTCCAGTGTTCTTCTAATGCATCTA

CATGCAAAGCCTCTGCAGGGCCGACAGCAAG

GAAGGCCCTTCTAGATCTCCAGCACTCTGTCA

AAAGCCATCACTCGGCAGGCAGGCAACCACA

ATGTAGGGAAGACCTGTAAAGCCTTCAGAGA

GGAACAGCTGGCAGCCCCTGGGTCACTCAGA

GTGGCCAACAGCTACTCTTGTGGAGACAGCA

GGAGGAGGCCTAGACTATAGAAGGATGGAGG

CATGCACACAAACTGGCCCTGAACTTTTGACT

TCCAGGCCTCTGCCTCTCTGCGCTCACACACA

CACTCGCACTCCTGTATATGAAGCGTATATGT Fgf~lFgf IMOOOS27 GTTTCTCTGGG 861 I~

CATGAAACATTATTTNTTTTGGAAGT

AGCAAGAACAAAGGAAGTACTTCACCTGATA

AAAACAGTTCCCAGAGAAACACATATACGCT

TCATATACAGGAGTGCGAGTGTGTGTGTGAGC

GCAGAGAGGCAGAGGCCTGGAAGTCAAAAGT Fgf~lFgf GATTTTTATTTTCCTTAGCATCCTGATTGGAGA Fgf3/Fgf CATGTAGAGACTGCCATATCCAGGGATCCACC

CCATAATCAGCATCCAAACACTGACACCATTG

CATACACTAGCAAGATTTTATTGAAAGGACGC

GACCTGTACCCTACCCTCTGATGGAGGCCATC

TATTTGCCTGTCCCCAGGAGTCCCCAAACTGC

TCAAAGAACAGACTGTGGGCTCTGGAAAGCT

AGCAGGTGACCCCGGGGGATGTTCTGAGCAG

TGCCTTACTGAAGTTTATCCAGGCCCTAGGGT

CCCCTCAACTGCTCACACAGCCTAGGGTGGGT

CTCTTGAGGAGTCACTTGTCACTTCTGTTGCTT

CCCAAGAGACCCAGGGAAAAAAGGAAGGAA

ATCTCACTCGTAAAATGAACAAAGGGACTGC

AGAGATGGCTCTGAGCTTTTAAGACCATAGCC

TGCTTTTCCAGAGAGCCCAGGCTTCATTTCCC

AGCCCACATATGGCAGTTCACAACCATCTACA

ACTCTAGTTCCTGGGGATCTCACACTTTTGTCT

TCTGTGGGCACTGCGCAAATGTGCACAGAAAT Fgf3/Fgf IMOOOS33 ACACGCAAGGAAAACACCCATG 86~ K

AAGAAACACTCTTAGCTGGGCCTGGAAGTGC

CTAAAGCAGATTATTATACTTATTCTACTGAC

CATAATGCAACCACTATTATATAAACAGAACA

TACTATAAAGTGAATAACATTAGGATACAAA

ATGTATAAAAGGGGAGAGAGGATAACCATTG

TGAAGTATGTTTAAATAAAATGTTTGGGATTT

GAGGAAATTAATAAATTAGTTACCCTTTTTGC

CAGCCCCAAACCCATCAGCCTGAGACTGATGC

ACAGGAGGCAGGCCAGTTAGTTATTCTCTGGG

CCCCTCTATTTTGCCTTCTGTAGGTTAATCCCA

CCGCTCCCAGTGCTGGAAAGTGCAAGCATTGT

CATGGACAATGCACCCCTCAAGCAGTGTCTTC

CATACAGACAAGCATATTTATTTTCTATACAG Fgf~lFgf IMOOOS37 ACAGCAACTTTGCTGAGGTGTAAGG 871 I~

GGATGAAGAAGCCCAAGGTATTAGGTCAGTC

TTGCTCTGACTTCTCACAGTAAAAATACAACT

CCCAGGGACTAAAATGACACAGAACAGCTTA

GCCTCTGGACATTGCTTTTGGATTGCAAAGTG

ATAAGTGAAAAAGTAATAAGTCTATCTACATT

GGAAAACATTTGGTAACTTCATTTAAACACAC

CATGTCCTACATTGGACATTTCTAAA

TTTTCCATCTTTTTCAGTTTTCCTCAC

CATATTTCACGTCCTAAAGTGTGTAT

TTCTCACGTGTATTCGTTGGTTGTTGG

TTTAGTTCCTGGGAGCTCTGGAAATC

TGGAAAATGAGAAACATCCACTTGACGACTT

GAAAAATGACGAAATCACTAAAAAACGTGAA

AAATGAGAAATGCACACTGAGGGACCTGGAA

TATGGCGAGAAAACTGAAAATCACGGAAAAT

GAGAAATACACACTTTAGGACGTGTAATATGT

CGAGGAAAACTGAAAAGGGTGGAGAATTTAG

AAATGTCCACTGTAGGACGTGGAATATGGCA

TGACATACAGAAAGAACACAAATACCTGTAG

CTGCTGTGACAGGACCAACCATTCTAAATATC

AAAGCAGCTGTTGACACCTAAGGACTGGTCTG

ACTGCTAGATCTAGGAGTTTCAACTTGCAAAA

TTATATATATATATCGTTTTCTCTTACTCCTGA

CATGTCAGCCCTCAGCTTTACACAGGTGTCAA

A,~~AAAAAAAAAAACACTGACTGAGATCTTCC

GTCTGCCATTAGCTGTTATTGTGTACATTAAG

TCACCCCAGTATTCAAGGAGGTGCCACAGGA

CTCAAAGGATACAGAAGTTACATATTAAAAC

CCAATCTCGTAGAGGATTCAGAGGAACTAAG

TTTGGTAGGGGCACAGATTGTAGTACCATTAA

GCCCCTCTGTTCCTCGTGGAGAACCACTACTG

TCCAGCAAGGCGGGAAGGACCCAAATCAAGC

AAATGAGACTTGTTCTGG

CATGATANATCCCTTTTTGTGAGCAT

TCCATAGCCTCAGTAATAGTGTCTGA

CCTTGGGACCACGCTGTATCCCACTN

TGGGACCTTCTTTTCNTCAGGCTACTC

TCCATTTCCATTNCTGTAATTCTTTCA

ACAGAAACATTTATGGGTCANAGGTG

TGACTGTGGGAGGACAACCCCATCCC

TCACTTGATGTCCTGTCTTCCTGCTGG

AGGTGGGCTTTATAAGTTCCCTNCCC

CTACTGNCCAGCATTTCATCAAAGAT

CCCTCCCTAGGAATCCTGGGAACCTC

IMOOOS44 TC 878 D -=

GATAAGCTTATCTTGAACTTGAATGTATATGG

AGAAGCAGAAACCTTGAAACAGCCCACAGAA

ACTGAAGAAGGATGAAGGTGGAACTCTCAGC

CATGTTCCCAGCTGGGCAAGGCCTCGGGTTCC

TCGGTGAAGAGTGTGGACCAGCCGATGAGCC

CTCCGACGTGTGGATGAAACGGCTGGCTTTTG

TTTAGTTTTGTTTTAACCTCCCCAACGAGACTT

TGATCAGCTCCACCTCGAAAATGTTCGCGAAA

GATGCGGAGAGCCTGAGGGACTGCGGGGCAG , IMOOOS46 CCCCCAGA 88O B $

ACCAAGTGTTAATAATGTACTGATGGCTTCTG

CCTTACTGCAGAGATGACTCGGCCAACGGCTT

CGAGCCCCTGACCACTTCCTCAGGTTTGGTTT

TGTTAGTTTTTTCTCACAGCAATGGGAAGCAT

AATCAATACAACTTCCCAGAATGCGACCTGTG

ACAAGGCCAATGAGCAGACTCAAGGCTGGGC

ACATAAAAGCACCA CTCCCTT

GACTGAGCCTGCCTGGGGCCGTAGGG

AAGGGGGGGTTGGACCCTCTGGTATT

TGCAGTTACCACTGACAGGGTTTTTC

CGAGATGCCAGTGTCAGGGTGTTCGG

TGCTGACCCCCCAGGGACCGTGCAGC

CCCGATGGCTGTCTCGGTCCTCTCAN

CTTTTCCGCCACCCCTGGGATATTTCA

GGACTCANTCCCCGCAACAGCTCTGA

CTGAGGTCAGCTCTGTGACCAGGGNC

CCTGTCCCCGGTGTGNNGTGTATTTG

IMOOOS49 , CATG 883 I~ Whtl CATGTAGAAGGCAGAGGACAACCTTCAGGGA

GTTCCTCCATTCTGCTGCTTCTCCCTGATACAT

TGAGTTACAGCAGCCCACGCGTACACACTCTC

IMOOOSSlGCACATG 88S K Wntl CATGCCACCAACAAATAAGTAAGTAAAAAAG

AAGGAAGGAAGGAAGGAAGGAAAGAAAGAA

CGGAGCTTAGGTCTATCATTTAAAGATACAAC

CAAATAGGCAGAATCATTTCCTGAGGAGCCC

ATTTTCTTTATCTCAGGTCCTGCAGATTTCTCC

CTGGTATTATCAGGGAGGAGCAGCAGCTGAG

CTATCCTATCTCCTTTACTAATAGAAAAAACG

CCTTTAGGGCTTGAGCACAGGACCTGTATTTC

AGGGGAATGTTGACAATCCATAACTCCAGGG

TGGACTACTAAGCCCTGCAAGGTGAGTGAAC

CATGGCCTGAGAGTTGGAAAGAGTATTGTAA

GCAGGGGTTGTTCCAGAAAGTTTAGAATATAC

AGACACTATACTCTATCCAGACTTCTTGGCAC

AGGGAGTTCAAATGTAGACTCTGAGCCCCGTC

CTGGGGCAGCTTCTTCCACCTGCTTTGGGTAG

AAGCAGGCA'GACTCTGGGTAGACTCTGATTCC

AAGGCTAAGTAACCCCTGAACCCAGAACAGT

CCAGATATCATACTGAGTTCGTAGGTGGTTTT

TTGGTGATCCAAACCCAAAGAGACAAATGCT

GAATGTTCACTCTCATTTTCTGTTCTTAGCTCC

AAATCTTCAGATATGAGTAAGCAACACATAA

ATTATGAAGGGACCATACTGGGATGTAGGGG

CATGAGCACTGCTCTAGGGACACCTC

CCATCCCTTCCTAGCACCCCAAATGC

CCCTTCCCATCTCTCCTTCCAGAAGTT

IMOOOSS7GGA 891 K Wnt-3 ATATAGCTGTCTCCTGAGGGCCTATGCCAGTG

CCTGGCAAATACAGAAGTGGATGCTCACAAT

CATCCATTGGACAGAGCACAGAGTCCCCAAT

GAAGGAGCTAGAGAAAGTACCCAAGGAGCTG

AAGGGGTCTGAAGCCCCATAGGAGGAACATC

AATATGAACTAACCAGTGCCCCCAGAGTTCCT

TAGAACTAAACCACCAATCAAAGAAAACACA

CATGATAAGGTTAGAGTTTTGTGAGCCTCCTT

AACCTTGCTCAGCAAGCGTTGGGCTCTTGGCA

GCCGAGCTGCCATCTTTCTCATCCCCGATAGA

GCCAGCCGCCCTTGTCGTGTCTTGAATAAGTT

TTGCCTTGGAGCCTGAGGGATGGGGATTGGCT

GAATGTGAAT

CAGAACTGTGCTCTTTAGGAAGCCAGACGCTA

TGCCTTAGGCCCTGTTCCCTCCAGACCTTGCTC

GAGAATTAGAAAAGAGATAACAAAGGCGAGA

GTTTCCAGATTGTCCTAGTAGCTGGGCTGCAG

GGGGGTGGGGGTGGTAAGAGAAGATTAATTA

GCCTAGCATATATAAGGTTTTGGATTCAATCT

TCAACTCCACCCCTTAAAGAATAAATAAACAA

GTAGATAGATTATAGACAGACAGCTAGATGG

ATAGACAGATAGCTACATAGATACATAGATA

GATGATAGATAATAGACAGACAGACAGATAA

ATGATAGATAGATGATAGGAAGTCCCAGTTA

ACAAATGGAAATAAAAAGACAAAAGTCCCCT

GTATATGGAATATGGCAAGAAAACTGAAAAT

CATGGTAAAGGTCAGGAGTACACCTGTGCTTC

TGTGTTCTTCTGTGTTGGCTGACAGCTGGGCA

GAAGTGAGTTCAGGAGGNCAACCCATACGAT

GAGACAAGCCGGGGCAAAGTGGGATATGTGG

ACCGCAGCACATCAGAAGGGTGTGCCCGACA AAlll3 CATGAAGTATATTATTAGAGGGGAACTAGTCT

TACTGCTGAGCAGCGTGTTGTCTTCTACAGAG

GATGTTTGTGTTCTGGAATTTAAAATTACTTA

AAGTAATAGTGTCAATGAAACGTTGTCCGGTG

ACTTGCTTCTTTTAAATGATCACTGTTAGACA

AATAATCAGATTTCCAGAGCTCCCAG

GAACTAAACCAACAACCAACGAATA

CATGATTTGATAGGGTTATTTGGTTCTCTGGA

ATCTAACTTCTTGAGTTCTTTGTGTATATTGGA

GCAAATAGTCCTTTGTACCGAACTTCCACACA

CTAATGTAGTGAATTATTTAAAATTTATTCCTT

AATCTTTTTTTAAAGTCCAGACTCTATCCCCCT

CCTTGTCCACCCTCTGATTGTTCCACATCCCAT

TTCCATCTCTTGTATTCTGTTGCTGATGCTCAC

ATCTATGTTTCCAGATTTCTTTCCTAGTGTTTC

TATCTCCACTGTTGCCTCACTTTGGGTTTTCTT

TATTGTGTGCACTTTCCTTTTTAGGTCTTGGAT

GTTT'TCCTGCAATTCTTTAAGGGATTTTTGTGT

TTCCTCTTTAATGTCTTCTACCTGTTTGGTTAT

GTTTTCCTGTAATTCTTTAAGGGATTTTTGTGT

TTCCTCTTTAATGTCTTCTACTTGTTTAGCAGT

GTTCTCCTGCATTTCTTTAAGTGAGTTATTTAA

GTCCTTCTTGATGTCCTCTACCATCATCATG

