CA2468650A1 - Conversion led - Google Patents

Conversion led Download PDF

Info

Publication number
CA2468650A1
CA2468650A1 CA002468650A CA2468650A CA2468650A1 CA 2468650 A1 CA2468650 A1 CA 2468650A1 CA 002468650 A CA002468650 A CA 002468650A CA 2468650 A CA2468650 A CA 2468650A CA 2468650 A1 CA2468650 A1 CA 2468650A1
Authority
CA
Canada
Prior art keywords
phosphor
conversion led
inclusive
particles
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002468650A
Other languages
French (fr)
Inventor
Frank Jermann
Martin Zachau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of CA2468650A1 publication Critical patent/CA2468650A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7706Aluminates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Abstract

The LED has phosphor particles (2) with a mean phosphor particle size d50 selected from the range of from 0.1 µ, inclusive, to 1.5 µ, inclusive, in particular the phosphor particles having primary particles (4) with a mean particle size (5) selected from the range of from 0.1 .µ, inclusive, to 1.0 .µ, inclusive. The primary particles, which comprise, for example, an yttrium aluminum garnet (Y3A15O12) doped with cerium, are agglomerated to form the phosphor particles.

Description

2003P0783& US WER
Title: Conversion LED
Technical field The invention relates to an LED of high efficiency that is designed as a conversion LED.
Background Art A phosphor powder of small particle size, and a process for producing it are known from I. Matsubara et al., Materials Research Bulletin 35 (2000), pages 217-224.
The phosphor particles have a mean phosphor particle size of at least 1 um. The phosphor particles consist of an yttrium aluminum garnet (Y3A1501z) doped with chromium. Chromium is contained, for example, at 0.5 moll. In this case, chromium constitutes an optically active component of the garnet. Chromium absorbs exciting light and emits emission light (luminescence) after excitement. The chromium contained in the garnet can also be excited to luminescence with the aid of electrons. Thus, the known phosphor powder is used, for example, in a luminescent screen (phosphor body) of a cathode ray tube. WO 03/102113 discloses a phosphor powder with a particle size of between 0.1 and 5 um, which is used for a conversion LED.
The production of the known phosphor is performed with the aid of a so-called heterogeneous precipitation. For this purpose, aluminum sulfate (A12(S04)3) and urea are dissolved in distilled water. The solution is stirred continuously at a temperature of 80-90°C for a duration of two hours. The precipitate of aluminum hydroxide (Al(OH)3) is formed in the process. The precipitate obtained is washed with distilled water and isopropanol and dried for one day at a temperature of 120°C. The aluminum hydroxide is suspended in distilled water. In order to avoid an agglomeration of the aluminum hydroxide powder, energetic stirring is carried out and urea is added. Stoichiometric quantities of yttrium sulfate (Yz (S04) 3) and chromium sulfate (Cr2 (S04) 3) are likewise dissolved in distilled water. Thereafter, the suspensions and the solution are mixed with one another and heated for an hour to 80-90°C. The precipitate thereby obtained is washed with distilled water and isopropanol, centrifuged and dried overnight at 120°C.
Finally, the powder obtained is calcined for two hours at 900°C-2700°C in the presence of air. A chromium-doped yttrium aluminum garnet is obtained that has a relatively high luminescent efficiency.
Since the phosphor powder produced using this process consists of phosphor particles that in each case have a layer that is a few tenths of a um thick and does not contribute to the luminescence (dead layer), the phosphor particles must have a mean phosphor particle size of at least 1 um for the high luminescent efficiency. A typical diameter of the phosphor particles is 1 um on average. This means, however, that production parameters of the process must be set very accurately so that the resulting phosphor powder has the high luminescent efficiency.
Disvlosure of the Invention It is an object of the invention to provide a high-efficiency conversion LED that uses phosphor powder for the conversion of the primary radiation. It is a further object of the invention tp provide a conversion LED, having a chip that emits primary radiation with a peak wavelength of from 300 to 550 nm, and having at least one phosphor that is present as a powder and absorbs at least a portion of the primary radiation and emits at another wavelength than the secondary radiation.
In order to achieve these objects, a phosphor powder is specified that has phosphor particles with a mean phosphor particle size d5o selected from the range of from 0.1 Vim, inclusive, to 1.5 um, inclusive. The phosphor powder is preferably characterized, in that the phosphor particles have primary particles with a mean primary particle size selected from the range of from 0.1 um, inclusive, to 1.0 um, inclusive. In particular, as regards the mean phosphor particle size a preferred value for the lower limit is 0.2 um, with particular preference 0.5 pm.
Moreover, a phosphor body is specified that has such a phosphor powder for the conversion of exciting light into emission light. The emission light, which is designated as luminescence, can comprise both fluorescence and phosphorescence. The phosphor body can consist in this case only of the phosphor powder. It is also conceivable for the phosphor powder to be located in a matrix of the phosphor body that is transparent to the exciting light and emission light. Likewise, the phosphor powder can be applied as a layer on the phosphor body. The phosphor body is, for example, an LED converter. LED stands for light-emitting diode.
It has emerged that a phosphor powder with a very high luminescent efficiency is obtained when the phosphor particles are formed from small particles with d5o in the range 0.1 um to 1.5 um, in particular to 1.0 um, in particular from primary particles contributing to the luminescence. The primary particles are separated in one embodiment, while in another embodiment they are permanently connected to one another in the sense of an aggregate (secondary particles). In some circumstances, both forms can yield agglomerates, but these are not understood here as actual phosphor particles in the sense of the above definition.
The phosphor particles preferably have a substantially spherical shape, in particular that of a ball. What is meant by this is that they do not have pronounced cubic or needle-shaped structure, but can well have pores.
The primary particles contribute to the luminescent efficiency of the phosphor powder in accordance with their composition. The primary particles can in this case have compositions that deviate from one another.
In particular, the primary particles can now form substantially a single phase. This means that the primary particles uniformly have a particularly desired composition with the same (photo)physical properties.
For example, in the binary system of aluminum oxide/yttrium oxide (A1203-Y203) , in addition to the photophysically active yttrium aluminum garnet phase, further phases which do not contribute to the luminescent efficiency and are actually not desired could also be present. The compositions YA103 or A12Y409, for example, have such phases. The primary particles preferably have the structure of a garnet.
The garnet has, in particular, a composition of A3B50iz.
A and B being trivalent metals. The garnet is preferably an yttrium aluminum garnet having the composition of Y3A15012.
Such a garnet acquires its phosphor property by virtue of the fact that the garnet is doped. In particular, the primary particles therefore have at least one doping with a rare earth metal. The rare earth metal is selected, in particular, from the group of cerium and/or gadolinium (Gd) and/or lanthanum (La) and/or terbium (Tb) and/or praseodymium (Pr) and/or europium (Eu). Pr and Eu are suitable, in particular, also for codoping, for example together with Ce. Further dopings, for example a transition metal doping with chromium (Cr), or mixtures of dopings are likewise conceivable.
In a further particular refinement, the phosphor particles have pores with a mean pore size selected from the range of from 0.1 Vim, inclusive, to 1.0 Vim, inclusive. In particular, the mean pore size is approximately 0.5 um. This results, in particular, in a phosphor particle density of the phosphor particles that is selected from the range of from 400, inclusive, to 70%, inclusive, of a theoretical density.

