CA2413832A1 - Ultra-dense wavelength division multiplexing/demultiplexing devices - Google Patents

Ultra-dense wavelength division multiplexing/demultiplexing devices Download PDF

Info

Publication number
CA2413832A1
CA2413832A1 CA002413832A CA2413832A CA2413832A1 CA 2413832 A1 CA2413832 A1 CA 2413832A1 CA 002413832 A CA002413832 A CA 002413832A CA 2413832 A CA2413832 A CA 2413832A CA 2413832 A1 CA2413832 A1 CA 2413832A1
Authority
CA
Canada
Prior art keywords
optical
multiplexed
polychromatic
wavelength division
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002413832A
Other languages
French (fr)
Inventor
Robert K. Wade
Ian Turner
Joseph R. Dempewolf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Confluent Photonics Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2413832A1 publication Critical patent/CA2413832A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/2931Diffractive element operating in reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1086Beam splitting or combining systems operating by diffraction only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/29311Diffractive element operating in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant

Abstract

An ultra-dense wavelength division multiplexing device (10) is used for combining at least one plurality of monochromatic optical beams into a corresponding at least one single, multiplexed, polychromatic optical beam, wherein the wavelength division multiplexing device has an input element and an output element. A plurality of optical input devices (12) is disposed proximate the input element; wherein each of the plurality of optical input devices (12) communicates a plurality of monochromatic optical beams to the wavelength division multiplexing device for combining the plurality of monochromatic optical beams into a single, multiplexed, polychromatic optica l beam (24). A corresponding plurality of optical output devices (22) is disposed proximate the output element, wherein each of the plurality of optical output devices (22) receives a corresponding single, multiplexed polychromatic optical beam (26).

Description

ULTRA-DENSE WAVELENGTH DIVISION
MULITPLEX2NG/DEI~IULTIPLEX2NG DEVICES
CROSS-REFERENCE TO RELATED APPLICATIONS
This patent application is a continuation-in-part application of U.S. Patent Application No. 09/257,045 (Attorney Docket No. 34013-00008, Client Reference No. D-97031-CNT), filed February.25, 1999; U.S. Patent Application No. 09/323,094 (Attorney Docket No. 34013-00010, Client Reference No. D-99001),, filed June 1, 1999; U.S. Patent Application No. 09/342,142 (Attorney Docket No. 34013-00011, Client Reference No. D-99002), filed June 29, 1999; U.S.
Patent Application No. 09/382,492 (Attorney Docket No. 34013-00013, Client Reference No. D-99004), filed August 25, 1999;
U.S. Patent Application No. 09/382,624 (Attorney Docket No.
34013-00014, Client Reference No. D-99005), filed August 25, 1999; U.S. Patent Application No. 09/363041 (Attorney Docket No. 34013-00023, Client Reference No. D-99014) , filed July 29, 1999; U.S: Patent Application No. 09/363,042 (Attorney Docket No. 34013-00024, Client Reference No. D-99015) , filed July 29, 1999; U.S. Patent Application No. 09/392,670 (Attorney Docket No. 34013-00025, Client Reference Nn_ n-Q~n~~~
September 8, 1999; and U.S. Patent Application No. 09/392,831 (Attorney Docket No. 3013-00026, Client Reference No. D-99017), filed September 8, 1999; all of which are hereby incorporated herein by reference.
FIEhD OF THE INVENTION
The present invention relates generally to wavelength division multiplexing and demultiplexing and, more particularly, to ultra-dense wavelength division multiplexing/demultiplexing devices.
BACKGROUND~OF THE INVENTION
Wavelength division multiplexing (WDM) is a rapidly emerging technology that enables a very significant increase in the aggregate volume of data that can be transmitted over optical fibers. Prior to.the use of WDM, most optical fibers were used to unidirectionally carry only a single data channel at one wavelength. The basic concept of WDM is to launch and retrieve multiple data channels in and out, respectively, of an optical fiber. Each data channel is transm;t-rA~ a+-unique wavelength, and the wavelengths are appropriately selected such that the channels do not interfere with each other, and the optical transmission losses of the fiber are low. Today, commercial WDM systems exist that allow for the transmission of 2 to 100 simultaneous data channels.
WDM is a cost-effective method of increasing the volume of data (commonly termed bandwidth) transferred over optical fibers. Alternate competing technologies for increasing bandwidth include the burying of additional fiber optic cable or increasing the optical transmission rate over optical fiber. The burying of additional fiber optic cable is quite costly as it is presently on the order of $15,000 to $40,000 i0 per kilometer. Increasing~the optical transmission rate is limited by the speed a~ad economy of the electronics surrounding the fiber optic system. One of the primary strategies for electronically increasing bandwidth has been to use time division multiplexing (TDM), which groups or multiplexes multiple lower rate electronic data channels together into a single very high rate channel. This technology has for the past 20 years been very effective for increasing bandwidth. However, it is now increasingly difficult to improve transmission speeds, both from a technological and an economical standpoint. WDM offers the potential of both an economical and technological solution to increasing bandwidth by using many parallel channels.
Further, WDM is complimentary to TDM. That is, WDM can allow many simultaneous high transmission rate TDM channels to be passed over a single optical fiber.
The use of WDM to increase bandwidth~requires two basic devices that are conceptually symmetrical. The first device is a wavelength division multiplexer. This device takes multiple beams, each with discrete wavelengths that are initially spatially separated in space, and provides a means for spatially combining all of the different wavelength_beams into a single polychromatic beam suitable for launching into an optical fiber. The multi~l exer may be a completely passive optical device or may include electronics that control or monitor the performance of the multiplexer. The input to the multiplexer is typically accomplished with optical fibers, although laser diodes or other optical sources may also be employed. As mentioned above, the output from the multiplexer is a single polychromatic beam which is typically directed into an optical fiber.
The second device for WDM is a wavelength division demultiplexer. This device i functionally the opposite of the wavelength division multiplexer. That is, the wavelength division demultiplexer receives a polychromatic beam from an a optical fiber and provides a means of spatially separating the different wavelengths of the polychromatic beam. The output from the demultiplexer is a plurality of monochromatic beams which are typically directed into a corresponding plurality of optical fibers or photodetectors.
To date, most WDM devices have been directed toward multiplexing or demultipl,exing a standard number of data channels. For example, many WDM devices are specifically manufactured to multiplex 33 individual data channels being carried on 33 corresponding monochromatic beams into a single polychromatic beam carryir~g all 33 data channels, or to demultiplex a single polychromatic beam carrying 33 separate data channels into 33 individual monochromatic beams each carrying a corresponding data channel. These WDM devices are typically limited to 33 data channels due to the manner in which they have been manufactured and the technologies employed to perform the multiplexing and demultiplexing functions therein. For example, WDM devices employing fiber Bragg gratings and/or array waveguide gratings to perform multiplexing and demultiplexing functions are typically limited to the number of data channels that the WDM devices were specifically manufactured to handle. Thus, if additional numbers of data channels need to be multiplexed and/or demultiplexed, additioT:al WD'~i devices are required, at a corresponding additional cost. Alternatively, enhanced WDM
devices employing these technologies may be designed to accommodate additional numbers of data channels, but with corresponding additional design, manufacturing, and testing costs. Also, such enhanced WDM devices are typically larger in size so as to accommodate the increased number of data channels, thereby requiring more space to operate, which usually translates into additional packaging costs.
In view of the foreg~ir_g, it ~ would be desirable to provide a WDM device which overcomes the above-described inadequacies and shortcomings. More particularly, it would be desirable to provide an ultra-dense WDM device which can accommodate additional data channels without requiring additional WDM devices or significant design modifications.

The primary obj ect of the present invention is to provide ultra-dense wavelength division multiplexing/demultiplexing devices.

The above-stated primary object, as well as other objects, features, and advantages, of the present invention will become readily apparent from the following summary and detailed descriptions, which are to be read in conjunction with the appended drawings.
SUI~IARY OF TFiE INVENTION
According to the present invention, ultra-dense wavelength division multiplexing/demultiplexing devices are provided. In the case of an ultra-dense wsvel~n~t-h~~;~T;~;~r multiplexing device, a wavehength divisic5n multiplexing device is used for combining at least one plurality of monochromatic optical beams into a corresponding at least one single, multiplexed, polychromatic optical beam, wherein the wavelength division multiplexing device has an input element and an output element. A plurality of optical input devices is disposed proximate the input element, wherein each of the plurality of optical input devices communicates a plurality of monochromatic optical beams to the wavelength division multiplexing device for combining the plurality of monochromatic optical beams into a single, multiplexed, polychromatic optical beam. A corresponding plurality of optical output devices is disposed proximate the output element, wherein each of the plurality of optical output devices receives a corresponding single, multiplexed, polychromatic optical beam.
In accordance with other aspects of the present invention,, the wavelength division multiplexing device a comprises a diffraction grating for combining the at least one plurality of monochromatic optical beams into the corresponding at least one single, multiplexed, polychromatic optical beam. The diffraction grating is preferably, a ,_.
reflective diffraction grating oriented at the Littrow diffraction angle. Alternatively, the diffraction grating can be a transmissive diffraction grating.
In accordance with further aspects of the present invention, the input element can beneficially be one of several items such as, for example, a collimating lens or a boot lens. Similarly, the output element can beneficially be one of several items such as, for example, a focusing lens or a boot lens.
0 In accordance with still further aspects of the present invention, the plurality of optical input devices is beneficially a plurality of input fiber coupling devices, wherein each of the plurality of input fiber coupling devices is arranged into an array of optical fibers, and each of the op~ical fibers transmits a monochromatic optical beam to the wavelength division multiplexing device. Also, the plurality S of optical input devices is beneficially a plurality of laser diode coupling devices, wherein each of the plurality of laser diode coupling devices is, arranged into an array of laser diodes, and each of the laser diodes transmits a monochromatic optical beam to the wavelength division multiplexing device.
l0 Further, the plurality ~of optical output devices is beneficially a plurality of output fiber coupling devices, wherein each of the plurality of output fiber coupling devices maintains at least one optical fiber, and each optical fiber receives a single, multiplexed, polychromatic optical beam 15 from the wavelength division multiplexing device.
In the case of an ultra-dense wavelength division demultiplexing device, a wavelength division demultiplexing device is used for separating at least one multiplexed, polychromatic optical beam into a corresponding at least one 20 plurality of monochromatic optical beams, wherein the wavelength division demultiplexing device has an input element and an output element. A plurality of optical input devices is disposed proximate the input element, wherein each of the plurality of optical input devices communicates a single, multiplexed, polychromatic optical beam to the wavelength division demultiplexing device for separating the single, S multiplexed, polychromatic optical beam into a plurality of monochromatic optical beams. A corresponding plurality of optical output devices is disposed proximate the output element, wherein each of the plurality of optical output devices receives a corresponding plurality of monochromatic ZO optical beams.
In accordance with .other aspects of the present invention, the wavelength division demultiplexing device comprises a diffraction grating for separating the at least one multiplexed, polychromatic optical beam into the 15 corresponding at least one plurality of monochromatic optical beams. The diffraction grating is preferably a reflective diffraction grating oriented at the Littrow diffraction angle.
Alternatively, the diffraction grating can be a transmissive diffraction grating.
In accordance with further aspects of the present invention, the input element can beneficially be one of several items such as, for example, a collimating lens or a boot lens. Similarly, the output element car_ beneficially be one of several items such as, for example, a focusing lens or a boot lens.
In accordance with still further aspects of the present S invention, the plurality of optical input devices is beneficially a plurality of input fiber coupling devices, wherein each of the plurality of input fiber coupling devices maintains at least one optical fiber, and each optical fiber transmits a single, multiplexed, polychromatic optical beam to the wavelength division demultiplexing device. Also, the plurality of optical output devices is beneficially a plurality of output fiber coupling devices, wherein each of the plurality of output fiber coupling devices is arranged into an array of optical fibers, and each of the optical fibers receives a monochromatic optical beam from the wavelength division demultiplexing device. Further, the plurality of optical output devices is beneficially a plurality of photodetector coupling devices, wherein each of the plurality of photodetector coupling devices is arranged into an array of photodetectors, and each of the photodetectors receives a monochromatic optical beam from the wavelength division demultiplexing device.

In accordance with still further aspects of the present invention, the at least one multiplexed, polychromatic optical beam can be at least two multiplexed, polychromatic optical beams. If such is the case, the ultra-dense wavelength division demultiplexing device may further comprise a splitter for splitting a single, pre-split, multiplexed, polychromatic optical beam into the at least two multiplexed, polychromatic optical beams. The single, pre-split, multiplexed, polychromatic optical beam cart be split equally or unequally.
Also, the single, pre-split, multiplexed, polychromatic optical beam can be split ,in several manners such as, for example, according to beam wavelengths or according to beam intensity.
The present invention also encompasses a method for increasing channel throughput in a wavelength division demultiplexing device. The method comprises splitting a single, multiplexed, polychromatic optical beam into at least two multiplexed, polychromatic optical beams, and then simultaneously separating each of the at least two multiplexed, polychromatic optical beams into a corresponding at least two pluralities of monochromatic optical beams. The method also preferably comprises collimating each of the at least two multiplexed, polychromatic optical beams, and focusing the corresponding at least two pluralities of monochromatic optical beams.
BRIEF DESCRIPTION OF THE DRAWINGS
In order to facilitate a fuller understanding of the present invention, reference is now made to the appended drawings. These drawings should not be construed as limiting the present invention, but are intended to be exemplary only.
Figure la is a side view of an ultra-dense wavelength division multiplexing devise having a plurality of optical input devices and a plurality of optical output devices in accordance with the present invention.
Figure lb is a top view of the ultra-dense wavelength division multiplexing device shown in Figure la.
Figure lc is an end view of a portion of the ultra-dense wavelength division multiplexing device shown in Figure la.
Figure 2a is a perspective view of a coupling device containing a plurality of laser diodes for replacing the plurality of optical input fibers in the multiplexing device shown in Figure la.

Figure 2b is~ a perspective view of a coupling device containing a plurality of photodetectors for replacing the plurality of optical input fibers in the demultiplexing device shown in Figure 3a.
Figure 3a is a side view of an ultra-dense wavelength division demultiplexing device having a plurality of optical input devices and a plurality of optical output devices in accordance with the present invention.
Figure 3b is a top view of the ultra-dense wavelength division demultiplexing device shown in Figure 3a.
Figure 4 is a top vciew of a demultiplexing system employing an ultra-dense wavelength division demultiplexing device having a plurality of optical input devices and a plurality of optical output devices in accordance with the present invention.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
Referring to Figures la and lb, there are shown a side view and a top view, respectively, of a preferred embodiment of an ultra-dense wavelength division multiplexing/demultiplexing device 10 in accordance with the present invention. The multiplexing device 10 comprises a plurality of optical input fibers 12, a plurality of input fiber coupling devices 14, a collimating/focusing lens 16, a reflective diffraction grating 18, a plurality of output fiber coupling devices 20, and a plurality of optical output fibers 22. All of the above-identified components of the multiplexing device 10 are disposed along an optical axis Z-Z
of the multiplexing device 10, as will be described in more detail below.
At this point it should be noted that the optical input fibers 12 and the optical output fibers 22, as well as any other optical fibers described herein as being used in conjunction with WDM devices in accordance with the present invention, are single mode optical fibers. .Of course, however, this does not limit the present invention WDM devices to use with only single mode optical fibers. For example, the present invention WDM devices can also be used with multimode optical fibers.
The plurality of optical input fibers 12 are grouped into three one-dimensional input fiber arrays (i.e., three 1 x 33 arrays) by the plurality of input fiber coupling devices 14, while each of the plurality of optical output fibers 22 is secured to a corresponding one of the plurality of output fiber coupling devices 20. Both the input fiber coupling devices 14 and the output fiber coupling devices 20 are used for purposes of ease of optical fiber handling and precision placement, and can be formed of, for example, silicon V-groove assemblies. Referring to Figure lc, there is shown an end view of the plurality of input fiber coupling devices 14 and the plurality of output fiber coupling devices 20, along section A-A of Figures la and lb. Each of the plurality of input fiber coupling devices 14 is arranged as a 1 x 33 array for precisely and securely positioning thirty-three of the plurality of optical input fibers 12, while each of the plurality of output fiber coupling devices 20 precisely and securely positions a corresponding one of the plurality of optical output fibers 22.
Returning to Figures la and lb, each of the plurality of optical input fibers 12 transmits a single, monochromatic optical input beam 24, while each of the plurality of optical output fibers 22 receives a single, multiplexed, polychromatic optical output beam 26. Each of the monochromatic optical input beams 24 being transmitted from the plurality of optical input ffibers 12 is carrying a single channel of data at a unique wavelength, which is preferably, but not required to be, within the infrared (IR) region of the electromagnetic spectrum. The single channel of data that is being carried by each monochromatic optical input beam 24 is superimposed on each corresponding unique wavelength by means (e. g., laser diodes connected to the plurality of optical input fibers 12) , which are,not shown here and which do not form a part of this invention, but are well, known in the art. The unique wavelengths of the monochromatic optical input beams 24 are appropriately preselected such that the data channels do not interfere with each other (i.e., there is sufficient channel spacing) , and the optical transmission losses through both the optical input fibers 12 and the optical output fibers 22 are low, as is also well known in the art.
Each of the multiplexed, polychromatic optical output beams 26 being received by the plurality of optical output fibers 22 is carrying a plurality of channels of data at the unique wavelengths of corresponding ones of the plurality of monochromatic optical input beams 24. That is, a first of the multiplexed, polychromatic optical output beams 26a is carrying a plurality of channels of data (e.g., 33 channels of data) at the unique wavelengths of the monochromatic optical input beams 24a that are transmitted from the optical input fibers 12a being precisely and securely positioned by a first of she plurality of input fiber coupling devices 14a.
Similarly, a second of the multiplexed, polychromatic optical output beams 26b is carrying a plurality of channels of data (e.g., 33 channels of data? at the unique wavelengths of the monochromatic optical input beams 24b that are transmitted from the optical input fibers 12b being precisely and securely positioned by a second of the plurality of input fiber coupling devices 14b. Similarly still, a third of the multiplexed, polychromatic optical output beams 26c is carrying a plurality of charanels of data (e.g., 33 channels of data) at the unique wavelengths of the monochromatic optical input beams 24c that are transmitted from the optical input fibers 12c being precisely and securely positioned by a third of the plurality of input fiber coupling devices 14c.
The plurality of monochromatic optical input beams 24a are combined into the multiplexed, polychromatic optical output beam 26a through the combined operation of the collimating/focusing lens 16 and the reflective diffraction grating 18, as will be described in more detail below.
Similarly, the plurality of monochromatic optical input beams 24b are combined into the multiplexed, polychromatic optical output beam 26b Through the combined operation of the collimating/focusing lens 16 and the reflective diffraction grating 18, as will be described in more detail below.
Similarly still, the plurality of monochromatic optical input S beams 24c are combined into the multiplexed, polychromatic optical output beam 26~ through the combined operation of the collimating/focusing lens 16 and the reflective diffraction grating 18, as will be described in more detail below.
At this point it should be noted that the input fiber coupling device 14a and~the output fiber coupling device 20a are disposed offset from, bud symmetrically about, the optical axis Z-Z. of the multiplexing device 10 so as to insure that the multiplexed, polychromatic optical output beam 26a is directed to the optical output fiber 22a secured to the output fiber coupling device ~Oa, and not to any of the other optical output fibers 22, or anywhere else. This offset spacing of the input fiber coupling device 14a and the output fiber coupling device 20a is determined based upon the focusing power of the collimating/focusing lens 16, as well as the characteristics of the diffraction grating 18 and the wavelengths of each of the monochromatic optical input beams 24a.

Similarly, the input fiber coupling device 14b and the output fiber coupling device 20b are disposed offset from, but symmetrically about, the optical axis Z-Z of the multiplexing device 20 so as to insure that the multiplexed, polychromatic optical output beam 26b is directed to the optical output fiber 22b -secured to the output fiber coupling device 20b, and not to any of the other optical output fibers 22, or anywhere else. .This offset spacing of the input fiber coupling device 14b and the output fiber coupling device 20b is determined based upon the focusing power of the collimating/focusing lens ~nz 16, as well as the characteristics of the diffraction grating 18 and the wavelengths of each of the monochromatic optical input beams 24b.
Similarly still, the input fiber coupling device 14c and the output fiber coupling device 20c are disposed offset from, but symmetrically about, the optical axis Z-Z of the multiplexing device 10 so as to insure that the multiplexed, polychromatic optical output beam 26c is directed to the optical output fiber 22c secured to the output fiber coupling device 20c, and not to any of the other optical output fibers 22, or anywhere else. This offset spacing of the input fiber coupling device 14c and the output fiber coupling device 20c is determined based upon the focusing power of the collimating/focusing lens 16, as well as the characteristics of the diffraction grating 18 and the wavelengths of each of the monochromatic optical input beams 24c.
Each of the plurality of monochromatic optical input beams 24 are transmitted from their corresponding optical input fiber 12 into the air space between the plurality of input fiber coupling devices 14 and the collimating/focusing lens 16. Within this air space, the plurality of ZO monochromatic optical input beams 24 are~expanded in diameter until they become incident upon the collimating/focusing lens 16. The collimating/focusing lens 16 collimates each of the plurality of monochromatic optical input beams 24, and then transmits each collimated, monochromatic optical input beam 24~ to the reflective diffraction grating 18.
At this point it should be noted that the optical axis of the collimating/focusing lens 16 coincides with the optical axis Z-Z of the multiplexing device 10 so as to insure that the multiplexed, polychromatic optical output beam 26a is directed to the optical output fiber 22a secured to the output fiber coupling device 20a, and not to any of the other optical output fibers 22, or anywhere else, as will be described in more detail below. Similarly, the optical axis of the collimating/focusing lens 16 coincides with the optical axis Z-Z of the multiplexing device 10 so as to insure that the multiplexed, polychromatic optical output beam 26b is directed to the optical output fiber 22b secured to the output fiber coupling device 20b, and not to any of the other optical output fibers 22, or anywhere else, as will be described in more detail below. Similarly still, the optical axis of the collimating/focusing lens 16 coincides with the optical. axis Z-Z of the multiplexing device 10 so as to insure that the multiplexed, polychromatic optical output beam 26c is directed to the optical output fiber 22c secured to the output fiber coupling device 20c, and not to any of the other optical output fibers 22, or anywhere else, as will be described in more detail below.
The reflective diffraction grating 18 operates to angularly disperse the plurality of collimated, monochromatic optical input beams 24' by an amount that is dependent upon the wavelength of each of the plurality of collimated, monochromatic optical input beams 24'. Also, the reflective diffraction grating 18 is oriented at a special angle (i.e., the Littrow diffraction angle, ai) relative to the optical axis Z-Z of the multiplexing device 10 in order to obtain the Littrow diffraction condition for an optical beam having a wavelength that lies within or near the wavelength range of the plurality of collimated, monochromatic optical input beams 24'. The Littrow diffraction condition requires that an optical beam be incident on and reflected back from a reflective diffraction grating at the exact same angle.
Therefore, it will be readily apparent to one skilled in the art that the reflective diffraction grating 18 is used to obtain near-Littrow diffraction for each of the plurality of collimated, monochromatic optical input beams 24'.
The Littrow diffraction angle, ai, is determined by the well-known diffraction grating equation, m~ = 2d (sin ai) wherein m is the diffraction order, A is the wavelength, d is the diffraction grating groove spacing, and ai is the common angle of incidence and reflection. It will be readily apparent to one skilled in the art that the Littrow diffraction angle, ai, depends upon numerous variables, which may be varied as necessary to optimize the performance of the multiplexing device 10. For example, variables affecting the Littrow diffraction angle, ai, include the desired grating diffraction order, the grating blaze angle, the number of data channels, the spacing of the data channels, and the wavelength range of the multiplexing device 10.
At this point it should be noted that the reflective diffraction grating 18 can be formed from a variety of materials and by a variety of techniques. For example, the reflective diffraction grating 18 can be formed by a three dimensional hologram in a polymer medium, or by replicating a mechanically ruled master with a polymer material. In both.
cases, the polymer is overcoated with a thin, highly reflective metal layer such as, for example, gold or aluminum.
Alternatively, the reflective diffraction grating 18 can be formed by chemically etching into a planar material such as, for example, glass or silicon, which is also overcoated with a thin, highly reflective metal layer such as, for example, gold or aluminum.
As previously mentioned, the reflective diffraction grating 18 operates to angularly disperse the plurality of collimated, monochromatic optical input beams 24'. Thus, the reflective diffraction grating 18 removes the angular separation of the plurality of collimated, monochromatic optical input beams 24'a, and reflects a collimated, polychromatic optical output beam 26'a back towards the collimating/focusing lens 16. The collimated, polychromatic optical output beam 26'a contains each of the unique wavelengths of the plurality of collimated, monochromatic optical input beams 24'a. Thus, the collimated, polychromatic optical output beam 26'a is a collimated, multiplexed, polychromatic optical , output beam 26'a. The collimating/focusing lens 16 focuses the collimated, multiplexed, polychromatic optical output beam 26'a, and then IO transmits the resulting multiplexed, polychromatic optical output beam 26a to the output fiber coupling device 20a where it becomes incident upon the optical output fiber 22a. The multiplexed, polychromatic optical output beam 26a is then coupled into the optical output fiber 22a for transmission therethrough.
Similarly, the reflective diffraction grating 18 removes the angular separation of the plurality of collimated, monochromatic optical input beams 24'b, and reflects a collimated, polychromatic optical output beam 26'b back towards the collimating/focusing lens 16. The collimated.
polychromatic optical output beam 26'b contains each of the unique wavelengths of the plurality of collimated k monochromatic optical input beams 24'b. Thus, the collimated, polychromatic optical output beam 26'b is a collimated, multiplexed, polychromatic optical output beam 26'b. The collimating/focusing lens 16 focuses the collimated, multiplexed, polychromatic optical output beam 26'b, and then transmits the resulting multiplexed, polychromatic optical output beam 26b to the output fiber coupling device 20b where it becomes incident upon the optical output fiber 22b. The multiplexed, polychromatic optical output beam 26b is then coupled into the optical output fiber 22ba for transmission therethrough.
Similarly still, the reflective diffraction grating 18 removes the angular separation of the plurality of collimated, monochromatic optical input beams 24'c, and reflects a collimated, polychromatic optical output beam 26'c back towards the collimating/focusing lens 16. The collimated, polychromatic optical output beam 26'c contains each' of the unique wavelengths of the plurality of collimated, monochromatic optical input beams 24'c. Thus, the collimated, polychromatic optical output beam 26'c is a collimated, multiplexed, polychromatic optical output beam 26'c. The collimating/focusing lens 16 focuses the collimated, multiplexed, polychromatic optical output beam 26~c, and then transmits the resulting multiplexed, polycnroma~ic optical output beam 26c to the output fiber coupling device 20c where it becomes incident upon the optical output fiber 22c. The S multiplexed, polychromatic optical output beam 26c is then coupled into the optical output fiber 22c for transmission therethrough.
At this point it should be noted that the plurality of optical input fibers 12 could be replaced in the multiplexing device 10 by a corresponding plurality of laser diodes 28 secured within a plurality,of coupling devices 30, such as shown in Figure 2a (although Figure 2a shows only a single 1 x 4 array). The coupling device 30 performs a similar function to that of each of the plurality of input fiber coupling devices 14, that being to precisely group the plurality of laser diodes 28 into a one-dimensional input array. The plurality of laser diodes 28 are used in place of the plurality of optical input fibers 12 to transmit the plurality of monochromatic optical input beams 2~ to the multiplexing device 10. The array of Laser diodes 28, as well as the plurality of optical input fibers 12, may operate alone, or may be used with appropriate focusing lenses (not shown) to provide the best coupling and the lowest amount of signal loss and channel crosstalk.
At this point it should be noted that the multiplexing device 10, as well as all of the multiplexing devices described herein, may be operated in a converse configuration as a demul,tiplexing device 40, such as shown in Figures 3a and 3b. The demultiplexing device 40 is physically identical to the multiplexing device 10, and is therefore numerically identified as such. However. the SAT""~ +-;,.,~ o..; r~ a~_.: ~.. ~ " _ functionally opposite to the multiplexing device 10. That is, ~~<
a plurality of multiplexed "polychromatic optical input beams 42 are transmitted from the plurality of optical fibers 22, and a plurality of monochromatic optical output beams 44 are transmitted to the plurality of optical fibers 12, wherein each one of the plurality of. monochromatic optical output beams 44 is transmitted to a corresponding one of the plurality of optical fibers 12. For example, the multiplexed, polychromatic optical input beam 42a is simultaneously carrying a plurality of channels of data, each at a unique wavelength which is preferably, but not required to be, within the infrared (IR) region of the electromagnetic spectrum. The plurality of monochromatic optical output beams 44a are each carrying a single channel of data at a corresponding one of the unique wavelengths of th' multiplexed, polychromatic optical input beam 42a. The multiplexed, polychromatic optical input beam 42a is separated into the plurality of monochromatic optical output beams 44a through the combined operation of the collimating/focusing lens 16 and the reflective diffraction , grating 18. Thus, the collimating/focusing lens 16 and the reflective diffraction grating 18 operate to perform a demultiplexing function.
Similarly, the multiplexed, polychromatic optical input beam 42b is simultaneously carrying a plurality of channels of data, each at a unique wavelength which is preferably, but not required to be, within the infrared (IR) region of the electromagnetic spectrum. The plurality of monochromatic i5 optical output beams 44b are each carrying a single channel of data at a corresponding one of the unique wavelengths of the multiplexed, polychromatic optical input beam 42b. The multiplexed, polychromatic optical input beam 42b is separated into the plurality of monochromatic optical output beams 44b through the combined operation of the collimating/focusing lens 16 and the reflective diffraction grating 18. Thus, the collimating/focusing lens 16 and the reflective diffraction grating 18 operate to perform a demultiplexing function.
Similarly still, the multiplexed, polychromatic optical input beam 42c is simultaneously carrying a plurality of S channels of data, each at a unique wavelength which is preferably, but not required to be, within the infrared (IR) region of the electromagnetic spectrum. The plurality of monochromatic optical output beams 44c are each carrying a single channel of data at a corresponding one of the unique wavelengths of the multiplexed, polychromatic optical input beam 42c. The multiplexed,, polychromatic optical input beam 42c is separated into the plurality of monochromatic optical output beams 4~c through the combined operation of the collimating/focusing lens 16 and the reflective diffraction grating 18. Thus, the collimating/focusing lens 16 and the reflective diffraction grating 18 operate to perform a demultiplexing function.
At this point it should be noted that the plurality of optical fibers 12 could be replaced in the demultiplexing device 40 by a corresponding plurality of photodetectors 48 secured within a plurality of coupling devices 50, such as shown in Figure 2b (although Figure 2b shows only a single 1 x 13 array). The coupling device 50 performs a similar function to that of each of the plurality of fiber coupling devices 14, that being to precisely group the plurality of photodetectors 48 into a one-dimensional input array. The plurality of photodetectors 48 are used in place of the plurality of optical fibers I2 to receive the plurality of monochromatic optical output beams 44 from the demultiplexing device 40. The array of photodetectors 48, as well as the plurality of optical fibers 12, may operate alone, or may be used with appropriate focusing lenses (not shown) to provide the best coupling and the lowest amount of signal loss and channel crosstalk.
Referring to Figure 4, there is shown a demultiplexing system 60 wherein the demultiplexing device 40 of Figures 3a and 3b is used in a practical manner to demultiplex additional data channels without requiring additional WDM devices or significant design modifications in accordance with the present invention. The demultiplexing system 60 is physically identical to the multiplexing device 40, except for the addition of optical input fiber 62 and optical filter 64, and is therefore numerically identified as such. The optical input fiber 62 communicates a single, multiplexed, polychromatic optical input beam to the optical filter 64.
The single, multiplexed, polychromatic optical input beam being communicated by the optical input fiber 62 is simultaneously carrying a plurality of channels of data (e. g., S 99 channels of data), each at a unique wavelength which is preferably, but not required to be, within the infrared (TR) region of the electromagnetic spectrum. The optical filter 64 equally splits the single, multiplexed, polyc~-~romatic optical input beam according to wavelength ir_to three multiplexed, polychromatic optical input beams 42. That is, each of the ~,_ three resulting multiplexed,, polychromatic optical input beams a2 is simultaneously carrying a plurality of channels of data (e.g., 33 channels of data) at the unique wavelengths of corresponding ones of the unique wavelengths of the single, multiplexed, polychromatic optical input beam. For example, the multiplexed, polychromatic optical input beam 42a is simultaneously carrying a plurality of channels of data (e. g., 33 channels of data) at the unique wavelengths of corresponding ones of the unique wavelengths of the single, 2o multiplexed, polychromatic optical input beam. Then, the plurality of monochromatic optical output beams 44a are each carrying a single channel of data at a corresponding one of the unique wavelengths of the multiplexed, polychromatic optical input beam 42a. The multiplexed, polychromatic optical input beam 42a is separated into the plurality of monochromatic optical output beams 44a through the combined operation of the collimating/focusing lens 16 and the reflective diffraction grating 18. Thus, the collimating/focusing lens. l6 and the reflective diffraction grating 18 operate to perform a demultiplexing function.
Similarly, the multiplexed, polychromatic optical input beam 42b is simultaneously carrying a plurality of channels of data (e.g., 33 channels of data) at the unique wavelengths of corresponding ones of the unique wavelengths of the single, multiplexed, polychromatic optical input beam. Then, the plurality of monochromatic optical output beams 44b are each carrying a single channel of data at a corresponding one of the unique wavelengths of the multiplexed, polychromatic optical input beam 42b. The multiplexed, polychromatic optical input beam 42b is separated into the plurality of monochromatic optical output beams 44b through the combined operation of the collimating/focusing lens 16 and the reflective diffraction grating 18. Thus, the collimating/focusing lens 16 and the reflective diffraction grating 18 operate to perform a demultiplexing function.
Similarly still, the multiplexed, polychromatic optical input beam 42c is simultaneously carrying a plurality of channels of data (e. g., 33 channels of data) at the. unique wavelengths of corresponding ones of the unique wavelengths of the single, multiplexed, polychromatic optical input beam.
Then, the plurality of monochromatic optical output beams 44c are each carrying a single channel of data at a corresponding one of the unique wavelengths of the multiplexed, polychromatic optical input beam 42c. The multiplexed, polychromatic optical input beam 42c is separated into the plurality of monochromatic optical output beams 44c through the combined operation of the collimating/focusing lens 16 and the reflective diffraction grating 18. Thus, the collimating/focusing lens 16 and the reflective diffraction grating 18 operate to perform a demultiplexing function.
~t this point it should be noted that there are many alternate embodiments and uses for the present invention ultra-dense wavelength division multiplexing/demultiplexing device. For example; the single, multiplexed, polychromatic optical input beam could be split unequally according to wavelength. Alternatively, the single, multiplexed, polychromatic optical input beam could be split either eaually or unequally according to beam intensity. Alternatively still, the single, multiplexed, polychromatic optical input beam could be split such that any or all of the resultant multiplexed, polychromatic optical input beams are identical so as to create redundant channels. Alternatively still, the single, multiplexed, polychromatic optical input beam could be split such that certain data channels are routed separately so as to provide security as to those data channels. Thus, the optical filter 64 could be,,for example, a standard coupler, a fiber Bragg grating, an interference filter, a bandpass filter, a power splitter, or any other suitable splitting means.
At this point it should also be noted that the present invention ultra-dense wavelength division multiplexing/demultiplexing device can be used simultaneously for multiplexing and demultiplexing operations. For example, the plurality of optical fibers 12a can be used to transmit a corresponding plurality of monochromatic optical input beams 24a and the optical fiber 22a can be used to receive a multiplexed, polychromatic, optical output beam 26a, while simultaneously the optical fiber 22b can be used to transmit a multiplexed, polychromatic, optical input beam 42b and the plurality o.f optical fibers 12b can be used to receive a corresponding plurality of monochromatic optical output beams 44b.
At this point it should further be noted that it is within the scope of the present invention to provide an ultra-dense wavelength division multiplexing/demultiplexing device in accordance with the present invention using any or all of the concepts anctj~Dr features described in U.S. Patent Application No. 09/257,045 (Attorney Docket No. 34013-00008, Client Reference No. D-97031-CNT.), filed February 25, 1999;
U.S. Patent Application No. 09/323,094 (Attorney Docket No.
34013-00010, Client Reference No. D-99001), filed June 1, 1999; U.S. Patent Application No. 09/342,142 (Attorney Docket No. 34013-00011, Client Reference No. D-99002) , filed June 29, 1999; U.S. Patent Application No. 09/382,492 (Attorney Docket No. 34013-00013, Client Reference No. D-99004), filed August 25, 1999; U.S. Patent Application No. 09/382,624 (Attorney Docket No. 34013-00014, Client Reference No. D-99005), fled August 25, 1999; U.S. Patent Application No. 09/363,041 (Attorney Docket No. 34013-00023, Client Reference No. D-99014), filed July 29, 1999; U.S. Patent Application No.
09/363,042 (Attorney Docket No. 34013-00024, Client Reference No. D-99015), filed July 29, 1999; U.S. Patent Application No.
09/392,670 (Attorney Docket No. 34013-00025, Client Reference No. D-99016), filed September 8, 1999; and U.S. Patent Application No. 09/392,831 (Attorney Docket No. 34013-00026, Client Reference No. D-99017) , filed September 8, 1999; all of which are hereby incorporated herein by reference. For example, an ultra-dense wavelength division i0 multiplexing/demultiplexing device in accordance with the present~invention may be wholly or partially integrated, and different types of lenses and lens configurations may be used.
Finally, it should be noted that the maximum number of arrays is only dependent upon the ability of the lens design to handle more than one array. Specifically, this relates to a basic tradeoff in performance as arrays are stacked next to one another. The farther away an array is placed from the optical axis Z-Z of the device, typically there is a degradation in fiber coupling efficiency since the lens cannot typically perform at very large field heights with. high efficiency. Also, as arrays are placed away from the optical axis Z-Z of the device, there is an increased probability of crosstalk. However, by careful lens design, the performance of each array can be made to be the same as other arrays . For example, the inner-most array can be made to have the same performance as the outermost array. This could be useful for S ~ WDM systems requiring a very flat response between each of the data channels. Alternately, the placement of the arrays can be such that there is a non-flat, or unusual response (efficiency versus wavelength). The beauty of the present invention approach is that there is no significant ir_sertion loss for creating a WDM device with very high data channel counts . This approach allows processing of more data channels in a more efficient manner than other WDM technologies such as, for example, fiber Bragg gratings or array waveguide gratings (AWGs) . Also, the robustness of this approach allows 15 a very large number of data channels to be processed (multiplexed or demultiplexed) in one single WDM device.
Thus, the present invention ultra-dense wavelength division multiplexing/demultiplexing device has the benefits of low insertion loss, low crosstalk, low cost, and a very high 20 number of data channels. More specifically, the present invention ultra-dense wavelength division multiplexing/demultiplexing device offers the new and non-obvious advantages of: (1) the ability to increase the data channel throughput (# of data channels) in a WDM device by simply splitting a signal and then attaching corresponding split signal optical fibers to extra input and output positions on the WDM device; (2) the ability to use a WDM
device for_ the multiplexing or demultiplexing for more than one array of data channels without major changes to the lens design of the WDM device; (3) the ability to use a WDM device for bi-directional and simultaneous multiplexing and demultiplexing (use as a duplex mux/demux) ; (4) the ability to create a redundant or secure WDM device; and (5) the other new and non-obvious advantages that are apparent from the foregoing description.
The present invention is not to be limited in scope by the specific embodiments described herein. Indeed, various modifications of the present invention, in addition to those described herein, will be apparent to those of skill in the art from the foregoing description and accompanying drawings.
Thus, such modifications are intended to fall within the scope of the appended claims.

Claims (30)

What is claimed is:
1. An ultra-dense wavelength division multiplexing device comprising:
a wavelength division multiplexing device for combining at least one plurality of monochromatic optical beams into a corresponding at least one single, multiplexed, polychromatic optical beam, the wavelength division multiplexing device having an input element and an output element;
a plurality of optical input devices disposed proximate the input element, each of the plurality of optical input devices for communicating a plurality of monochromatic optical beams to the wavelength division multiplexing device for combining the plurality of monochromatic optical beams into a single, multiplexed, polychromatic optical beam; and a corresponding plurality of optical output devices disposed proximate the output element, each of the plurality of optical output devices for receiving a corresponding single, multiplexed, polychromatic optical beam.
2. The device as defined in claim 1, wherein the wavelength division multiplexing device comprises:
a diffraction grating for combining the at least one plurality of monochromatic optical beams into the corresponding at least one single, multiplexed, polychromatic optical beam.
3. The device as defined in claim 2, wherein the diffraction grating is a reflective diffraction grating oriented at the Littrow diffraction angle.
4. The device as defined in claim 2, wherein the diffraction grating is a transmissive diffraction grating.
5. The device as defined in claim 1, wherein the input element is a collimating lens.
6. The device as defined in claim 1, wherein the input element is a boot lens.
7. The device as defined in claim 1, wherein the output element is a focusing lens.
8. The device as defined in claim 1, wherein the output element is a boot lens.
9. The device as defined in claim 1, wherein the plurality of optical input devices is a plurality of input fiber coupling devices, wherein each of the plurality of input fiber coupling devices is arranged into an array of optical fibers, each of the optical fibers for transmitting a monochromatic optical beam to the wavelength division multiplexing device.
10. The device as defined in claim 1, wherein the plurality of optical input devices is a plurality of laser diode coupling devices, wherein each of the plurality of laser diode coupling devices is arranged into an array of laser diodes, each of the laser diodes for transmitting a monochromatic optical beam to the wavelength division multiplexing device.
11. The device as defined in claim 1, wherein the plurality of optical output devices is a plurality of output fiber coupling devices, wherein each of the plurality of output fiber coupling devices maintains at least one optical fiber, each optical fiber for receiving a single, multiplexed, polychromatic optical beam from the wavelength division multiplexing device.
12. An ultra-dense wavelength division demultiplexing device comprising:
a wavelength division demultiplexing device for separating at least one multiplexed, polychromatic optical beam into a corresponding at least one plurality of monochromatic optical beams, the wavelength division demultiplexing device having an input element and an output element;
a plurality of optical input devices disposed proximate the input element, each of the plurality of optical input devices for communicating a single, multiplexed, polychromatic optical beam to the wavelength division demultiplexing device for separating the single, multiplexed, polychromatic optical beam into a plurality of monochromatic optical beams; and a corresponding plurality of optical output devices disposed proximate the output element, each of the plurality of optical output devices for receiving a corresponding plurality of monochromatic optical beams.
13. The device as defined in claim 12, wherein the wavelength division demultiplexing device comprises:
a diffraction grating for separating the at least one multiplexed, polychromatic optical beam into the corresponding at least one plurality of monochromatic. optical beams.
14. The device as defined in claim 13, wherein the diffraction grating is a reflective diffraction grating oriented at the Littrow diffraction angle.
15. The device as defined in claim 13, wherein the diffraction grating is a transmissive diffraction grating.
16. The device as defined in claim 12, wherein the input element is a collimating lens.
17. The device as defined in claim 12, wherein the input element is a boot lens.
18. The device as defined in claim 12, wherein the output element is a focusing 1ens.
19. The device as defined in claim 12, wherein the output element is a boot lens.
20. The device as defined in claim 12, wherein the plurality of optical input devices is a plurality of input fiber coupling devices, wherein each of the plurality of input fiber coupling devices maintains at least one optical fiber, each optical fiber for transmitting a single, multiplexed, polychromatic optical beam to the wavelength division demultiplexing device.
21. The device as defined in claim 12, wherein the plurality of optical output devices is a plurality of output fiber coupling devices, wherein each of the plurality of output fiber coupling devices is arranged into an array of optical fibers, each of the optical fibers for receiving a monochromatic optical beam from the wavelength division demultiplexing device.
22. The device as defined in claim 12, wherein the plurality of optical output devices is a plurality of photodetector coupling devices, wherein each of the plurality of photodetector coupling devices is arranged into an array of photodetectors, each of the photodetectors for receiving a monochromatic optical beam from the wavelength division demultiplexing device.
23. The device as defined in claim 12, wherein the at least one multiplexed, polychromatic optical beam is at least two multiplexed, polychromatic optical beams, further comprising:
a splitter for splitting a single, pre-split, multiplexed, polychromatic optical beam into the at least two multiplexed, polychromatic optical beams.
24. The device as defined in claim 23, wherein the single, pre-split, multiplexed, polychromatic optical beam is split equally.
25. The device as defined in claim 23, wherein the singe, pre-split, multiplexed, polychromatic optical beam is split unequally.
26. The device as defined in claim 23, wherein the single, pre-split, multiplexed, polychromatic optical beam is split according to beam wavelengths.
27. The device as defined in claim 23, wherein the single, pre-split, multiplexed, polychromatic optical beam is split according to beam intensity.
28. A method for increasing channel throughput in a wavelength division demultiplexing device, the method comprising the steps of:
splitting a single, multiplexed, polychromatic optical beam into at least two multiplexed, polychromatic optical beams; and simultaneously separating each of the at least, two multiplexed, polychromatic optical beams into a corresponding at least two pluralities of monochromatic optical beams.
29. The method as defined in claim 28, further comprising the step of:
collimating each of the at least two multiplexed, polychromatic optical beams.
30. The method as defined in claim 28, further comprising the step of:
focusing the corresponding at least two pluralities of monochromatic optical beams.
CA002413832A 2000-05-31 2001-05-31 Ultra-dense wavelength division multiplexing/demultiplexing devices Abandoned CA2413832A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/583,764 2000-05-31
US09/583,764 US6343169B1 (en) 1999-02-25 2000-05-31 Ultra-dense wavelength division multiplexing/demultiplexing device
PCT/US2001/017503 WO2001092935A1 (en) 2000-05-31 2001-05-31 Ultra-dense wavelength division multiplexing/demultiplexing devices

Publications (1)

Publication Number Publication Date
CA2413832A1 true CA2413832A1 (en) 2001-12-06

Family

ID=24334463

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002413832A Abandoned CA2413832A1 (en) 2000-05-31 2001-05-31 Ultra-dense wavelength division multiplexing/demultiplexing devices

Country Status (5)

Country Link
US (2) US6343169B1 (en)
EP (1) EP1303775A4 (en)
AU (1) AU2001266626A1 (en)
CA (1) CA2413832A1 (en)
WO (1) WO2001092935A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6343169B1 (en) * 1999-02-25 2002-01-29 Lightchip, Inc. Ultra-dense wavelength division multiplexing/demultiplexing device
US6731838B1 (en) 2000-06-02 2004-05-04 Confluent Photonics Corporation Athermalization and pressure desensitization of diffraction grating based WDM devices
US6621958B1 (en) 2000-06-02 2003-09-16 Confluent Photonics Corporation Athermalization and pressure desensitization of diffraction grating based WDM devices
US6556297B1 (en) 2000-06-02 2003-04-29 Digital Lightwave, Inc. Athermalization and pressure desensitization of diffraction grating based spectrometer devices
US6570652B1 (en) 2000-06-02 2003-05-27 Digital Lightwave, Inc. Athermalization and pressure desensitization of diffraction grating based spectrometer devices
US6741408B2 (en) * 2000-06-15 2004-05-25 Confluent Photonics Corporation Thermally stable mounting for a diffraction grating device
US7006727B2 (en) * 2001-03-15 2006-02-28 Fluisar Corporation Combined multiplexer and demultiplexer for optical communication systems
US8639069B1 (en) * 2003-06-30 2014-01-28 Calient Technologies, Inc. Wavelength dependent optical switch
FR2883384B1 (en) * 2005-03-18 2008-01-18 Thales Sa OPTICAL DEVICE FOR WAVELENGTH MULTIPLEXING
US7948680B2 (en) 2007-12-12 2011-05-24 Northrop Grumman Systems Corporation Spectral beam combination using broad bandwidth lasers
FR2990524B1 (en) * 2012-05-09 2016-05-13 Archimej Tech DEVICE FOR TRANSMITTING A CONTROLLED SPECTRUM LIGHT BEAM.
US9829636B2 (en) * 2013-04-17 2017-11-28 Bae System Plc Alignment of radiation beams
EP2793071A1 (en) * 2013-04-17 2014-10-22 BAE Systems PLC Alignment of radiation beams for a spectral beam combiner
US10971896B2 (en) 2013-04-29 2021-04-06 Nuburu, Inc. Applications, methods and systems for a laser deliver addressable array
US10562132B2 (en) 2013-04-29 2020-02-18 Nuburu, Inc. Applications, methods and systems for materials processing with visible raman laser
US11646549B2 (en) 2014-08-27 2023-05-09 Nuburu, Inc. Multi kW class blue laser system
US11612957B2 (en) * 2016-04-29 2023-03-28 Nuburu, Inc. Methods and systems for welding copper and other metals using blue lasers
US20220072659A1 (en) * 2016-04-29 2022-03-10 Nuburu, Inc. Methods and Systems for Reducing Hazardous Byproduct from Welding Metals Using Lasers
EP3576899A4 (en) 2017-01-31 2021-02-24 Nuburu, Inc. Methods and systems for welding copper using blue laser
CA3061027C (en) 2017-04-21 2023-11-14 Nuburu, Inc. Multi-clad optical fiber
WO2018231884A1 (en) 2017-06-13 2018-12-20 Nuburu, Inc. Very dense wavelength beam combined laser system
WO2020107030A1 (en) 2018-11-23 2020-05-28 Nuburu, Inc Multi-wavelength visible laser source
JP2022523725A (en) 2019-02-02 2022-04-26 ヌブル インク High reliability, high power, high brightness blue laser diode system and its manufacturing method

Family Cites Families (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4198117A (en) 1976-12-28 1980-04-15 Nippon Electric Co., Ltd. Optical wavelength-division multiplexing and demultiplexing device
US4111524A (en) 1977-04-14 1978-09-05 Bell Telephone Laboratories, Incorporated Wavelength division multiplexer
US4153330A (en) 1977-12-01 1979-05-08 Bell Telephone Laboratories, Incorporated Single-mode wavelength division optical multiplexer
DE2916184A1 (en) 1979-04-21 1980-10-30 Philips Patentverwaltung OPTICAL POWER DISTRIBUTOR
US4274706A (en) 1979-08-30 1981-06-23 Hughes Aircraft Company Wavelength multiplexer/demultiplexer for optical circuits
US4299488A (en) 1979-11-23 1981-11-10 Bell Telephone Laboratories, Incorporated Time-division multiplexed spectrometer
US4279464A (en) 1979-12-18 1981-07-21 Northern Telecom Limited Integrated optical wavelength demultiplexer
FR2519148B1 (en) 1981-12-24 1985-09-13 Instruments Sa WAVELENGTH SELECTOR
US4836634A (en) 1980-04-08 1989-06-06 Instruments Sa Wavelength multiplexer/demultiplexer using optical fibers
US4343532A (en) 1980-06-16 1982-08-10 General Dynamics, Pomona Division Dual directional wavelength demultiplexer
US4387955A (en) 1981-02-03 1983-06-14 The United States Of America As Represented By The Secretary Of The Air Force Holographic reflective grating multiplexer/demultiplexer
CA1154987A (en) 1981-11-27 1983-10-11 Narinder S. Kapany Fiber optics commmunications modules
NL8104121A (en) 1981-09-07 1983-04-05 Philips Nv TUNABLE OPTICAL DEMULTIPLEX DEVICE.
NL8104123A (en) 1981-09-07 1983-04-05 Philips Nv OPTICAL MULTIPLEX AND DEMULTIPLEX DEVICE.
DE3213839A1 (en) 1982-04-15 1983-10-27 Philips Patentverwaltung Gmbh, 2000 Hamburg OPTICAL WAVELENGTH MULTIPLEX OR -DEMULTIPLEX ARRANGEMENT
DE3216516A1 (en) 1982-05-03 1983-11-03 Siemens AG, 1000 Berlin und 8000 München OPTICAL WAVELENGTH MULTIPLEXER IN ACCORDANCE WITH THE GRILLED PRINCIPLE
US4652080A (en) 1982-06-22 1987-03-24 Plessey Overseas Limited Optical transmission systems
FR2537808A1 (en) 1982-12-08 1984-06-15 Instruments Sa OPTICAL COMPONENT WITH SHARED FUNCTION FOR OPTICAL TELETRANSMISSIONS
DE3309349A1 (en) 1983-03-16 1984-09-20 Fa. Carl Zeiss, 7920 Heidenheim WAVELENGTH MULTIPLEXER OR DEMULTIPLEXER
FR2543768A1 (en) 1983-03-31 1984-10-05 Instruments Sa WAVE LENGTH MULTIPLEXER-DEMULTIPLEXER AND METHOD OF MAKING SAME
US4522462A (en) 1983-05-27 1985-06-11 The Mitre Corporation Fiber optic bidirectional wavelength division multiplexer/demultiplexer with total and/or partial redundancy
US4726645A (en) 1983-08-12 1988-02-23 Mitsubishi Denki Kabushiki Kaisha Optical coupler
US4643519A (en) 1983-10-03 1987-02-17 International Telephone And Telegraph Corporation Wavelength division optical multiplexer/demultiplexer
FR2553243B1 (en) 1983-10-11 1990-03-30 Lignes Telegraph Telephon WAVELENGTH OPTICAL WAVELENGTH MULTIPLEXER-DEMULTIPLEXER FOR BIDIRECTIONAL LINK
NL8304311A (en) 1983-12-15 1985-07-01 Philips Nv REFLECTION GRID.
DE3503203A1 (en) 1985-01-31 1986-08-07 Standard Elektrik Lorenz Ag, 7000 Stuttgart OPTICAL MULTIPLEXER / DEMULTIPLEXER
US4773063A (en) 1984-11-13 1988-09-20 University Of Delaware Optical wavelength division multiplexing/demultiplexing system
FR2579044B1 (en) 1985-03-13 1988-02-26 Commissariat Energie Atomique DEVICE FOR MULTIPLEXING MULTIPLE LIGHT SIGNALS IN INTEGRATED OPTICS
DE3509132A1 (en) 1985-03-14 1986-09-18 Fa. Carl Zeiss, 7920 Heidenheim WAVELENGTH MULTIPLEXER OR DEMULTIPLEXER
FR2579333B1 (en) 1985-03-20 1987-07-03 Instruments Sa WAVELENGTH MULTIPLEXER-DEMULTIPLEXER CORRECTED FOR GEOMETRIC AND CHROMATIC ABERRATIONS
EP0226868B1 (en) 1985-12-10 1992-11-25 Siemens Aktiengesellschaft Integrated-optical multiplex-demultiplex module for optical message transmission
US4749247A (en) 1986-04-03 1988-06-07 The Mitre Corporation Self-monitoring fiber optic link
FR2609180B1 (en) 1986-12-31 1989-11-03 Commissariat Energie Atomique MULTIPLEXER-DEMULTIPLEXER USING A CONCAVE ELLIPTICAL NETWORK AND CONDUCTED IN INTEGRATED OPTICS
US4834485A (en) 1988-01-04 1989-05-30 Pencom International Corporation Integrated fiber optics transmitter/receiver device
US4926412A (en) 1988-02-22 1990-05-15 Physical Optics Corporation High channel density wavelength division multiplexer with defined diffracting means positioning
US5026131A (en) 1988-02-22 1991-06-25 Physical Optics Corporation High channel density, broad bandwidth wavelength division multiplexer with highly non-uniform Bragg-Littrow holographic grating
US4857726A (en) 1988-02-29 1989-08-15 Allied-Signal Inc. Method to decode relative spectral data
JPH01306886A (en) 1988-06-03 1989-12-11 Canon Inc Volume phase type diffraction grating
US4930855A (en) 1988-06-06 1990-06-05 Trw Inc. Wavelength multiplexing of lasers
US5114513A (en) 1988-10-27 1992-05-19 Omron Tateisi Electronics Co. Optical device and manufacturing method thereof
JPH02143203A (en) 1988-11-25 1990-06-01 Ricoh Co Ltd Optical multiplexer/demultiplexer element
US4934784A (en) 1989-03-20 1990-06-19 Kaptron, Inc. Hybrid active devices coupled to fiber via spherical reflectors
US4923271A (en) 1989-03-28 1990-05-08 American Telephone And Telegraph Company Optical multiplexer/demultiplexer using focusing Bragg reflectors
US5245404A (en) 1990-10-18 1993-09-14 Physical Optics Corportion Raman sensor
GB2251957B (en) 1990-11-29 1993-12-15 Toshiba Kk Optical coupler
WO1993005619A1 (en) 1991-09-03 1993-03-18 Scientific-Atlanta, Inc. Fiber optic status monitor and control system
US5228103A (en) 1992-08-17 1993-07-13 University Of Maryland Monolithically integrated wavelength division multiplexing laser array
US5440416A (en) 1993-02-24 1995-08-08 At&T Corp. Optical network comprising a compact wavelength-dividing component
US5457573A (en) 1993-03-10 1995-10-10 Matsushita Electric Industrial Co., Ltd. Diffraction element and an optical multiplexing/demultiplexing device incorporating the same
US5355237A (en) 1993-03-17 1994-10-11 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Wavelength-division multiplexed optical integrated circuit with vertical diffraction grating
US5555334A (en) 1993-10-07 1996-09-10 Hitachi, Ltd. Optical transmission and receiving module and optical communication system using the same
US5526155A (en) 1993-11-12 1996-06-11 At&T Corp. High-density optical wavelength division multiplexing
US5457760A (en) * 1994-05-06 1995-10-10 At&T Ipm Corp. Wavelength division optical multiplexing elements
US5450510A (en) 1994-06-09 1995-09-12 Apa Optics, Inc. Wavelength division multiplexed optical modulator and multiplexing method using same
US5500910A (en) 1994-06-30 1996-03-19 The Whitaker Corporation Passively aligned holographic WDM
US5606434A (en) 1994-06-30 1997-02-25 University Of North Carolina Achromatic optical system including diffractive optical element
US5657406A (en) 1994-09-23 1997-08-12 United Technologies Corporation Efficient optical wavelength multiplexer/de-multiplexer
US5703722A (en) 1995-02-27 1997-12-30 Blankenbecler; Richard Segmented axial gradinet array lens
US5541774A (en) 1995-02-27 1996-07-30 Blankenbecler; Richard Segmented axial gradient lens
US5583683A (en) 1995-06-15 1996-12-10 Optical Corporation Of America Optical multiplexing device
JPH0943440A (en) * 1995-07-28 1997-02-14 Toshiba Corp Integrated optical multiplexer/demultiplexer
FR2738432B1 (en) 1995-09-01 1997-09-26 Hamel Andre OPTICAL COMPONENT SUITABLE FOR MONITORING A MULTI-WAVELENGTH LENGTH AND INSERTION-EXTRACTION MULTIPLEXER USING THE SAME, APPLICATION TO OPTICAL NETWORKS
US5745612A (en) 1995-12-18 1998-04-28 International Business Machines Corporation Wavelength sorter and its application to planarized dynamic wavelength routing
US5768450A (en) 1996-01-11 1998-06-16 Corning Incorporated Wavelength multiplexer/demultiplexer with varied propagation constant
US5777763A (en) 1996-01-16 1998-07-07 Bell Communications Research, Inc. In-line optical wavelength reference and control module
US5745270A (en) 1996-03-28 1998-04-28 Lucent Technologies Inc. Method and apparatus for monitoring and correcting individual wavelength channel parameters in a multi-channel wavelength division multiplexer system
US5742416A (en) 1996-03-28 1998-04-21 Ciena Corp. Bidirectional WDM optical communication systems with bidirectional optical amplifiers
US5912751A (en) * 1996-05-28 1999-06-15 Lucent Technologies Inc. Fiber optic network using space and wavelength multiplexed data channel arrays
US5748350A (en) 1996-06-19 1998-05-05 E-Tek Dynamics, Inc. Dense wavelength division multiplexer and demultiplexer devices
US5745271A (en) 1996-07-31 1998-04-28 Lucent Technologies, Inc. Attenuation device for wavelength multiplexed optical fiber communications
US5880834A (en) 1996-10-16 1999-03-09 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Convex diffraction grating imaging spectrometer
US6084695A (en) 1997-02-14 2000-07-04 Photonetics Optical fiber wavelength multiplexer and demutiplexer
US6011884A (en) * 1997-12-13 2000-01-04 Lightchip, Inc. Integrated bi-directional axial gradient refractive index/diffraction grating wavelength division multiplexer
FR2779535B1 (en) * 1998-06-04 2000-09-01 Instruments Sa COMPACT MULTIPLEXER
US6108471A (en) 1998-11-17 2000-08-22 Bayspec, Inc. Compact double-pass wavelength multiplexer-demultiplexer having an increased number of channels
JP3909969B2 (en) * 1998-12-09 2007-04-25 日本板硝子株式会社 Optical demultiplexer
US6343169B1 (en) * 1999-02-25 2002-01-29 Lightchip, Inc. Ultra-dense wavelength division multiplexing/demultiplexing device

Also Published As

Publication number Publication date
EP1303775A4 (en) 2005-03-23
AU2001266626A1 (en) 2001-12-11
EP1303775A1 (en) 2003-04-23
US6343169B1 (en) 2002-01-29
WO2001092935A1 (en) 2001-12-06
US6591040B1 (en) 2003-07-08

Similar Documents

Publication Publication Date Title
US6591040B1 (en) Ultra-dense wavelength division multiplexing/demultiplexing devices
US6011884A (en) Integrated bi-directional axial gradient refractive index/diffraction grating wavelength division multiplexer
US5999672A (en) Integrated bi-directional dual axial gradient refractive index/diffraction grating wavelength division multiplexer
US5808763A (en) Optical demultiplexor
CN100510817C (en) Wavelength division multiplexer architecture
US6271970B1 (en) Wavelength division multiplexing/demultiplexing devices using dual homogeneous refractive index lenses
JP2000347065A (en) Optical device
US6192175B1 (en) Method and system for providing a multi-channel optical filter
US6181853B1 (en) Wavelength division multiplexing/demultiplexing device using dual polymer lenses
US6243513B1 (en) Wavelength division multiplexing/demultiplexing devices using diffractive optic lenses
US6236780B1 (en) Wavelength division multiplexing/demultiplexing devices using dual diffractive optic lenses
US6434299B1 (en) Wavelength division multiplexing/demultiplexing devices having concave diffraction gratings
US6829096B1 (en) Bi-directional wavelength division multiplexing/demultiplexing devices
US6298182B1 (en) Wavelength division multiplexing/demultiplexing devices using polymer lenses
US6404945B1 (en) Wavelength division multiplexing/demultiplexing devices using homogeneous refractive index lenses
JP2000131542A (en) Optical transmission and reception module
US20010055442A1 (en) Optical wavelength-division multiplexing and demultiplexing by using a common optical bandpass filter for adding, dropping, or excanging one or more channels
US7006727B2 (en) Combined multiplexer and demultiplexer for optical communication systems

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued