CA2417686C - Manufacture of oral dosage forms delivering both immediate release and sustained release drugs - Google Patents

Manufacture of oral dosage forms delivering both immediate release and sustained release drugs Download PDF

Info

Publication number
CA2417686C
CA2417686C CA002417686A CA2417686A CA2417686C CA 2417686 C CA2417686 C CA 2417686C CA 002417686 A CA002417686 A CA 002417686A CA 2417686 A CA2417686 A CA 2417686A CA 2417686 C CA2417686 C CA 2417686C
Authority
CA
Canada
Prior art keywords
drug
release
immediate
solid matrix
accordance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002417686A
Other languages
French (fr)
Other versions
CA2417686A1 (en
Inventor
Jong Lim
John N. Shell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Assertio Therapeutics Inc
Original Assignee
Depomed Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Depomed Inc filed Critical Depomed Inc
Publication of CA2417686A1 publication Critical patent/CA2417686A1/en
Application granted granted Critical
Publication of CA2417686C publication Critical patent/CA2417686C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2072Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
    • A61K9/2086Layered tablets, e.g. bilayer tablets; Tablets of the type inert core-active coat
    • A61K9/209Layered tablets, e.g. bilayer tablets; Tablets of the type inert core-active coat containing drug in at least two layers or in the core and in at least one outer layer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/155Amidines (), e.g. guanidine (H2N—C(=NH)—NH2), isourea (N=C(OH)—NH2), isothiourea (—N=C(SH)—NH2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics

Abstract

A method is disclosed for manufacturing a pharmaceutical tablet for oral administration, the tablet combining both immediate-release and prolonged-release modes of drug delivery and using an immediate-release drug that is either insoluble in water or only sparingly soluble and is present in a very small amount compared to the prolonged-release drug. The method involves the use of particles of the immediate-release drug that are equal to or less than 10 microns in diameter, applied as a layer or coating over a core of the prolonged-release drug, the layer or coating being either the drug particles themselves, applied as an aqueous suspension, or a solid mixture containing the drug in admixture with a material that disintegrates rapidly in gastric fluid. The result in both cases is a high degree of uniformity in the proportions of the immediate-release and prolonged-release drugs, uniformity that is otherwise difficult to achieve in view of the insolubility of the immediate-release drug and its relatively small amount compared to the prolonged-released drug.

Description

PATENT
Attorney Docket No.: 015662-002000 MANUFACTURE OF ORAL DOSAGE FORMS
DELIVERING BOTH IMMEDIATE-RELEASE
AND SUSTAINED-RELEASE DRUGS
BACKGROUND OF THE INVENTION
I. Field of the Invention [O1] This invention is in the field of pharmacology, and relates to drug dosage forms that are designed to deliver the drugs to human patients at particular rates.
2. Description of the Prior Art [02] Certain pharmacological therapies either require or benefit from the administration of drugs in a sequential manner. This can be done by a regimen in which the patient follows a prescribed time schedule, but because of patient non-compliance, scrupulous adherence to a schedule often requires the assistance of a medical professional. Even those therapies that involve only two dosages, such as an immediate but rapidly declining high-level dosage combined with a prolonged low-level or moderate-level dosage, either of the same drug or of two different drugs, can be a nuisance to the individual or troublesome to maintain if the individual is required to take separate unitary dosage forms. Certain pharmaceutical formulations have therefore been developed that combine both functions into a single dosage form. This simplifies the therapy and reduces or eliminates the chances of improper administration.
[03] Many unitary dosage forms that have been proposed for combining immediate release with prolonged release do so by the placement of the drugs in different layers of a tablet or by placing one drug in a quickly-dissolving or quickly-dispersing coating over the surface of a slowly dissolving or swellable core that contains the other drug. With its high initial release concentration and rapid rate of decline, the immediate-release drug is often provided in a much lower amount than the prolonged-release drug. The immediate-release portion of the dosage form is therefore either a very thin layer or coating or a layer or coating with a very low concentration of the drug relative to the drug in the prolonged-released portion. It is common, for example, to design the dosage form such that the amount of drug intended for immediate release is 1/100th or Iess of the amount intended for prolonged release.
[04] This large imbalance in the amounts of immediate-release and controlled-release drug creates problems in manufacturing, particularly in achieving uniformity from one tablet to the next. It is difficult to achieve uniform immediate-release coatings or layers of uniform drug content when the drug is so low in quantity or concentration, The problem is exacerbated when the drug in the immediate-release portion is one that has little or no solubility in water.
SUMMARY OF THE INVENTION
[OS] It has now been discovered that a dosage form that includes a core from which drug is released on a prolonged basis and a coating or layer from which drug is released on an immediate-release basis can be made in a manner that provides a high degree of uniformity in the immediate-release portion, even when the drug in the immediate-release portion is either insoluble or only sparingly soluble in water. This is achieved by limiting the drug particle diameter in the immediate-release coating or layer to 10 microns or less. The coating or layer is either the particles themselves, applied as an aqueous suspension, or a solid composition that contains the drug particles incorporated in a solid material that disintegrates rapidly in gastric fluid. Either mixture can be applied as a coating or layer over a core or coherent mass of the prolonged-release drug. When an aqueous suspension is used and applied as a coating, a suspending agent, binder, or both can be included to improve the procedure, and in either case, other excipients can be included to facilitate the manufacturing process.
According to a first aspect of the invention, there is provided a method for the manufacture of a pharmaceutical tablet which upon oral ingestion delivers a first drug by substantially immediate release and a second drug by sustained release defined as a release rate into gastric fluid that is slow enough to leave at least about 40% of said second drug unreleased one hour after ingestion, and in which said first drug is at most sparingly soluble in water and the weight ratio of said first drug to said second drug is equal to or less than about 0.01:1, said method comprising:
dispersing said second drug in a solid matrix to form a unitary core which upon immersion in gastric fluid releases said second drug by sustained release while retaining at least a portion of the mass of said solid matrix as a coherent body until said second drug is fully released therefrom;
depositing on the surface of said unitary core an aqueous suspension of particles of said first drug that are equal to or less than about 10 microns in diameter, using an amount of said first drug selected to achieve said weight ratio relative to said second drug; and evaporating water from said aqueous suspension thus deposited to leave a solid shell encasing said unitary core and containing said first drug.