A production process is described below. For the production process, the precursor is selected, in particular, from the group of metal hydroxide and/or metal oxide. Aluminum hydroxide and yttrium oxide are used, for example, in the case of the yttrium/aluminum garnet.
In particular, a chemical precipitation of the precursor from a metal salt solution of the metal salt is carried out in order to provide the precursor.
The metal salt is preferably selected from the group of metal halide or metal sulfate. The metal halide is a metal chloride, for example. Use is preferably made of an acid metal salt solution and, for the precipitation, a basic precipitating reagent. In order to produce the fine primary particles, the basic precipitating reagent is, in particular, added in drops to the acid metal salt solution, or the acid metal salt solution is added in drops to the basic precipitating reagent. A
sulfuric-acid metal salt solution, in particular, is used as acid metal salt solution. Aqua ammonia, in particular, is used in this case as basic precipitating reagent. This is understood as a solution in which ammonia is dissolved directly in the solvent, for example water. However, it is also conceivable for a precursor of the ammonia to be dissolved in the solvent with the release of ammonia. The precursor is urea, for example. Ammonia is released when the urea is heated.
In a further refinement, a maturation of the precursor is carried out in order to provide the precursor after 20 the precursor has been precipitated. During the maturation, intensified crystal growth of the primary particles occurs, or there is an intensified aggregation of the primary particles to form the phosphor particles.
The maturation takes place, in particular, at a pH
value of from 5.5, inclusive, to 6.5, inclusive. The maturation is carried out, in particular, at a maturation temperature that is selected from the range of from 20°C inclusive, to 90°C, inclusive.
A calcination is carried out, in particular, in order to produce the primary particles and/or to form the phosphor particles. Intensified aggregation can take place between the primary particles during the calcination. The calcination is preferably carried out at a calcination temperature that is selected from the range of from 1200°C, inclusive, to 1700°C, inclusive.
In particular, the calcination temperature is up to 1500°C.
Further processing steps can be appended to the calcination. For example, the (raw) phosphor particles obtained are additionally milled, for example.
Brief Description of the Drawings The invention is explained below in more detail with the aid of an exemplary embodiment and the associated figures. The figures are schematic and do not constitute illustrations true to scale.
figure 1 shows a schematic of a phosphor particle that consists of a multiplicity of primary particles;
figures 2a to 2c respectively snow an REM image of a phosphor powder;
figure 3 shows a phosphor body with the phosphor powder (figure 3a), and, specifically, an LED
(figure 3b) with such an arrangement;
figure 4 shows a process for producing the phosphor powder;
figure 5 shows the reaction equations on which the process is based, and figure 6 shows the scattering and absorption of small phosphor particles as a function of particle size.
Best mode for carrying out the invention The phosphor powder 1 consists of a multiplicity of phosphor particles 2 (figures 1 and 2). The phosphor particles 2 have a spherical, or at least substantially spherical shape 11. In particular, an arbitrarily oriented diameter deviates from the maximum diameter by no more than 300, see figure 1. The mean phosphor particle diameter 3 of the phosphor particles is approximately 1.3 Vim. The individual phosphor particles 2 respectively consist of an aggregate or else agglomerate 12 of a multiplicity of primary particles _ g _ 4. The primary particles in this case have mean primary particle diameters 5 of approximately 0.5 ~zm. The phosphor particles 2 substantially consist only of the primary particles 4. In addition, the phosphor particles 2 have pores 6 with a mean pore size 7 of approximately 0.5 um. The pores 6 are open.
The said particle diameters are understood in the case of the primary particles or, rather, of smaller diameters as equivalent diameters by means of particle images acquired optically or by electron microscope (for example REM), and in the case of the phosphor particles or, rather, of larger diameters here understood as equivalent diameters from laser diffraction measurements. It can be assumed to a good approximation that the two different methods for detecting equivalent diameters yield similar to identical results for one and the same sample when the powder samples are prepared for measurement in an optimal fashion.
The primary particles 4 consist of an yttrium aluminum garnet with the composition of Y3A15012. The primary particles 4 are doped with the rare earth metal Cer.
Cer is contained at 0.5 molo. The primary particles 4 form a single phase with the said composition.
In accordance with the process for producing the phosphor powder 1 (figure 4, 40), a precursor of the primary particles is firstly prepared (figure 4, 41).
The precursor comprises a powder mixture of aluminum hydroxide (A1(OH)3) and yttrium hydroxide (Y(OH)3). For this purpose, aluminum hydroxide and yttrium oxide are dissolved separately from one another in concentrated sulfuric acid (figure 5, 51 and 52). The temperature is raised in order to accelerate the process of solution.
The two sulfuric-acid metal salt solutions obtained are filtered. The concentration of aluminum or yttrium is determined in each case. The solutions are then mixed _ g _ with one another in accordance with the required stoichiometric measurements. Thereafter, the corresponding hydroxides are precipitated with the aid of a basic aqua ammonia (figure 5, 53) . Aqua ammonia consists of ammonia (NH3) dissolved in distilled water.
The aqua ammonia is added in drops to the sulfuric-acid solution of the metal salts for the purpose of precipitation. The precipitate~obtained in this case is washed with distilled water, which is cold at 10°C.
Since a specific quantity of aluminum is washed out by the water, it is to be ensured during mixing of the sulfuric-acid metal salt solutions that aluminum is fed in excess. The precipitate is filtered and dried for ten hours at 150°C. Moreover, the precipitate is calcined in the presence of forming gas of which 95~ by volume is nitrogen (N2) and 5~ by volume is hydrogen (H2) (figure 5, 54). The calcination is performed at 1200°C for a duration of approximately two hours.
During the calcination, the primary particles are formed from the precursor (figure 4, 42). At the same time, the phosphor particles of the phosphor powder are formed by agglomeration of the primary particles (figure 4, 43). A phosphor powder with a high luminescent efficiency is obtained.
The phosphor powder 1 is used in a phosphor body 10 (figure 3a in the schematic illustration). The phosphor body 20 is principally a phosphor-containing device such as a conversion LED, in particular. Such LEDs are also known by the term LUKOLED. Exciting light 8, that is to say light (or else short wave radiation) emitted primarily by a chip is converted in part or completely into emission light (luminescence) 9 with the aid of the phosphor powder 1. This luminescence is frequently also termed secondary emission.
A concrete example of a phosphor body is the use of the phosphor powder in a white, or else color LED together with an InGaN chip. The exemplary design of such a light source is shown explicitly in figure 3b. The light source is a semiconductor component (chip 1) of InGaN type with a peak emission wavelength of 460 nm (blue) and having a first and second electric connection 12, 13 that is embedded in an opaque base housing 18 in the region of a recess 19. One of the connections 13 is connected ~to the chip 15 via a bonding wire 14. The recess has a wall 17 that serves as reflector for the blue primary radiation of the chip 15. The recess 19 is filed with a sealing compound 25 that contains as main constituents a silicone casting resin (or else epoxy casting resin) (80 to 90s by weight) and phosphor pigments 16 (less than 15% by weight). There are further small proportions of methyl ether and aerosol, inter alia. The phosphor pigments are yellow-emitting YAG:Ce in accordance with the present invention, or a mixture of two (or else more) pigments whose emission is green and red. For example, a suitable green-emitting phosphor is a Ce-doped yttrium garnet that also contains in addition to A1 proportions of Ga and/or Sc at the lattice site of the aluminum. An example of a red-emitting phosphor is an Eu-containing nitride. In both cases, the secondary light of the phosphor mixes with the primary light of the chip to form white. A color LED is obtained, for example, by using a YAG:Eu as phosphor for excitation by means of a UV-emitting chip.
It has emerged, surprisingly, that particular advantages can be achieved for conversion LEDs by means of particularly careful selection of the particle size d5o of the phosphor. A high efficiency may be observed, in particular, given a selection of the mean particle size d5o in the range of between 0.2 and 1.0 um. A high degree of scattering is consciously accepted in this case in a departure from previous notions, because the absorption: scattering ratio is also simultaneously 2003P07836 Us wER

increased. The ideal case is the selection of d5o in the vicinity of the particle size with maximum scattering, referred to the primary incident radiation. Deviations of up to 20% have proved to be also effective in practice. Deviations of up to 50% frequently yield results that are still satisfactory. It is fundamentally possible thereby to achieve an LED with a high level of absorption of 'the phosphor located in front of the primary radiation source.
Figure 6a, in which the scattering coefficient (in arbitrary units and referred to the volumetric concentration) is plotted against the particle size in um, shows by way of example for three phosphors that in many phosphors the scattering increases toward smaller particle diameters D of less than 1 um. It can typically be increased by up to a factor of 5. This permits a substantially improved homogenization of the radiation output overall, which is of particular importance chiefly for mixed-light LEDs. What is meant here is that the primary radiation of the LED is not completely converted, but a certain residue thereof still itself makes a direct contribution to the radiation effectively used. A concrete example is a primarily blue-emitting chip whose radiation is mixed with a yellow-emitting phosphor. However, the two types of radiation come from different space regions. In order to blur color fringes associated therewith, it has even been necessary to date for scattering filling particles also to be added to the casting compound, which is firstly expensive, and secondly rather reduces the efficiency. In particular, this design is important when more than one phosphor is used for partial conversion, that is to say in the case, for example, of a system with blue primary radiation, which is converted in part by a green phosphor and in part by a red one, for the purpose of a white LED based on the RGB mixing principle. Typical maximum scatterings occur at D = 0.2 to 0.5 um. In this case, the scattering intensity is typically increased by a factor of 2 to 5 by comparison with the value at D = 1.5 um. There is scarcely any more change in the scattering intensity toward high diameters (D = 2 to 5 Vim).
Figure 6b, in which the absorption coefficient (in arbitrary units and referred to the volumetric concentration) is plotted against the particle size in Vim, shows by way of example that the absorption increases toward smaller particle diameters D, and traverses a more or less strongly expressed maximum at approximately D = 0.06 to 0.3 um. Here, the absorption is in part more than 5 times greater than at approximately D = 2 um and at least twice as large as at D = 1 um.
Overall, the absorption:scattering ratio typically rises continuously toward smaller particle diameters D
of from 2 um down to 0.2 um. This means an overall reduction in the scattering losses and an increased efficiency. Although an increased scattering is accepted in some circumstances in this case, a high-efficiency LED with homogeneous emission behavior does result. The higher scattering leads to a better and more homogeneous correspondence between the behavior of blue and yellow radiation. The high absorption leads to higher efficiency.
It is thereby possible to achieve good results for a selection of the mean diameter d5o in the vicinity of the optimum diameter D, with a range from 0.1 to 1.5 Vim.
The dispersion index DI of the particle size distribution can preferably be so narrowly dimensioned that it does not impair the effect achieved, or does so only slightly. A reference point is provided by DI <_ 0.5.

Claims (15)

Claims:
What is claimed is:
1. A conversion LED, having a chip that emits primary radiation with a peak wavelength of from 300 to 550 nm, and having at least one phosphor that is present as a powder and absorbs at least a portion of the primary radiation and emits at another wavelength than the secondary radiation, wherein the mean particle size d5o of the phosphor is in the range of 0.1 to 1.5 µ.
2. The conversion LED as claimed in claim 1, wherein the mean particle size d50 of the phosphor powder is in the vicinity of the particle size with the greatest maximum of the absorption of the primary radiation, and deviates therefrom by at most 500, preferably at most 20% .
3. The conversion LED as claimed in claim 1, wherein the chip emits blue radiation with a peak emission wavelength of from 430 to 490 nm, which is partially absorbed by the at least one phosphor, which converts this radiation into longer wavelength radiation, in particular such that the LED emits white light overall.
4. The conversion LED as claimed in claim 1, wherein the phosphor powder has phosphor particles with a mean phosphor particle size selected from the range of from 0.3 µ, inclusive, in particular from 0.5 µ, to 1.5 µ, inclusive, the phosphor particles having primary particles with a mean primary particle size selected from the range of from 0.1 µ, inclusive, to 1.0 µ, inclusive.
5. The conversion LED as claimed in claim 4, wherein the phosphor particles have a spherical or substantially spherical shape.
6. The conversion LED as claimed in claim 4, wherein the phosphor particles comprise essentially only the primary particles.
7. The conversion LED as claimed in claim 4, wherein the primary particles form substantially a single phase.
8. The conversion LED as claimed in claim 4, wherein the primary particles have the structure of a garnet.
9. The conversion LED as claimed in claim 8, wherein the garnet has a composition of A3B5O12, A and B being trivalent metals, in particular A being at least one of the elements Y, Gd, La, Tb and B being at least one of the elements Al, Ga, In.
10. The conversion LED as claimed in claim 9, wherein the composition of the garnet is Y3Al5O12.
11. The conversion LED as claimed in claim 9, wherein the primary particles have at least one doping with a rare earth metal.
12. The conversion LED as claimed in claim 11, wherein the rare earth metal is selected from the group Ce, Gd, La, Tb, Pr, Eu individually or in combination.
13. The conversion LED as claimed in claim 4, wherein the phosphor particles have pores, in particular with a mean pore size selected from the range of from 0.1 µm, inclusive, to 1.0 µm, inclusive.
14. The conversion LED as claimed in claim 13, wherein the mean pore size is approximately 0.5 µm.
15. The conversion LED as claimed in claim 13, wherein the phosphor particles have pores corresponding to a density selected from the range of from 40%, inclusive, to 70%, inclusive, of the theoretical density of the phosphor material.
CA002468650A 2003-05-28 2004-05-27 Conversion led Abandoned CA2468650A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE20308495U DE20308495U1 (en) 2003-05-28 2003-05-28 Conversion LED
DE20308495.0 2003-05-28

Publications (1)

Publication Number Publication Date
CA2468650A1 true CA2468650A1 (en) 2004-11-28

Family

ID=33103748

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002468650A Abandoned CA2468650A1 (en) 2003-05-28 2004-05-27 Conversion led

Country Status (4)

Country Link
US (1) US7126265B2 (en)
JP (1) JP5019146B2 (en)
CA (1) CA2468650A1 (en)
DE (2) DE20308495U1 (en)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10223988A1 (en) * 2002-05-29 2003-12-18 Siemens Ag Phosphor powder, process for producing the phosphor powder and phosphor body with the phosphor powder
TWI249867B (en) 2005-03-24 2006-02-21 Lighthouse Technology Co Ltd Light-emitting diode package, cold cathode fluorescence lamp and photoluminescence material thereof
US7474286B2 (en) * 2005-04-01 2009-01-06 Spudnik, Inc. Laser displays using UV-excitable phosphors emitting visible colored light
US7791561B2 (en) * 2005-04-01 2010-09-07 Prysm, Inc. Display systems having screens with optical fluorescent materials
US7733310B2 (en) * 2005-04-01 2010-06-08 Prysm, Inc. Display screens having optical fluorescent materials
US8089425B2 (en) * 2006-03-03 2012-01-03 Prysm, Inc. Optical designs for scanning beam display systems using fluorescent screens
US7994702B2 (en) * 2005-04-27 2011-08-09 Prysm, Inc. Scanning beams displays based on light-emitting screens having phosphors
US8000005B2 (en) 2006-03-31 2011-08-16 Prysm, Inc. Multilayered fluorescent screens for scanning beam display systems
DE102005030324B4 (en) * 2005-06-29 2013-04-04 Lextar Electronics Corp. Light Emitting Diode Assembly Assembly, Cold Cathode Fluorescent Lamp and Photoluminescent Material Thereof
US8451195B2 (en) * 2006-02-15 2013-05-28 Prysm, Inc. Servo-assisted scanning beam display systems using fluorescent screens
US7884816B2 (en) * 2006-02-15 2011-02-08 Prysm, Inc. Correcting pyramidal error of polygon scanner in scanning beam display systems
US20090105065A1 (en) * 2006-03-23 2009-04-23 Koninklijke Philips Electronics N.V. Light emitting device with a ceramic garnet material
TWI357435B (en) 2006-05-12 2012-02-01 Lextar Electronics Corp Light emitting diode and wavelength converting mat
US20070269915A1 (en) * 2006-05-16 2007-11-22 Ak Wing Leong LED devices incorporating moisture-resistant seals and having ceramic substrates
JP2008007644A (en) * 2006-06-29 2008-01-17 Fine Rubber Kenkyusho:Kk Red light-emitting phosphor and light-emitting device
US20080068295A1 (en) * 2006-09-19 2008-03-20 Hajjar Roger A Compensation for Spatial Variation in Displayed Image in Scanning Beam Display Systems Using Light-Emitting Screens
CN101542754B (en) * 2006-11-07 2012-04-18 皇家飞利浦电子股份有限公司 Arrangement for emitting mixed light
US8013506B2 (en) * 2006-12-12 2011-09-06 Prysm, Inc. Organic compounds for adjusting phosphor chromaticity
TW200827425A (en) * 2006-12-28 2008-07-01 Wang yong qi Light emitting diode used in short-wave semiconductor and fluorescent powder
DE602008006033D1 (en) * 2007-02-06 2011-05-19 Philips Intellectual Property RED LIGHT EMITTING LUMINESCENT OXYNITRIDE MATERIALS
GB2460802B (en) 2007-03-20 2012-09-05 Prysm Inc Delivering and displaying advertisment or other application data to display systems
US8169454B1 (en) 2007-04-06 2012-05-01 Prysm, Inc. Patterning a surface using pre-objective and post-objective raster scanning systems
US7697183B2 (en) * 2007-04-06 2010-04-13 Prysm, Inc. Post-objective scanning beam systems
CN101950122B (en) 2007-05-17 2012-01-04 Prysm公司 Multilayered screens with light-emitting stripes for scanning beam display systems
US7878657B2 (en) * 2007-06-27 2011-02-01 Prysm, Inc. Servo feedback control based on invisible scanning servo beam in scanning beam display systems with light-emitting screens
US8556430B2 (en) 2007-06-27 2013-10-15 Prysm, Inc. Servo feedback control based on designated scanning servo beam in scanning beam display systems with light-emitting screens
US7905618B2 (en) * 2007-07-19 2011-03-15 Samsung Led Co., Ltd. Backlight unit
DE102008021666A1 (en) * 2008-04-30 2009-11-05 Ledon Lighting Jennersdorf Gmbh Light-emitting device and method for producing a light-emitting device
US7869112B2 (en) * 2008-07-25 2011-01-11 Prysm, Inc. Beam scanning based on two-dimensional polygon scanner for display and other applications
US20120181919A1 (en) * 2008-08-27 2012-07-19 Osram Sylvania Inc. Luminescent Ceramic Composite Converter and Method of Making the Same
EP2161763A1 (en) * 2008-09-04 2010-03-10 Bayer MaterialScience AG Conversion film and method for its manufacture
US8247886B1 (en) 2009-03-09 2012-08-21 Soraa, Inc. Polarization direction of optical devices using selected spatial configurations
US9583678B2 (en) 2009-09-18 2017-02-28 Soraa, Inc. High-performance LED fabrication
US10147850B1 (en) 2010-02-03 2018-12-04 Soraa, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US9450143B2 (en) 2010-06-18 2016-09-20 Soraa, Inc. Gallium and nitrogen containing triangular or diamond-shaped configuration for optical devices
US8786053B2 (en) 2011-01-24 2014-07-22 Soraa, Inc. Gallium-nitride-on-handle substrate materials and devices and method of manufacture
US8785222B2 (en) * 2011-05-09 2014-07-22 Hong Kong Applied Science and Technology Research Institute Company Limited Phosphor ink composition
US8686431B2 (en) 2011-08-22 2014-04-01 Soraa, Inc. Gallium and nitrogen containing trilateral configuration for optical devices
US9646827B1 (en) 2011-08-23 2017-05-09 Soraa, Inc. Method for smoothing surface of a substrate containing gallium and nitrogen
WO2013096969A1 (en) * 2011-12-23 2013-06-27 Martin, Richard, James Photoluminescent illuminators for passive illumination of sights and other devices
DE102012105278A1 (en) * 2012-06-18 2013-12-19 Osram Gmbh Method for producing a ceramic wavelength conversion layer and illumination element with a ceramic wavelength conversion layer
CN102779929B (en) * 2012-07-30 2015-07-29 香港应用科技研究院有限公司 Fluorescent ink composite
US9978904B2 (en) 2012-10-16 2018-05-22 Soraa, Inc. Indium gallium nitride light emitting devices
JP6261196B2 (en) * 2013-06-12 2018-01-17 信越化学工業株式会社 Light emitting device
CN103361059A (en) * 2013-07-26 2013-10-23 莆田学院 Ammonia homogeneous precipitation method for preparing Ce-doped yttrium aluminum garnet phosphor
US9419189B1 (en) 2013-11-04 2016-08-16 Soraa, Inc. Small LED source with high brightness and high efficiency
JP2016160267A (en) 2015-02-26 2016-09-05 株式会社日本製鋼所 Method for producing microporous membrane or microporous stretched film, and microporous film or microporous biaxially stretched film
US20170333755A1 (en) * 2016-05-17 2017-11-23 Kuaiwear Limited Multi-sport biometric feedback device, system, and method for adaptive coaching with gym apparatus
JP6428813B2 (en) * 2017-03-13 2018-11-28 信越化学工業株式会社 Light emitting device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5851428A (en) * 1996-03-15 1998-12-22 Kabushiki Kaisha Toshiba Phosphor and manufacturing method thereof
JP3772801B2 (en) * 1996-11-05 2006-05-10 日亜化学工業株式会社 Light emitting diode
US6429583B1 (en) * 1998-11-30 2002-08-06 General Electric Company Light emitting device with ba2mgsi2o7:eu2+, ba2sio4:eu2+, or (srxcay ba1-x-y)(a1zga1-z)2sr:eu2+phosphors
CN100567447C (en) * 2000-06-27 2009-12-09 住友化学工业株式会社 The method for making of aluminate fluorescent substance, fluorescent substance and contain the device of fluorescent substance
JP2002038150A (en) * 2000-07-26 2002-02-06 Toshiba Corp Vacuum ultraviolet ray-exited phosphor and light- emitting device using the same
WO2002088275A1 (en) * 2001-04-27 2002-11-07 Kasei Optonix, Ltd. Phosphor and production method therefor
DE10133352A1 (en) * 2001-07-16 2003-02-06 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Lighting unit with at least one LED as a light source
DE10223988A1 (en) 2002-05-29 2003-12-18 Siemens Ag Phosphor powder, process for producing the phosphor powder and phosphor body with the phosphor powder
JP2004071908A (en) * 2002-08-07 2004-03-04 Matsushita Electric Works Ltd Light emitting device
DE10316769A1 (en) * 2003-04-10 2004-10-28 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Luminescence conversion LED used in optical semiconductor components has LED chip emitting primary radiation in specified region which is partially or completely converted into longer wavelength radiation
JP2005041942A (en) * 2003-07-24 2005-02-17 Mitsubishi Chemicals Corp Luminescent substance, light emitting apparatus using the same, lighting apparatus and image display apparatus using light emitting apparatus
JP4124056B2 (en) * 2003-08-14 2008-07-23 昭栄化学工業株式会社 Method for producing phosphor powder

Also Published As

Publication number Publication date
JP5019146B2 (en) 2012-09-05
DE20308495U1 (en) 2004-09-30
US20050012446A1 (en) 2005-01-20
US7126265B2 (en) 2006-10-24
JP2004356635A (en) 2004-12-16
DE102004024889A1 (en) 2005-01-05

Similar Documents

Publication Publication Date Title
US7126265B2 (en) Conversion LED having a phosphor component based on an agglomeration of phosphor particles and pores
US7481951B2 (en) Luminescent powder, method for producing the luminescent powder and luminescent body provided with luminescent powder
CN101864299B (en) White light emitting diode
CN103003390B (en) Oxynitride phosphor, preparation method and illumination instrument
CN101128563B (en) Phosphor, its manufacturing method and application
KR100816693B1 (en) Phosphor and light emission appliance using phosphor
Shen et al. White LED based on YAG: Ce, Gd phosphor and CdSe–ZnS core/shell quantum dots
JP4325629B2 (en) Phosphor, manufacturing method thereof, and light emitting device using the same
Yongqing et al. Properties of red-emitting phosphors Sr2MgSi2O7: Eu3+ prepared by gel-combustion method assisted by microwave
EP1824944A2 (en) Illumination system comprising a radiation source and a luminescent material
WO2007004492A1 (en) Fluorophor and method for production thereof and illuminator
JP2006265542A5 (en)
CN103254901B (en) LED (light-emitting diode) fluorescent powder with broadband gradient and preparation method thereof
Liu et al. Broad-band excited and tunable luminescence of CaTbAl3O7: Re3+ (Re3+= Ce3+ and/or Eu3+) nanocrystalline phosphors for near-UV wleds
TWI229125B (en) Fluorescent material of terbium aluminum garnet and manufacturing method therefor
CN103122244B (en) Eu&lt;2+&gt; activated silicate white light fluorescent powder and preparation method thereof
CN104204134B (en) The manufacture method of fluor, fluor and light-emitting device
TWI353377B (en)
CN104312584A (en) Molybdate-based red fluorescent powder and preparation method thereof
Guangsheng et al. Effect of Eu3+ contents on structure and luminescence properties of Na3Bi2-x (PO4) 3: xEu3+ and Na3Bi1-x (PO4) 2: xEu3+ phosphors
TW200409810A (en) Method for producing white-light LED with high brightness by phosphor powder
Popovici et al. Synthesis and characterization of cerium doped yttrium-gadolinium aluminate phosphors by wet-chemical synthesis route
Xu et al. Synthesis and properties of Eu3+ activated strontium molybdate phosphor
CN101161767B (en) Phosphor for GaN based light-emitting diode and method for preparing same
Zhang et al. Synthesis, luminescence, and effect of heat treatment on the properties of Y 3 Al 5 O 12: Ce phosphor

Legal Events

Date Code Title Description
FZDE Discontinued
FZDE Discontinued

Effective date: 20100527