CATGAGTTTTCTACTTTTTTATAAAATTATATA

AAGTCATTTAGTAGAACCTAGCTTTATTTAAT

TTTACCAATTAATATAAGGCCACTGATATTAT

TGACTTTTGTCACTACAAAATACAGCAATGAA

ATAATCTTTCTTCTAGGCTCCTTCCTCATCAAA

CTAGTTCTTCAGCTCACATTAATACTTTTTTCA

CATGAGCTTATAGTTTCAGTAAGAGAGCATAG

ATAGAATATAGGTGCCTGTGCGCTGGCTCTTT

TGGTTGTATTTAAATCCTTTATCTCTGAGAAGT

CGGAACTGTTGGCAACAGACAATATGGTAGC

CTGACACAGGTATGCCCAGTCCATAGTGTGCA

GAGCACAGATGGCCAAGGATAACTAGGAATG

AGACCTACTTAACCCAAACTCCAAACATTATG

AAACTTTAAAAAAATGACTTCAGTTGAACTTT

ATTGTGTCCTTTTAACATTCTTGCTTTAGTAGA

ACATCCTCTGACCCGTATCTGATTCAGTGAAA

AATTCCTTCACGAGTCTGCCTTAGCAAAACAT

CCTTTCACCTGTGTCTGCTTCAGGAAAACACC

IMOOOS74 CCTTCACATG 90~ R --CATGTTGGTAACAGATACAACAAGCAGACTT

AAACTAATAAGAAAACAGCTATGATTAATAT

GTTTATAACTTAGCTGAAGAGAATGTATGGAG

CTTTGAAGTTAATCTTTTCATATACACAGGAA

TGCCTTCAAAAAGCATTGCAGCAGATTTCAAA

CATGTGGCGAACCAGCATCACTTTTGCTCTTT

CCTTACTAACCCAGGACATCCATCATTATTTT

AATAGCATCCACCCTAGTAGATATAAGGTGAT

ACCTTATTGTGATTTCATTTGCCTTTCTCTGAA

GATCACTAACAATCAAAATCTGGTTCATTTTA

TTTATGAATTCTCATTTGTCTTTTGCTAAATAT

ATGTTCACAATTCTTTTCAATTTAAAAGCAAA

TTGTTTTGTTAATAATGAGCTAACTTTTCATAC

TTGCTGTGGGCCTAATTCAAGGCTGA

TAGATCACCACAGAAGGACACTGTTT

TCCTCCGGGCAGCAGGAAGTACAGG

GTACTTGAAGTTTTAGCTAGAGCAAAAAGAC

IMOOOS7g pATGGAAGGAGATCAAGGGAATACAAAGTGG912 R --GAAAGAAGTCAGAGTATCATTATGTCCAGGT

GATATGATAGTATACATAAATGACCCTATAGA

TTACACCTAAGACCTCTACAGTGGATAAATAC

TAAAATATTTACTACACAGAAATCACCCCATG

CATGCAAGGTATGAACTCACTAATAA

CATGGTTCACACTCCATAATATCTTGTTCTCAC

TAATTCCTCTAATCCCATAATATACACCAATA

ATTTAACAAGGGAATTTCTACATTGATTTGTA

ATAAGGGAGATACTGTGTGAACTTACCCAAC

AAAAGTCTCCAATAGAAGTGTGGATACCACA

GGAAGTCTTGTGACAACCATTAAAATTTGGGT

CTGATAAGAAGATAACCCTTTAAATATATAGA

CATGGGCTGGGGAAAGGCAGAGAGAAGAACA

TCTGGATTGTTCCTAACTTTGCCTTTAAAATGA

GACTTCAATAATACTTAGACGTACCAGCTTCT

CACAGTCAGTTAAAATGTGACACACACACCTC

AGAGATGGTTGGGATTTAAGTTACCA

GGGTAGGGTCACCACAATCAACCCTT

CATGGAAGTCTAAAAGACATTAGGTTCTGGAT

GGAAGAAGAGAAAATTATCTTTAAGTTTTAGA

AAAGGGATGATAAAACAAGTCTTAAATCTTCT

CAATTTTGCCATAATTCATTTGAATTAATATTG

GTAAATGCTTTGTGTGGTCCCATAAAGTTCAA

TGTGTTATATCACTAAGTAGTTATTTGTAAAA

CTTGTGAATTGTTTAACTGTTTTGAAAAAGTA

GATGTTTTCTCTATTTATTTTTGGGACAATTAT

CAGAATTTGAAACAAACTGTGTATCTCTTATT

CATGGTTGCTATATTCATTAACACAAATCATT

TAAAATCCTTAATGTAAAATGGGCACATTTTC

AAAATTAAAATATATGAAAACCAATAAAGAT

AGAAAATTTAGGA,AAAAAAATAATCCAAGCA

AGATGTTAACATCCAACCACAGCAGCATATTA

GCAGCAGGACAAAAATAAGGACAACAACCAA

GAAAGGGATTGTGGTTAATGTATGCCTCATTG

GAAGGGATAATAGGATGTAAAAGTGTGACAA

TAAAGAGAAAAAAATCTCTTTTAAAATGTAA

GTTAAAATAATAAAAATAATTTAAAA.ATTGGT

GTTCTCAGGGCTGGATAATATTACTAACAAAA

CCAGGGAATTATTAATAAAAAATCTCTTATCA

AACAAGTTTTAAATGGGGCATAGTGGATCAC

ATTTGTGATCCCAGCACTTGGAAGGTAGAAAT

AGGTAAATTAAGAGTTCAAGGTCATTTCTCAG

GAGTTCAAGGCCATG

GTCCTCCAATGTGCATTTCTCATTTTTCACGTT

AATTGCATTGAATCTGTGGATTTCTATTAACA

AGATGGCCATTTTTTTCCTATGTTAATCGTACT

GATCCATCAGGATGGCAGTCTTTCCATCTTCT

GATATCGGCCTCAATTTCTTTCTTCAGGGGCTT

GGCTAGGTACTCCTAAACCTTCCTCTGCTATC

AATAATACTTTCACTGTACTTTAAAATATTAT

CTCCTATCTCACTCTAATACTTCTGTGAAAGA

AGCAATATCGTCTCTTTGTAGATAAAAATGGC

TGAGAAGGGCACCTTCAAGACACTAAGTGAC

CATGCTCTACTATGTTCACAGCAGTCTTATTTA

TAACTTCCAGATACTGGAAGCAACTCAGATGT

TCCTCAATGTAAGAATGGATACAGAAAAAAT

ATGGTACATTTACACAATGGGGTACAACTCAG

AAAACCCAAGAACAATTAAGCTGTA

GTTCCCAAGTGTAATTATATTATGGT

TGTTTCTGCTTGCTTTATATCCCTATA

TACAATTTATGATTCAAGTATTAGTG

IMOOOS93CATGCCAAGCCTTCTGGTATCACCCTAAAGGC927 ~ --CATGCTCTTCTCTGCTGTTCTTACTGAATTTTT

AATAAGAACAATTCCACACAGCTCGAAAGCA

CTGCTCAATTAAGAGATATTCCTACCAGGCAT

CTTTGGAATCCTGCAAGCACCTCTTCTCTGTTT

CCTGATGACCCTCAATTTGGTTGTGTCCAGAG

GTTGGTGGGGAGGAGGGGAGGGGAAACGAA

GCTTATTTTTTTTTAATTGCAAGTTCAATTTTA

CATGCTAGGCAAATGCTCCACTGAATGAATTA

CATTTCCAATCCTTTAGATGCATTTTAAAGAG

AAAAGATTGAGTACTGAAGTTTTGAATAGAAT

ACAGGAATAAGGGACTAAACATATATATAGC

CTTATATAGAGAAATATTAAGTAAGTAGTAAC

CATGCCATTAGTCTATTCCCACTAATACTTGA

ATCATAAATTGTATATAGGGATATAAAGCAA

GCAGAAACAACCATAATATAATTACACTTGG

CATGCACAGCTGGTGAGTGAGTTGTCTTCTGG

TACAAAAATCTCCTCACAGGCACATTTACAAG

TGCCTATATCTTTGCTAGCTTCAAGAACACAA

CCTTCTCCTGCTGTTATTTTG

ATCGTCAAAGTTAGCAAAATTATAAATGTGAA

CATGAATTATGTTTGTTTTATTTCTTT

TGTACATCATTCAATGCAGTAATCTA

AAGTTTGGGGTCTTGGTCTTATATCTT

GGAACTTCAGTGACTTATTGGTTCTA

AGAGACAGTCACAAAAGGGGCCCATTCTTGTT

AAGAATGGGCCAGTGGAGAAGTTCGGGTTAG

TGGAGTAGCCTGCCTCAGTTTCCTCCTGTCTTC Fgf~lFgf CATGTACAGACTATGAACAGGAAATGTTTTTG

CAAATAACTCTGTGCATTAGAATTTTCTTCAG

AAATATAACCATTTTGACAGTTGTAGGTTACA

CTTTTAAAATTACAAAATCAATAAAATTGATC

TACAAACCGAGGCCTACAAAACCCTTGCTGG

IMOOO6O2 ATATTGAAGACGGCATAATATTAAAG 4~ 936 D --AATTCCCACCACCCACAGGGTGGCTCCATAAC

CATCTGTAACTCCAGTCTCAGGGACTCCAAGG

CCCTCTTTTGGCTTGCAAGGGCTTGCACACAC Fgf3/Fgf IM000603 ACAGCGCACACATG 937 I~ 4 CATGGTGAATGATTGTTTTGATGTGTTCTTGG

ATTTGGTTTCGAGAATTTTATTGACTATTTTGG

CATTAATACTCATAAGGGAAATTGGTCTGAAG

TTCTTTCCTTGTTGAGTCTTTATGAGGGTATCA

ATATAATTGTGGATTCATAGAGCAAGTTAGAT

TGTGTTCCTTCTGTTTATATTTTGTGGAATATT

TTGAAGAGTATTGGTATTAGATGTTCCTTGAA

GGTATGATAGAATTCTGAACTAAACCCATATG

GTTCTGGATTTTTTTTGGTTGGAAGACCAATG

ACTGCTTCTATTTCTTTAGGTGTTATGGGACTG

TATAGATGGTTTATCTGAACCAGATTTAACTT

TGGTATTTGTTATCTGTTTAGAAAATTGCCCAT

TTCATCCATATTTCCCAGTTGTGTTGAGTATAG

GCTTTTGTAGTAGGATATAATGATTTTTGAAT

TTCCTCAGTATGTTTTCTTATATCTCCCTTTCC

ATTTCTGATTTTGTTAATGTGGATACTATCTCT

GTGTCCTCTGTTTAGTCTGGCTAAGGGTTTTTC

IMOOOC)O4TATCTTGTTGATTTTCTG 938 R --CATGGGTTAACAGTGGGCCCTAAACTTGAACT

AGAAAACTTAAAGATGCTCATAGGGAAGAAG

AAAAGAGCAGAAAGCTTAGCTTCTAGACAGG

GGTAAGGCTTAGAGCTCAATAAAAAAGGAAC

IM000605 ccc 939 I~ W~tl CATGGCCTGTCTCAGTTTACTTCACAGCTGAA

IMOOOCO6 CAAGAGGCAGAGAGTGACAGGTAG 940 I~ Wntl CATGCTCGCCAGTCCCAGAACCTGGA

AGGCTGAGGCAGGAGGATTAAAAAG

CCTTGGGGACACCAGGCTTGGTGGCA

CCGGTCGTAAATCCAGCACTGGGGAG

TTAAGAAGCAAGTGAGTCACATCTGT

GAGTCTGAGGCTATCTTGGTCTACGT

AACCAGCTCTAGTATAGCCAGCCTGG

GATACATAGTAACCAGTTCTAGTATA

GCCAGCCTGGGATACACAGTAACCA

GTTCTAGTATAGCCAGCCTGGGATAC

CATATGCGTATTCACATTTGTGTGGGAACGTC

CTTGGAGAAAGCAGGAGCAGGAGTTACAGAC

AGTTATAAGCTGCCTGACCTGGGTGCTGGGAA

ACACCTCAGGTCCTCTGGAAGAGCAGTAAGTC

CCCTTAACCAATGAACCATCTATCCGTCCAGC

CTACATTTAATTTGTTTTCTTATTTACTTTGTCT

CACACACACACACACACGGCTGGGGATCCAA

CCCATCTCGTCCTTACACGTGCTCTACCATCA

CGCCACACATTTCCAGCACNTTTATCTGAAGT

IMOOO6O9 GTTTCCTTTTATTTGTGCATG 943 K Wntl CATGCCTGGTGCCTGCAGAGGTCAGAAAGTGT

TGGATGCCCTGGAATTAGAGTAACACATAGTT

ATAAGATGCTGCGTGGGTGCTGGGATTTGAAC

CCTTGTCCTCTGCAAGAGCAGCCAGTGCTCTT

AACCACCGAGCCATCCCTCCAGCCCCTGATTA

CTCACTCTTCACGGCCTCAATCTTGTAAGGAA

TATTGAGGCTGCCAAGTGACGCAAGAGCACC

TAGGAAGGCAGCCACATCGGTGGCACTCTGG

AAGCACTGCGAGGATGACTGCACACATTGCC

IM000610 GGTTGTC 944 I~ Notchl CATGCTGGCCATTTATTTTGATTTAAGTTATAC

TCTAGACCTTTGTAAATATTAGCCATTGCATA

TTACAGAAATTTCTTAGCAGAGATAGTCTCTC

ACTCTTAGTGATGAGCAAGCTGGAGCTCAGCA

TTATTCTCCCAGCTAAGATACAGAATTACAGA

CGTTTATGACGGACACATCTTGGATGTAGTTA

CCCCCCCCGCCCCTGCCAGACCGCAGCCCCAA

CATGCCTCCCTCAGCCTCCTCCACCCCTTCCTG

TCCTGCCTCCTCATCACTGTGTAAATAATTTGC

ACCGAAATGTGGCCGCAGAGCCACGCGTTCG

