CA2449698C - Methods of synthesizing substantially monodispersed mixtures of polymers having polyethylene glycol moieties - Google Patents

Methods of synthesizing substantially monodispersed mixtures of polymers having polyethylene glycol moieties Download PDF

Info

Publication number
CA2449698C
CA2449698C CA2449698A CA2449698A CA2449698C CA 2449698 C CA2449698 C CA 2449698C CA 2449698 A CA2449698 A CA 2449698A CA 2449698 A CA2449698 A CA 2449698A CA 2449698 C CA2449698 C CA 2449698C
Authority
CA
Canada
Prior art keywords
formula
compounds
mixture
substantially monodispersed
monodispersed mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA2449698A
Other languages
French (fr)
Other versions
CA2449698A1 (en
Inventor
Nnochiri N. Ekwuribe
Christopher H. Price
Aslam M. Ansari
Amy L. Odenbaugh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biocon Ltd
Original Assignee
Biocon Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biocon Ltd filed Critical Biocon Ltd
Publication of CA2449698A1 publication Critical patent/CA2449698A1/en
Application granted granted Critical
Publication of CA2449698C publication Critical patent/CA2449698C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/334Polymers modified by chemical after-treatment with organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides

Abstract

Methods of synthesizing a substantially monodispersed mixture of polymers comprising polyethylene glycol moieties include: reacting a substantially monodispersed mixture of compounds having the structure of Formula I:
R1(OC2H4)n-O-X+ (I) wherein R1 is H or a lipophilic moiety; n is from 1 to 25;
and X+ is a positive ion, with a substantially monodispersed mixture of compounds having the structure of Formula II: R2(OC2H4)m-OMs (II) wherein R2 is H or a lipophilic moiety; and m is from 1 to 25,under conditions sufficient to provide a substantially monodispersed mixture of polymers comprising polyethylene glycol moieties and having the structure of Formula III:
R2(OC2H4)m+n-OR1(III).

Description

METHODS OF SYNTHESIZING SUBSTANTIALLY
MONODISPERSED MIXTURES OF POLYMERS HAVING
POLYETHYLENE GLYCOL MOIETIES
Field Of The Invention The present invention relates to methods of synthesizing polymeric compounds, and more particularly, to methods of synthesizing polymeric compounds comprising polyethylene glycol moieties.

Background Of The Invention Polyethylene glycol (PEG) is used in a wide variety of applications including, but not limited to, plasticizers, softeners, humectants, ointments, polishes, paper coating, mold lubricants, bases for cosmetics and pharmaceuticals, solvents, binders, metal and rubber processing, and additives to foods and animal feed. Some particular uses of PEG in pharmaceutical applications include, for example, formation of PEG-drug conjugates, treatment of neonatal respiratory distress syndrome, treatment of functional and/or chronic constipation, treatment of encopresis in children, and diagnosis and therapy of gastrointestinal diseases.
PEG is typically produced by base-catalyzed ring-opening polymerization of ethylene oxide. The reaction is initiated by adding ethylene oxide to ethylene glycol, with potassium hydroxide as catalyst. This process results in a polydispersed mixture of polyethylene glycol polymers having a molecular weight within a given range of molecular weights.
For example, PEG products offered by Sigma-Aldrich of Milwaukee, Wisconsin are provided in polydispersed mixtures such as PEG 400 (Mn 380-420); PEG 1,000 (Mõ 950-1,050);
PEG
1,500 (Mn 1,400-1,600); and PEG 2,000 (Mõ 1,900-2,200).
In J. Milton Harris, Laboratory Synthesis of Polyethylene Glycol Derivatives, 25(3) Rev. Macromol. Chem. Phys. 325-373 (1985), the author discusses synthesis of monomethyl ethers of PEG (also known as methyl-terminated PEG or mPEG). The reference states that mPEG contains a significant amount (as much as 25%; from size exclusion chromatography) of PEG without the methoxy end group. This PEG "impurity" may result from water present in the polymerization process. Under basic conditions, hydroxide is produced, which yields PEG upon reaction with the ethylene oxide monomer. Since the hydroxide-initiated PEG
chain can grow at both ends, while the methoxide-initiated chain can grow from only one end, the resulting mixture has a broader molecular weight distribution than that for the PEG's.
While these polydispersed mixtures of PEGs and/or mPEGs may be useful for some applications, physical properties of polymers may vary with the length of the polymer. Thus, polydispersed mixtures may not be suitable for certain applications that require specific physical properties. Additionally, the heterogeneity of commercially available PEGs and mPEGs may complicate spectroscopic analysis, physico-chemical characterization and pharmacokinetics analysis. As a result, it is desirable to provide monodispersed mixtures of PEGs and/or mPEGs.
Monodispersed mixtures of PEG and/or mPEG polymers may be provided by various organic synthesis routes. For example, in Yiyan Chen & Gregory L. Baker, Synthesis and Properties of ABA Amphiphiles, 64 J. Org. Chem. 6870-6873 (1999), the authors propose the following scheme:
H(OCH2CH2)aOH Trityl Chloride H(OCH2CH2)aOTr Pyridine NaH
Na(OCH2CH2)aOTr Ts(OCH2CH2)bOTs p-toluene sulfonyl chloride KOH
H(OCH2CH2)bOH Tr(OCH2CH2)2a+bOTr H2 (50 atm) Pd/C
NaH
R(OCH2CH2)yOR H(OCH2CH2)2a+bOH
CH3(CH2)1,-,Br This synthesis route may be inconvenient due to the number of steps required as well as the use of undesirable reaction conditions such as high temperatures that may actually break down the PEG polymer. Moreover, it may be difficult to purify the product as the starting material may always be present in the reaction mixture.
In Gerard Coudert et al., A Novel, Unequivocal Synthesis of Polyethylene Glycols, Synthetic Communications, 16(1): 19-26 (1986), the authors proposed the following synthesis route:

H(OC2H4)30H Benzyl chloride BZl(OC2H4)30H
50% NaOH

1) Benzyl chloride / 50% NaOH
H(OC2H4)20H B4OC2H4)2C1 2) Thionyl Chloride,0 Bzl(OC2H4)5OBzI H2 / Pd-c H(OC2H4)50H
This synthesis route may be inconvenient due to the undesirable reaction conditions, which do not lead to mPEG.
As a result, it is desirable to provide a new route for synthesizing PEG, mPEG, and/or polymers comprising a PEG moiety that are more efficient and do not require such undesirable reaction conditions.

Summary Of The Invention Embodiments of the present invention provide improved methods for synthesizing substantially monodispersed mixtures of polymers comprising polyethylene glycol moieties.
Methods according to embodiments of the present invention may utilize reaction conditions that are milder than those required by the conventional methods described above. For example, many, if not all, of the steps of methods according to embodiments of the present invention may be carried out at atmospheric pressure and/or at room temperature. The ability to perform these steps at atmospheric pressure and/or temperature may reduce or prevent the formation of undesirable side products. Additionally, methods according to embodiments of the present invention may be more efficient than the conventional methods described above.
For example, methods according to embodiments of the present invention may require fewer steps and/or less time than the conventional methods described above. Methods according to embodiments of the present invention may provide the ability to remove PEG
starting materials from the products comprising polyethylene glycol moieties to provide substantially monodispersed mixtures of polymers comprising polyethylene glycol moieties.
According to embodiments of the present invention, a method of synthesizing a substantially monodispersed mixture of polymers comprising polyethylene glycol moieties includes:
reacting a substantially monodispersed mixture of compounds having the structure of Formula I:
R' (OC2H4)õ-O-X+ (I) wherein R' is H or a lipophilic moiety; n is from 1 to 25; and X+ is a positive ion, with a substantially monodispersed mixture of compounds having the structure of Formula II:
R2(OC2H4)m OMs (II) wherein R2 is H or a lipophilic moiety; and in is from I to 25, under conditions sufficient to provide a substantially monodispersed mixture of polymers comprising polyethylene glycol moieties and having the structure of Formula III:
R2(OC2114)m+n OR' (III).
Methods according to embodiments of the present invention may provide more efficient synthesis routes for substantially monodispersed mixtures of PEGs, substantially monodispersed mixtures of mPEGs and/or substantially monodispersed mixtures of polymers comprising PEG moieties. Methods of the present invention may reduce the number of steps and/or reduce the overall synthesis time compared to conventional methods of synthesizing PEG polymers. Methods of the present invention may also utilize milder reaction conditions than those used in conventional methods.
In accordance with an aspect of the present invention, there is provided a method of synthesizing a substantially monodispersed mixture of polymers comprising polyethylene glycol moieties, said method comprising:
reacting a substantially monodispersed mixture of compounds having the structure of Formula V:
R2(OC2H4)m -OH (V) with a methanesulfonyl halide under conditions sufficient to provide a substantially monodispersed mixture of compounds having the structure of Formula II:
R2(OC2H4)m-OMs (II) wherein R2 is H or a lipophilic moiety; and in is from 1 to 25, and reacting the compound of Formula II with a substantially monodispersed mixture of compounds having the structure of Formula I:

R'(OC2H )n-O-X+ (I) wherein R1 is H or a lipophilic moiety; n is from 1 to 25; and X+ is a positive ion, under conditions sufficient to provide a substantially monodispersed mixture of polymers comprising polyethylene glycol moieties and having the structure of Formula III:
R2(OC2H4)m+n-ORS (III).

Brief Description of the Drawings Figure 1 illustrates a generic scheme for synthesizing a mixture of activated polymers comprising a polyethylene glycol moiety and a fatty acid moiety according to embodiments of the present invention;
Figure 2 illustrates a scheme for synthesizing a mixture of activated mPEG7-hexyl oligomers according to embodiments of the present invention; and Figure 3 illustrates a scheme for synthesizing a mixture of mPEG according to embodiments of the present invention.

Detailed Description Of Preferred Embodiments The invention will now be described with respect to preferred embodiments described herein. It should be appreciated however that these embodiments are for the purpose of illustrating the invention, and are not to be construed as limiting the scope of the invention as defined by the claims.
As used herein, the term "non-polydispersed" is used to describe a mixture of compounds having a dispersity that is in contrast to the polydispersed mixtures of PEG
products offered by Sigma-Aldrich of Milwaukee, Wisconsin such as PEG 400 (Mn 420); PEG 1,000 (Mn 950-1,050); PEG 1,500 (Mn 1, 400-1,600); and PEG 2,000 (Mn 1, 900- 2,200).
As used herein, the term "substantially monodispersed" is used to describe a mixture of compounds wherein at least about 95 percent of the compounds in the mixture have the 5a same molecular weight.
As used herein, the term "monodispersed" is used to describe a mixture of compounds wherein about 100 percent of the compounds in the mixture have the same molecular weight.
As used herein, the term "weight average molecular weight" is defined as the sum of the products of the weight fraction for a given molecule in the mixture times the mass of the molecule for each molecule in the mixture. The "weight average molecular weight" is represented by the symbol M.
As used herein, the term "number average molecular weight" is defined as the total weight of a mixture divided by the number of molecules in the mixture and is represented by the symbol M,,.
As used herein, the term "PEG" refers to straight or branched polyethylene glycol polymers, and includes the monomethylether of polyethylene glycol (mPEG). The terms "PEG subunit" and polyethylene glycol subunit refer to a single polyethylene glycol unit, i.e., -(CH2CHZO)-.
As used herein, the term "lipophilic" means the ability to dissolve in lipids and/or the ability to penetrate, interact with and/or traverse biological membranes, and the term, "lipophilic moiety" or "lipophile" means a moiety which is lipophilic and/or which, when attached to another chemical entity, increases the lipophilicity of such chemical entity.
Examples of lipophilic moieties include, but are not limited to, alkyls, fatty acids, esters of fatty acids, cholesteryl, adamantyl and the like.
As used herein, the term "lower alkyl" refers to substituted or unsubstituted alkyl moieties having from I to 5 carbon atoms.
As used herein, the term "higher alkyl" refers to substituted or unsubstituted alkyl moieties having 6 or more carbon atoms.
According to aspects of the present invention, a substantially monodispersed mixture of polymers comprising polyethylene glycol moieties is provided as illustrated in reaction 1:
RI(OC2H4),O X+ + R2(OC2H4)mOMs R2(OC2H4)m+nOR' 1 (I) (II) (III) R' is H or a lipophilic moiety. R' is preferably H, alkyl, aryl alkyl, an aromatic moiety, a fatty acid moiety, an ester of a fatty acid moiety, cholesteryl, or adamantyl. R' is more preferably H, lower alkyl, or an aromatic moiety. R' is most preferably H, methyl, or benzyl.
The value of n is from I to 25. Preferably n is from I to 6.
X+ is a positive ion. Preferably X+ is any positive ion in a compound, such as a strong base, that is capable of ionizing a hydroxyl moiety on PEG. Examples of positive ions include, but are not limited to, sodium ions, potassium ions, lithium ions, cesium ions, and thallium ions.
R2 is H or a lipophilic moiety. R2 is preferably branched or linear alkyl, aryl alkyl, an aromatic moiety, a fatty acid moiety, or an ester of a fatty acid moiety. R2 is more preferably lower alkyl, benzyl, a fatty acid moiety having 1 to 24 carbon atoms, or an ester of a fatty acid moiety having 1 to 24 carbon atoms. R2 is most preferably methyl, a fatty acid moiety having I to 18 carbon atoms or an ethyl ester of a fatty acid moiety having 1 to 18 carbon atoms.
The value of m is from 1 to 25. Preferably m is from 1 to 6.
Ms is a mesylate moiety (i.e., CH3S(O2)-).
As illustrated in reaction 1, a mixture of compounds having the structure of Formula I
is reacted with a mixture of compounds having the structure of Formula II to provide a mixture of polymers comprising polyethylene glycol moieties and having the structure of Formula III. The mixture of compounds having the structure of Formula I is a substantially monodispersed mixture. Preferably, at least 96, 97, 98 or 99 percent of the compounds in the mixture of compounds of Formula I have the same molecular weight, and, more preferably, the mixture of compounds of Formula I is a monodispersed mixture. The mixture of compounds of Formula II is a substantially monodispersed mixture. Preferably, at least 96, 97, 98 or 99 percent of the compounds in the mixture of compounds of Formula II have the same molecular weight, and, more preferably, the mixture of compounds of Formula II is a monodispersed mixture. The mixture of compounds of Formula III is a substantially monodispersed mixture. Preferably, at least 96, 97, 98 or 99 percent of the compounds in the mixture of compound of Formula III have the same molecular weight. More preferably, the mixture of compounds of Formula III is a monodispersed mixture.
Reaction 1 is preferably performed between about 0 C and about 40 C, is more preferably performed between about 15 C and about 35 C, and is most preferably performed at room temperature (approximately 25 C).
Reaction 1 may be performed for various periods of time as will be understood by those skilled in the art. Reaction 1 is preferably performed for a period of time between about 0.25, 0.5 or 0.75 hours and about 2, 4 or 8 hours.
Reaction 1 is preferably carried out in an aprotic solvent such as, but not limited to, N,N-dimethylacetamide (DMA), N,N-dimethylformamide (DMF), dimethyl sulfoxide, hexamethylphosphoric triamide, tetrahydrofuran (THF), dioxane, diethyl ether, methyl t-butyl ether (MTBE), toluene, benzene, hexane, pentane, N-methylpyrollidinone, tetrahydronaphthalene, decahydronaphthalene, 1,2-dichlorobenzene, 1,3-dimethyl-imidazolidinone, or a mixture thereof. More preferably, the solvent is DMF, DMA or toluene.
The molar ratio of the compound of Formula Ito the compound of Formula II is preferably greater than about 1:1. More preferably, the molar ratio is at least about 2:1. By providing an excess of the compounds of Formula I, one can ensure that substantially all of the compounds of Formula II are reacted, which may aid in the recovery of the compounds of Formula III as discussed below.
Compounds of Formula I are preferably prepared as illustrated in reaction 2:
compound capable of l + 30 R~(OC2Hq)nOH + ionizing a hydroxyl moiety R
(OC2H4)nO X 2 on the PEG moiety of (IV) Formula IV (1) R' and X+ are as described above and the mixture of compounds of Formula IV is substantially monodispersed; preferably, at least 96, 97, 98 or 99 percent of the compounds in the mixture of compounds of Formula IV have the same molecular weight; and, more preferably, the mixture of compounds of Formula IV is a monodispersed mixture.
Various compounds capable of ionizing a hydroxyl moiety on the PEG moiety of the compound of Formula IV will be understood by those skilled in the art. The compound capable of ionizing a hydroxyl moiety is preferably a strong base. More preferably, the compound capable of ionizing a hydroxyl moiety is selected from the group consisting of sodium hydride, potassium hydride, sodium t-butoxide, potassium t-butoxide, butyl lithium (BuLi), and lithium disopropylamine. The compound capable of ionizing a hydroxyl moiety is more preferably sodium hydride.
The molar ratio of the compound capable of ionizing a hydroxyl moiety on the PEG
moiety of the compound of Formula IV to the compound of Formula IV is preferably at least about 1:1, and is more preferably at least about 2:1. By providing an excess of the compound capable of ionizing the hydroxyl moiety, it is assured that substantially all of the compounds of Formula IV are reacted to provide the compounds of Formula I. Thus, separation difficulties, which may occur if both compounds of Formula IV and compounds of Formula I
were present in the reaction product mixture, may be avoided.
Reaction 2 is preferably performed between about 0 C and about 40 C, is more preferably performed between about 0 C and about 35 C, and is most preferably performed between about 0 C and room temperature (approximately 25 C).
Reaction 2 may be performed for various periods of time as will be understood by those skilled in the art. Reaction 2 is preferably performed for a period of time between about 0.25, 0.5 or 0.75 hours and about 2, 4 or 8 hours.
Reaction 2 is preferably carried out in an aprotic solvent such as, but not limited to, N,N-dimethylacetamide (DMA), N,N-dimethylformamide (DMF), dimethyl sulfoxide, hexamethylphosphoric triamide, tetrahydrofuran (THF), dioxane, diethyl ether, methyl t-butyl ether (MTBE), toluene, benzene, hexane, pentane, N-methylpyrollidinone, dichloromethane, chloroform, tetrahydronaphthalene, decahydronaphthalene, 1,2-dichlorobenzene, 1,3-dimethyl-2-imidazolidinone, or a mixture thereof. More preferably, the solvent is DMF, dichloromethane or toluene.
Compounds of Formula II are preferably prepared as illustrated in reaction 3:

R2(OC2H4)mOH + CH3SQ R2(OC2H4)mOMs 3 I I
('S') O (II) R2 and Ms are as described above and the compound of Formula V is present as a substantially monodispersed mixture of compounds of Formula V; preferably at least 96, 97, 98 or 99 percent of the compounds in the mixture of compounds of Formula V
have the same molecular weight; and, more preferably, the mixture of compounds of Formula V
is a monodispersed mixture.
Q is a halide, preferably chloride or fluoride.
CH3S(02)Q is methanesulfonyl halide. The methanesulfonyl halide is preferably methanesulfonyl chloride or methanesulfonyl fluoride. More preferably, the methanesulfonyl halide is methanesulfonyl chloride.
The molar ratio of the methane sulfonyl halide to the compound of Formula V is preferably greater than about 1:1, and is more preferably at least about 2:1.
By providing an excess of the methane sulfonyl halide, it is assured that substantially all of the compounds of Formula V are reacted to provide the compounds of Formula II. Thus, separation difficulties, which may occur if both compounds of Formula V and compounds of Formula II
were present in the reaction product mixture, may be avoided.
Reaction 3 is preferably performed between about -10 C and about 40 C, is more preferably performed between about 0 C and about 35 C, and is most preferably performed between about 0 C and room temperature (approximately 25 C).
Reaction 3 may be performed for various periods of time as will be understood by those skilled in the art. Reaction 3 is preferably performed for a period of time between about 0.25, 0.5 or 0.75 hours and about 2, 4 or 8 hours.
Reaction 3 is preferably carried out in the presence of an aliphatic amine including, but not limited to, monomethylamine, dimethylamine, trimethylamine, monoethylamine, diethylamine, triethylamine, monoisopropylamine, diisopropylamine, mono-n-butylamine, di-n-butylamine, tri-n-butylamine, monocyclohexylamine, dicyclohexylamine, or mixtures thereof. More preferably, the aliphatic amine is a tertiary amine such as triethylamine.
As will be understood by those skilled in the art, various substantially monodispersed mixtures of compounds of Formula V are commercially available. For example, when R2 is H or methyl, the compounds of Formula V are PEG or mPEG compounds, respectively, which are commercially available from Aldrich of Milwaukee, Wisconsin; Fluka of Switzerland, and/or TCl America of Portland, Oregon.
When R2 is a lipophilic moiety such as, for example, higher alkyl, fatty acid, an ester of a fatty acid, cholesteryl, or adamantyl, the compounds of Formula V may be provided by various methods as will be understood by those skilled in the art. The compounds of Formula V are preferably provided as follows:

R? OMs + R3(OC2H4)m O-X2+ > R3(OC2H4)m OR2 4 (VI) (VII) (VIII) R3(OC2H4)m OR2 30 H(OC2H4)m OR2 5 (VIII) (V) R2 is a lipophilic moiety, preferably higher alkyl, fatty acid ester, cholesteryl, or adamantyl, more preferably a lower alkyl ester of a fatty acid, and most preferably an ethyl ester of a fatty acid having from 1 to 18 carbon atoms.
R3 is H, benzyl, trityl, tetrahydropyran, or other alcohol protecting groups as will be understood by those skilled in the art.
X2+ is a positive ion as described above with respect to X+.
The value of in is as described above.
Regarding reaction 4, a mixture of compounds of Formula VI is reacted with a mixture of compounds of Formula VII under reaction conditions similar to those described above with reference to reaction 1. The mixture of compounds of Formula VI is a substantially monodispersed mixture. Preferably, at least 96, 97, 98 or 99 percent of the compounds in the mixture of compounds of Formula VI have the same molecular weight.
More preferably, the mixture of compounds of Formula VI is a monodispersed mixture. The mixture of compounds of Formula VII is a substantially monodispersed mixture.
Preferably, at least 96, 97, 98 or 99 percent of the compounds in the mixture of compounds of Formula VII have the same molecular weight. More preferably, the mixture of compounds of Formula VII is a monodispersed mixture.
Regarding reaction 5, the compound of Formula VIII may be hydrolyzed to convert the R3 moiety into an alcohol by various methods as will be understood by those skilled in the art. When R3 is benzyl or trityl, the hydrolysis is preferably performed utilizing H2 in the presence of a palladium-charcoal catalyst as is known by those skilled in the art. Of course, when R3 is H, reaction 5 is unnecessary.

The compound of Formula VI may be commercially available or be provided as described above with reference to reaction 3. The compound of Formula VII may be provided as described above with reference to reaction 2.
Substantially monodispersed mixtures of polymers comprising PEG moieties and having the structure of Formula III above can further be reacted with other substantially monodispersed polymers comprising PEG moieties in order to extend the PEG
chain. For example, the following scheme may be employed:

O
I I
R2(OC2H4)m+n-OR' + CH3SQ R2(OC2H4)n,+n-OMs (III) O (IX) R2(OC2H4)m+n-OMs + R4(OC2H4)p-O-X2+ R2(OC2H4)m+n+p-OR4 (IX) (X) (XI) Ms, in and n are as described above with reference to reaction 1; p is similar to n and in, and X2+ is similar to X+ as described above with reference to reaction 1.
Q is as described above with reference to reaction 3. R2 is as described above with reference to reaction 1 and is preferably lower alkyl. R' is H. Reaction 6 is preferably performed in a manner similar to that described above with reference to reaction 3. Reaction 7 is preferably performed in a manner similar to that described above with reference to reaction 1.
Preferably, at least 96, 97, 98 or 99 percent of the compounds in the mixture of compounds of Formula III have the same molecular weight, and, more preferably, the mixture of compounds of Formula III is a monodispersed mixture. The mixture of compounds of Formula X is a substantially monodispersed mixture. Preferably, at least 96, 97, 98 or 99 percent of the compounds in the mixture of compounds of Formula X have the same molecular weight, and, more preferably, the mixture of compounds of Formula X is a monodispersed mixture.
An embodiment of a method according to the present invention is illustrated by the scheme shown in Figure 1, which will now be described. The synthesis of a substantially monodispersed mixture of polyethylene glycol-containing oligomers begins by the preparation of the monobenzyl ether (XII) of a substantially monodispersed mixture of polyethylene glycol. An excess of a commercially available substantially monodispersed mixture of polyethylene glycol is reacted with benzyl chloride in the presence of aqueous sodium hydroxide as described by Coudert et al (Synthetic Communications, 16(1): 19-26 (1986)). The sodium salt of XII is then prepared by the addition of NaH, and this sodium salt is allowed to react with the mesylate synthesized from the ester of a hydroxyalkanoic acid (XIII). The product (XIV) of the displacement of the mesylate is debenzylated via catalytic hydrogenation to obtain the alcohol (XV). The mesylate (XVI) of this alcohol may be prepared by addition of methanesulfonyl chloride and used as the electrophile in the reaction with the sodium salt of the monomethyl ether of a substantially monodispersed mixture of a polyethylene glycol derivative, thereby extending the polyethylene glycol portion of the oligomer to the desired length, obtaining the elongated ester (XVII). The ester may be hydrolyzed to the acid (XVIII) in aqueous base and transformed into the activated ester (XIX) by reaction with a carbodiimide and N-hydroxysuccinimide. While the oligomer illustrated in Figure 1 is activated using N-hydroxysuccinimide, it is to be understood that various other reagents may be used to activate oligomers of the present invention including, but not limited to, active phenyl chloroformates such as para-nitrophenyl chloroformate, phenyl chloroformate, 3,4-phenyldichloroformate, and 3,4-phenyldichloroformate;
tresylation; and acetal formation.
Still referring to Figure 1, q is from 1 to 24. Preferably, q is from 1 to 18, and q is more preferably from 4 to 16. R4 is a moiety capable of undergoing hydrolysis to provide the carboxylic acid. R4 is preferably lower alkyl and is more preferably ethyl.
The variables n and in are as described above with reference to reaction 1.
All starting materials used in the procedures described herein are either commercially available or can be prepared by methods known in the art using commercially available starting materials.
The present invention will now be described with reference to the following examples. It should be appreciated that these examples are for the purposes of illustrating aspects of the present invention, and do not limit the scope of the invention as defined by the claims.

EXAMPLES
Examples I through 6 refer to the scheme illustrated in Figure 2.

Example 1 Hexaethylene glycol monobenzyl ether (XX) An aqueous sodium hydroxide solution prepared by dissolving 3.99 g (100 mmol) NaOH in 4 ml water was added slowly to non-polydispersed hexaethylene glycol (28.175 g, 25 ml, 100 mmol). Benzyl chloride (3.9 g, 30.8 mmol, 3.54 ml) was added and the reaction mixture was heated with stirring to 100 C for 18 hours. The reaction mixture was then cooled, diluted with brine (250 ml) and extracted with methylene chloride (200 ml x 2). The combined organic layers were washed with brine once, dried over Na2SO4, filtered and concentrated in vacuo to a dark brown oil. The crude product mixture was purified via flash chromatography (silica gel, gradient elution: ethyl acetate to 9/1 ethyl acetate/methanol) to yield 8.099 g (70 %) of non-polydispersed XX as a yellow oil.

Example 2 Ethyl 6-methylsulfonyloxyhexanoate (XXI) A solution of non-polydispersed ethyl 6-hydroxyhexanoate (50.76 ml, 50.41 g, mmol) in dry dichloromethane (75 ml) was chilled in a ice bath and placed under a nitrogen atmosphere. Triethylamine (34.43 ml, 24.99 g, 247 mmol) was added. A solution of methanesulfonyl chloride (19.15 ml, 28.3 g, 247 mmol) in dry dichloromethane (75 ml) was added dropwise from an addition funnel. The mixture was stirred for three and one half hours, slowly being allowed to come to room temperature as the ice bath melted. The mixture was filtered through silica gel, and the filtrate was washed successively with water, saturated NaHCO3, water and brine. The organics were dried over Na2SO4, filtered and concentrated in vacuo to a pale yellow oil. Final purification of the crude product was achieved by flash chromatography (silica gel, 1/1 hexanes/ethyl acetate) to give the non-polydispersed product (46.13 g, 85 %) as a clear, colorless oil. FAB MS: m/e 239 (M+H), 193 (M-CZH50).

Example 3 6-{2-[2-(2-{2-[2-(2-Benzyloxyethoxy)ethoxy] ethoxy}-ethoxy)-ethoxy]-ethoxy}-hexanoic acid ethyl ester (XXII) Sodium hydride (3.225 g or a 60 % oil dispersion, 80.6 mmol) was suspended in ml of anhydrous toluene, placed under a nitrogen atmosphere and cooled in an ice bath. A

solution of the non-polydispersed alcohol XX (27.3 g, 73.3 mmol) in 80 ml dry toluene was added to the NaH suspension. The mixture was stirred at 0 C for thirty minutes, allowed to come to room temperature and stirred for another five hours, during which time the mixture became a clear brown solution. The non-polydispersed mesylate XXI (19.21 g, 80.6 mmol) in 80 ml dry toluene was added to the NaH/alcohol mixture, and the combined solutions were stirred at room temperature for three days. The reaction mixture was quenched with 50 ml methanol and filtered through basic alumina. The filtrate was concentrated in vacuo and purified by flash chromatography (silica gel, gradient elution: 3/1 ethyl acetate/hexanes to ethyl acetate) to yield the non-polydispersed product as a pale yellow oil (16.52 g, 44 %).
FAB MS: m/e 515 (M+H).

Example 3 6-{2-[2-(2-{2-[2-(2-hydroxyethoxy)ethoxy] ethoxy}-ethoxy)-ethoxy]-ethoxy}-hexanoic acid ethyl ester (XXIII) Non-polydispersed benzyl ether XI (1.03 g, 2.0 mmol) was dissolved in 25 ml ethanol. To this solution was added 270 mg 10 % Pd/C, and the mixture was placed under a hydrogen atmosphere and stirred for four hours, at which time TLC showed the complete disappearance of the starting material. The reaction mixture was filtered through Celite 545 to remove the catalyst, and the filtrate was concentrated in vacuo to yield the non-polydispersed title compound as a clear oil (0.67 g, 79 %). FAB MS: m/e 425 (M+H), 447 (M+Na).

Example 4 6-{2-[2-(2-{2-[2-(2-methylsulfonylethoxy)ethoxy] ethoxy}-ethoxy)-ethoxy]-ethoxy}-hexanoic acid ethyl ester (XXIV) The non-polydispersed alcohol XXIII (0.835 g, 1.97 mmol) was dissolved in 3.5 ml dry dichloromethane and placed under a nitrogen atmosphere. Triethylamine (0.301 ml, 0.219 g, 2.16 mmol) was added and the mixture was chilled in an ice bath.
After two minutes, the methanesulfonyl chloride (0.16 ml, 0.248 g, 2.16 mmol) was added.
The mixture was stirred for 15 minutes at 0 C, then at room temperature for two hours. The reaction mixture was filtered through silica gel to remove the triethylammonium chloride, and the filtrate was washed successively with water, saturated NaHCO3, water and brine.

The organics were dried over Na2SO4, filtered and concentrated in vacuo. The residue was purified by column chromatography (silica gel, 9/1 ethyl acetate/methanol) to give non-polydispersed XXIV as a clear oil (0.819 g, 83 %). FAB MS: m/e 503 (M+H).

Example 5 8-[2-(2-{2-[2-(2-{2-[2-(2-methoxyethoxy)ethoxy]-ethoxy}-ethoxy)-ethoxy]-ethoxy}-ethoxy)-ethoxy]-hexanoic acid ethyl ester (XXV) NaH (88 mg of a 60 % dispersion in oil, 2.2 mmol) was suspended in anhydrous toluene (3 ml) under N2 and chilled to 0 OC. Non-polydispersed diethylene glycol monomethyl ether (0.26 ml, 0.26 g, 2.2 mmol) that had been dried via azeotropic distillation with toluene was added. The reaction mixture was allowed to warm to room temperature and stirred for four hours, during which time the cloudy grey suspension became clear and yellow and then turned brown. Non-polydispersed mesylate XXIV (0.50 g, 1.0 mmol) in 2.5 ml dry toluene was added. After stirring at room temperature over night, the reaction was quenched by the addition of 2 m] of methanol and the resultant solution was filtered through silica gel.
The filtrate was concentrated in vacuo and the FAB MS: m/e 499 (M+H), 521 (M+Na).
Additional purification by preparatory chromatography (silica gel, 19/3 chloroform/methanol) provided the non-polydispersed product as a clear yellow oil (0.302 g 57 %). FAB MS: m/e 527 (M+H), 549 (M+Na).
Example 6 8-[2-(2-{2-[2-(2-{2-[2-(2-methoxyethoxy)ethoxy]-ethoxy}-ethoxy)-ethoxy]-ethoxy}-ethoxy)-ethoxy]-hexanoic acid (XXVI) Non-polydispersed ester XXV (0.25 g, 0.46 mmol) was stirred for 18 hours in 0.71 ml of 1 N NaOH. After 18 hours, the mixture was concentrated in vacuo to remove the alcohol and the residue dissolved in a further 10 ml of water. The aqueous solution was acidified to pH 2 with 2 N HCI and the product was extracted into dichloromethane (30 ml x 2). The combined organics were then washed with brine (25 ml x 2), dried over Na2SO4, filtered and concentrated in vacuo to yield the non-polydispersed title compound as a yellow oil (0.147 g, 62 %). FAB MS: m/e 499 (M+H), 521 (M+Na).

Example 7 8-[2-(2-{2-[2-(2-{2-[2-(2-methoxyethoxy)ethoxy]-ethoxy}-ethoxy)-ethoxy]-ethoxy}-ethoxy)-ethoxy]-hexanoic acid 2,5-dioxo-pyrrolidin-l-yl ester (XXVII) Non-polydispersed acid XXVI (0.209 g, 0.42 mmol) were dissolved in 4 ml of dry dichloromethane and added to a dry flask already containing NHS (N-hydroxysuccinimide) (57.8 mg, 0.502 mmol) and EDC (1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride) (98.0 mg, 0.502 mmol) under a N2 atmosphere. The solution was stirred at room temperature overnight and filtered through silica gel to remove excess reagents and the urea formed from the EDC. The filtrate was concentrated in vacuo to provide the non-polydispersed product as a dark yellow oil (0.235 g, 94 %). FAB MS: m/e 596 (M+H), 618 (M+Na).

Examples 8 through 17 Reactions in Examples 8 through 17 were carried out under nitrogen with magnetic stirring, unless otherwise specified. "Work-up" denotes extraction with an organic solvent, washing of the organic phase with saturated NaCl solution, drying (MgSO4), and evaporation (rotary evaporator). Thin layer chromatography was conducted with Merck glass plates precoated with silica gel 60 F - 254 and spots were visualized by iodine vapor. All mass spectra were determined by Macromolecular Resources Colorado State University, CO and are reported in the order m/z, (relative intensity). Elemental analyses and melting points were performed by Galbraith Laboratories, Inc., Knoxville, TN. Examples 8-17 refer to the scheme illustrated in Figure 3.

Example 8 8-Methoxy-l-(methylsulfonyl)oxy-3,6-dioxaoctane (XXXI) A solution of non-polydispersed triethylene glycol monomethyl ether molecules (4.00 mL, 4.19 g, 25.5 mmol) and triethylamine (4.26 mL, 3.09 g, 30.6 mmol) in dry dichloromethane (50 mL) was chilled in an ice bath and place under a nitrogen atmosphere.
A solution of methanesulfonyl chloride (2.37 mL, 3.51 g, 30.6 mmol) in dry dichloromethane (20 mL) was added dropwise from an addition funnel. Ten minutes after the completion of the chloride addition, the reaction mixture was removed from the ice bath and allowed to come to room temperature. The mixture was stirred for an additional hour, at which time TLC (CHC13 with 15% MeOH as the elutant) showed no remaining triethylene glycol monomethyl ether.
The reaction mixture was diluted with another 75 mL of dichloromethane and washed successively with saturated NaHCO3i water and brine. The organics were dried over Na2SO4, filtered and concentrated in vacuo to give non-polydispersed compound XXXI as a clear oil (5.31 g, 86%).

Example 9 Ethylene glycol mono methyl ether (XXXII) (m=4,5,6) To a stirred solution of non-polydispersed compound XXVIII (35.7 mmol) in dry DMF (25.7 mL), under N2 was added in portion a 60% dispersion of NaH in mineral oil, and the mixture was stirred at room temperature for 1 hour. To this salt XXIX was added a solution of non-polydispersed mesylate XXXI (23.36) in dry DMF (4 ml) in a single portion, and the mixture was stirred at room temperature for 3.5 hours. Progress of the reaction was monitored by TLC (12% CH3OH-CHC13). The reaction mixture was diluted with an equal amount of IN HCI, and extracted with ethyl acetate (2 x 20 ml) and discarded.
Extraction of aqueous solution and work-up gave non-polydispersed polymer XXXII (82 -84%
yield).

Example 10 3,6,9,12,15,18,21-Heptaoxadocosanol (XXXII) (m=4) Oil; Rf 0.46 (methanol : chloroform = 3:22); MS m/z calc'd for C15H3208 340.21 (M++l), found 341.2.

Example 11 3,6,9,12,15,18,21,24-Octaoxapentacosanol (XXXII) (m=5) Oil; Rf 0.43 (methanol : chloroform = 6:10); MS m/z calc'd for C17H3609 384.24 (M++1), found 385.3.

Example 12 3,6,9,12,15,18,21,24,27-Nonaoxaoctacosanol (XXXII) (m=5) Oil; Rf 0.42 (methanol : chloroform = 6:10); MS m/z calc'd for C19H40O10 428.26 (M++1), found 429.3.

Example 13 20-methoxy-l-(methylsulfonyl)oxy-3,6,9,12,15,18-hexaoxaeicosane (XXXIII) Non-polydispersed compound XXXIII was obtained in quantitative yield from the alcohol XXXII (m=4) and methanesulfonyl chloride as described for XXXI, as an oil; Rf 0.4 (ethyl acetate : acetonitrile = 1:5); MS m/z calc'd for C17H37O10 433.21 (M++1), found 433.469.

Example 14 Ethylene glycol mono methyl ether (XXXIV) (m=3,4,5) The non-polydispersed compounds XXXIV were prepared from a diol by using the procedure described above for compound XXXII.

Example 15 3,6,9,12,15,18,21,24,27,30-Decaoxaheneicosanol (XXXIV) (m=3) Oil; Rf 0.41 (methanol : chloroform = 6:10); MS m/z calc'd for C21H44011 472.29 (M++1), found 472.29.

Example 16 3,6,9,12,15,18,21,24,27,30,33-Unecaoxatetratricosanol (XXXIV) (m=4) Oil; Rf 0.41 (methanol : chloroform = 6:10); MS m/z calc'd for C23H48012 516.31 (M++1), found 516.31.

Example 17 3,6,9,12,15,18,21,24,27,30,33,36-Dodecaoxaheptatricosanol (XXXIV) (m=5) Oil; Rf 0.41 (methanol : chloroform = 6:10); MS m/z calc'd for C25H52013 560.67 (M++1), found 560.67.

In the specification, there has been disclosed typical preferred embodiments of the invention and, although specific terms are employed, they are used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention being set forth in the following claims.

Claims (36)

What is Claimed is:
1. A method of synthesizing a substantially monodispersed mixture of polymers comprising polyethylene glycol moieties, said method comprising:
reacting a substantially monodispersed mixture of compounds having the structure of Formula V:

R2(OC2H4)m-OH (V) with a methanesulfonyl halide under conditions sufficient to provide a substantially monodispersed mixture of compounds having the structure of Formula II:

R2(OC2H4)m-OMs (II) wherein R2 is H or a lipophilic moiety; and m is from 1 to 25, and reacting the compound of Formula II with a substantially monodispersed mixture of compounds having the structure of Formula I:

R1(OC2H4)n-O-X+ (I) wherein R1 is H or a lipophilic moiety; n is from 1 to 25; and X+ is a positive ion, under conditions sufficient to provide a substantially monodispersed mixture of polymers comprising polyethylene glycol moieties and having the structure of Formula III:

R2(OC2H4)m+n-OR1 (III).
2. The method according to Claim 1, wherein the molar ratio of the compounds of Formula I to the compounds of Formula II is greater than about 1:1.
3. The method according to Claim 1, wherein the molar ratio of the compounds of Formula I to the compounds of Formula II is at least about 2:1.
4. The method according to Claim 1, wherein R2 is a lipophilic moiety selected such that the polymers of Formula III are substantially insoluble in water.
5. The method according to Claim 1, wherein R2 is a fatty acid moiety or an ester of a fatty acid moiety.
6. The method according to Claim 5, wherein the fatty acid moiety or the ester of a fatty acid moiety comprises an alkyl moiety at least n carbon atoms in length.
7. The method according to Claim 6, wherein the molar ratio of the compounds of Formula I to the compounds of Formula II are greater than 1:1 such that the reaction of the compounds of Formula I with the compounds of Formula II
provide a mixture comprising the polymers of Formula III and an excess of compounds of Formula I, said method further comprising:

separating the excess compounds of Formula I from the polymers of Formula III.
8. The method according to Claim 7, wherein the separating step comprises:
contacting the mixture of the excess compounds of Formula I and the polymers of Formula III with an aqueous medium; and collecting the polymers of Formula III.
9. The method according to Claim 7, wherein the separating step comprises:
contacting the mixture of the excess compounds of Formula I and the polymers of Formula III with an organic medium;

removing the excess of compounds of Formula I from the organic medium; and recovering the polymers of Formula III from the organic medium.
10. The method according to Claim 1, wherein the methanesulfonyl halide is methane sulfonyl chloride.
11. The method according to Claim 1, wherein the molar ratio of the methanesulfonyl halide to the compounds of Formula V is greater than about 1:1.
12. The method according to Claim 1, wherein the molar ratio of the methanesulfonyl halide to the compounds of Formula V is at least about 2:1.
13. The method according to Claim 1, wherein the reacting of the substantially monodispersed mixture of compounds having the structure of Formula V with the methanesulfonyl halide to provide the substantially monodispersed mixture of compounds of Formula II is performed at a temperature between about 0°C and about 40°C.
14. The method according to Claim 1, wherein the reacting of the substantially monodispersed mixture of compounds of Formula V with the methanesulfonyl halide to provide the substantially monodispersed mixture of compounds of Formula II is performed at a temperature between about 15°C and about 35°C.
15. The method according to Claim 1, wherein the reacting of the substantially monodispersed mixture of compounds of Formula V with methane sulfonyl halide to provide the substantially monodispersed mixture compounds of Formula II is performed for a period of time between about 0.25 hours and about 2 hours.
16. The method according to Claim 1, wherein compounds having the structure of Formula V are synthesized by a method comprising:

reacting a substantially monodispersed mixture of compounds having the structure of Formula VI:

R2-OMs (VI) wherein R2 is a lipophilic moiety;

with a substantially monodispersed mixture of compounds having the structure of Formula VII:

R3(OC2H4)m-O-X2+ (VII) wherein R3 is benzyl, trityl, or trimethylsilyl; m is from 1 to 25 and X2+ is a positive ion;

under conditions sufficient to provide a substantially monodispersed mixture of compounds having the structure of Formula VIII:

R3(OC2H4)m-OR2 (VIII); and reacting the substantially monodispersed mixture of compounds having the structure of Formula VIII under conditions sufficient to provide a substantially monodispersed mixture of compounds having the structure of Formula V:

R2(OC2H4)m-OH (V).
17. The method according to Claim 16, wherein R3 is benzyl.
18. The method according to Claim 1, further comprising:
reacting a substantially monodispersed mixture of compounds having the structure of Formula IV:

R1(OC2H4)n-OH (IV) with a compound capable of ionizing the hydroxyl moiety of the compound of Formula IV
under conditions sufficient to provide a substantially monodispersed mixture of compounds having the structure of Formula I:

R1(OC2H4)n-O-X+ (I).
19. The method according to Claim 18, wherein the reacting of the substantially monodispersed mixture of compounds having the structure of Formula IV under conditions sufficient to provide the substantially monodispersed mixture of compounds of Formula I
comprises:

reacting a substantially monodispersed mixture of compounds having the structure of Formula IV with a compound capable of ionizing the hydroxyl moiety of the compound of Formula IV under conditions sufficient to provide the substantially monodispersed mixture of compounds having the structure of Formula I.
20. The method according to Claim 19, wherein the molar ratio of the compound capable of ionizing the hydroxyl moiety to the compound of Formula I
is greater than about 1:1.
21. The method according to Claim 19, wherein the molar ratio of the compound capable of ionizing the hydroxyl moiety to the compound of Formula I
is at least about 2:1.
22. The method according to Claim 19, wherein the compound capable of ionizing the hydroxyl moiety is a strong base.
23. The method according to Claim 22, wherein the strong base is selected from the group consisting of sodium hydride, potassium hydride, sodium t-butoxide, potassium t-butoxide, and sodium amide.
24. The method according to Claim 22, wherein the strong base is sodium hydride.
25. The method according to Claim 18, wherein the reacting of the substantially monodispersed mixture of compounds of Formula IV under conditions sufficient to provide the substantially monodispersed mixture of compounds of Formula I is performed at a temperature between about 0°C and about 40°C.
26. The method according to Claim 18, wherein the reacting of the substantially monodispersed mixture of compounds of Formula IV under conditions sufficient to provide the substantially monodispersed mixture of compounds of Formula I is performed at a temperature between about 15°C and about 35°C.
27. The method according to Claim 18, wherein the reacting of a substantially monodispersed mixture of compounds of Formula IV under conditions sufficient to provide a substantially monodispersed mixture of compounds of Formula I is performed for a period of time between about 0.25 and about 4 hours.
28. The method according to Claim 1, wherein at least about 96, 97, 98 or 99 percent of the compounds in the mixture of polymers of Formula III have the same molecular weight.
29. The method according to Claim 1, wherein the mixture of polymers of Formula III is a monodispersed mixture.
30. A monodispersed mixture of polymers comprising polyethylene glycol moieties, said polymers synthesized by the method of Claim 1.
31. The method of according to Claim 1, wherein R1 and R2 are lower alkyls.
32. The method according to Claim 1, wherein m + n is at least 7.
33. The method according to Claim 1, wherein R1 is H and R2 is methyl.
34. The method according to Claim 1, further comprising:

reacting the substantially monodispersed mixture of polymers having the structure of Formula III under conditions sufficient to hydrolyze the ester moiety to provide a carboxylic acid moiety.
35. The method according to Claim 5, wherein R2 is an ester of a fatty acid having the formula:

R40(O)C(CH2)q-wherein R4 is lower alkyl, and q is from 1 to 24.
36. The method according to Claim 35, wherein R4 is ethyl.
CA2449698A 2001-06-04 2002-06-04 Methods of synthesizing substantially monodispersed mixtures of polymers having polyethylene glycol moieties Expired - Fee Related CA2449698C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/873,731 US6835802B2 (en) 2001-06-04 2001-06-04 Methods of synthesizing substantially monodispersed mixtures of polymers having polyethylene glycol moieties
US09/873,731 2001-06-04
PCT/US2002/017619 WO2002098949A1 (en) 2001-06-04 2002-06-04 Methods of synthesizing substantially monodispersed mixtures of polymers having polyethylene glycol moieties

Publications (2)

Publication Number Publication Date
CA2449698A1 CA2449698A1 (en) 2002-12-12
CA2449698C true CA2449698C (en) 2011-06-21

Family

ID=25362209

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2449698A Expired - Fee Related CA2449698C (en) 2001-06-04 2002-06-04 Methods of synthesizing substantially monodispersed mixtures of polymers having polyethylene glycol moieties

Country Status (13)

Country Link
US (3) US6835802B2 (en)
EP (1) EP1397413B1 (en)
JP (1) JP4463454B2 (en)
AR (1) AR034085A1 (en)
AT (1) ATE302229T1 (en)
AU (1) AU2002259338B2 (en)
BR (1) BR0106838B1 (en)
CA (1) CA2449698C (en)
DE (1) DE60205624T2 (en)
DK (1) DK1397413T3 (en)
ES (1) ES2247328T3 (en)
TW (1) TW591053B (en)
WO (1) WO2002098949A1 (en)

Families Citing this family (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7642323B2 (en) 1997-11-06 2010-01-05 Nektar Therapeutics Heterobifunctional poly(ethylene glycol) derivatives and methods for their preparation
US6828305B2 (en) 2001-06-04 2004-12-07 Nobex Corporation Mixtures of growth hormone drug-oligomer conjugates comprising polyalkylene glycol, uses thereof, and methods of making same
US6713452B2 (en) 2001-06-04 2004-03-30 Nobex Corporation Mixtures of calcitonin drug-oligomer conjugates comprising polyalkylene glycol, uses thereof, and methods of making same
US6828297B2 (en) * 2001-06-04 2004-12-07 Nobex Corporation Mixtures of insulin drug-oligomer conjugates comprising polyalkylene glycol, uses thereof, and methods of making same
US7713932B2 (en) * 2001-06-04 2010-05-11 Biocon Limited Calcitonin drug-oligomer conjugates, and uses thereof
US6835802B2 (en) 2001-06-04 2004-12-28 Nobex Corporation Methods of synthesizing substantially monodispersed mixtures of polymers having polyethylene glycol moieties
MY127575A (en) 2001-09-07 2006-12-29 Biocon Ltd Methods of synthesizing insulin polypeptide-oligomer conjugates, and proinsulin polypeptide-oligomer conjugates and methods of synthesizing same
US7196059B2 (en) * 2001-09-07 2007-03-27 Biocon Limited Pharmaceutical compositions of insulin drug-oligomer conjugates and methods of treating diseases therewith
PT1436012T (en) * 2001-10-18 2018-03-27 Nektar Therapeutics Polymer conjugates of opioid antagonists
WO2004043396A2 (en) * 2002-11-09 2004-05-27 Nobex Corporation Modified carbamate-containing prodrugs and methods of synthesizing same
SG159387A1 (en) * 2002-11-26 2010-03-30 Biocon Ltd In Modified natriuretic compounds, conjugates, and uses thereof
EP1594440B1 (en) 2003-02-14 2019-07-03 Quanta Biodesign, Ltd. The selective and specific preparation of discrete peg compounds
DK1656410T3 (en) 2003-07-22 2010-06-28 Nektar Therapeutics Process for the preparation of functionalized polymers from polymer alcohols
US7786133B2 (en) 2003-12-16 2010-08-31 Nektar Therapeutics Chemically modified small molecules
US20060182692A1 (en) 2003-12-16 2006-08-17 Fishburn C S Chemically modified small molecules
US8329958B2 (en) 2004-07-02 2012-12-11 Biocon Limited Combinatorial synthesis of PEG oligomer libraries
WO2006014673A2 (en) 2004-07-19 2006-02-09 Nobex Corporation Insulin-oligomer conjugates, formulations and uses thereof
WO2006076471A2 (en) * 2005-01-12 2006-07-20 Nobex Corporation Bnp conjugates and methods of use
WO2007011802A1 (en) * 2005-07-18 2007-01-25 Nektar Therapeutics Al, Corporation Method for preparing branched functionalized polymers using branched polyol cores
DE602006014477D1 (en) * 2005-08-30 2010-07-08 Mazda Motor Vehicle hood
US20070072838A1 (en) * 2005-09-26 2007-03-29 Pharmacyclics, Inc. High-purity texaphyrin metal complexes
JP5151152B2 (en) * 2006-03-29 2013-02-27 栗田工業株式会社 Nanofiltration membrane or reverse osmosis membrane rejection rate improver, rejection rate improvement method, nanofiltration membrane or reverse osmosis membrane, water treatment method, and water treatment apparatus
US8389759B2 (en) * 2007-03-12 2013-03-05 Nektar Therapeutics Oligomer-anticholinergic agent conjugates
CA2679070C (en) 2007-03-12 2016-04-26 Nektar Therapeutics Oligomer-antihistamine conjugates
WO2008112289A2 (en) 2007-03-12 2008-09-18 Nektar Therapeutics Oligomer-protease inhibitor conjugates
US10512644B2 (en) 2007-03-12 2019-12-24 Inheris Pharmaceuticals, Inc. Oligomer-opioid agonist conjugates
US8173666B2 (en) 2007-03-12 2012-05-08 Nektar Therapeutics Oligomer-opioid agonist conjugates
EP3222293B1 (en) 2007-03-12 2019-11-27 Nektar Therapeutics Oligomer-opioid agonist conjugates
US9782488B2 (en) 2007-03-12 2017-10-10 Nektar Therapeutics Oligomer-beta blocker conjugates
WO2009032286A2 (en) 2007-09-06 2009-03-12 Nektar Therapeutics Al, Corporation Oligomer-calcium channel blocker conjugates
US8741858B2 (en) 2007-09-21 2014-06-03 Zhongxu Ren Oligomer-nucleoside phosphate conjugates
US8796248B2 (en) 2007-10-05 2014-08-05 Nektar Therapeutics Oligomer-corticosteroid conjugates
ES2664822T3 (en) * 2007-10-16 2018-04-23 Biocon Limited A solid pharmaceutical composition orally administrable and a process thereof
WO2009058387A2 (en) 2007-11-02 2009-05-07 Nektar Therapeutics Al, Corporation Oligomer-nitroimidazole anti-infective conjugates
WO2009067175A2 (en) 2007-11-16 2009-05-28 Nektar Therapeutics Al, Corporation Oligomer-dantrolene conjugates and related compounds
WO2009073154A1 (en) 2007-11-28 2009-06-11 Nektar Therapeutics Al, Corporation Oligomer-tricyclic conjugates
EP2249872B1 (en) 2008-01-25 2017-03-22 Nektar Therapeutics Oligomer-diarylpiperazine conjugates
JP5704925B2 (en) 2008-02-08 2015-04-22 ウェルズ ファーゴ バンク ナショナル アソシエイション Oligomer-cannabinoid conjugate
US8466276B2 (en) 2008-02-22 2013-06-18 Nektar Therapeutics Oligomer conjugates of heteropentacyclic nucleosides
WO2009114151A1 (en) 2008-03-12 2009-09-17 Nektar Therapeutics Oligomer-amino acid and olgomer-atazanavir conjugates
US9006219B2 (en) 2008-03-12 2015-04-14 Nektar Therapeutics Oligomer-foscarnet conjugates
MX2010011101A (en) 2008-04-11 2010-11-01 Nektar Therapeutics Oligomer-aryloxy-substituted propanamine conjugates.
WO2009131695A1 (en) 2008-04-25 2009-10-29 Nektar Therapeutics Oligomer-bis-chromonyl compound conjugates
US11033631B2 (en) 2008-06-09 2021-06-15 Nektar Therapeutics Methods of treating CYP2D6 alternative metabolizers
PL2300514T3 (en) * 2008-07-14 2016-09-30 A method of synthesizing a substantially monodispersed mixture of oligomers
EP3342427A1 (en) 2008-09-16 2018-07-04 Nektar Therapeutics Pegylated opioids with low potential for abuse
WO2010033219A2 (en) 2008-09-17 2010-03-25 Nektar Therapeutics Protease inhibitors having enhanced features
US8680263B2 (en) 2008-09-19 2014-03-25 Nektar Therapeutics Carbohydrate-based drug delivery polymers and conjugates thereof
US20120046279A1 (en) 2009-01-28 2012-02-23 Nektar Therapeutics Oligomer-Phenothiazine Conjugates
EP2400989B1 (en) 2009-02-24 2016-08-10 Nektar Therapeutics Gabapentin-peg conjugates
WO2010120388A1 (en) 2009-04-17 2010-10-21 Nektar Therapeutics Oligomer-protein tyrosine kinase inhibitor conjugates
US8530492B2 (en) 2009-04-17 2013-09-10 Nektar Therapeutics Oligomer-protein tyrosine kinase inhibitor conjugates
JP5656980B2 (en) 2009-05-13 2015-01-21 ウェルズ ファーゴ バンク ナショナル アソシエイション Substituted aromatic triazine compounds containing oligomers
US8785661B2 (en) 2009-05-13 2014-07-22 Nektar Therapeutics Oligome-containing pyrrolidine compounds
JP2012530069A (en) 2009-06-12 2012-11-29 ネクター セラピューティックス Covalent conjugate comprising a protease inhibitor, a water-soluble non-peptide oligomer and a lipophilic moiety
JP5837491B2 (en) 2009-07-21 2015-12-24 ウェルズ ファーゴ バンク ナショナル アソシエイション Oligomer-opioid agonist conjugates
US8722732B2 (en) 2009-09-29 2014-05-13 Nektar Therapeutics Oligomer-calcimimetic conjugates and related compounds
CA2773353C (en) 2009-09-29 2018-02-27 Nektar Therapeutics Oligomer-calcimimetic conjugates and related compounds
WO2011064316A2 (en) 2009-11-25 2011-06-03 Paolo Botti Mucosal delivery of peptides
US20130023553A1 (en) 2010-01-12 2013-01-24 Nektar Therapeutics Pegylated opioids with low potential for abuse and side effects
WO2011091050A1 (en) 2010-01-19 2011-07-28 Nektar Therapeutics Oligomer-tricyclic conjugates
US9226970B2 (en) 2010-02-22 2016-01-05 Nektar Therapeutics Oligomer modified diaromatic substituted compounds
EP2627639B1 (en) 2010-10-15 2021-12-22 Nektar Therapeutics N-optionally substituted aryl-2-oligomer-3-alkoxypropionamides
US9090535B2 (en) 2010-12-10 2015-07-28 Nektar Therapeutics Hydroxylated tricyclic compounds
WO2012082995A1 (en) 2010-12-15 2012-06-21 Nektar Therapeutics Oligomer-containing hydantoin compounds
WO2012083153A1 (en) 2010-12-16 2012-06-21 Nektar Therapeutics Oligomer-containing apremilast moiety compounds
WO2012158965A2 (en) 2011-05-18 2012-11-22 Mederis Diabetes, Llc Improved peptide pharmaceuticals for insulin resistance
WO2012158962A2 (en) 2011-05-18 2012-11-22 Eumederis Pharmaceuticals, Inc. Improved peptide pharmaceuticals
US10525054B2 (en) 2011-11-07 2020-01-07 Inheris Biopharma, Inc. Compositions, dosage forms, and co-administration of an opioid agonist compound and an analgesic compound
AU2012336030B2 (en) 2011-11-07 2017-09-14 Nektar Therapeutics Compositions, dosage forms, and coadministration of an opioid agonist compound and an analgesic compound
EP2895457B1 (en) 2012-09-17 2020-05-20 Nektar Therapeutics Oligomer-containing benzamide-based compounds
DK3444281T3 (en) 2012-11-20 2022-02-07 Eumederis Pharmaceuticals Inc IMPROVED PEPTID MEDICINES
MX360816B (en) 2012-11-20 2018-11-15 Mederis Diabetes Llc Improved peptide pharmaceuticals for insulin resistance.
US9353150B2 (en) 2012-12-04 2016-05-31 Massachusetts Institute Of Technology Substituted pyrazino[1′,2′:1 ,5]pyrrolo[2,3-b]-indole-1,4-diones for cancer treatment
EP3013812B1 (en) 2013-06-28 2019-10-16 Nektar Therapeutics Kappa opioid agonists and uses thereof
EP3074379B1 (en) 2013-11-27 2019-06-26 Nektar Therapeutics (India) Pvt. Ltd. Opioid agonists and uses thereof
CN103642023B (en) * 2013-12-20 2015-11-18 武汉大学 The synthetic method of a kind of unimodal molecular weight polyoxyethylene glycol and derivative thereof
CN113264994A (en) 2014-05-28 2021-08-17 梅德瑞斯糖尿病有限责任公司 Improved peptide drugs against insulin resistance
EP3294714B1 (en) 2015-05-08 2023-03-15 Nektar Therapeutics Morphinan derivatives for the treatment of neuropathic pain
US10918627B2 (en) 2016-05-11 2021-02-16 Massachusetts Institute Of Technology Convergent and enantioselective total synthesis of Communesin analogs
US9695138B1 (en) 2016-10-17 2017-07-04 Acenda Pharma, Inc. Phenothiazine derivatives and methods of use thereof
US11932650B2 (en) 2017-05-11 2024-03-19 Massachusetts Institute Of Technology Potent agelastatin derivatives as modulators for cancer invasion and metastasis
US10640508B2 (en) 2017-10-13 2020-05-05 Massachusetts Institute Of Technology Diazene directed modular synthesis of compounds with quaternary carbon centers
WO2019136158A1 (en) 2018-01-03 2019-07-11 Spitfire Pharma, Inc. Improved peptide pharmaceuticals for treatment of nash and other disorders
EP3950655B1 (en) 2019-03-29 2023-11-15 NOF Corporation Method for producing hetero type monodisperse polyethylene glycol derivative
WO2020247054A1 (en) 2019-06-05 2020-12-10 Massachusetts Institute Of Technology Compounds, conjugates, and compositions of epipolythiodiketopiperazines and polythiodiketopiperazines and uses thereof

Family Cites Families (153)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3256153A (en) 1963-02-08 1966-06-14 Smith Kline French Lab Method of stabilizing wax-fat coating materials and product thereof
US4003792A (en) 1967-07-01 1977-01-18 Miles Laboratories, Inc. Conjugates of acid polysaccharides and complex organic substances
US3950517A (en) 1970-05-08 1976-04-13 National Research Development Corporation Insulin derivatives
GB1381274A (en) 1971-01-28 1975-01-22 Nat Res Dev Insulin derivatives
US3919411A (en) 1972-01-31 1975-11-11 Bayvet Corp Injectable adjuvant and compositions including such adjuvant
US4044196A (en) 1972-03-30 1977-08-23 Bayer Aktiengesellschaft Crosslinked copolymers of α,β-olefinically unsaturated dicarboxylic anhydrides
US4179337A (en) 1973-07-20 1979-12-18 Davis Frank F Non-immunogenic polypeptides
FR2408387A2 (en) 1975-06-30 1979-06-08 Oreal COMPOSITIONS BASED ON AQUEOUS DISPERSIONS OF LIPID SPHERULES
US4093574A (en) 1977-02-02 1978-06-06 Eli Lilly And Company Somatostatin analogs and intermediates thereto
US4087390A (en) 1977-02-02 1978-05-02 Eli Lilly And Company Somatostatin analogs and intermediates thereto
GB1492997A (en) 1976-07-21 1977-11-23 Nat Res Dev Insulin derivatives
US4223163A (en) 1976-12-10 1980-09-16 The Procter & Gamble Company Process for making ethoxylated fatty alcohols with narrow polyethoxy chain distribution
JPS53116315A (en) 1977-03-17 1978-10-11 Ueno Seiyaku Oyo Kenkyujo Kk Powder or granular containing improved sorbinic acid
US4100117A (en) 1977-04-21 1978-07-11 Eli Lilly And Company Somatostatin analogs and intermediates thereto
US4253998A (en) 1979-03-09 1981-03-03 American Home Products Corporation Peptides related to somatostatin
JPS54148722A (en) 1978-05-12 1979-11-21 Takeda Chem Ind Ltd Nonapeptide and its preparation
US4277394A (en) 1979-04-23 1981-07-07 Takeda Chemical Industries, Ltd Tetrapeptidehydrazide derivatives
GB2051574B (en) 1979-05-10 1984-01-18 Kyoto Pharma Ind Adjuvant for promoting absorption of pharmacologically active substances through the rectum
US4348387A (en) 1979-07-31 1982-09-07 The Rockefeller University Method and system for the controlled release of biologically active substances to a body fluid
US4469681A (en) 1979-07-31 1984-09-04 The Rockefeller University Method and system for the controlled release of biologically active substances to a body fluid
FR2465486A1 (en) 1979-09-21 1981-03-27 Roussel Uclaf NEW APPLICATION USING LH-RH OR AGONISTS
JPS5692846A (en) 1979-12-27 1981-07-27 Takeda Chem Ind Ltd Tetrapeptide derivative and its preparation
US4554101A (en) 1981-01-09 1985-11-19 New York Blood Center, Inc. Identification and preparation of epitopes on antigens and allergens on the basis of hydrophilicity
EP0092918B1 (en) * 1982-04-22 1988-10-19 Imperial Chemical Industries Plc Continuous release formulations
US4698264A (en) 1982-08-02 1987-10-06 Durkee Industrial Foods, Corp. Particulate composition and process for making same
IL68769A (en) 1983-05-23 1986-02-28 Hadassah Med Org Pharmaceutical compositions containing insulin for oral administration
US4585754A (en) 1984-01-09 1986-04-29 Valcor Scientific, Ltd. Stabilization of proteins and peptides by chemical binding with chondroitin
US4717566A (en) 1984-03-19 1988-01-05 Alza Corporation Dosage system and method of using same
US4684524A (en) 1984-03-19 1987-08-04 Alza Corporation Rate controlled dispenser for administering beneficial agent
US4849405A (en) 1984-05-09 1989-07-18 Synthetic Blood Corporation Oral insulin and a method of making the same
US4963367A (en) * 1984-04-27 1990-10-16 Medaphore, Inc. Drug delivery compositions and methods
US4963526A (en) * 1984-05-09 1990-10-16 Synthetic Blood Corporation Oral insulin and a method of making the same
US4839341A (en) 1984-05-29 1989-06-13 Eli Lilly And Company Stabilized insulin formulations
US4622392A (en) 1984-06-21 1986-11-11 Health Research Inc. (Roswell Park Division) Thiophospholipid conjugates of antitumor agents
US4629621A (en) 1984-07-23 1986-12-16 Zetachron, Inc. Erodible matrix for sustained release bioactive composition
US4797288A (en) 1984-10-05 1989-01-10 Warner-Lambert Company Novel drug delivery system
US4946828A (en) * 1985-03-12 1990-08-07 Novo Nordisk A/S Novel insulin peptides
US5157021A (en) * 1985-03-15 1992-10-20 Novo Nordisk A/S Insulin derivatives and pharmaceutical preparations containing these derivatives
US4917888A (en) 1985-06-26 1990-04-17 Cetus Corporation Solubilization of immunotoxins for pharmaceutical compositions using polymer conjugation
SE457326B (en) 1986-02-14 1988-12-19 Lejus Medical Ab PROCEDURES FOR PREPARING A QUICK SUBSTANTIAL CANDLES CONTAINING BLA MICROCRISTALLIN CELLULOSA
US4801575A (en) 1986-07-30 1989-01-31 The Regents Of The University Of California Chimeric peptides for neuropeptide delivery through the blood-brain barrier
IL84110A (en) 1986-10-14 1992-11-15 Lilly Co Eli Process for transforming a human insulin precursor to a human insulin
GB8706313D0 (en) * 1987-03-17 1987-04-23 Health Lab Service Board Treatment & prevention of viral infections
US5093198A (en) * 1987-06-19 1992-03-03 Temple University Adjuvant-enhanced sustained release composition and method for making
DE3721721C1 (en) * 1987-07-01 1988-06-09 Hoechst Ag Process for coating granules
US5080891A (en) 1987-08-03 1992-01-14 Ddi Pharmaceuticals, Inc. Conjugates of superoxide dismutase coupled to high molecular weight polyalkylene glycols
JPH01207320A (en) * 1988-02-15 1989-08-21 Daicel Chem Ind Ltd Production of aromatic polyether
JPH01308231A (en) * 1988-06-03 1989-12-12 Takeda Chem Ind Ltd Stabilized pharmaceutical composition and production thereof
US5055300A (en) * 1988-06-17 1991-10-08 Basic Bio Systems, Inc. Time release protein
DK336188D0 (en) * 1988-06-20 1988-06-20 Nordisk Gentofte propeptides
US5349052A (en) 1988-10-20 1994-09-20 Royal Free Hospital School Of Medicine Process for fractionating polyethylene glycol (PEG)-protein adducts and an adduct for PEG and granulocyte-macrophage colony stimulating factor
US5306500A (en) 1988-11-21 1994-04-26 Collagen Corporation Method of augmenting tissue with collagen-polymer conjugates
US5162430A (en) 1988-11-21 1992-11-10 Collagen Corporation Collagen-polymer conjugates
AU641631B2 (en) * 1988-12-23 1993-09-30 Novo Nordisk A/S Human insulin analogues
US4994439A (en) * 1989-01-19 1991-02-19 California Biotechnology Inc. Transmembrane formulations for drug administration
US5089261A (en) * 1989-01-23 1992-02-18 Cetus Corporation Preparation of a polymer/interleukin-2 conjugate
IT1229514B (en) 1989-01-30 1991-09-03 Farmhispania S A A Montme SYNTHETIC AMPHIPHILIC GLYCOCONUGATES FOR NEUROLOGICAL USE.
FR2643310B1 (en) 1989-02-21 1991-12-27 Carrie Marcel SHELF FOR USE OF PURCHASE LIST SUPPORT ADAPTABLE TO THE HANDLING HANDLE OF TROLLEYS, ESPECIALLY SELF-SERVICE STORES
US5182258A (en) * 1989-03-20 1993-01-26 Orbon Corporation Systemic delivery of polypeptides through the eye
US5122614A (en) 1989-04-19 1992-06-16 Enzon, Inc. Active carbonates of polyalkylene oxides for modification of polypeptides
US5324844A (en) 1989-04-19 1994-06-28 Enzon, Inc. Active carbonates of polyalkylene oxides for modification of polypeptides
US5108568A (en) * 1989-07-07 1992-04-28 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Controlled method of reducing electrophoretic mobility of macromolecules, particles or cells
US5286637A (en) * 1989-08-07 1994-02-15 Debiopharm, S.A. Biologically active drug polymer derivatives and method for preparing same
US5013556A (en) * 1989-10-20 1991-05-07 Liposome Technology, Inc. Liposomes with enhanced circulation time
DE3937797A1 (en) 1989-11-14 1991-05-16 Basf Ag METHOD FOR PRODUCING POLYETHERGLYCOLES
US5312808A (en) * 1989-11-22 1994-05-17 Enzon, Inc. Fractionation of polyalkylene oxide-conjugated hemoglobin solutions
US5650388A (en) 1989-11-22 1997-07-22 Enzon, Inc. Fractionated polyalkylene oxide-conjugated hemoglobin solutions
US5545618A (en) 1990-01-24 1996-08-13 Buckley; Douglas I. GLP-1 analogs useful for diabetes treatment
US5126324A (en) 1990-06-07 1992-06-30 Genentech, Inc. Method of enhancing growth in patients using combination therapy
IE912365A1 (en) 1990-07-23 1992-01-29 Zeneca Ltd Continuous release pharmaceutical compositions
IL99699A (en) * 1990-10-10 2002-04-21 Autoimmune Inc Pharmaceutical oral, enteral or by-inhalation dosage form for suppressing an autoimmune response associated with type i diabetes
US5595732A (en) * 1991-03-25 1997-01-21 Hoffmann-La Roche Inc. Polyethylene-protein conjugates
ES2136620T3 (en) 1991-04-19 1999-12-01 Lds Technologies Inc CONVERTIBLE MICROEMULSION FORMULATIONS.
US5304473A (en) * 1991-06-11 1994-04-19 Eli Lilly And Company A-C-B proinsulin, method of manufacturing and using same, and intermediates in insulin production
WO1993002664A1 (en) 1991-07-26 1993-02-18 Smithkline Beecham Corporation W/o microemulsions
US5206219A (en) * 1991-11-25 1993-04-27 Applied Analytical Industries, Inc. Oral compositions of proteinaceous medicaments
US5693769A (en) 1991-12-13 1997-12-02 Transcell Technologies, Inc. Glycosylated steroid derivatives for transport across biological membranes and process for making and using same
CA2128244C (en) 1992-01-17 1998-09-22 Jens-Christian Wunderlich Solid bodies containing active substances and a structure consisting of hydrophilic macromolecules, plus a method of producing such bodies
US5262172A (en) 1992-06-19 1993-11-16 Digestive Care Inc. Compositions of gastric acid-resistant microspheres containing buffered bile acids
US5415872A (en) 1992-06-22 1995-05-16 Digestive Care Inc. Compositions of gastric acid-resistant microspheres containing salts of bile acids
US6093391A (en) 1992-10-08 2000-07-25 Supratek Pharma, Inc. Peptide copolymer compositions
GB9316895D0 (en) 1993-08-13 1993-09-29 Guy S And St Thomas Hospitals Hepatoselective insulin analogues
US5298643A (en) 1992-12-22 1994-03-29 Enzon, Inc. Aryl imidate activated polyalkylene oxides
US5349001A (en) 1993-01-19 1994-09-20 Enzon, Inc. Cyclic imide thione activated polyalkylene oxides
US5321095A (en) 1993-02-02 1994-06-14 Enzon, Inc. Azlactone activated polyalkylene oxides
US5298410A (en) 1993-02-25 1994-03-29 Sterling Winthrop Inc. Lyophilized formulation of polyethylene oxide modified proteins with increased shelf-life
US5681811A (en) 1993-05-10 1997-10-28 Protein Delivery, Inc. Conjugation-stabilized therapeutic agent compositions, delivery and diagnostic formulations comprising same, and method of making and using the same
US6191105B1 (en) 1993-05-10 2001-02-20 Protein Delivery, Inc. Hydrophilic and lipophilic balanced microemulsion formulations of free-form and/or conjugation-stabilized therapeutic agents such as insulin
US5359030A (en) 1993-05-10 1994-10-25 Protein Delivery, Inc. Conjugation-stabilized polypeptide compositions, therapeutic delivery and diagnostic formulations comprising same, and method of making and using the same
US5621039A (en) 1993-06-08 1997-04-15 Hallahan; Terrence W. Factor IX- polymeric conjugates
AU7113594A (en) 1993-06-21 1995-01-17 Enzon, Inc. Site specific synthesis of conjugated peptides
TW402506B (en) 1993-06-24 2000-08-21 Astra Ab Therapeutic preparation for inhalation
US5747445A (en) 1993-06-24 1998-05-05 Astra Aktiebolag Therapeutic preparation for inhalation
US5506203C1 (en) 1993-06-24 2001-02-06 Astra Ab Systemic administration of a therapeutic preparation
US5830853A (en) * 1994-06-23 1998-11-03 Astra Aktiebolag Systemic administration of a therapeutic preparation
US6342225B1 (en) 1993-08-13 2002-01-29 Deutshces Wollforschungsinstitut Pharmaceutical active conjugates
CA2171424C (en) * 1993-09-17 2002-06-04 Svend Havelund Acylated insulin
US5919455A (en) 1993-10-27 1999-07-06 Enzon, Inc. Non-antigenic branched polymer conjugates
US5643575A (en) 1993-10-27 1997-07-01 Enzon, Inc. Non-antigenic branched polymer conjugates
US5605976A (en) 1995-05-15 1997-02-25 Enzon, Inc. Method of preparing polyalkylene oxide carboxylic acids
US5951974A (en) 1993-11-10 1999-09-14 Enzon, Inc. Interferon polymer conjugates
CA2176927C (en) 1993-11-17 2010-03-23 Seang H. Yiv Transparent liquid for encapsulated drug delivery
GB9406094D0 (en) 1994-03-28 1994-05-18 Univ Nottingham And University Polymer microspheres and a method of production thereof
WO1995032219A1 (en) 1994-05-20 1995-11-30 Hisamitsu Pharmaceutical Co., Inc. Protein or polypeptide, process for producing the same, and intermediate compound tehrefor
US5504188A (en) 1994-06-16 1996-04-02 Eli Lilly And Company Preparation of stable zinc insulin analog crystals
US5461031A (en) 1994-06-16 1995-10-24 Eli Lilly And Company Monomeric insulin analog formulations
US6165976A (en) 1994-06-23 2000-12-26 Astra Aktiebolag Therapeutic preparation for inhalation
US5730990A (en) 1994-06-24 1998-03-24 Enzon, Inc. Non-antigenic amine derived polymers and polymer conjugates
US5738846A (en) 1994-11-10 1998-04-14 Enzon, Inc. Interferon polymer conjugates and process for preparing the same
US5646242A (en) 1994-11-17 1997-07-08 Eli Lilly And Company Selective acylation of epsilon-amino groups
US5693609A (en) 1994-11-17 1997-12-02 Eli Lilly And Company Acylated insulin analogs
SE9404468D0 (en) 1994-12-22 1994-12-22 Astra Ab Powder formulations
US5843866A (en) * 1994-12-30 1998-12-01 Hampshire Chemical Corp. Pesticidal compositions comprising solutions of polyurea and/or polyurethane
US6251856B1 (en) 1995-03-17 2001-06-26 Novo Nordisk A/S Insulin derivatives
US5606038A (en) 1995-04-10 1997-02-25 Competitive Technologies, Inc. Amphiphilic polyene macrolide antibiotic compounds
ES2093593T1 (en) 1995-05-05 1997-01-01 Hoffmann La Roche RECOMBINANT OBESE PROTEINS (OB).
US5824638A (en) * 1995-05-22 1998-10-20 Shire Laboratories, Inc. Oral insulin delivery
US5700904A (en) 1995-06-07 1997-12-23 Eli Lilly And Company Preparation of an acylated protein powder
US5631347A (en) 1995-06-07 1997-05-20 Eli Lilly And Company Reducing gelation of a fatty acid-acylated protein
GB9516268D0 (en) 1995-08-08 1995-10-11 Danbiosyst Uk Compositiion for enhanced uptake of polar drugs from the colon
PT1568772E (en) 1995-09-21 2010-04-14 Genentech Inc Human growth hormone variants
NZ322686A (en) 1995-10-19 2000-01-28 Univ Washington Discrete-length polyethene glycols
US5766620A (en) * 1995-10-23 1998-06-16 Theratech, Inc. Buccal delivery of glucagon-like insulinotropic peptides
US5639705A (en) 1996-01-19 1997-06-17 Arco Chemical Technology, L.P. Double metal cyanide catalysts and methods for making them
GB9613858D0 (en) 1996-07-02 1996-09-04 Cortecs Ltd Hydrophobic preparations
US5856369A (en) 1996-07-30 1999-01-05 Osi Specialties, Inc. Polyethers and polysiloxane copolymers manufactured with double metal cyanide catalysts
DE19632440A1 (en) * 1996-08-12 1998-02-19 Basf Ag Easily prepared and separated catalyst giving pure alkoxylation product with narrow molecular weight distribution
US6011008A (en) 1997-01-08 2000-01-04 Yissum Research Developement Company Of The Hebrew University Of Jerusalem Conjugates of biologically active substances
US5830918A (en) * 1997-01-15 1998-11-03 Terrapin Technologies, Inc. Nonpeptide insulin receptor agonists
US6043214A (en) 1997-03-20 2000-03-28 Novo Nordisk A/S Method for producing powder formulation comprising an insulin
US6310038B1 (en) 1997-03-20 2001-10-30 Novo Nordisk A/S Pulmonary insulin crystals
AR012894A1 (en) 1997-06-13 2000-11-22 Lilly Co Eli FORMULATION OF INSULIN IN STABLE SOLUTION, ITS USE TO PREPARE A MEDICINAL PRODUCT AND PROCESS FOR THE PREPARATION OF THE SAME.
PL340255A1 (en) 1997-10-24 2001-01-29 Lilly Co Eli Non-dissolving insulin compositions
ZA989744B (en) 1997-10-31 2000-04-26 Lilly Co Eli Method for administering acylated insulin.
US5985263A (en) 1997-12-19 1999-11-16 Enzon, Inc. Substantially pure histidine-linked protein polymer conjugates
US5981709A (en) 1997-12-19 1999-11-09 Enzon, Inc. α-interferon-polymer-conjugates having enhanced biological activity and methods of preparing the same
US6211144B1 (en) 1998-10-16 2001-04-03 Novo Nordisk A/S Stable concentrated insulin preparations for pulmonary delivery
AU2624400A (en) 1999-01-26 2000-08-07 Eli Lilly And Company Monodisperse hexameric acylated insulin analog formulations
DE19908041A1 (en) 1999-02-24 2000-08-31 Hoecker Hartwig Covalently bridged insulin dimers
US6248363B1 (en) 1999-11-23 2001-06-19 Lipocine, Inc. Solid carriers for improved delivery of active ingredients in pharmaceutical compositions
US6309633B1 (en) 1999-06-19 2001-10-30 Nobex Corporation Amphiphilic drug-oligomer conjugates with hydroyzable lipophile components and methods for making and using the same
KR100345214B1 (en) 1999-08-17 2002-07-25 이강춘 The nasal transmucosal delivery of peptides conjugated with biocompatible polymers
US6323311B1 (en) 1999-09-22 2001-11-27 University Of Utah Research Foundation Synthesis of insulin derivatives
US6867183B2 (en) 2001-02-15 2005-03-15 Nobex Corporation Pharmaceutical compositions of insulin drug-oligomer conjugates and methods of treating diseases therewith
US7060675B2 (en) 2001-02-15 2006-06-13 Nobex Corporation Methods of treating diabetes mellitus
US6835802B2 (en) 2001-06-04 2004-12-28 Nobex Corporation Methods of synthesizing substantially monodispersed mixtures of polymers having polyethylene glycol moieties
US6858580B2 (en) 2001-06-04 2005-02-22 Nobex Corporation Mixtures of drug-oligomer conjugates comprising polyalkylene glycol, uses thereof, and methods of making same
US6828305B2 (en) 2001-06-04 2004-12-07 Nobex Corporation Mixtures of growth hormone drug-oligomer conjugates comprising polyalkylene glycol, uses thereof, and methods of making same
US6828297B2 (en) 2001-06-04 2004-12-07 Nobex Corporation Mixtures of insulin drug-oligomer conjugates comprising polyalkylene glycol, uses thereof, and methods of making same
US6713452B2 (en) 2001-06-04 2004-03-30 Nobex Corporation Mixtures of calcitonin drug-oligomer conjugates comprising polyalkylene glycol, uses thereof, and methods of making same
US6770625B2 (en) 2001-09-07 2004-08-03 Nobex Corporation Pharmaceutical compositions of calcitonin drug-oligomer conjugates and methods of treating diseases therewith
US6913903B2 (en) 2001-09-07 2005-07-05 Nobex Corporation Methods of synthesizing insulin polypeptide-oligomer conjugates, and proinsulin polypeptide-oligomer conjugates and methods of synthesizing same
MY127575A (en) 2001-09-07 2006-12-29 Biocon Ltd Methods of synthesizing insulin polypeptide-oligomer conjugates, and proinsulin polypeptide-oligomer conjugates and methods of synthesizing same

Also Published As

Publication number Publication date
US20050059799A1 (en) 2005-03-17
EP1397413A1 (en) 2004-03-17
JP2003138004A (en) 2003-05-14
TW591053B (en) 2004-06-11
CA2449698A1 (en) 2002-12-12
US20030004304A1 (en) 2003-01-02
WO2002098949A1 (en) 2002-12-12
DE60205624D1 (en) 2005-09-22
EP1397413B1 (en) 2005-08-17
ES2247328T3 (en) 2006-03-01
US20030144468A1 (en) 2003-07-31
BR0106838B1 (en) 2011-02-22
BR0106838A (en) 2003-02-11
JP4463454B2 (en) 2010-05-19
US6815530B2 (en) 2004-11-09
AR034085A1 (en) 2004-01-21
DE60205624T2 (en) 2006-06-08
ATE302229T1 (en) 2005-09-15
AU2002259338B2 (en) 2007-12-06
DK1397413T3 (en) 2005-12-12
US6835802B2 (en) 2004-12-28
US7119162B2 (en) 2006-10-10

Similar Documents

Publication Publication Date Title
CA2449698C (en) Methods of synthesizing substantially monodispersed mixtures of polymers having polyethylene glycol moieties
AU2002259338A1 (en) Methods of synthesizing substantially monodispersed mixtures of polymers having polyethylene glycol moieties
KR101793704B1 (en) Membrane Enhanced Polymer Synthesis
US8097696B2 (en) Method for preparing multi-arm poly(ethylene glycol) chlorides
EP2832765B1 (en) Multi-arm polyethylene glycol derivative, intermediate thereof and method for producing same
US7301003B2 (en) Method of preparing polymers having terminal amine groups
CA1241795A (en) Polyarylnitrile polymers and a method for their production
WO2012133490A1 (en) Polyoxyethylene derivative having a plurality of hydroxyl groups at end
EP1931313A2 (en) Methods of preparing polymers having terminal amine groups using protected amine salts
JP3092530B2 (en) Method for producing imidyl succinate-substituted polyoxyalkylene derivative
US20040122164A1 (en) Novel monofunctional polyethylene glycol aldehydes
EP0839849B1 (en) Process for producing a polyoxyalkylene derivative substituted with succinimidyl group
US20030153694A1 (en) Novel monofunctional polyethylene glycol aldehydes
EP1905793B1 (en) Method for producing biodegradable polyoxyalkylene
US20040147687A1 (en) Novel monofunctional polyethylene glycol aldehydes
US20040249067A1 (en) Novel polymer compositions
US7923584B2 (en) Synthesis of difunctional oxyethylene-based compounds
JP6028649B2 (en) Method for producing biodegradable polyoxyethylene derivative
CN117126394A (en) Polyethylene glycol with single molecular weight, preparation method and application thereof
AU4265100A (en) Heterotelechelic block copolymers and process for preparing same

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20200831