-2a-According to a second aspect of the invention, there is provided a method for the manufacture of a pharmaceutical tablet which upon oral ingestion delivers a first drug by substantially immediate release and a second drug by sustained release defined as a release rate into gastric fluid that is slow enough to leave at least 40% of said second drug unreleased one hour after ingestion, and in which said first drug is at most sparingly soluble in water and the weight ratio of said first drug to said second drug is equal to or less than about 0.01:1, said method comprising:
combining said second drug with a first solid matrix to form a sustained-release layer, said first solid matrix being of a substance which when formed into a coherent body and immersed in gastric fluid releases said second drug by sustained release while retaining at least a portion of the mass of said first solid matrix as a coherent body until said second drug is fully released therefrom; and combining particles of said first drug that are equal to or less than about 10 microns in diameter with particles of a second solid matrix to form an immediate-release layer adjoined to said sustained-release layer as a layered tablet, said second solid matrix being of a substance that separates into discrete matrix particles immediately upon immersion in gastric fluid, using amounts of said first and second drugs selectively to achieve said weight ratio.
[06] Details on these and other features, advantages, and embodiments of the invention will be apparent from the description that follows.
DETAILED DESCRIPTION OF THE INVENTION
AND PREFERRED EMBODIMENTS
[07] The dosage forms of this invention are designed for oral ingestion, and the prolonged release portion of the dosage form is one that delivers its drug to the digestive system continuously over a period of time of at least an hour and preferably several hours. The drug is retained in a matrix or supporting body of pharmaceutically inert solid, and the controlled delivery rate can be achieved by using a matrix that allows the gastric fluid to permeate the matrix and leach out the drug (i.e. allow the drug to diffuse out from the matrix as the drug slowly dissolves in the permeating fluid), or a matrix that slowly dissolves or erodes to expose the drug to the gastric fluid, or one that does both of these at once. The delivery rate is preferably slow enough that at least about 40% of the drug remains unreleased one hour after ingestion, more preferably at least about 60% and most preferably at least about 80%.
In general, the drug will be substantially all released within about ten hours and preferably within about eight hours, and in most cases, the matrix supporting the drug will remain substantially intact until all of the drug is released. "Substantially intact"
in this sense means S that the matrix retains its size and shape without dissolving or disintegrating into fragments.
[08J The immediate-release portion of the dosage form is either a coating applied or deposited over the entire surface of a unitary prolonged-release core, or a single layer of a tablet constructed in two or more layers, one of the other layers of which is the prolonged-released portion. Immediate release of the drug from the immediate-release layer is achieved by any of various methods known in the art. One example is the use of a very thin layer or coating which by virtue of its thinness is quickly penetrated by gastric fluid allowing fast leaching of the drug. Another example is by incorporating the drug in a mixture that includes a supporting binder or other inert material that dissolves readily in gastric fluid, releasing the drug as the material dissolves. A third is the use of a supporting binder or other inert material that rapidly disintegrates upon contact with gastric fluid, with both the material and the drug quickly dispersing into the fluid as small particles. Examples of materials that rapidly disintegrate and disperse are lactose and microcrystalline cellulose. An example of a suspending agent and binder is hydroxypropyl methyl cellulose.
[09J The dosage forms of this invention include those in which the same drug is used in both the immediate-release and the prolonged-release portions as well as those in which one drug is formulated for immediate release and another drug, different from the first, for prolonged release. This invention is particularly directed to dosage forms in which the immediate-release drug is at most sparingly soluble in water, i.e., either sparingly soluble or insoluble in water, while the prolonged-release drug can be of any level of solubility. The immediate-release drug is of sufficiently low solubility that it remains a solid particle during the preparation of the dosage form when the dosage form is prepared without the use of organic solvents. The only dispersing medium, when one is used, is water or an aqueous solution that may contain other components. The term "at most sparingly soluble" as used herein denotes a drug having a solubility in water at 37°C that is generally less than 2% by weight, preferably less than 0.5% by weight. The particle size of the drug as it is used in the practice of this invention is equal to or less than about 10 microns in diameter, preferably within the range of from about 0.3 micron to about 10 microns in diameter, and most preferably with the range of from about 1 micron to about S microns in diameter.

[10] The immediate-release drug can thus be deposited as a suspension over a unitary core of the controlled-release drug, with deposition being achieved by coating techniques known in the pharmaceutical formulation art such as spraying, pan coating, and the like, or the drug can be combined with particles of a binding matrix and compressed over a preformed layer of the controlled-release drug to form a layered tablet. In either case, the immediate-release coating or layer separates relatively quickly from the remainder of the tablet after ingestion, leaving the remainder intact. The weight ratio of the immediate-release drug to the prolonged-release drug is about 0.01:1 or less, preferably from about 0.001:1 to about 0.01:1.
(11] In certain preferred embodiments of the invention, the supporting matrix in controlled-release portion of the tablet is a material that swells upon contact with gastric fluid to a size that is large enough to promote retention in the stomach while the subject is in the digestive state, which is also referred to as the postprandial or "fed" mode.
This is one of two modes of activity of the stomach that differ by their distinctive patterns of gastroduodenal motor activity. The "fed" mode is induced by food ingestion and begins with a rapid and profound change in the motor pattern of the upper gastrointestinal (GI) tract.
The change consists of a reduction in the amplitude of the contractions that the stomach undergoes and a reduction in the pyloric opening to a partially closed state. The result is a sieving process that allows liquids and small particles to pass through the partially open pylorus while indigestible particles that are larger than the pylorus are retropelled and retained in the stomach. This process causes the stomach to retain particles that are greater than about 1 cm in size for about 4 to 6 hours. The controlled-release matrix in these embodiments of the invention is therefore selected as one that swells to a size large enough to be retropelled and thereby retained in the stomach, causing the prolonged release of the drug to occur in the stomach rather than in the intestines.
(12] Disclosures of oral dosage forms that swell to sizes that will prolong the residence time in the stomach are found in United States Patent No. 5,007,790 ("Sustained-Release Oral Drug Dosage Form;" Shell, inventor; April 16, 1991 ), United States Patent No.
5,582,837 ("Alkyl-Substituted Cellulose-Based Sustained-Release Oral Drug Dosage Forms;" Shell, inventor; December 10, 1996): United States Patent No.
5,972,389 ("Gastric-Retentive Oral Drug Dosage Forms for the Controlled Release of Sparingly Soluble Drugs and Insoluble Matter;" Shell et al., inventors; October 26, 1999);
International (PCT) Patent Application WO 98/55107 ("Gastric-Retentive Oral Drug Dosage Forms for Controlled Release of Highly Soluble Drugs;" Shell et al., inventors; publication date December 10, 1998); United States Patent Application Publication No. US 2001/0018707 A1 ("Extending the Duration of Drug Release Within the Stomach During the Fed Mode;" Shell et al., inventors, publication date August 30, 2001); and International (PCT) Patent Application ("Controlled Release Tablet;" Kim, inventor: publication date September 6, 1996).
[13] In general, swellable matrices contain binders that are water-swellable polymers, and suitable polymers are those that are non-toxic, that swell in a dimensionally unrestricted manner upon imbibition of water, and that release the drug gradually over time. Examples of polymers meeting this description are:
cellulose polymers and their derivatives including, but not limited to, hydroxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropylmethyl cellulose, carboxymethylcellulose, and microerystalline cellulose polysaccharides and their derivatives polyalkylene oxides polyethylene glycols chitosan polyvinyl alcohol) xanthan gum malefic anhydride copolymers polyvinyl pyrmlidone) starch and starch-based polymers maltodextrins poly (2-ethyl-2-oxazoline) poly(ethyleneimine) polyurethane hydrogels crosslinked polyacrylic acids and their derivatives [1A] Further examples are copolymers of the polymers listed above, including block copolymers and graft polymers. Specific examples of copolymers are PLURONIC~ and TECTONIC~ which are polyethylene oxide-polypropylene oxide block copolymers available from BASF
Corporation, Chemicals Div., Wyandotte, Michigan, USA. Further examples are hydrolyzed starch polyacrylonitrile graft copolymers, commonly known as "Super Slurper" and available from Illinois Corn Growers Association, Bloomington, Illinois, USA.
[15] Particularly preferred polymers are polyethylene oxide), hydroxypropyl methyl cellulose, and combinations of polyethylene oxide) and hydroxypropyl methyl cellulose.
[16] As indicated above, the dosage forms of the present invention find utility when administered to subjects who are either in the fed mode or the fasting mode. Administration during the fed mode is S preferred, since the narrowing of the pyloric opening that occurs in the fed mode serves as a further means of promoting gastric retention by retaining a broader range of smaller dosage form sizes.
[ 17] The fed mode is normally induced by food ingestion, but can also be induced pharmacologically by the administration of pharmacological agents that have an effect in this regard that is the same or similar to that of a meal. These fed-mode inducing agents may be administered separately or they may be included in the dosage form as an ingredient dispersed in the dosage form or in an outer immediate-release coating. Examples of pharmacological fed-mode inducing agents are disclosed in PCT Application WO 011032217, entitled "Pharmacological Inducement of the Fed Mode for Enhanced Drug Administration to the Stomach," inventors Markey, Shell, and Berner.
[18] The size, shape, and dimensions of the tablet are not critical to the invention, provided that in embodiments where a swellable matrix is used, the tablet is sufficiently sized that upon swelling it reaches the dimensions that will be retained in the stomach during the fed mode. The tablet may be circular or elongated. An elongated tablet may be 18 to 22 mm in length, 6.5 to 10 mm in width, and 6.2 to 7.5 mm in height. A specific example is one that is 20 mm in length, 6.7 mm in width, and 6.4 mm in height. Again, these are merely examples; the shapes and sizes can be varied considerably.
[19] Tablets in accordance with this invention can be prepared by conventional mixing, comminution, and tabletting techniques that are well known in the pharmaceutical formulations industry. The controlled-release portion can for example be fabricated by direct compression by punches and dies fitted to a rotary tabletting press, ejection or compression molding, granulation followed by compression, or forming a paste and extruding the paste into a mold or cutting the extrudate into short lengths. The immediate-release portion can be applied as a coating over the controlled-release portion by spraying, dipping, or pan-coating, or as an additional layer by tabletting or compression in the same manner as the controlled-release portion.
[20] When tablets acre made by direct compression, the addition of lubricants may be helpful and is sometimes important to promote powder flow and to prevent capping of the tablet (the breaking off of a portion of the tablet) when the pressure is relieved. Useful lubricants are magnesium stearate (in a concentration of from 0.25% to 3% by weight, preferably about 1% or less by weight, in the powder mix), and hydrogenated vegetable oil (preferably hydrogenated and refined triglycerides of stearic and palmitic acids at about 1 to 5% by weight, most preferably about 2% by weight). Additional excipients may be added to enhance powder flowability, tablet hardness, and tablet friability and to reduce adherence to the die wall.
[21] The drug that is contained in the controlled release portion of the tablet may be any chemical compound, complex or composition that is suitable for oral administration and that has a beneficial biological effect, preferably a therapeutic effect in the treatment of a disease or an abnormal physiological condition. The drug can be either a high-solubility drug or a sparingly soluble or insoluble drug, all referring to solubility in water or aqueous media.
Examples of high solubility drugs are metformin hydrochloride, vancomycin hydrochloride, captopril, lisinopril, erythromycin lactobionate, ranitidine hydrochloride, sertraline hydrochloride, ticlopidine hydrochloride, baclofen, amoxicillin, cefuroxime axetil, cefaclor, clindamycin, levodopa, doxifluridine, tramadol, fluoxitine hydrochloride, bupropion, potassium chloride, and esters of ampicillin. Examples low solubility drugs are saguinavir, ritonavir, nelfinavir, thiamphenicol, ciprofloxacin, calcium carbonate, clarithromycin, azithromycin, ceftazidime, acyclovir, ganciclovir, cyclosporin, digoxin, paclitaxel, iron salts, topiramate, ketoconazole, and sulfonylureas such as glimepiride, glypuride, and glipizide.
Other drugs suitable for use will be apparent to those skilled in the art.
This invention is of particular interest for antibiotics and angiotensin converting inhibitors, particularly lisinopril, enalapril, captopril, and benazepril. A particularly preferred group of drugs is lisinopril, acyclovir, metformin hydrochloride, baclofen, ciprofloxacin, furosemide, cyclosporin, sertraline hydrochloride, and calcium carbonate. The drug that is contained in the immediate-release portion of the tablet is a sparingly soluble or insoluble drug, such as those listed above. Combinations of particular interest are metformin hydrochloride in the controlled-released portion and a sulfonylurea such as glimerpiride, glyburide, or glipizide in the immediate-release portion. Metformin hydrochloride and glimepiride are particularly preferred.
(22] The following examples are offered for purposes of illustration only and are not intended to limit the scope of the invention.
_g_ [23) Tablets containing 500 mg of metformin hydrochloride and 2.10 mg of glimepiride were made by the following procedure.
[24] Preformed Metformin hydrochloride tablets were used that included 500 mg of metformin hydrochloride and a matrix containing approximately equal proportions by weight of hydroxypropyl methylcellulose and polyethylene oxide) to form a 1000 mg tablet. A solution was then prepared by dissolving four parts of Polysorbate 80 (polyethylene sorbitan monooleate) in 715 parts of deionized water, all by weight. Glimepiride in particulate form ( 1.60 parts by weight, 2-4 micron diameter particle size) was then dispersed in the Polysorbate 80 solution, and OpadryTM
YS-1-19025-A Clear (hydroxypropyl methyl cellulose, available from Colorcon, West Point, Pennsylvania, USA) was added in an amount of 80 parts by weight. The resulting suspension was sprayed onto the metformin hydrochloride tablets at a rate of 5 g/min until the tablet weight increased by 11.2%.
[25] The foregoing is offered primarily for purposes of illustration. It will be readily apparent to those skilled in the art that further drugs can be included, and that the shapes, components, additives, proportions, methods of formulation, and other parameters described herein can be modified further or substituted in various ways without departing from the spirit and scope of the invention.

Claims (10)

  1. WHAT IS CLAIMED IS:

    A method for the manufacture of a pharmaceutical tablet which upon oral ingestion delivers a first drug by substantially immediate release and a second drug by sustained release defined as a release rate into gastric fluid that is slow enough to leave at least about 40% of said second drug unreleased one hour after ingestion, and in which said first drug is at most sparingly soluble in water and the weight ratio of said first drug to said second drug is equal to or less than about 0.01:1, said method comprising:
    dispersing said second drug in a solid matrix to form a unitary core which upon immersion in gastric fluid releases said second drug by sustained release while retaining at least a portion of the mass of said solid matrix as a coherent body until said second drug is fully released therefrom;
    depositing on the surface of said unitary core an aqueous suspension of particles of said first drug that are equal to or less than about 10 microns in diameter, using an amount of said first drug selected to achieve said weight ratio relative to said second drug; and evaporating water from said aqueous suspension thus deposited to leave a solid shell encasing said unitary core and containing said first drug.
  2. 2. A method for the manufacture of a pharmaceutical tablet which upon oral ingestion delivers a first drug by substantially immediate release and a second drug by sustained release defined as a release rate into gastric fluid that is slow enough to leave at least about 40% of said second drug unreleased one hour after ingestion, and in which said first drug is at most sparingly soluble in water and the weight ratio of said first drug to said second drug is equal to or less than about 0.01:1, said method comprising:
    combining said second drug with a first solid matrix to form a sustained-release layer, said first solid matrix being of a substance which when formed into a coherent body and immersed in gastric fluid releases said second drug by sustained release while retaining at least a portion of the mass of said first solid matrix as a coherent body until said second drug is fully released therefrom; and combining particles of said first drug that are equal to or less than about 10 microns in diameter with particles of a second solid matrix to form an immediate-release layer adjoined to said sustained-release layer as a layered tablet, said second solid matrix being of a substance that separates into discrete matrix particles immediately upon immersion in gastric fluid, using amounts of said first and second drugs selected to achieve said weight ratio.
  3. 3. A method in accordance with claims 1 or 2 in which said particles of said first drug are from about 0.3 micron to about 10 microns in diameter.
  4. 4. A method in accordance with claims 1 or 2 in which said first drug has a solubility in water at 37°C of less than 2% by weight.
  5. 5. A method in accordance with claims 1 or 2 in which said first drug is a sulfonylurea and said second drug is a member selected from the group consisting of metformin hydrochloride, vancomycin hydrochloride, captopril, erythromycin lactobionate, ranitidine hydrochloride, sertraline hydrochloride, ticlopidine hydrochloride, amoxicillin, cefuroxime axetil, cefaclor, clindamycin, doxifluridine, tramadol, fluoxitine hydrochloride, ciprofloxacin, gancyclovir, bupropion, lisinopril, cefaclor, ciprofloxacin, saguinavir, ritonavir, nelfinavir, clarithromycin, azithromycin, ceftazidine, cyclosporin, digoxin, paclitaxel, iron salts, topiramate, and ketoconazole.
  6. 6. A method in accordance with claims 1 or 2 in which said first drug is a sulfonylurea selected from the group consisting of glimepiride, glyburide, and glipizide, and said second drug is metformin hydrochloride.
  7. 7. A method in accordance with claims 1 or 2 in which said first drug is glimepiride and said second drug is metformin hydrochloride.
  8. 8. A method in accordance with claims 1 or 2 in which said solid matrix is a member selected from the group consisting of poly(ethylene oxide), hydroxypropyl methyl cellulose, and combinations of poly(ethylene oxide) and hydroxypropyl methyl cellulose.
  9. 9. A method in accordance with claim 1 in which said aqueous suspension has a suspending agent dissolved therein.
  10. 10. A method in accordance with claim 2 in which said second solid matrix is a member selected from the group consisting of lactose, microcrystalline cellulose, and combinations of lactose and microcrystalline cellulose.
CA002417686A 2002-02-01 2003-01-30 Manufacture of oral dosage forms delivering both immediate release and sustained release drugs Expired - Fee Related CA2417686C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/066,146 2002-02-01
US10/066,146 US6682759B2 (en) 2002-02-01 2002-02-01 Manufacture of oral dosage forms delivering both immediate-release and sustained-release drugs

Publications (2)

Publication Number Publication Date
CA2417686A1 CA2417686A1 (en) 2003-08-01
CA2417686C true CA2417686C (en) 2006-06-06

Family

ID=27658647

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002417686A Expired - Fee Related CA2417686C (en) 2002-02-01 2003-01-30 Manufacture of oral dosage forms delivering both immediate release and sustained release drugs

Country Status (11)

Country Link
US (1) US6682759B2 (en)
EP (1) EP1469838A4 (en)
JP (1) JP2005521674A (en)
KR (1) KR100680574B1 (en)
AU (1) AU2003207755B2 (en)
CA (1) CA2417686C (en)
IL (1) IL163205A (en)
MX (1) MXPA04007371A (en)
NZ (1) NZ534312A (en)
TW (1) TWI280141B (en)
WO (1) WO2003066028A1 (en)

Families Citing this family (181)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6565882B2 (en) * 2000-02-24 2003-05-20 Advancis Pharmaceutical Corp Antibiotic composition with inhibitor
US6544555B2 (en) 2000-02-24 2003-04-08 Advancis Pharmaceutical Corp. Antibiotic product, use and formulation thereof
US7985420B2 (en) * 2000-04-28 2011-07-26 Reckitt Benckiser Inc. Sustained release of guaifenesin combination drugs
US7838032B2 (en) * 2000-04-28 2010-11-23 Reckitt Benckiser Inc. Sustained release of guaifenesin
US8012504B2 (en) * 2000-04-28 2011-09-06 Reckitt Benckiser Inc. Sustained release of guaifenesin combination drugs
US6955821B2 (en) 2000-04-28 2005-10-18 Adams Laboratories, Inc. Sustained release formulations of guaifenesin and additional drug ingredients
US6541014B2 (en) * 2000-10-13 2003-04-01 Advancis Pharmaceutical Corp. Antiviral product, use and formulation thereof
US20020068078A1 (en) * 2000-10-13 2002-06-06 Rudnic Edward M. Antifungal product, use and formulation thereof
US20020197314A1 (en) * 2001-02-23 2002-12-26 Rudnic Edward M. Anti-fungal composition
CA2409552A1 (en) 2001-10-25 2003-04-25 Depomed, Inc. Gastric retentive oral dosage form with restricted drug release in the lower gastrointestinal tract
TWI312285B (en) 2001-10-25 2009-07-21 Depomed Inc Methods of treatment using a gastric retained gabapentin dosage
US7612112B2 (en) 2001-10-25 2009-11-03 Depomed, Inc. Methods of treatment using a gastric retained gabapentin dosage
US20060159743A1 (en) * 2001-10-25 2006-07-20 Depomed, Inc. Methods of treating non-nociceptive pain states with gastric retentive gabapentin
US20070184104A1 (en) * 2001-10-25 2007-08-09 Depomed, Inc. Gastric retentive gabapentin dosage forms and methods for using same
US20030091630A1 (en) * 2001-10-25 2003-05-15 Jenny Louie-Helm Formulation of an erodible, gastric retentive oral dosage form using in vitro disintegration test data
US20030152622A1 (en) * 2001-10-25 2003-08-14 Jenny Louie-Helm Formulation of an erodible, gastric retentive oral diuretic
ATE361065T1 (en) * 2002-01-25 2007-05-15 Silanes Sa De Cv Lab PHARMACEUTICAL COMPOSITION FOR CONTROLLING BLOOD SUGAR IN PATIENTS WITH TYPE 2 DIABETES
US20050215552A1 (en) * 2002-05-17 2005-09-29 Gadde Kishore M Method for treating obesity
WO2003105809A1 (en) 2002-06-17 2003-12-24 Themis Laboratories Private Limited Multilayer tablets containing thiazolidinedione and biguanides and methods for producing them
ES2208123A1 (en) * 2002-11-29 2004-06-01 Laboratorios Del Dr. Esteve, S.A. Use of 2,5-dihydroxybenzenesulfonic compounds for the treatment of disorders based on an impairment of no production and/or of regulation of edhf function
EP2286817A3 (en) 2003-01-13 2011-06-15 Edusa Pharmaceuticals, Inc Method of treating functional bowel disorders
US20040147564A1 (en) * 2003-01-29 2004-07-29 Rao Vinay U. Combinations of glimepiride and the thiazolidinedione for treatment of diabetes
KR101167579B1 (en) 2003-04-29 2012-07-27 오렉시젠 세러퓨틱스 인크. Compositions for affecting weight loss
US20050013863A1 (en) 2003-07-18 2005-01-20 Depomed, Inc., A Corporation Of The State Of California Dual drug dosage forms with improved separation of drugs
WO2005009364A2 (en) * 2003-07-21 2005-02-03 Advancis Pharmaceutical Corporation Antibiotic product, use and formulation thereof
WO2005009368A2 (en) * 2003-07-21 2005-02-03 Advancis Pharmaceutical Corporation Antibiotic product, use and formulation thereof
JP2006528189A (en) * 2003-07-21 2006-12-14 アドバンシス ファーマスーティカル コーポレイション Antibiotic products, their use and formulation
JP2007521231A (en) * 2003-08-08 2007-08-02 バイオヴェイル ラボラトリーズ インコーポレイテッド Controlled release tablets of bupropion hydrochloride
EP1653925A1 (en) * 2003-08-11 2006-05-10 Advancis Pharmaceutical Corporation Robust pellet
CA2535398C (en) 2003-08-12 2013-11-12 Advancis Pharmaceuticals Corporation Antibiotic product, use and formulation thereof
US8246996B2 (en) * 2003-08-29 2012-08-21 Shionogi Inc. Antibiotic product, use and formulation thereof
CA2538064C (en) * 2003-09-15 2013-12-17 Advancis Pharmaceutical Corporation Antibiotic product, use and formulation thereof
ES2556244T3 (en) 2003-10-31 2016-01-14 Takeda Pharmaceutical Company Limited Solid preparation comprising pioglitazone, glimepiride and a polyoxyethylene sorbitan fatty acid ester
JP4361461B2 (en) * 2003-10-31 2009-11-11 武田薬品工業株式会社 Solid preparation
US8709476B2 (en) 2003-11-04 2014-04-29 Supernus Pharmaceuticals, Inc. Compositions of quaternary ammonium compounds containing bioavailability enhancers
JP5610663B2 (en) * 2003-11-04 2014-10-22 スパーナス ファーマシューティカルズ インコーポレイテッド Trospium once a day dosage form
JP2007513147A (en) * 2003-12-04 2007-05-24 ファイザー・プロダクツ・インク Spray congealing process for producing a multiparticulate crystalline pharmaceutical composition, preferably containing poloxamer and glyceride, using an extruder
WO2005053639A2 (en) * 2003-12-04 2005-06-16 Pfizer Products Inc. Controlled release multiparticulates formed with dissolution enhancers
KR20060109481A (en) * 2003-12-04 2006-10-20 화이자 프로덕츠 인코포레이티드 Spray-congeal process using an extruder for preparing multiparticulate azithromycin compositions containing preferably a poloxamer and a glyceride
CN1889932A (en) * 2003-12-04 2007-01-03 辉瑞产品公司 Method of making pharmaceutical multiparticulates
WO2005053652A1 (en) 2003-12-04 2005-06-16 Pfizer Products Inc. Multiparticulate crystalline drug compositions containing a poloxamer and a glyceride
US6984403B2 (en) * 2003-12-04 2006-01-10 Pfizer Inc. Azithromycin dosage forms with reduced side effects
CA2547239A1 (en) * 2003-12-04 2005-06-16 Pfizer Products Inc. Azithromycin multiparticulate dosage forms by liquid-based processes
WO2005053651A1 (en) * 2003-12-04 2005-06-16 Pfizer Products Inc. Multiparticulate compositions with improved stability
AU2004308419B2 (en) * 2003-12-24 2011-06-02 Victory Pharma, Inc. Enhanced absorption of modified release dosage forms
TW200529890A (en) * 2004-02-10 2005-09-16 Takeda Pharmaceutical Sustained-release preparations
WO2005079752A2 (en) * 2004-02-11 2005-09-01 Rubicon Research Private Limited Controlled release pharmaceutical compositions with improved bioavailability
WO2005102290A1 (en) * 2004-04-22 2005-11-03 Ranbaxy Laboratories Limited Pharmaceutical compositions of a biguanide and a sulfonylurea
SE0401031D0 (en) 2004-04-22 2004-04-22 Duocort Ab A new glucocorticoid replacement therapy
US7588779B2 (en) * 2004-05-28 2009-09-15 Andrx Labs, Llc Pharmaceutical formulation containing a biguanide and an angiotensin antagonist
TWI356036B (en) * 2004-06-09 2012-01-11 Smithkline Beecham Corp Apparatus and method for pharmaceutical production
US20060002594A1 (en) * 2004-06-09 2006-01-05 Clarke Allan J Method for producing a pharmaceutical product
US8101244B2 (en) * 2004-06-09 2012-01-24 Smithkline Beecham Corporation Apparatus and method for producing or processing a product or sample
US20060002986A1 (en) * 2004-06-09 2006-01-05 Smithkline Beecham Corporation Pharmaceutical product
DE102004030880A1 (en) * 2004-06-25 2006-01-12 Merck Patent Gmbh Method for the treatment of diabetes
WO2006014427A1 (en) * 2004-07-02 2006-02-09 Advancis Pharmaceutical Corporation Tablet for pulsed delivery
US20070224281A1 (en) * 2004-07-22 2007-09-27 Amorepacific Corporation Sustained-Release Preparations Containing Topiramate and the Producing Method Thereof
US20060029641A1 (en) * 2004-08-05 2006-02-09 Keller Nathan I Calcium and magnesium nutritional supplement
CN100459982C (en) * 2004-08-30 2009-02-11 鲁南制药集团股份有限公司 Dispersible tablet of doxifluridine
KR100760430B1 (en) 2004-12-31 2007-10-04 한미약품 주식회사 Controlled release complex formulation for oral administration of medicine for diabetes and method for the preparation thereof
JP4856881B2 (en) * 2005-02-01 2012-01-18 川澄化学工業株式会社 Drug sustained release system
US20100034885A1 (en) * 2005-06-10 2010-02-11 Combino Pharm, S.L. Formulations containing glimepiride and/or its salts
DK1919466T3 (en) 2005-07-11 2012-07-02 Cortria Corp Formulations for the treatment of lipoprotein abnormalities comprising a statin and a methylnicotinamide derivative
DE102005034484A1 (en) * 2005-07-20 2007-02-01 Alfred E. Tiefenbacher Gmbh & Co.Kg Process for the preparation of glimepiride-containing pharmaceutical compositions
JP2007031377A (en) * 2005-07-28 2007-02-08 Nichi-Iko Pharmaceutical Co Ltd Glimepiride-containing drug excellent in usability
KR100780553B1 (en) * 2005-08-18 2007-11-29 한올제약주식회사 Pharmaceutical compositions and formulations of Metformin extended release tablets and its preparing method
MXPA05009633A (en) * 2005-09-08 2007-03-07 Silanes Sa De Cv Lab Stable pharmaceutical composition comprising immediate-release glimepiride and delayed-release metformin.
EP2084965B1 (en) * 2005-09-29 2011-04-27 Syngenta Participations AG Fungicidal compositions
ES2761812T3 (en) 2005-11-22 2020-05-21 Nalpropion Pharmaceuticals Inc Composition and methods of increasing insulin sensitivity
JP2009517394A (en) * 2005-11-28 2009-04-30 オレキシジェン・セラピューティクス・インコーポレーテッド Sustained release formulation of zonisamide
JP5334588B2 (en) * 2005-11-28 2013-11-06 マリナス ファーマシューティカルズ Ganaxolone preparation, method for producing the same, and use thereof
US8778924B2 (en) * 2006-12-04 2014-07-15 Shionogi Inc. Modified release amoxicillin products
US8357394B2 (en) 2005-12-08 2013-01-22 Shionogi Inc. Compositions and methods for improved efficacy of penicillin-type antibiotics
ES2576258T3 (en) 2005-12-22 2016-07-06 Takeda Pharmaceutical Company Limited Solid preparation containing an insulin sensitizer
US20090176882A1 (en) 2008-12-09 2009-07-09 Depomed, Inc. Gastric retentive gabapentin dosage forms and methods for using same
CA2635594A1 (en) * 2005-12-30 2007-07-12 Advancis Pharmaceutical Corporation Gastric release pulse system for drug delivery
US8299052B2 (en) 2006-05-05 2012-10-30 Shionogi Inc. Pharmaceutical compositions and methods for improved bacterial eradication
KR100858848B1 (en) * 2006-05-23 2008-09-17 한올제약주식회사 Pharmaceutical compositions and formulations of Metformin extended release tablets
US8916195B2 (en) 2006-06-05 2014-12-23 Orexigen Therapeutics, Inc. Sustained release formulation of naltrexone
KR20080009016A (en) * 2006-07-21 2008-01-24 주식회사 한독약품 Gastric retention-type pellet and the preparation method thereof
US9744137B2 (en) * 2006-08-31 2017-08-29 Supernus Pharmaceuticals, Inc. Topiramate compositions and methods of enhancing its bioavailability
KR100812538B1 (en) * 2006-10-23 2008-03-11 한올제약주식회사 Controlled release complex formulation comprising metformin and glimepiride
JP5377317B2 (en) * 2006-10-30 2013-12-25 ハナル バイオファーマ カンパニー リミテッド Combined composition of angiotensin-II-receptor blocker with controlled release and HMG-CoA reductase inhibitor
KR20140088619A (en) 2006-11-09 2014-07-10 오렉시젠 세러퓨틱스 인크. Unit dosage packages
TWI504419B (en) 2006-11-09 2015-10-21 Orexigen Therapeutics Inc Layered pharmaceutical formulations
ES2555066T3 (en) 2006-11-17 2015-12-28 Supernus Pharmaceuticals, Inc. Topiramate sustained release formulations
KR20090091321A (en) 2006-11-28 2009-08-27 마리누스 파마슈티컬스 Nanoparticulate formulations and methods for the making and use thereof
US20080131501A1 (en) * 2006-12-04 2008-06-05 Supernus Pharmaceuticals, Inc. Enhanced immediate release formulations of topiramate
US20090028941A1 (en) * 2007-07-27 2009-01-29 Depomed, Inc. Pulsatile gastric retentive dosage forms
KR20090013736A (en) * 2007-08-02 2009-02-05 주식회사 한독약품 Sustained-release formulation comprising metformin acid salt
WO2009021127A2 (en) * 2007-08-07 2009-02-12 Neurogen Corporation Controlled released compositions
US8356315B2 (en) * 2007-12-03 2013-01-15 Koncelik Jr Lawrence J Setting television default channel
KR20090091075A (en) * 2008-02-22 2009-08-26 한올제약주식회사 Pharmaceutical preparation for treating cardiovascular disease
WO2009104939A2 (en) * 2008-02-22 2009-08-27 한올제약주식회사 Pharmaceutical preparation
WO2009104932A2 (en) * 2008-02-22 2009-08-27 한올제약주식회사 Composite preparation
CN102105136B (en) * 2008-03-11 2014-11-26 蒂宝制药公司 Gastric retentive extended-release dosage forms comprising combinations of a non-opioid analgesic and an opioid analgesic
US8372432B2 (en) * 2008-03-11 2013-02-12 Depomed, Inc. Gastric retentive extended-release dosage forms comprising combinations of a non-opioid analgesic and an opioid analgesic
KR101230731B1 (en) * 2008-04-29 2013-02-07 한올바이오파마주식회사 Pharmaceutical formulation
EP2303025A4 (en) * 2008-05-30 2012-07-04 Orexigen Therapeutics Inc Methods for treating visceral fat conditions
WO2010014952A2 (en) 2008-07-31 2010-02-04 Clarke Mosquito Control Products, Inc. Extended release tablet and method for making and using same
MX340249B (en) 2008-08-15 2016-07-01 Depomed Inc Gastric retentive pharmaceutical compositions for treatment and prevention of cns disorders.
US20120065221A1 (en) 2009-02-26 2012-03-15 Theraquest Biosciences, Inc. Extended Release Oral Pharmaceutical Compositions of 3-Hydroxy-N-Methylmorphinan and Method of Use
WO2010100657A2 (en) 2009-03-04 2010-09-10 Fdc Limited A novel oral controlled release dosage forms for water soluble drugs
WO2010129686A1 (en) 2009-05-05 2010-11-11 Vapogenix, Inc. Novel formulations of volatile anesthetics and methods of use for reducing inflammation
RU2012112552A (en) * 2009-08-31 2013-10-10 Дипомед, Инк. PHARMACEUTICAL COMPOSITIONS REMAINED IN THE STOMACH FOR IMMEDIATE AND LONG RELEASE OF ACETAMINOPHENE
TWI491395B (en) 2009-09-30 2015-07-11 Ct Lab Inc Oral dosage formulation containing both immediate-release and sustained-release drugs for treating neurodegenerative disorders
EP2486918A4 (en) * 2009-10-09 2014-02-26 Yungjin Pharmaceutical Co Ltd Pharmaceutical composition with both immediate and extended release characteristics
SI2498759T1 (en) 2009-11-13 2018-12-31 Astrazeneca Ab Immediate release tablet formulations
US9198861B2 (en) 2009-12-22 2015-12-01 Mallinckrodt Llc Methods of producing stabilized solid dosage pharmaceutical compositions containing morphinans
US8597681B2 (en) 2009-12-22 2013-12-03 Mallinckrodt Llc Methods of producing stabilized solid dosage pharmaceutical compositions containing morphinans
CN102724878A (en) 2010-01-11 2012-10-10 奥雷西根治疗公司 Methods of providing weight loss therapy in patients with major depression
CA2807661C (en) 2010-08-11 2019-09-10 Philadelphia Health & Education Corporation D/B/A Drexel University College Of Medicine Novel d3 dopamine receptor agonists to treat dyskinesia in parkinson's disease
EP2647648B1 (en) * 2010-12-03 2017-08-09 Nippon Soda Co., Ltd. Solid dosage form containing a low viscosity HYDROXYALKYL CELLULOSE
JP6076913B2 (en) 2010-12-07 2017-02-08 ドレクセル ユニバーシティ Methods for inhibiting metastasis from cancer
US8476221B2 (en) 2011-03-18 2013-07-02 Halimed Pharmaceuticals, Inc. Methods and compositions for the treatment of metabolic disorders
US8858963B1 (en) 2011-05-17 2014-10-14 Mallinckrodt Llc Tamper resistant composition comprising hydrocodone and acetaminophen for rapid onset and extended duration of analgesia
US8741885B1 (en) 2011-05-17 2014-06-03 Mallinckrodt Llc Gastric retentive extended release pharmaceutical compositions
US9050335B1 (en) 2011-05-17 2015-06-09 Mallinckrodt Llc Pharmaceutical compositions for extended release of oxycodone and acetaminophen resulting in a quick onset and prolonged period of analgesia
US20130143867A1 (en) 2011-12-02 2013-06-06 Sychroneuron Inc. Acamprosate formulations, methods of using the same, and combinations comprising the same
EA037918B1 (en) 2011-12-21 2021-06-07 Новира Терапьютикс, Инк. Hepatitis b antiviral agents
DK3730132T3 (en) 2012-06-06 2022-08-08 Nalpropion Pharmaceuticals Llc COMPOSITION FOR USE IN A METHOD FOR TREATING OVERWEIGHT AND OBESITY IN PATIENTS WITH HIGH CARDIOVASCULAR RISK
WO2014015157A2 (en) 2012-07-19 2014-01-23 Philadelphia Health & Education Corporation Novel sigma receptor ligands and methods of modulating cellular protein homeostasis using same
CN104768544B (en) 2012-08-09 2017-06-16 迪纳米斯治疗公司 Composition including meglumine or its salt is preparing the application in reducing or preventing the increased medicine of triglyceride levels
RS61101B1 (en) 2013-01-07 2020-12-31 Univ Pennsylvania Compositions and methods for treating cutaneous t cell lymphoma
CN105431144A (en) 2013-06-05 2016-03-23 思康脑侒股份有限公司 Acamprosate formulations, methods of using the same, and combinations comprising the same
CN106414752A (en) 2013-07-02 2017-02-15 桉树脑有限责任公司 Volatile organic compound formulations having antimicrobial activity
GB201311891D0 (en) 2013-07-03 2013-08-14 Glaxosmithkline Ip Dev Ltd Novel compound
GB201311888D0 (en) 2013-07-03 2013-08-14 Glaxosmithkline Ip Dev Ltd Novel compounds
WO2015080943A1 (en) 2013-11-26 2015-06-04 Yale University Novel cell-penetrating compositions and methods using same
CA2933464A1 (en) 2013-12-09 2015-06-18 Thomas Jefferson University Use of abc drug efflux inhibitors in combination with anti-neurodegenerative drugs in the treatment of neurodegenerative disorders
WO2015157262A1 (en) 2014-04-07 2015-10-15 Women & Infants Hospital Of Rhode Island Novel 7-Dehydrocholesterol Derivatives and Methods Using Same
EP3182979B1 (en) 2014-08-20 2023-12-06 Yale University Novel compositions and methods useful for treating or preventing liver diseases or disorders, and promoting weight loss
KR20160081646A (en) * 2014-12-31 2016-07-08 건일제약 주식회사 An oral composite tablet containing melatonin and sertraline
US10597368B2 (en) 2015-05-08 2020-03-24 Brown University Syringolin analogues and methods of making and using same
AU2016264364B2 (en) 2015-05-19 2022-06-23 Yale University Compositions for treating pathological calcification conditions, and methods using same
WO2016192680A1 (en) 2015-06-03 2016-12-08 Triastek, Inc. Dosage forms and use thereof
WO2016201288A1 (en) 2015-06-12 2016-12-15 Brown University Novel antibacterial compounds and methods of making and using same
KR102207539B1 (en) 2015-06-30 2021-01-26 네우라드 리미티드 Novel respiratory control modulating compounds, and methods of making and using the same
WO2017062997A1 (en) 2015-10-09 2017-04-13 Reckitt Benckiser Llc Pharmaceutical formulation
WO2017075145A1 (en) 2015-10-28 2017-05-04 Yale University Quinoline amides and methods of using same
EP4079322A1 (en) 2015-11-20 2022-10-26 Yale University Compositions for treating ectopic calcification disorders, and methods using same
EP3448369A4 (en) 2016-04-29 2020-01-01 The Regents of The University of Colorado, A Body Corporate Compounds and compositions useful for treating metabolic syndrome, and methods using same
WO2018026764A1 (en) 2016-08-01 2018-02-08 University Of Rochester Nanoparticles for controlled release of anti-biofilm agents and methods of use
JP2019532915A (en) 2016-08-05 2019-11-14 イエール ユニバーシティ Compositions and methods for preventing stroke in pediatric sickle cell anemia patients
EP3481387A4 (en) 2016-08-11 2020-04-08 Ovid Therapeutics Inc Methods and compositions for treatment of epileptic disorders
CN109843379B (en) 2016-09-01 2022-12-30 梅比斯发现公司 Substituted ureas and methods of making and using the same
CA3040919A1 (en) 2016-11-07 2018-05-11 Arbutus Biopharma Corporation Substituted pyridinone-containing tricyclic compounds, and methods using same
US10941126B2 (en) 2017-01-19 2021-03-09 Temple University-Of The Commonwealth System Of Higher Education Bridged bicycloalkyl-substituted aminothiazoles and their methods of use
AU2018238138A1 (en) 2017-03-21 2019-10-17 Arbutus Biopharma Corporation Substituted dihydroindene-4-carboxamides and analogs thereof, and methods using same
EP3612184A4 (en) 2017-04-17 2021-01-20 Yale University Compounds, compositions and methods of treating or preventing acute lung injury
CN110996922A (en) 2017-06-16 2020-04-10 卡希夫生物科学有限责任公司 Gastric retentive dosage forms for sustained drug delivery
US10588863B2 (en) 2017-06-16 2020-03-17 Kashiv Biosciences, Llc Extended release compositions comprising pyridostigmine
US10987311B2 (en) 2017-06-16 2021-04-27 Kashiv Specialty Pharmaceuticals, Llc Extended release compositions comprising pyridostigmine
CA3071345A1 (en) 2017-07-28 2019-01-31 Yale University Anticancer drugs and methods of making and using same
AU2018330171A1 (en) 2017-09-08 2020-03-12 The Regents Of The University Of Colorado, A Body Corporate Compounds, compositions and methods for treating or preventing HER-driven drug-resistant cancers
WO2019104316A1 (en) 2017-11-27 2019-05-31 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Compounds, compositions, and methods for treating and/or preventing periodontal disease
WO2019125184A1 (en) 2017-12-19 2019-06-27 Auckland Uniservices Limited Use of biomarker in cancer therapy
CN116270513A (en) 2018-01-09 2023-06-23 南京三迭纪医药科技有限公司 A compound oral pharmaceutical dosage form containing fixed dose of ADHD non-agonist and ADHD agonist
CA3089236A1 (en) 2018-01-24 2019-08-01 The Rockefeller University Antibacterial compounds, compositions thereof, and methods using same
US11091473B2 (en) 2018-05-29 2021-08-17 Acadia Pharmaceuticals Inc. Compounds for pain treatment, compositions comprising same, and methods of using same
US11229606B2 (en) 2018-06-18 2022-01-25 Amneal Complex Products Research Llc Extended release compositions comprising pyridostigmine
ES2754280A1 (en) 2018-10-11 2020-04-16 Laboratoris Sanifit S L Dosage guidelines for IP and IP analogues for the treatment of ectopic calcifications (Machine-translation by Google Translate, not legally binding)
US11266662B2 (en) 2018-12-07 2022-03-08 Marinus Pharmaceuticals, Inc. Ganaxolone for use in prophylaxis and treatment of postpartum depression
TWI827760B (en) 2018-12-12 2024-01-01 加拿大商愛彼特生物製藥公司 Substituted arylmethylureas and heteroarylmethylureas, analogues thereof, and methods using same
BR112021014897A2 (en) 2019-01-30 2021-09-28 Sanifit Therapeutics, S.A. COMPOUND OR A PHARMACEUTICALLY ACCEPTABLE SALT THEREOF, AND, PHARMACEUTICAL COMPOSITION
WO2020159588A1 (en) 2019-02-01 2020-08-06 Cersci Therapeutics, Inc. Methods of treating diabetic neuropathy with a thiazoline anti-hyperalgesic agent
CN110151722A (en) * 2019-05-07 2019-08-23 上海新生源医药集团有限公司 A kind of stomach dissolution type clarithromycin slow-released tablet and its production technology
US11524048B2 (en) 2019-05-09 2022-12-13 The Feinstein Institutes For Medical Research HMGB1 antagonist treatment of severe sepsis
US11555010B2 (en) 2019-07-25 2023-01-17 Brown University Diamide antimicrobial agents
JP2022543837A (en) 2019-08-05 2022-10-14 マリナス ファーマシューティカルズ, インコーポレイテッド Ganaxolone for use in treating status epilepticus
CN110638791A (en) * 2019-10-31 2020-01-03 浙江普利药业有限公司 Topiramate sustained-release capsule and preparation method thereof
EP3818983A1 (en) 2019-11-11 2021-05-12 Sanifit Therapeutics S.A. Inositol phosphate compounds for use in treating, inhibiting the progression, or preventing cardiovascular calcification
CA3158280A1 (en) 2019-12-06 2021-06-10 Alex Aimetti Ganaxolone for use in treating tuberous sclerosis complex
WO2021127456A1 (en) 2019-12-19 2021-06-24 Rain Therapeutics Inc. Methods of inhibiting epidermal growth factor receptor proteins
WO2021252549A1 (en) 2020-06-09 2021-12-16 Inozyme Pharma, Inc. Soluble enpp1 or enpp3 proteins and uses thereof
EP4015494A1 (en) 2020-12-15 2022-06-22 Sanifit Therapeutics S.A. Processes for the preparation of soluble salts of inositol phosphates
CN112451511B (en) * 2020-12-31 2022-06-24 寿光富康制药有限公司 Metformin hydrochloride preparation and preparation method thereof
EP4036097A1 (en) 2021-01-29 2022-08-03 Sanifit Therapeutics S.A. Ip4-4,6 substituted derivative compounds
WO2024023359A1 (en) 2022-07-29 2024-02-01 Sanifit Therapeutics, S.A. Ip4-4,6 substituted derivative compounds for use in the treatment, inhibition of progression, and prevention of ectopic calcification
WO2024023360A1 (en) 2022-07-29 2024-02-01 Sanifit Therapeutics, S.A. Ip5 substituted compounds
WO2024052895A1 (en) 2022-09-06 2024-03-14 Hadasit Medical Research Services And Development Ltd Combinations comprising psychedelics for the treatment of schizophrenia and other neuropsychiatric and neurologic disorders

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA722664B (en) 1971-05-18 1973-01-31 Smith Kline French Lab Lyered bolus for animal husbandry providing for immediate and sustained release of medicament
DE2460891C2 (en) 1974-12-21 1982-09-23 Gödecke AG, 1000 Berlin 1-aminomethyl-1-cycloalkaneacetic acids and their esters, processes for their preparation and medicaments containing these compounds
JPS5562012A (en) 1978-11-06 1980-05-10 Teijin Ltd Slow-releasing preparation
JPS6216413A (en) * 1985-07-12 1987-01-24 Teijin Ltd Sustained release pharmaceutical composition using chitin derivative
NZ220599A (en) * 1986-06-16 1990-10-26 Merck & Co Inc Controlled release oral dosage formulation of carbidopa and levodopa
US4786503A (en) 1987-04-06 1988-11-22 Alza Corporation Dosage form comprising parallel lamine
US4894476A (en) 1988-05-02 1990-01-16 Warner-Lambert Company Gabapentin monohydrate and a process for producing the same
US5085865A (en) 1989-04-12 1992-02-04 Warner-Lambert Company Sustained release pharmaceutical preparations containing an analgesic and a decongestant
DE3928183A1 (en) 1989-08-25 1991-02-28 Goedecke Ag LACTAM-FREE CYCLIC AMINO ACIDS
US5162117A (en) 1991-11-22 1992-11-10 Schering Corporation Controlled release flutamide composition
IL104192A (en) * 1992-02-17 1998-01-04 Siegfried Ag Pharma Pharmaceutical dosage forms having prolonged release rate of zero order of the active ingredient
IT1256393B (en) 1992-11-17 1995-12-04 Inverni Della Beffa Spa MULTI-LAYER MATERIAL FORMS FOR THE CONTROLLED RELEASE OF ACTIVE INGREDIENTS
IT1264696B1 (en) 1993-07-09 1996-10-04 Applied Pharma Res PHARMACEUTICAL FORMS INTENDED FOR ORAL ADMINISTRATION ABLE TO RELEASE ACTIVE SUBSTANCES AT A CONTROLLED AND DIFFERENTIATED SPEED
CA2167395C (en) * 1993-07-22 1999-07-27 Edward L. Cussler Osmotic devices having vapor-permeable coatings
US6183778B1 (en) 1993-09-21 2001-02-06 Jagotec Ag Pharmaceutical tablet capable of liberating one or more drugs at different release rates
MX9605419A (en) * 1994-05-06 1997-12-31 Pfizer Liquid detergent containing polyhydroxy fatty acid amide and toluene sulfonate salt.
JP3962108B2 (en) * 1995-04-03 2007-08-22 中外製薬株式会社 Sucralfate-containing pharmaceutical composition
TW438587B (en) 1995-06-20 2001-06-07 Takeda Chemical Industries Ltd A pharmaceutical composition for prophylaxis and treatment of diabetes
KR0134537Y1 (en) * 1995-09-30 1999-03-20 송향화 Spoon with permanent magnets
AUPN605795A0 (en) * 1995-10-19 1995-11-09 F.H. Faulding & Co. Limited Analgesic pharmaceutical composition
IT1276130B1 (en) 1995-11-14 1997-10-27 Gentili Ist Spa GLIBENCLAMIDE-METFORMIN ASSOCIATION, PHARMACEUTICAL COMPOSITIONS THAT CONTAIN IT AND THEIR USE IN THE TREATMENT OF TYPE DIABETES MELLITUS
JP3220373B2 (en) 1995-11-28 2001-10-22 バイエル薬品株式会社 Long-acting nifedipine preparation
IT1282650B1 (en) 1996-02-19 1998-03-31 Jagotec Ag PHARMACEUTICAL TABLET, CHARACTERIZED BY A HIGH INCREASE IN VOLUME IN CONTACT WITH BIOLOGICAL LIQUIDS
US5773031A (en) 1996-02-27 1998-06-30 L. Perrigo Company Acetaminophen sustained-release formulation
EP0811374A1 (en) * 1996-05-29 1997-12-10 Pfizer Inc. Combination dosage form comprising cetirizine and pseudoephedrine
US5972389A (en) 1996-09-19 1999-10-26 Depomed, Inc. Gastric-retentive, oral drug dosage forms for the controlled-release of sparingly soluble drugs and insoluble matter
US5837379A (en) 1997-01-31 1998-11-17 Andrx Pharmaceuticals, Inc. Once daily pharmaceutical tablet having a unitary core
US6011049A (en) 1997-02-19 2000-01-04 Warner-Lambert Company Combinations for diabetes
US6153632A (en) 1997-02-24 2000-11-28 Rieveley; Robert B. Method and composition for the treatment of diabetes
ES2248908T7 (en) 1997-06-06 2014-11-24 Depomed, Inc. Dosage forms of drugs orally and gastric retention for continued release of highly soluble drugs
GB9711962D0 (en) * 1997-06-10 1997-08-06 Reckitt & Colmann Prod Ltd Therapeutically active compositions
WO1999018063A2 (en) 1997-10-07 1999-04-15 Warner-Lambert Company Process for preparing a cyclic amino acid anticonvulsant compound
US6056977A (en) 1997-10-15 2000-05-02 Edward Mendell Co., Inc. Once-a-day controlled release sulfonylurea formulation
TW477702B (en) 1997-10-23 2002-03-01 Dev Center Biotechnology Controlled release tacrine dosage form
FR2772615B1 (en) 1997-12-23 2002-06-14 Lipha MULTILAYER TABLET FOR INSTANT RELEASE THEN PROLONGED ACTIVE SUBSTANCES
NZ506202A (en) * 1998-03-19 2003-10-31 Bristol Myers Squibb Co Biphasic controlled release delivery system for high solubility pharmaceuticals and method
JP3947654B2 (en) * 1998-04-09 2007-07-25 ロシュ ダイアグノスティックス ゲーエムベーハー Carvedilol formulation
JP3290970B2 (en) * 1998-07-22 2002-06-10 山之内製薬株式会社 Solid preparation containing poorly soluble NSAIDs
US6099862A (en) 1998-08-31 2000-08-08 Andrx Corporation Oral dosage form for the controlled release of a biguanide and sulfonylurea
FR2784583B1 (en) 1998-10-16 2002-01-25 Synthelabo PHARMACEUTICAL COMPOSITION WITH GASTRIC RESIDENCE AND CONTROLLED RELEASE
DE19860698A1 (en) * 1998-12-30 2000-07-06 Hexal Ag New pharmaceutical composition
KR100694667B1 (en) * 1999-12-08 2007-03-14 동아제약주식회사 Antifungal compositions containing itraconazole with both improved bioavailability and narrow intra- and inter-individual variation of its absorption
ES2270982T3 (en) * 2000-02-04 2007-04-16 Depomed, Inc. DOSAGE FORM OF NUCLEO AND CARCASA THAT IS APPROXIMATE TO A RELEASE OF THE ZERO ORDER PHARMACO.
US6461639B2 (en) 2000-05-01 2002-10-08 Aeropharm Technology, Inc. Core formulation
US6270797B1 (en) 2000-05-18 2001-08-07 Usv Limited Sustained release pharmaceutical composition containing glipizide and method for producing same
JP2005508331A (en) * 2001-09-28 2005-03-31 サン・ファーマシューティカル・インダストリーズ・リミテッド Dosage preparation for the treatment of diabetes

Also Published As

Publication number Publication date
CA2417686A1 (en) 2003-08-01
JP2005521674A (en) 2005-07-21
EP1469838A4 (en) 2009-03-25
TW200302743A (en) 2003-08-16
US6682759B2 (en) 2004-01-27
TWI280141B (en) 2007-05-01
US20030147952A1 (en) 2003-08-07
EP1469838A1 (en) 2004-10-27
KR100680574B1 (en) 2007-02-08
AU2003207755B2 (en) 2006-10-12
NZ534312A (en) 2006-02-24
IL163205A (en) 2009-07-20
WO2003066028A1 (en) 2003-08-14
KR20040079980A (en) 2004-09-16
AU2003207755A1 (en) 2003-09-02
MXPA04007371A (en) 2004-11-26

Similar Documents

Publication Publication Date Title
CA2417686C (en) Manufacture of oral dosage forms delivering both immediate release and sustained release drugs
CA2531721C (en) Dual drug dosage forms with improved separation of drugs
JP4633329B2 (en) Spaced drug delivery system
EP1251832B1 (en) Shell-and-core dosage form approaching zero-order drug release
US8911781B2 (en) Process of manufacture of novel drug delivery system: multilayer tablet composition of thiazolidinedione and biguanides
WO1997047285A1 (en) Gastric-retentive oral controlled drug delivery system with enhanced retention properties
WO2009099734A1 (en) Pharmaceutical compositions of a combination of metformin and a dipeptidyl peptidase-iv inhibitor
AU2009220444A1 (en) Pharmaceutical compositions of a combination of metformin and a dipeptidyl peptidase-IV inhibitor
EP2010158B1 (en) Controlled release formulations comprising uncoated discrete unit(s) and an extended release matrix
CN114929210A (en) Antidiabetic pharmaceutical composition and preparation method thereof

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20160201