GTTATGTAAATAAAACTATTTATTGTGCTGGG Fgf3/Fgf CATGAATTCAATGGTGTGCTTGCTATAAATGC

AAATAAACCATATATATCATATTACACTCAAT

TTTAAATATTTTTCCTAATATTAATAAAGGTG

CATGTCTACTTTATTGCATATTAGGAT

GTCAGGTCCTGCTCGTTTCCTGGGAC

CATTTGCCTGGAAGACATTTTTCCATT

CTTTTACTCTGAGATAGTTCCTGTCTT

TGTTGTTGAGGTGTGTTTCTTGTATTC

AGCAAAATGCTGGATCTTGTTTGCGA

ATCCAGTCTGTTAGCTTATGTCTTTTT

ACAGGTGAATTGAGTCCATTAATATT

GAGAGATATTAAAGAGAAATGACTTT

TGGTTCCTGATATATTTGTTTTTCTAG

TTAGTTTTGTGTGCTTGGGACTCTCTC

CCTTTGACTGTGTTGTGAGATGCTTA

ATATCTTGTCCTATCTTTGGTGCAGGT

GTCTTCCTTGTGTTAGAGTTTTCATTC

CAGGTTTCTCTGTAGTGTTATGTTAG

AAGACATATACTGCTTGAATTTAGTT

TTGCCTGGAATATTTTGTTTTCTCCAT

CTATGTTGATTGAGAGTTTTTCTGGGT

AAAATAGCCTANCCTGGCATTTGTGT

TCTCTTAAAAGTCTGTATGACCTCTG

CATGGTGAATGATTGTTTTGATGTGT

TCTTGGATTTGGTTTCGAGAATTTTAT

TGACTATTTTGGCATTAATACTCATA

AGGGAAATTGGTCTGAAGTTCTTTCC

TTGTTGAGTCTTTATGAGGGTATCAA

TATAATTGTGGATTCATAGAGCAAGT

TGGATTGTGTTCCTTCTGTTTATATTT

TGTGGAATATTTTGAAGAGTATTGGT

ATTAGATTTTCTTTGAAGGTATGATA

GAATTCTGAACTAAACCCATATGGTT

CTGGATTTTTTTTGGTTGGAAGACCA

ATGACTGCTTCTATTTCTTTAGGTGTT

ATGGGACTGTATAGATGGTTTATCTG

AACCAGATTTAACTTTGGTATTTGTT

ATCTGTTTAGAAAATTGCCCATTTCA

TCCATATTTCCCAGTTGTGTTGAGTAT

AGGCTTTTGTAGTAGGATATAATGAT

TTTTTGAATTTCCTCAGTATGTTTTCT

TATATCTCCCTTTCCATTTCTGATTTT

GTTAATGTGGATACTATCTCCGTGTC

CCATGTCAGGTGGTTAACCTGTGAGTCTAACT

TCCAGGAATGCAATGCCTCTGGCATCTACAGG

CATAAACATACTTGTGGCTTACACTCAAACTG

ACACACCAACACATATGTGCACGCGCACACA

CACACACACCAAATTAAAAATAAAATAACCC

TTTTTAAAAAAATATAGAATCTATAGATAATT

Claims (19)

We claim:
1. A recombinant nucleic acid comprising a nucleotide sequence selected from the group consisting of the sequences outlined in Tables 1-112.
2. A host cell comprising the recombinant nucleic acid of claim 1.
3. An expression vector comprising the recombinant nucleic acid according to claim 2.
4. A host cell comprising the expression vector of claim 3.
5. A recombinant protein comprising an amino acid sequence encoded by a nucleic acid sequence comprising a sequence selected from the group consisting of the sequences outlined in Tables 1-112.
6. A method of screening drug candidates comprising:
a) providing a cell that expresses a carcinoma associated (CA) gene comprising a nucleic acid sequence selected from the group consisting of the sequences outlined in Tables 1-112 or fragment thereof;
b) adding a drug candidate to said cell; and c) determining the effect of said drug candidate on the expression of said CA
gene.
7. A method according to claim 6 wherein said determining comprises comparing the level of expression in the absence of said drug candidate to the level of expression in the presence of said drug candidate.
8. A method of screening for a bioactive agent capable of binding to an CA
protein (CAP), wherein said CAP is encoded by a nucleic acid comprising a nucleic acid sequence selected from the group consisting of the sequences outlined in Tables 1-112, said method comprising:
a) combining said CAP and a candidate bioactive agent; and b) determining the binding of said candidate agent to said CAP.
9. A method for screening for a bioactive agent capable of modulating the activity of an CA protein (CAP), wherein said CAP is encoded by a nucleic acid comprising a nucleic acid sequence selected from the group consisting of the sequences outlined in Tables 1-112, said method comprising:
a) combining said CAP and a candidate bioactive agent; and b) determining the effect of said candidate agent on the bioactivity of said CAP.
10. A method of evaluating the effect of a candidate carcinoma drug comprising:
a) administering said drug to a patient;
b) removing a cell sample from said patient; and c) determining alterations in the expression or activation of a gene comprising a nucleic acid sequence selected from the group consisting of the sequences outlined in Tables 1-112.
11. A method of diagnosing carcinoma comprising:
a) determining the expression of one or more genes comprising a nucleic acid sequence selected from the group consisting of the sequences outlined in Tables 1-112, in a first tissue type of a first individual; and b) comparing said expression of said gene(s) from a second normal tissue type from said first individual or a second unaffected individual;
wherein a difference in said expression indicates that the first individual has carcinoma.
12. A method for inhibiting the activity of a CA protein (CAP), wherein said CAP is encoded by a nucleic acid comprising a nucleic acid sequence selected from the group consisting of the sequences outlined in Tables 1-112, said method comprising binding an inhibitor to said CAP.
13. A method of treating carcinomas comprising administering to a patient an inhibitor of an CA protein (CAP), wherein said CAP is encoded by a nucleic acid comprising a nucleic acid sequence selected from the group consisting of the sequences outlined in Tables 1-112.
14. A method of neutralizing the effect of an CA protein (CAP), wherein said CAP is encoded by a nucleic acid comprising a nucleic acid sequence selected from the group consisting of the sequences outlined in Tables 1-112, comprising contacting an agent specific for said CAP protein with said CAP protein in an amount sufficient to effect neutralization.
15. A polypeptide which specifically binds to a protein encoded by a nucleic acid comprising a nucleic acid selected from the group consisting of the sequences outlined in Tables 1-112.
16. A polypeptide according to claim 15 comprising an antibody which specifically binds to a protein encoded by a nucleic acid comprising a nucleic acid sequence selected from the group consisting of the sequences outlined in Tables 1-112.
17. A biochip comprising one or more nucleic acid segments selected from the group consisting of a nucleic acid of the sequences outlined in Tables 1-112 or fragments thereof.
18. A method of diagnosing carcinoma or a propensity to carcinoma by sequencing at least one CA gene of an individual.
19. A method of determining CA gene copy number comprising adding an CA gene probe to a sample of genomic DNA from an individual under conditions suitable for hybridization.
CA002471840A 2001-12-26 2002-12-26 Novel compositions and methods for cancer Abandoned CA2471840A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/035,832 2001-12-26
US10/035,832 US7820447B2 (en) 2000-12-22 2001-12-26 Compositions and methods for cancer
PCT/US2002/041414 WO2003057146A2 (en) 2001-12-26 2002-12-26 Novel compositions and methods for cancer

Publications (1)

Publication Number Publication Date
CA2471840A1 true CA2471840A1 (en) 2003-07-17

Family

ID=21885043

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002471840A Abandoned CA2471840A1 (en) 2001-12-26 2002-12-26 Novel compositions and methods for cancer

Country Status (6)

Country Link
US (1) US7820447B2 (en)
EP (2) EP1509539A4 (en)
JP (2) JP2005514923A (en)
AU (1) AU2002367390A1 (en)
CA (1) CA2471840A1 (en)
WO (1) WO2003057146A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10316083B2 (en) 2013-07-19 2019-06-11 Cedars-Sinai Medical Center Signature of TL1A (TNFSF15) signaling pathway
US10633449B2 (en) 2013-03-27 2020-04-28 Cedars-Sinai Medical Center Treatment and reversal of fibrosis and inflammation by inhibition of the TL1A-DR3 signaling pathway
US11186872B2 (en) 2016-03-17 2021-11-30 Cedars-Sinai Medical Center Methods of diagnosing inflammatory bowel disease through RNASET2
US11236393B2 (en) 2008-11-26 2022-02-01 Cedars-Sinai Medical Center Methods of determining responsiveness to anti-TNFα therapy in inflammatory bowel disease

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7700274B2 (en) * 2000-12-22 2010-04-20 Sagres Discovery, Inc. Compositions and methods in cancer associated with altered expression of KCNJ9
US20030087252A1 (en) * 2000-12-22 2003-05-08 Morris David W. Novel compositions and methods in cancer associated with altered expression of PRDM11
US20060194265A1 (en) * 2001-10-23 2006-08-31 Morris David W Novel therapeutic targets in cancer
US20040126762A1 (en) * 2002-12-17 2004-07-01 Morris David W. Novel compositions and methods in cancer
US20040081653A1 (en) 2002-08-16 2004-04-29 Raitano Arthur B. Nucleic acids and corresponding proteins entitled 251P5G2 useful in treatment and detection of cancer
US7919246B2 (en) 2005-04-07 2011-04-05 Novartis Vaccines And Diagnostics, Inc. SEMA4D in cancer diagnosis, detection and treatment
FR2890859B1 (en) 2005-09-21 2012-12-21 Oreal DOUBLE-STRANDED RNA OLIGONUCLEOTIDE INHIBITING TYROSINASE EXPRESSION
EP1975228A1 (en) * 2007-03-28 2008-10-01 Fachhochschule Mannheim Polynucleotides for enhancing expression of a polynucleotide of interest
WO2009034661A1 (en) * 2007-09-12 2009-03-19 Toppan Printing Co., Ltd. Method for diagnosis and induction of resistance to virus
EP2227693B1 (en) * 2007-11-30 2015-08-19 Clarient Diagnostic Services, Inc. Tle3 as a marker for chemotherapy
WO2012149245A2 (en) * 2011-04-28 2012-11-01 Ostrer Harry Genomic signatures of metastasis in prostate cancer
CA2872857A1 (en) 2011-05-10 2012-11-15 Brunangelo Falini Hairy cell leukemia biomarkers and methods of using same

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4179337A (en) 1973-07-20 1979-12-18 Davis Frank F Non-immunogenic polypeptides
JPS6023084B2 (en) 1979-07-11 1985-06-05 味の素株式会社 blood substitute
US4469863A (en) 1980-11-12 1984-09-04 Ts O Paul O P Nonionic nucleic acid alkyl and aryl phosphonates and processes for manufacture and use thereof
US4640835A (en) 1981-10-30 1987-02-03 Nippon Chemiphar Company, Ltd. Plasminogen activator derivatives
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4496689A (en) 1983-12-27 1985-01-29 Miles Laboratories, Inc. Covalently attached complex of alpha-1-proteinase inhibitor with a water soluble polymer
US5430136A (en) 1984-10-16 1995-07-04 Chiron Corporation Oligonucleotides having selectably cleavable and/or abasic sites
US5034506A (en) 1985-03-15 1991-07-23 Anti-Gene Development Group Uncharged morpholino-based polymers having achiral intersubunit linkages
US5235033A (en) 1985-03-15 1993-08-10 Anti-Gene Development Group Alpha-morpholino ribonucleoside derivatives and polymers thereof
EP0206448B1 (en) 1985-06-19 1990-11-14 Ajinomoto Co., Inc. Hemoglobin combined with a poly(alkylene oxide)
AU597574B2 (en) 1986-03-07 1990-06-07 Massachusetts Institute Of Technology Method for enhancing glycoprotein stability
US4791192A (en) 1986-06-26 1988-12-13 Takeda Chemical Industries, Ltd. Chemically modified protein with polyethyleneglycol
US5359100A (en) 1987-10-15 1994-10-25 Chiron Corporation Bifunctional blocked phosphoramidites useful in making nucleic acid mutimers
US5124246A (en) 1987-10-15 1992-06-23 Chiron Corporation Nucleic acid multimers and amplified nucleic acid hybridization assays using same
US5700637A (en) 1988-05-03 1997-12-23 Isis Innovation Limited Apparatus and method for analyzing polynucleotide sequences and method of generating oligonucleotide arrays
US5216141A (en) 1988-06-06 1993-06-01 Benner Steven A Oligonucleotide analogs containing sulfur linkages
GB8823869D0 (en) 1988-10-12 1988-11-16 Medical Res Council Production of antibodies
JPH04503957A (en) 1989-03-07 1992-07-16 ジェネンテク,インコーポレイテッド Covalent conjugates of lipids and oligonucleotides
US5143854A (en) 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
WO1991004753A1 (en) 1989-10-02 1991-04-18 Cetus Corporation Conjugates of antisense oligonucleotides and therapeutic uses thereof
JPH0456210A (en) * 1990-06-26 1992-02-24 Mitsubishi Electric Corp Electron beam exposure device
US5602240A (en) 1990-07-27 1997-02-11 Ciba Geigy Ag. Backbone modified oligonucleotide analogs
US5386023A (en) 1990-07-27 1995-01-31 Isis Pharmaceuticals Backbone modified oligonucleotide analogs and preparation thereof through reductive coupling
US5661016A (en) 1990-08-29 1997-08-26 Genpharm International Inc. Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
KR100272077B1 (en) 1990-08-29 2000-11-15 젠팜인터내셔날,인코포레이티드 Transgenic non-human animals capable of producing heterologous antibodies
US5545806A (en) 1990-08-29 1996-08-13 Genpharm International, Inc. Ransgenic non-human animals for producing heterologous antibodies
US5633425A (en) 1990-08-29 1997-05-27 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5625126A (en) 1990-08-29 1997-04-29 Genpharm International, Inc. Transgenic non-human animals for producing heterologous antibodies
US5644048A (en) 1992-01-10 1997-07-01 Isis Pharmaceuticals, Inc. Process for preparing phosphorothioate oligonucleotides
US5681697A (en) 1993-12-08 1997-10-28 Chiron Corporation Solution phase nucleic acid sandwich assays having reduced background noise and kits therefor
US5637684A (en) 1994-02-23 1997-06-10 Isis Pharmaceuticals, Inc. Phosphoramidate and phosphorothioamidate oligomeric compounds
US6015880A (en) 1994-03-16 2000-01-18 California Institute Of Technology Method and substrate for performing multiple sequential reactions on a matrix
US5807522A (en) 1994-06-17 1998-09-15 The Board Of Trustees Of The Leland Stanford Junior University Methods for fabricating microarrays of biological samples
US5597909A (en) 1994-08-25 1997-01-28 Chiron Corporation Polynucleotide reagents containing modified deoxyribose moieties, and associated methods of synthesis and use
US5580731A (en) 1994-08-25 1996-12-03 Chiron Corporation N-4 modified pyrimidine deoxynucleotides and oligonucleotide probes synthesized therewith
US5681702A (en) 1994-08-30 1997-10-28 Chiron Corporation Reduction of nonspecific hybridization by using novel base-pairing schemes
US5759776A (en) 1995-06-05 1998-06-02 California Pacific Medical Center Targets for breast cancer diagnosis and treatment
US6455247B1 (en) 1996-01-23 2002-09-24 Board Of Trustees Of The Leland Stanford Junior University Methods for screening for transdominant effector peptides and RNA molecules
US5776683A (en) 1996-07-11 1998-07-07 California Pacific Medical Center Methods for identifying genes amplified in cancer cells
US5928870A (en) 1997-06-16 1999-07-27 Exact Laboratories, Inc. Methods for the detection of loss of heterozygosity
US6074825A (en) 1997-07-31 2000-06-13 Maine Medical Center Stable encapsulated reference nucleic acid and method of making
US6153441A (en) 1998-02-17 2000-11-28 Smithkline Beecham Corporation Methods of screening for agonists and antagonists for human CCR7 receptor and CKβ-9 ligand and interaction thereof
WO2001094629A2 (en) 2000-06-05 2001-12-13 Avalon Pharmaceuticals Cancer gene determination and therapeutic screening using signature gene sets
US6812339B1 (en) * 2000-09-08 2004-11-02 Applera Corporation Polymorphisms in known genes associated with human disease, methods of detection and uses thereof
WO2002022660A2 (en) 2000-09-11 2002-03-21 Hyseq, Inc. Novel nucleic acids and polypeptides
AU2002234799A1 (en) * 2000-12-08 2002-06-18 Ipsogen Gene expression profiling of primary breast carcinomas using arrays of candidate genes
US20030216558A1 (en) 2000-12-22 2003-11-20 Morris David W. Novel compositions and methods for cancer
WO2003008583A2 (en) 2001-03-02 2003-01-30 Sagres Discovery Novel compositions and methods for cancer
NL1033850C2 (en) 2007-05-15 2008-11-18 3Force B V Burner system with premixed burners and flame transfer agents.
US9701019B2 (en) 2011-09-15 2017-07-11 Convergent Information Technologies Gmbh System and method for the automatic generation of robot programs
EP2814652B1 (en) 2012-02-13 2019-06-19 Radius Engineering Inc. Reusable cartridge for injection molding

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11236393B2 (en) 2008-11-26 2022-02-01 Cedars-Sinai Medical Center Methods of determining responsiveness to anti-TNFα therapy in inflammatory bowel disease
US10633449B2 (en) 2013-03-27 2020-04-28 Cedars-Sinai Medical Center Treatment and reversal of fibrosis and inflammation by inhibition of the TL1A-DR3 signaling pathway
US10316083B2 (en) 2013-07-19 2019-06-11 Cedars-Sinai Medical Center Signature of TL1A (TNFSF15) signaling pathway
US11312768B2 (en) 2013-07-19 2022-04-26 Cedars-Sinai Medical Center Signature of TL1A (TNFSF15) signaling pathway
US11186872B2 (en) 2016-03-17 2021-11-30 Cedars-Sinai Medical Center Methods of diagnosing inflammatory bowel disease through RNASET2

Also Published As

Publication number Publication date
WO2003057146A2 (en) 2003-07-17
US7820447B2 (en) 2010-10-26
JP2009195249A (en) 2009-09-03
JP2005514923A (en) 2005-05-26
EP1509539A4 (en) 2006-05-17
EP2034030A3 (en) 2009-07-22
WO2003057146A3 (en) 2004-12-29
EP1509539A2 (en) 2005-03-02
AU2002367390A1 (en) 2003-07-24
EP2034030A2 (en) 2009-03-11
US20070037145A1 (en) 2007-02-15

Similar Documents

Publication Publication Date Title
US7892730B2 (en) Compositions and methods for cancer
WO2003008583A2 (en) Novel compositions and methods for cancer
US7820447B2 (en) Compositions and methods for cancer
US20040072154A1 (en) Novel compositions and methods for cancer
US20060204982A1 (en) Novel compositions and methods for cancer
US20030216558A1 (en) Novel compositions and methods for cancer
US20100216713A1 (en) Novel compositions and methods in cancer associated with altered expression of prlr
US20030194702A1 (en) Novel compositions and methods for cancer
US20030232334A1 (en) Novel compositions and methods for cancer
US20030022255A1 (en) Novel compositions and methods for breast cancer
US20060177861A1 (en) Novel compositions and methods in cancer associated with altered expression of MCM3AP
US20030099963A1 (en) Novel compositions and methods in cancer associated with altered expression of TBX21
AU2003218331B2 (en) Novel compositions and methods in cancer associated with altered expression of PRDM 11
US7700274B2 (en) Compositions and methods in cancer associated with altered expression of KCNJ9
AU2003230669C1 (en) Novel compositions and methods in cancer associated with altered expression of TBX21

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued