CA2410274A1 - Isolation of subterranean zones - Google Patents

Isolation of subterranean zones Download PDF

Info

Publication number
CA2410274A1
CA2410274A1 CA002410274A CA2410274A CA2410274A1 CA 2410274 A1 CA2410274 A1 CA 2410274A1 CA 002410274 A CA002410274 A CA 002410274A CA 2410274 A CA2410274 A CA 2410274A CA 2410274 A1 CA2410274 A1 CA 2410274A1
Authority
CA
Canada
Prior art keywords
tubulars
perforated
wellbore
subterranean zone
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002410274A
Other languages
French (fr)
Other versions
CA2410274C (en
Inventor
Robert Lance Cook
Lev Ring
Kevin Waddell
David Paul Brisco
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Canada Ltd
Original Assignee
Shell Canada Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Canada Ltd filed Critical Shell Canada Ltd
Publication of CA2410274A1 publication Critical patent/CA2410274A1/en
Application granted granted Critical
Publication of CA2410274C publication Critical patent/CA2410274C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/10Setting of casings, screens, liners or the like in wells
    • E21B43/103Setting of casings, screens, liners or the like in wells of expandable casings, screens, liners, or the like
    • E21B43/108Expandable screens or perforated liners
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B29/00Cutting or destroying pipes, packers, plugs, or wire lines, located in boreholes or wells, e.g. cutting of damaged pipes, of windows; Deforming of pipes in boreholes or wells; Reconditioning of well casings while in the ground
    • E21B29/10Reconditioning of well casings, e.g. straightening
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/124Units with longitudinally-spaced plugs for isolating the intermediate space
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/003Vibrating earth formations
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/08Screens or liners
    • E21B43/084Screens comprising woven materials, e.g. mesh or cloth
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/08Screens or liners
    • E21B43/086Screens with preformed openings, e.g. slotted liners
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/10Setting of casings, screens, liners or the like in wells
    • E21B43/103Setting of casings, screens, liners or the like in wells of expandable casings, screens, liners, or the like
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/10Setting of casings, screens, liners or the like in wells
    • E21B43/103Setting of casings, screens, liners or the like in wells of expandable casings, screens, liners, or the like
    • E21B43/105Expanding tools specially adapted therefor
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/14Obtaining from a multiple-zone well
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/30Specific pattern of wells, e.g. optimizing the spacing of wells
    • E21B43/305Specific pattern of wells, e.g. optimizing the spacing of wells comprising at least one inclined or horizontal well

Abstract

One or more subterranean zones are isolated from one or more other subterranean zones using a combination of solid tubulars and perforated tubulars.

Claims (79)

1. An apparatus, comprising:
a zonal isolation assembly comprising:

one or more solid tubular members, each solid tubular member including one or more external seals;

one or more perforated tubular members coupled to the solid tubular members;

one or more flow control valves operably coupled to the perforated tubular members for controlling the flow of fluidic materials through the perforated tubular members;

one or more temperature sensors operably coupled to one or more of the perforated tubular members for monitoring the operating temperature within the perforated tubular members;

one or more pressure sensors operably coupled to one or more of the perforated tubular members for monitoring the operating pressure within the perforated tubular members; and one or more flow sensors operably coupled to one or more of the perforated tubular members for monitoring the operating flow rate within the perforated tubular members; and a shoe coupled to the tonal isolation assembly; and a controller operably coupled to the flow control valves, the temperature sensors, the pressure sensors, and the flow sensors for monitoring the temperature, pressure and flow sensors and controlling the operation of the flow control valves;

wherein at least one of the solid tubular members and the perforated tubular members are formed by a radial expansion process performed within the wellbore.
2. A method of isolating a first subterranean zone from a second subterranean zone in a wellbore, comprising:

positioning one or more solid tubulars within the wellbore, the solid tubulars traversing the first subterranean zone;

positioning one or more perforated tubulars within the wellbore, the perforated tubulars traversing the second subterranean zone;

radially expanding at least one of the primary solid tubulars and perforated tubulars within the wellbore;

fluidicly coupling the perforated tubulars and the solid tubulars;

preventing the passage of fluids from the first subterranean zone to the second subterranean zone within the wellbore external to the solid tubulars and perforated tubulars;

monitoring the operating temperatures, pressures, and flow rates within one or more of the perforated tubulars; and controlling the flow of fluidic materials through the perforated tubulars as a function of the monitored operating temperatures, pressures, and flow rates.
3. A method of extracting materials from a producing subterranean zone in a wellbore, at least a portion of the wellbore including a casing, comprising;
positioning one or more solid tubulars within the wellbore;
positioning one or more perforated tubulars within the wellbore, the perforated tubulars traversing the producing subterranean zone;
radially expanding at least one of the solid tubulars and the perforated tubulars within the wellbore;

fluidicly coupling the solid tubulars with the casing;

fluidicly coupling the perforated tubulars with the solid tubulars;

fluidicly isolating the producing subterranean zone from at least one other subterranean zone within the wellbore;

fluidicly coupling at least one of the perforated tubulars with the producing subterranean zone;

monitoring the operating temperatures, pressures, and flow rates within one or more of the perforated tubulars; and controlling the flow of fluidic materials through the perforated tubulars as a function of the monitored operating temperatures, pressures, and flow rates.
4. A system for isolating a first subterranean zone from a second subterranean zone in a wellbore, comprising:

means for positioning one or more solid tubulars within the wellbore, the solid tubulars traversing the first subterranean zone;

means for positioning one or more perforated tubulars within the wellbore, the perforated tubulars traversing the second subterranean zone;

means for radially expanding at least one of the solid tubulars and perforated tubulars within the wellbore;

means for fluidicly coupling the perforated tubulars and the solid tubulars;

means for preventing the passage of fluids from the first subterranean zone to the second subterranean zone within the wellbore external to the solid tubulars and perforated tubulars;

means for monitoring the operating temperatures, pressures, and flow rates within one or more of the perforated tubulars; and means for controlling the flow of fluidic materials through the perforated tubulars as a function of the monitored operating temperatures, pressures, and flow rates.
5. A system for extracting materials from a producing subterranean zone in a wellbore, at least a portion of the wellbore including a casing, comprising;
means for positioning one or more solid tubulars within the wellbore;
means for positioning one or more perforated tubulars within the wellbore, the perforated tubulars traversing the producing subterranean zone;

means for radially expanding at least one of the solid tubulars and the perforated tubulars within the wellbore;

means for fluidicly coupling the solid tubulars with the casing;
means for fluidicly coupling the perforated tubulars with the solid tubulars;
means for fluidicly isolating the producing subterranean zone from at least one other subterranean zone within the wellbore;

means for fluidicly coupling at least one of the perforated tubulars with the producing subterranean zone;

means for monitoring the operating, temperatures, pressures, and flow rates within one or more of the perforated tubulars; and means for controlling the flow of fluidic materials through the perforated tubulars as a function of the monitored operating temperatures, pressures, and flow rates.
6. An apparatus, comprising:
a zonal isolation assembly comprising:
one or more solid tubular members, each solid tubular member including one or more external seals;
one or more perforated tubular members each including radial passages coupled to the solid tubular members; and one or more solid tubular liners coupled to the interior surfaces of one or more of the perforated tubular members for sealing at least some of the radial passages of the perforated tubular members; and a shoe coupled to the zonal isolation assembly;
wherein at least one of the solid tubular members and the perforated tubular members are formed by a radial expansion process performed within the wellbore; and wherein the solid tubular liners are formed by a radial expansion process performed within the wellbore.
7. A method of isolating a first subterranean zone from a second subterranean zone in a wellbore, comprising:

positioning one or more solid tubulars within the wellbore, the solid tubulars traversing the first subterranean zone;

positioning one or more perforated tubulars each including one or more radial passages within the wellbore, the perforated tubulars traversing the second subterranean zone;

radially expanding at least one of the solid tubulars and perforated tubulars within the wellbore;

fluidicly coupling the perforated tubulars and the primary solid tubulars;

preventing the passage of fluids from the first subterranean zone to the second subterranean zone within the wellbore external to the primary solid tubulars and perforated tubulars;

positioning one or more solid tubular liners within the interior of one or more of the perforated tubulars; and radially expanding and plastically deforming the solid tubular liners within the interior of one or more of the perforated tubulars to fluidicly seal at least some of the radial passages of the perforated tubulars.
8. A method of extracting materials from a producing subterranean zone in a wellbore, at least a portion of the wellbore including a casing, comprising;
positioning one or more solid tubulars within the wellbore;
positioning one or more perforated tubulars each including one or more radial passages within the wellbore, the perforated tubulars traversing the producing subterranean zone;
radially expanding at least one of the solid tubulars and the perforated tubulars within the wellbore;
fluidicly coupling the solid tubulars with the casing;
fluidicly coupling the perforated tubulars with the solid tubulars;
fluidicly isolating the producing subterranean zone from at least one other subterranean zone within the wellbore;
fluidicly coupling at least one of the perforated tubulars with the producing subterranean zone;
positioning one or more solid tubular liners within the interior of one or more of the perforated tubulars; and radially expanding and plastically deforming the solid tubular liners within the interior of one or more of the perforated tubulars to fluidicly seal at least some of the radial passages of the perforated tubulars.
9. A system for isolating a first subterranean zone from a second subterranean zone in a wellbore, comprising:
means for positioning one or more solid tubulars within the wellbore, the solid tubulars traversing the first subterranean zone;

means for positioning one or more perforated tubulars each including one or more radial passages within the wellbore, the perforated tubulars traversing the second subterranean zone;
means for radially expanding at least one of the solid tubulars and perforated tubulars within the wellbore;
means for fluidicly coupling the perforated tubulars and the solid tubulars;
means for preventing the passage of fluids from the first subterranean zone to the second subterranean zone within the wellbore external to the primary solid tubulars and perforated tubulars;
means for positioning one or more solid tubular liners within the interior of one or more of the perforated tubulars; and means for radially expanding and plastically deforming the solid tubular liners within the interior of one or more of the perforated tubulars to fiuidicly seal at least same of the radial passages of the perforated tubulars.
10. A system for extracting materials from a producing subterranean zone in a wellbore, at least a portion of the wellbore including a casing, comprising;
means for positioning one or more solid tubulars within the wellbore;
means for positioning one or more perforated tubulars each including one or more radial passages within the wellbore, the perforated tubulars traversing the producing subterranean zone;
means for radially expanding at least one of the solid tubulars and the perforated tubulars within the wellbore;
means for fluidicly coupling the solid tubulars with the casing;
means for fluidicly coupling the perforated tubulars with the solid tubulars;
means for fluidicly isolating the producing subterranean zone from at least one other subterranean zone within the wellbore;

means for fluidicly coupling at least one of the perforated tubulars with the producing subterranean zone;
means for positioning one or more solid tubular liners within the interior of one or more of the perforated tubulars; and means for radially expanding and plastically deforming the solid tubular liners within the interior of one or more of the perforated tubulars to fluidicly seal at least some of the radial passages of the perforated tubulars.
11. An apparatus, comprising:
a zonal isolation assembly comprising:
one or more solid tubular members, each solid tubular member including one or more external seals;
one or more perforated tubular members each including radial passages coupled to the solid tubular members; and a sealing material coupled to at least some of the perforated tubular members for sealing at least some of the radial passages of the perforated tubular members; and a shoe coupled to the zonal isolation assembly.
12. A method of isolating a first subterranean zone from a second subterranean zone in a wellbore, comprising:
positioning one or more solid tubulars within the wellbore, the solid tubulars traversing the first subterranean zone;
positioning one or more perforated tubulars each including one or more radial passages within the wellbore, the perforated tubulars traversing the second subterranean zone;

radially expanding at least one of the solid tubulars and perforated tubulars within the wellbore;
fluidicly coupling the perforated tubulars and the primary solid tubulars;
preventing the passage of fluids from the first subterranean zone to the second subterranean zone within the wellbore external to the primary solid tubulars and perforated tubulars;
sealing off an annular region within at least one of the perforated tubulars;
and injecting a hardenable fluidic sealing material into the sealed annular regions of the perforated tubulars to seal off at least some of the radial passages of the perforated tubulars.
13. A method of extracting materials from a producing subterranean zone in a wellbore, at least a portion of the wellbore including a casing, comprising;
positioning one or more solid tubulars within the wellbore;
positioning one or more perforated tubulars each including one or more radial passages within the wellbore, the perforated tubulars reversing the producing subterranean zone;
radially expanding at least one of the solid tubulars and the perforated tubulars within the wellbore;
fluidicly coupling the solid tubulars with the casing;
fluidicly coupling the perforated tubulars with the solid tubulars;
fluidicly isolating the producing subterranean zone from at least one other subterranean zone within the wellbore;
fluidiciy coupling at least one of the perforated tubulars with the producing subterranean zone;
sealing off an annular region within at least one of the perforated tubulars;
and injecting a hardenable fluidic sealing material into the sealed annular regions of the perforated tubulars to seal off at least some of the radial passages of the perforated tubulars.
14. A system for isolating a first subterranean zone from a second subterranean zone in a wellbore, comprising:
means for positioning one or more solid tubulars within the wellbore, the solid tubulars traversing the first subterranean zone;
means for positioning one or more perforated tubulars each including one or more radial passages within the wellbore, the perforated tubulars traversing the second subterranean zone;
means for radially expanding at least one of the solid tubulars and perforated tubulars within the wellbore;
means for fluidicly coupling the perforated tubulars and the solid tubulars;
means for preventing the passage of fluids from the first subterranean zone to the second subterranean zone within the wellbore external to the primary solid tubulars and perforated tubulars;
means for sealing off an annular region within at least one of the perforated tubulars; and means for injecting a hardenable fluidic seating material into the sealed annular regions of the perforated tubulars to seal off at least some of the radial passages of the perforated tubulars.
15. A system for extracting materials from a producing subterranean zone in a wellbore, at feast a portion of the wellbore including a casing, comprising;
means for positioning one or more solid tubulars within the wellbore;

means for positioning one or more perforated tubulars each including one or more radial passages within the wellbore, the perforated tubulars traversing the producing subterranean zone;
means for radially expanding at least one of the solid tubulars and the perforated tubulars within the wellbore;
means for fluidicly coupling the solid tubulars with the casing;
means for fluidicly coupling the perforated tubulars with the solid tubulars;
means for fluidicly isolating the producing subterranean zone from at least one other subterranean zone within the wellbore;
means for fiuidicly coupling at least one of the perforated tubulars with the producing subterranean zone;
means for sealing off an annular region within at least one of the perforated tubulars; and means for injecting a hardenable fluidic sealing material into the sealed annular regions of the perforated tubulars to seal off at feast some of the radial passages of the perforated tubulars.
16. An apparatus, comprising:
a tonal isolation assembly positioned within a wellbore that traverses a subterranean formation, comprising:
one or more solid tubular members, each solid tubular member including one or more external seals;
one or more perforated tubular members coupled to the solid tubular members; and a shoe coupled to the tonal isolation assembly;
wherein at least one of the solid tubular members and the perforated tubular members are formed by a radial expansion process performed within the wellbore; and wherein at least one of the perforated tubular members are radially expanded into intimate contact with the subterranean formation.
17. The apparatus of claim 16, wherein the perforated tubular members that are radially expanded into intimate contact with the subterranean formation compress the subterranean formation.
18. A method of isolating a first subterranean zone from a second subterranean zone in a wellbore, comprising:
positioning one or more solid tubulars within the wellbore, the solid tubulars traversing the first subterranean zone;
positioning one or more perforated tubulars within the wellbore each including one or more radial passages, the perforated tubulars traversing the second subterranean zone;
radially expanding at least one of the primary solid tubulars and perforated tubulars within the wellbore;
radially expanding at least one of the perforated tubulars into intimate contact with the second subterranean zone;
fluidicly coupling the perforated tubulars and the solid tubulars; and preventing the passage of fluids from the first subterranean zone to the second subterranean zone within the wellbore external to the solid tubulars and perforated tubulars.
19. The method of claim 18, wherein the perforated tubulars that are radially expanded into intimate contact with the second subterranean zone compress the second subterranean zone.
20. The method of claim 18, further comprising vibrating the second subterranean zone to increase the rate of recovery of hydrocarbons from the second subterranean zone.
21. The method of claim 18, further comprising vibrating the second subterranean zone to clean the radial passages of the perforated tubulars that are radially expanded into intimate contact with the second subterranean zone.
22. The method of claim 18, further comprising applying an impulsive load to the perforated tubulars that are radially expanded into intimate contact with the second subterranean zone to increase the rate of recovery of hydrocarbons from the second subterranean zone.
23. A method of extracting materials from a producing subterranean zone in a wellbore, at least a portion of the wellbore including a casing, comprising;
positioning one or more solid tubulars within the wellbore;
positioning one or more perforated tubulars within the wellbore each including one or more radial passages, the perforated tubulars traversing the producing subterranean zone;
radially expanding at least one of the solid tubulars and the perforated tubulars within the wellbore;
radially expanding at least one of the perforated tubulars into intimate contact with the producing subterranean zone;
fluidicly coupling the solid tubulars with the casing;
fluidicly coupling the perforated tubulars with the solid tubulars;
fluidicly isolating the producing subterranean zone from at least one other subterranean zone within the wellbore; and fluidicly coupling at least one of the perforated tubulars with the producing subterranean zone.
24. The method of claim 23, wherein the perforated tubulars that are radially expanded into intimate contact with the producing subterranean zone compress the producing subterranean zone.
25. The method of claim 23; further comprising vibrating the producing subterranean zone to increase the rate of recovery of hydrocarbons from the producing subterranean zone.
26. The method of claim 23; further comprising vibrating the producing subterranean zone to clean the radial passages of the perforated tubulars that are radially expanded into intimate contact with the producing subterranean zone.
27. The method of claim 23, further comprising applying an impulsive load to the perforated tubulars that are radially expanded into intimate contact with the producing subterranean zone to increase the rate of recovery of hydrocarbons from the producing subterranean zone.
28. A system for isolating a first subterranean zone from a second subterranean zone in a wellbore, comprising:
means for positioning one or more solid tubulars within the wellbore, the solid tubulars traversing the first subterranean zone;
means for positioning one or more perforated tubulars within the wellbore each including one or more radial passages, the perforated tubulars traversing the second subterranean zone;
means for radially expanding at least one of the solid tubulars and perforated tubulars within the wellbore;
means for radially expanding at least one of the perforated tubulars into intimate contact with the second subterranean zone;

means for fluidicly coupling the perforated tubulars and the solid tubulars;
and means for preventing the passage of fluids from the first subterranean zone to the second subterranean zone within the wellbore external to the solid tubulars and perforated tubulars.
29. The system of claim 28, wherein the means for radially expanding at least one of the perforated tubulars into intimate contact with the second subterranean zone comprises means for compressing the second subterranean zone.
30. The system of claim 28, further comprising means for vibrating the second subterranean zone to increase the rate of recovery of hydrocarbons from the second subterranean zone.
31. The system of claim 28, further comprising means for vibrating the second subterranean zone to clean the radial passages of the perforated tubulars that are radially expanded into intimate contact with the second subterranean zone.
32. The system of claim 28, further comprising, means for applying an impulsive load to the perforated tubulars that are radially expanded into intimate contact with the second subterranean zone to increase the rate of recovery of hydrocarbons from the second subterranean zone.
33. A system for extracting materials from a producing subterranean zone in a wellbore, at least a portion of the wellbore including a casing, comprising;
means for positioning one or more solid tubulars within the wellbore;

means for positioning one or more perforated tubulars within the wellbore each including one or more radial openings, the perforated tubulars traversing the producing subterranean zone;

means for radially expanding at least one of the solid tubulars and the perforated tubulars within the wellbore;

means for radially expanding at least one of the perforated tubulars into intimate contact with the producing subterranean zone;

means for fluidicly coupling the solid tubulars with the casing;

means for fluidicly coupling the perforated tubulars with the solid tubulars;

means for fluidicly isolating the producing subterranean zone from at least one other subterranean zone within the wellbore; and means for fluidicly coupling at least one of the perforated tubulars with the producing subterranean zone.
34. The system of claim 33, wherein the means for radially expanding at least one of the perforated tubulars into intimate contact with the producing subterranean zone comprises means for compressing the producing subterranean zone.
35. The system of claim 33, further comprising means for vibrating the producing subterranean zone to increase the rate of recovery of hydrocarbons from the producing subterranean zone.
36. The system of claim 33, further comprising means for vibrating the producing subterranean zone to clean the radial passages of the perforated tubulars that are radially expanded into intimate contact with the producing subterranean zone.
37. The system of claim 33, further comprising means for applying an impulsive load to the perforated tubulars that are radially expanded into intimate contact with Page 106 of 126 the producing subterranean zone to increase the rate of recovery of hydrocarbons from the producing subterranean zone.
38. An apparatus; comprising:
a zonal isolation assembly positioned within a wellbore that traverses a subterranean formation and includes a perforated wellbore casing, comprising:

one or more solid tubular members, each solid tubular member including one or more external seals;
one or more perforated tubular members coupled to the solid tubular members; and a shoe coupled to the zonal isolation assembly;
wherein at least one of the solid tubular members and the perforated tubular members are formed by a radial expansion process performed within the wellbore; and wherein at least one of the perforated tubular members are radially expanded into intimate contact with the perforated wellbore casing.
39. The apparatus of claim 38, wherein the perforated tubular members that are radially expanded into intimate contact with the perforated casing compress the subterranean formation.
40. A method of isolating a first subterranean zone from a second subterranean zone in a wellbore that includes a perforated casing that traverses the second subterranean zone, comprising:
positioning one or more solid tubulars within the wellbore, the solid tubulars traversing the first subterranean zone;

Page 107 of 126 positioning one or more perforated tubulars within the wellbore each including one or more radial passages, the perforated tubulars traversing the second subterranean zone;

radially expanding at least one of the primary solid tubulars and perforated tubulars within the wellbore;

radially expanding at least one of the perforated tubulars into intimate contact with the perforated casing;

fluidicy coupling the perforated tubulars and the solid tubulars; and preventing the passage of fluids from the first subterranean zone to the second subterranean zone within-the wellbore external to the solid tubulars and perforated tubulars.
41. The method of claim 40, wherein the perforated tubulars that are radially expanded into intimate contact with the perforated casing compress the second subterranean zone.
42. The method of claim 40, further comprising vibrating the second subterranean zone to increase the rate of recovery of hydrocarbons from the second subterranean zone.
43. The method of claim 40, further comprising vibrating the second subterranean zone to clean the radial passages of the perforated tubulars that are radially expanded into intimate contact with the perforated casing.
44. The method of claim 40; further comprising applying an impulsive load to the perforated tubulars that are radially expanded into intimate contact with the perforated casing to increase the rate of recovery of hydrocarbons from the second subterranean zone.

Page 108 of 126
45. A method of extracting materials from a producing subterranean zone in a wellbore, at least a portion of the wellbore including a casing and a perforated casing that traverses the producing subterranean zone, comprising;
positioning one or more solid tubulars within the wellbore;

positioning one or more perforated tubulars within the wellbore each including one or mare radial passages, the perforated tubulars traversing the producing subterranean zone;

radially expanding at least one of the solid tubulars and the perforated tubulars within the wellbore;

radially expanding at least one of the perforated tubulars into intimate contact with the perforated easing;

fluidicly coupling the solid tubulars with the casing;
fluidicly coupling the perforated tubulars with the solid tubulars;
fluidicly isolating the producing subterranean zone from at least one other subterranean zone within the wellbore; and fluidicly coupling at least one of the perforated tubulars with the producing subterranean zone.
46. The method of claim 45, wherein the perforated tubulars that are radially expanded into intimate contact with the perforated casing compress the producing subterranean zone.
47. The method of claim 45, further comprising vibrating the producing subterranean zone to increase the rate of recovery of hydrocarbons from the producing subterranean zone.
48. The method of claim 45, further comprising vibrating the producing subterranean zone to clean the radial passages of the perforated tubulars that are Page 109 of 126 radially expanded into intimate contact with the perforated casing.
49. The method of claim 45, further comprising applying an impulsive load to the perforated tubulars that are radially expanded into intimate contact with the perforated tubulars to increase the rate of recovery of hydrocarbons from the producing subterranean zone.
50. A system for isolating a first subterranean zone from a second subterranean zone in a wellbore that includes a perforated casing that traverses the second subterranean zone, comprising:
means for positioning one or more solid tubulars within the wellbore, the solid tubulars traversing the first subterranean zone;
means for positioning one or more perforated tubulars within the wellbore each including one or more radial passages, the perforated tubulars traversing the second subterranean zone;
means for radially expanding at least one of the solid tubulars and perforated tubulars within the wellbore;
means for radially expanding at least one of the perforated tubulars into intimate contact with the perforated casing;
means for fluidicly coupling the perforated tubulars and the solid tubulars;
and means for preventing the passage of fluids from the first subterranean zone to the second subterranean zone within the wellbore external to the solid tubulars and perforated tubulars.
51. The system of claim 50, wherein the means for radially expanding at least one of the perforated tubulars into intimate contact with the perforated casing comprises means for compressing the second subterranean zone.

Page 110 of 126
52. The system of claim 50, further comprising means for vibrating the second subterranean zone to increase the rate of recovery of hydrocarbons from the second subterranean zone.
53. The system of claim 50, further comprising means for vibrating the second subterranean zone to clean the radial passages of the perforated tubulars that are radially expanded into intimate contact with the perforated casing.
54. The system of claim 50, further comprising means for applying an impulsive load to the perforated tubulars that are radially expanded into intimate contact with the perforated casing to increase the rate of recovery of hydrocarbons from the second subterranean zone.
55. A system for extracting materials from a producing subterranean zone in a wellbore, at least a portion of the wellbore including a casing and a perforated casing that traverses the producing subterranean zone, comprising;
means for positioning one or more solid tubulars within the wellbore;
means for positioning one or more perforated tubulars within the wellbore each including one or more radial openings, the perforated tubulars traversing the producing subterranean zone;
means for radially expanding at least one of the solid tubulars and the perforated tubulars within the wellbore;
means for radially expanding at least one of the perforated tubulars into intimate contact with the perforated casing;
means for fluidicly coupling the solid tubulars with the casing;
means for fluidicly coupling the perforated tubulars with the solid tubulars;
means for fluidicly isolating the producing subterranean zone from at least Page 111 of 126 one other subterranean zone within the wellbore; and means for fluidicly coupling at least one of the perforated tubulars with the producing subterranean zone.
56. The system of claim 55, wherein the means for radially expanding at least one of the perforated tubulars into intimate contact with the perforated casing comprises means for compressing the producing subterranean zone.
57. The system of claim 55, further comprising means for vibrating the producing subterranean zone to increase the rate of recovery of hydrocarbons from the producing subterranean zone.
58. The system of claim 55, further comprising means for vibrating the producing subterranean zone to clean the radial passages of the perforated tubulars that are radially expanded into intimate contact with the perforated casing.
59. The system of claim 55, further comprising means for applying an impulsive load to the perforated tubulars that are radially expanded into intimate contact with the perforated casing to increase the rate of recovery of hydrocarbons from the producing subterranean zone.
60. An apparatus, comprising:
a zonal isolation assembly comprising:
one or more solid tubular members, each solid tubular member including one or more external seals;
one or more perforated tubular members each including radial passages coupled to the solid tubular members; and one or more perforated tubular liners each including one or more Page 112 of 126 radial passages coupled to the interior surfaces of one or more of the perforated tubular members; and a shoe coupled to the zonal isolation assembly;
wherein at least one of the solid tubular members and the perforated tubular members are formed by a radial expansion process performed within the wellbore; and wherein the perforated tubular liners are formed by a radial expansion process performed within the wellbore:
61. A method of isolating a first subterranean zone from a second subterranean zone in a wellbore, comprising:
positioning one or more solid tubular within the wellbore, the solid tubulars traversing the first subterranean zone;
positioning one or more perforated tubulars each including one or more radial passages within the wellbore, the perforated tubulars traversing the second subterranean zone;
radially expanding at least one of the solid tubulars and perforated tubulars within the wellbore;
fluidicly coupling the perforated tubulars and the primary solid tubulars;
preventing the passage of fluids from the first subterranean zone to the second subterranean zone within the wellbore external to the primary solid tubulars and pertorated tubulars;
positioning one or more perforated tubular liners within the interior of one or more of the perforated tubulars; and radially expanding and plastically deforming the perforated tubular liners within the interior of one or more of the perforated tubulars.

Page 113 of 126
62. A method of extracting materials from a producing subterranean zone in a wellbore; at least a portion of the wellbore including a casing, comprising;
positioning one or more solid tubulars within the wellbore;
positioning one or more perforated tubulars each including one or more radial passages within the wellbore, the perforated tubulars traversing the producing subterranean zone;
radially expanding at least one of the solid tubulars and the perforated tubulars within the wellbore;
fluidicly coupling the solid tubulars with the casing;
fluidicly coupling the perforated tubulars with the solid tubulars;
fluidicly isolating the producing subterranean zone from at least one other subterranean zone within the wellbore;
fluidicly coupling at least one of the perforated tubulars with the producing subterranean zone;
positioning one or more perforated tubular liners within the interior of one or more of the perforated tubulars; and radially expanding and plastically deforming the perforated tubular liners within the interior of one or more of the perforated tubutars.
63. A system for isolating a first subterranean zone from a second subterranean zone in a wellbore, comprising:
means for positioning one or more solid tubulars within the wellbore, the solid tubulars traversing the first subterranean zone;
means for positioning one-or more perforated tubulars each including one or more radial passages within the wellbore, the perforated tubulars traversing the second subterranean zone;
means for radially expanding at least one of the solid tubulars and perforated tubulars within the wellbore;

Page 114 of 126 means for fluidicly coupling the perforated tubulars and the solid tubulars;
means for preventing the passage of fluids from the first subterranean zone to the second subterranean zone within the wellbore external to the primary solid tubulars and perforated tubulars;
means for positioning one or more perforated tubular liners within the interior of one or more of the perforated tubulars; and means for radially expanding and plastically deforming the perforated tubular liners within the interior of one or more of the perforated tubulars.
64. A system for extracting materials from a producing subterranean zone in a wellbore, at least a portion of the wellbore including a casing, comprising;
means for positioning one or more solid tubulars within the wellbore;
means for positioning one or more perforated tubulars each including one or more radial passages within the wellbore, the perforated tubulars traversing the producing subterranean zone;
means for radially expanding at least one of the solid tubulars and the perforated tubulars within the wellbore;
means for fluidicly coupling the solid tubulars with the casing;
means for fluidicly coupling the perforated tubulars with the solid tubulars;
means for fluidicly isolating the producing subterranean zone from at least one other subterranean zone within the wellbore;
means for fluidicly coupling at least one of the perforated tubulars with the producing subterranean zone;
means for positioning one or more perforated tubular liners within the interior of one or more of the perforated tubulars; and means for radially expanding and plastically deforming the perforated tubular liners within the interior of one or more of the perforated tubulars.

Page 115 of 126
65. An apparatus, comprising:
a zonal isolation assembly comprising:
one or more solid tubular members, each solid tubular member including one or more external seals;
two or more perforated tubular members each including radial passages coupled to the solid tubular members; and one or more one-way valves for controllably fluidicly coupling the perforated tubular members; and a shoe coupled to the tonal isolation assembly;
wherein at least one of the solid tubular members and the perforated tubular members are formed by a radial expansion process performed within the wellbore.
66. A method of isolating a first subterranean zone from a second subterranean zone having a plurality of producing zones in a wellbore, comprising:
positioning one or more solid tubulars within the wellbore, the solid tubulars traversing the first subterranean zone;
positioning two or more perforated tubulars each including one or more radial passages within the wellbore, the perforated tubulars traversing the second subterranean zone;
radially expanding at least one of the solid tubulars and perforated tubulars within the wellbore;
fluidicly coupling the perforated tubulars and the primary solid tubulars;
preventing the passage of fluids from the first subterranean zone to the second subterranean zone within the wellbore external to the primary solid tubulars and perforated tubulars; and preventing fluids from passing from one of the producing zones that has not been depleted to one of the producing zones that has been depleted.

Page 116 of 126
67. A method of extracting materials from a wellbore having a plurality of producing subterranean zones, at least a portion of the wellbore including a casing, comprising;
positioning one or more solid tubulars within the wellbore;
positioning two or more perforated tubulars each including one or more radial passages within the wellbore, the perforated tubulars traversing the producing subterranean zones;
radially expanding at least one of the solid tubulars and the perforated tubulars within the wellbore;
fluidicly coupling the solid tubulars with the casing;
fluidicly coupling the perforated tubulars with the solid tubulars;
fluidicly isolating the producing subterranean zone from at least one other subterranean zone within the wellbore;
fluidicly coupling at least one of the perforated tubulars with the producing subterranean zone;
preventing fluids from passing from one of the producing zones that has not been depleted to one of the producing zones that has been depleted.
68. A system for isolating a first subterranean zone from a second subterranean zone having a plurality of producing zones in a wellbore, comprising:
means for positioning one or more solid tubulars within the wellbore, the solid tubulars traversing the first subterranean zone;
means for positioning one or more perforated tubulars each including one or more radial passages within the wellbore, the perforated tubulars traversing the second subterranean zone;
means for radially expanding at least one of the solid tubulars and perforated tubulars within the wellbore;

Page 117 of 126 means for fluidicly coupling the perforated tubulars and the solid tubulars;
means for preventing the passage of fluids from the first subterranean zone to the second subterranean zone within the wellbore external to the primary solid tubulars and perforated tubulars;
means for positioning one or more perforated tubular liners within the interior of one or more of the perforated tubulars; and means for preventing fluids from passing from one of the producing zones that has not been depleted to one of the producing zones that has been depleted.
69. A system for extracting materials from a plurality of producing subterranean zones in a wellbore, at least a portion of the wellbore including a casing, comprising;
means for positioning one or more solid tubulars within the wellbore;
means for positioning one or more perforated tubulars each including one or more radial passages within the wellbore, the perforated tubulars traversing the producing subterranean zones;
means for radially expanding at least one of the solid tubulars and the perforated tubulars within the wellbore;
means for fluidicly coupling the solid tubulars with the casing;
means for fluidicly coupling the perforated tubulars with the solid tubulars;
means for fluidicly isolating the producing subterranean zone from at least one other subterranean zone within the wellbore;
means for fluidicly coupling at least one of the perforated tubulars with the producing subterranean zone;
means for positioning one or more perforated tubular liners within the interior of one or more of the perforated tubulars; and Page 118 of 126 means for preventing fluids from passing from one of the producing zones that has not been depleted to one of the producing zones that has been depleted.
70. An apparatus for extracting geothermal energy from a subterranean formation containing a source of geothermal energy, comprising:
a zonal isolation assembly positioned within the subterranean formation, comprising:
one or more solid tubular members; each solid tubular member including one or more external seals;
one or more perforated tubular members each including radial passages coupled to the solid tubular members; and one or more perforated tubular liners each including one or more radial passages coupled to the interior surfaces of one or more of the perforated tubular members; and a shoe coupled to the zonal isolation assembly;
wherein at least one of the solid tubular members and the perforated tubular members are formed by a radial expansion process performed within the wellbore.
71. A method of isolating a first subterranean zone from a second subterranean zone including a source of geothermal energy in a wellbore, comprising:
positioning one or more solid tubulars within the wellbore, the solid tubulars traversing the first subterranean zone;
positioning one or more perforated tubulars each including one or more radial passages within the wellbore, the perforated tubulars traversing the second subterranean zone;
radially expanding at least one of the solid tubulars and perforated tubulars Page 119 of 126 within the wellbore;
fluidicly coupling the perforated tubulars and the primary solid tubulars;
preventing the passage of fluids from the first subterranean zone to the second subterranean zone within the wellbore external to the primary solid tubulars and perforated tubulars; and positioning one or more perforated tubular liners within the interior of one or more of the perforated tubulars; and radially expanding and plastically deforming the perforated tubular liners within the interior of one or more of the perforated tubulars.
72. A method of extracting geothermal energy from a subterranean geothermal zone in a wellbore, at least a portion of the wellbore including a casing, comprising;
positioning one or more solid tubulars within the wellbore;
positioning one or more perforated tubulars each including one or more radial passages within the wellbore, the perforated tubulars traversing the subterranean geothermal zone;
radially expanding at least one of the solid tubulars and the perforated tubulars within the wellbore;
fluidicly coupling the solid tubulars with the casing;
fluidicly coupling the perforated tubulars with the solid tubulars;
fluidicly isolating the subterranean geothermal zone from at least one other subterranean zone within the wellbore; and fluidicly coupling at least one of the perforated tubulars with the subterranean geothermal zone.
73. A system for isolating a first subterranean zone from a second geothermal subterranean zone in a wellbore, comprising:

Page 120 of 126 means for positioning one or more solid tubulars within the wellbore, the solid tubulars traversing the first subterranean zone;
means for positioning one or more perforated tubulars each including one or more radial passages within the wellbore, the perforated tubulars traversing the second geothermal subterranean zone;
means for radially expanding at least one of the solid tubulars and perforated tubulars within the wellbore;
means for fluidicly coupling the perforated tubulars and the solid tubulars;
and means for preventing the passage of fluids from the first subterranean zone to the second geothermal subterranean zone within the wellbore external to the primary solid tubulars and perforated tubulars.
74. A system for extracting geothermal energy from a subterranean geothermal zone in a wellbore, at least a portion of the wellbore including a casing, comprising;
means for positioning one or more solid tubulars within the wellbore;
means for positioning one or more perforated tubulars each including one or more radial passages within the wellbore, the perforated tubulars traversing the subterranean geothermal zone;
means for radially expanding at least one of the solid tubulars and the perforated tubulars within the wellbore;
means for fluidicly coupling the solid tubulars with the casing;
means for fluidicly coupling the perforated tubulars with the solid tubulars;
means for fluidicly isolating the subterranean geothermal zone from at least one other subterranean zone within the wellbore; and means for fluidicly coupling at least one of the perforated tubulars with the subterranean geothermal zone.

Page 121 of 128
75. An apparatus, comprising:
a tonal isolation assembly comprising:
one or more solid tubular members, each solid tubular member including one or more external seals;
one or more perforated tubular members each including one or more radial passages coupled to the solid tubular members; and a shoe coupled to the zonal isolation assembly;
wherein at least one of the solid tubular members and the perforated tubular members are formed by a radial expansion process performed within the wellbore; and wherein the radial passage of at least one of the perforated tubular members are cleaned by further radial expansion of the perforated tubular members within the wellbore.
76. A method of isolating a first subterranean zone from a second subterranean zone in a wellbore, comprising:
positioning one or more solid tubulars within the wellbore, the solid tubulars traversing the first subterranean zone;
positioning one or more perforated tubulars within the wellbore each including one or more radial passages, the perforated tubulars traversing the second subterranean zone;
radially expanding at least one of the primary solid tubulars and perforated tubulars within the wellbore;
fluidicly coupling the perforated tubulars and the solid tubulars;
preventing the passage of fluids from the first subterranean zone to the second subterranean zone within the wellbore external to the solid tubulars and perforated tubulars; and Page 122 of 126 cleaning materials from the radial passages of at least one of the perforated tubulars by further radial expansion of the perforated tubulars within the wellbore.
77. A method of extracting materials from a producing subterranean zone in a wellbore, at least a portion of the wellbore including a casing; comprising;
positioning one or more solid. tubulars within the wellbore;
positioning one or more perforated tubulars within the wellbore each including one or more radial passages, the perforated tubulars traversing the producing subterranean zone;
radially expanding at least one of the solid tubulars and the perforated tubulars within the wellbore;
fluidicly coupling the solid tubulars with the casing;
fluidicly coupling the perforated tubulars with the solid tubulars;
fluidicly isolating the producing subterranean zone from at least one other subterranean zone within the wellbore;
fluidicly coupling at least one of the perforated tubulars with the producing subterranean zone;
monitoring the operating temperatures, pressures, and flow rates within one or more of the perforated tubulars; and cleaning materials from the radial passages of at least one of the perforated tubulars by further radial expansion of the perforated tubulars within the wellbore.
78. A system for isolating a first subterranean zone from a second subterranean zone in a wellbore, comprising:
means for positioning one or more solid tubulars within the wellbore, the solid tubulars traversing the first subterranean zone;

Page 123 of 126 means for positioning one or more perforated tubulars within the wellbore each including one or more radial passages, the perforated tubulars traversing the second subterranean zone;
means for radially expanding at least one of the solid tubulars and perforated tubulars within the wellbore;
means for fluidicly coupling the perforated tubulars and the solid tubulars;
means for preventing the passage of fluids from the first subterranean zone to the second subterranean zone within the wellbore external to the solid tubulars and perforated tubulars; and means for cleaning materials from the radial passages of at least one of the perforated tubulars by further radial expansion of the perforated tubulars within the wellbore.
79. A system for extracting materials from a producing subterranean zone in a wellbore, at least a portion of the wellbore including a casing, comprising;
means for positioning one or more solid tubulars within the wellbore;
means for positioning one or more perforated tubulars within the wellbore each including one or more radial passages, the perforated tubulars traversing the producing subterranean zone;
means for radially expanding at least one of the solid tubulars and the perforated tubulars within the wellbore;
means for fluidicly coupling the solid tubulars with the casing;
means for fluidicly coupling the perforated tubulars with the solid tubulars;
means for fluidicly isolating the producing subterranean zone from at least one other subterranean zone within the wellbore;
means for fluidicly coupling at least one of the perforated tubulars with the producing subterranean zone; and Page 124 of 126 means for cleaning materials from the radial passages of at least one of the perforated tubulars by further radial expansion of the perforated tubulars within the wellbore.

Page 125 of 126
CA2410274A 2001-12-10 2002-10-30 Isolation of subterranean zones Expired - Fee Related CA2410274C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/016,467 2001-12-10
US10/016,467 US6745845B2 (en) 1998-11-16 2001-12-10 Isolation of subterranean zones

Publications (2)

Publication Number Publication Date
CA2410274A1 true CA2410274A1 (en) 2003-06-10
CA2410274C CA2410274C (en) 2010-09-28

Family

ID=21777274

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2410274A Expired - Fee Related CA2410274C (en) 2001-12-10 2002-10-30 Isolation of subterranean zones

Country Status (5)

Country Link
US (1) US6745845B2 (en)
AU (1) AU2002306209A1 (en)
CA (1) CA2410274C (en)
GB (2) GB2413136B (en)
NO (1) NO20025900L (en)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7357188B1 (en) 1998-12-07 2008-04-15 Shell Oil Company Mono-diameter wellbore casing
US7121352B2 (en) * 1998-11-16 2006-10-17 Enventure Global Technology Isolation of subterranean zones
AU770359B2 (en) * 1999-02-26 2004-02-19 Shell Internationale Research Maatschappij B.V. Liner hanger
GB9920936D0 (en) * 1999-09-06 1999-11-10 E2 Tech Ltd Apparatus for and a method of anchoring an expandable conduit
US6799637B2 (en) 2000-10-20 2004-10-05 Schlumberger Technology Corporation Expandable tubing and method
US6789621B2 (en) 2000-08-03 2004-09-14 Schlumberger Technology Corporation Intelligent well system and method
US7168485B2 (en) * 2001-01-16 2007-01-30 Schlumberger Technology Corporation Expandable systems that facilitate desired fluid flow
NO335594B1 (en) 2001-01-16 2015-01-12 Halliburton Energy Serv Inc Expandable devices and methods thereof
WO2004081346A2 (en) 2003-03-11 2004-09-23 Enventure Global Technology Apparatus for radially expanding and plastically deforming a tubular member
US7546881B2 (en) 2001-09-07 2009-06-16 Enventure Global Technology, Llc Apparatus for radially expanding and plastically deforming a tubular member
US6722427B2 (en) 2001-10-23 2004-04-20 Halliburton Energy Services, Inc. Wear-resistant, variable diameter expansion tool and expansion methods
US6719064B2 (en) 2001-11-13 2004-04-13 Schlumberger Technology Corporation Expandable completion system and method
GB2408531B (en) * 2002-03-04 2006-03-08 Schlumberger Holdings Methods of monitoring well operations
CA2482743C (en) 2002-04-12 2011-05-24 Enventure Global Technology Protective sleeve for threaded connections for expandable liner hanger
CA2482278A1 (en) 2002-04-15 2003-10-30 Enventure Global Technology Protective sleeve for threaded connections for expandable liner hanger
US6825126B2 (en) * 2002-04-25 2004-11-30 Hitachi Kokusai Electric Inc. Manufacturing method of semiconductor device and substrate processing apparatus
US7125053B2 (en) 2002-06-10 2006-10-24 Weatherford/ Lamb, Inc. Pre-expanded connector for expandable downhole tubulars
US6935432B2 (en) * 2002-09-20 2005-08-30 Halliburton Energy Services, Inc. Method and apparatus for forming an annular barrier in a wellbore
WO2004027392A1 (en) 2002-09-20 2004-04-01 Enventure Global Technology Pipe formability evaluation for expandable tubulars
US7828068B2 (en) * 2002-09-23 2010-11-09 Halliburton Energy Services, Inc. System and method for thermal change compensation in an annular isolator
US6854522B2 (en) * 2002-09-23 2005-02-15 Halliburton Energy Services, Inc. Annular isolators for expandable tubulars in wellbores
US7886831B2 (en) 2003-01-22 2011-02-15 Enventure Global Technology, L.L.C. Apparatus for radially expanding and plastically deforming a tubular member
GB2415988B (en) 2003-04-17 2007-10-17 Enventure Global Technology Apparatus for radially expanding and plastically deforming a tubular member
GB0317395D0 (en) * 2003-07-25 2003-08-27 Weatherford Lamb Sealing expandable tubing
US7712522B2 (en) 2003-09-05 2010-05-11 Enventure Global Technology, Llc Expansion cone and system
US7452007B2 (en) * 2004-07-07 2008-11-18 Weatherford/Lamb, Inc. Hybrid threaded connection for expandable tubulars
US7819185B2 (en) 2004-08-13 2010-10-26 Enventure Global Technology, Llc Expandable tubular
US7798536B2 (en) * 2005-08-11 2010-09-21 Weatherford/Lamb, Inc. Reverse sliding seal for expandable tubular connections
GB2440858A (en) * 2005-10-13 2008-02-13 Enventure Global Technology Fluid expansion of liner into contact with existing tubular
US7367391B1 (en) 2006-12-28 2008-05-06 Baker Hughes Incorporated Liner anchor for expandable casing strings and method of use
WO2008135356A1 (en) * 2007-04-20 2008-11-13 Saltel Industries Method for casing using multiple expanded areas and using at least one inflatable bladder
FR2915264B1 (en) * 2007-04-20 2010-04-16 Saltel Ind METHOD FOR SHAPING A WELL OR PIPE USING AN INFLATABLE BLADDER.
FR2917117B1 (en) * 2007-06-05 2010-12-24 Saltel Ind METHOD FOR CONTROLLING THE PRODUCTION OF FLUID WITHIN A WELL
EP2143876A1 (en) * 2008-07-11 2010-01-13 Welltec A/S Method for sealing off a water zone in a production well downhole and a sealing arrangement
US20100032167A1 (en) 2008-08-08 2010-02-11 Adam Mark K Method for Making Wellbore that Maintains a Minimum Drift
US8261842B2 (en) 2009-12-08 2012-09-11 Halliburton Energy Services, Inc. Expandable wellbore liner system
US8443903B2 (en) 2010-10-08 2013-05-21 Baker Hughes Incorporated Pump down swage expansion method
US8826974B2 (en) 2011-08-23 2014-09-09 Baker Hughes Incorporated Integrated continuous liner expansion method
US9243468B2 (en) * 2012-04-17 2016-01-26 Baker Hughes Incorporated Expandable annular isolator
US9273526B2 (en) 2013-01-16 2016-03-01 Baker Hughes Incorporated Downhole anchoring systems and methods of using same
US9404350B2 (en) 2013-09-16 2016-08-02 Baker Hughes Incorporated Flow-activated flow control device and method of using same in wellbores
CN103696718A (en) * 2013-12-19 2014-04-02 中国石油天然气股份有限公司 Method and device for repairing double-clamping-sleeve of expansion pipe of long section of casing damage well in layered partition manner
US9188250B1 (en) * 2014-06-12 2015-11-17 Ronald C. Parsons and Denise M. Parsons Seals for expandable tubular
US10000990B2 (en) 2014-06-25 2018-06-19 Shell Oil Company System and method for creating a sealing tubular connection in a wellbore
BR112016029985B1 (en) 2014-06-25 2022-02-22 Shell Internationale Research Maatschappij B.V Assembly and method for expanding a tubular element in a borehole
US20160115743A1 (en) * 2014-10-23 2016-04-28 Chevron U.S.A. Inc. Modified Wellbore Casing Trajectories
US9708888B2 (en) 2014-10-31 2017-07-18 Baker Hughes Incorporated Flow-activated flow control device and method of using same in wellbore completion assemblies
US9745827B2 (en) 2015-01-06 2017-08-29 Baker Hughes Incorporated Completion assembly with bypass for reversing valve
US20180223607A1 (en) * 2017-02-06 2018-08-09 Mitchell Z. Dziekonski Toe casing
US11585178B2 (en) 2018-06-01 2023-02-21 Winterhawk Well Abandonment Ltd. Casing expander for well abandonment
US11634967B2 (en) * 2021-05-31 2023-04-25 Winterhawk Well Abandonment Ltd. Method for well remediation and repair
WO2023055360A1 (en) * 2021-09-29 2023-04-06 Halliburton Energy Services, Inc. Isolation devices and flow control device to control fluid flow in wellbore for geothermal energy transfer

Family Cites Families (478)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US519805A (en) * 1894-05-15 Charles s
CA736288A (en) 1966-06-14 C. Stall Joe Liner expander
US332184A (en) * 1885-12-08 William a
US341237A (en) 1886-05-04 Bicycle
US331940A (en) * 1885-12-08 Half to ralph bagaley
CA771462A (en) 1967-11-14 Pan American Petroleum Corporation Metallic casing patch
US2734580A (en) 1956-02-14 layne
US46818A (en) 1865-03-14 Improvement in tubes for caves in oil or other wells
US806156A (en) * 1905-03-28 1905-12-05 Dale Marshall Lock for nuts and bolts and the like.
US984449A (en) 1909-08-10 1911-02-14 John S Stewart Casing mechanism.
US958517A (en) 1909-09-01 1910-05-17 John Charles Mettler Well-casing-repairing tool.
US1233888A (en) 1916-09-01 1917-07-17 Frank W A Finley Art of well-producing or earth-boring.
US1590357A (en) * 1925-01-14 1926-06-29 John F Penrose Pipe joint
US1589781A (en) * 1925-11-09 1926-06-22 Joseph M Anderson Rotary tool joint
US1880218A (en) 1930-10-01 1932-10-04 Richard P Simmons Method of lining oil wells and means therefor
US1981525A (en) 1933-12-05 1934-11-20 Bailey E Price Method of and apparatus for drilling oil wells
US2046870A (en) 1934-05-08 1936-07-07 Clasen Anthony Method of repairing wells having corroded sand points
US2122757A (en) * 1935-07-05 1938-07-05 Hughes Tool Co Drill stem coupling
US2087185A (en) * 1936-08-24 1937-07-13 Stephen V Dillon Well string
US2187275A (en) * 1937-01-12 1940-01-16 Amos N Mclennan Means for locating and cementing off leaks in well casings
US2226804A (en) * 1937-02-05 1940-12-31 Johns Manville Liner for wells
US2160263A (en) * 1937-03-18 1939-05-30 Hughes Tool Co Pipe joint and method of making same
US2204586A (en) * 1938-06-15 1940-06-18 Byron Jackson Co Safety tool joint
US2214226A (en) 1939-03-29 1940-09-10 English Aaron Method and apparatus useful in drilling and producing wells
US2301495A (en) * 1939-04-08 1942-11-10 Abegg & Reinhold Co Method and means of renewing the shoulders of tool joints
US2273017A (en) * 1939-06-30 1942-02-17 Boynton Alexander Right and left drill pipe
US2447629A (en) 1944-05-23 1948-08-24 Richfield Oil Corp Apparatus for forming a section of casing below casing already in position in a well hole
US2500276A (en) * 1945-12-22 1950-03-14 Walter L Church Safety joint
US2583316A (en) 1947-12-09 1952-01-22 Clyde E Bannister Method and apparatus for setting a casing structure in a well hole or the like
US3018547A (en) * 1952-07-30 1962-01-30 Babcock & Wilcox Co Method of making a pressure-tight mechanical joint for operation at elevated temperatures
US2796134A (en) 1954-07-19 1957-06-18 Exxon Research Engineering Co Apparatus for preventing lost circulation in well drilling operations
US2812025A (en) 1955-01-24 1957-11-05 James U Teague Expansible liner
US2907589A (en) 1956-11-05 1959-10-06 Hydril Co Sealed joint for tubing
US3067819A (en) 1958-06-02 1962-12-11 George L Gore Casing interliner
US3015500A (en) * 1959-01-08 1962-01-02 Dresser Ind Drill string joint
US3104703A (en) 1960-08-31 1963-09-24 Jersey Prod Res Co Borehole lining or casing
US3209546A (en) 1960-09-21 1965-10-05 Lawton Lawrence Method and apparatus for forming concrete piles
US3111991A (en) 1961-05-12 1963-11-26 Pan American Petroleum Corp Apparatus for repairing well casing
US3175618A (en) 1961-11-06 1965-03-30 Pan American Petroleum Corp Apparatus for placing a liner in a vessel
US3191680A (en) 1962-03-14 1965-06-29 Pan American Petroleum Corp Method of setting metallic liners in wells
US3167122A (en) 1962-05-04 1965-01-26 Pan American Petroleum Corp Method and apparatus for repairing casing
GB961750A (en) 1962-06-12 1964-06-24 David Horace Young Improvements relating to pumps
US3203483A (en) 1962-08-09 1965-08-31 Pan American Petroleum Corp Apparatus for forming metallic casing liner
US3203451A (en) 1962-08-09 1965-08-31 Pan American Petroleum Corp Corrugated tube for lining wells
US3179168A (en) 1962-08-09 1965-04-20 Pan American Petroleum Corp Metallic casing liner
US3188816A (en) 1962-09-17 1965-06-15 Koch & Sons Inc H Pile forming method
US3245471A (en) 1963-04-15 1966-04-12 Pan American Petroleum Corp Setting casing in wells
US3191677A (en) 1963-04-29 1965-06-29 Myron M Kinley Method and apparatus for setting liners in tubing
US3270817A (en) 1964-03-26 1966-09-06 Gulf Research Development Co Method and apparatus for installing a permeable well liner
US3354955A (en) 1964-04-24 1967-11-28 William B Berry Method and apparatus for closing and sealing openings in a well casing
US3364993A (en) 1964-06-26 1968-01-23 Wilson Supply Company Method of well casing repair
US3326293A (en) 1964-06-26 1967-06-20 Wilson Supply Company Well casing repair
US3297092A (en) 1964-07-15 1967-01-10 Pan American Petroleum Corp Casing patch
US3353599A (en) 1964-08-04 1967-11-21 Gulf Oil Corp Method and apparatus for stabilizing formations
GB1062610A (en) 1964-11-19 1967-03-22 Stone Manganese Marine Ltd Improvements relating to the attachment of components to shafts
US3358769A (en) 1965-05-28 1967-12-19 William B Berry Transporter for well casing interliner or boot
US3358760A (en) 1965-10-14 1967-12-19 Schlumberger Technology Corp Method and apparatus for lining wells
US3389752A (en) 1965-10-23 1968-06-25 Schlumberger Technology Corp Zone protection
GB1111536A (en) 1965-11-12 1968-05-01 Stal Refrigeration Ab Means for distributing flowing media
US3412565A (en) 1966-10-03 1968-11-26 Continental Oil Co Method of strengthening foundation piling
US3498376A (en) 1966-12-29 1970-03-03 Phillip S Sizer Well apparatus and setting tool
SU953172A1 (en) 1967-03-29 1982-08-23 ха вители Method of consolidpating borehole walls
US3424244A (en) 1967-09-14 1969-01-28 Kinley Co J C Collapsible support and assembly for casing or tubing liner or patch
US3477506A (en) 1968-07-22 1969-11-11 Lynes Inc Apparatus relating to fabrication and installation of expanded members
US3489220A (en) 1968-08-02 1970-01-13 J C Kinley Method and apparatus for repairing pipe in wells
US3568773A (en) 1969-11-17 1971-03-09 Robert O Chancellor Apparatus and method for setting liners in well casings
US3687196A (en) 1969-12-12 1972-08-29 Schlumberger Technology Corp Drillable slip
US3665591A (en) * 1970-01-02 1972-05-30 Imp Eastman Corp Method of making up an expandable insert fitting
US3691624A (en) 1970-01-16 1972-09-19 John C Kinley Method of expanding a liner
US3780562A (en) 1970-01-16 1973-12-25 J Kinley Device for expanding a tubing liner
US3682256A (en) * 1970-05-15 1972-08-08 Charles A Stuart Method for eliminating wear failures of well casing
US3812912A (en) 1970-10-22 1974-05-28 Gulf Research Development Co Reproducible shot hole apparatus
US3693717A (en) 1970-10-22 1972-09-26 Gulf Research Development Co Reproducible shot hole
US3669190A (en) 1970-12-21 1972-06-13 Otis Eng Corp Methods of completing a well
US3711123A (en) 1971-01-15 1973-01-16 Hydro Tech Services Inc Apparatus for pressure testing annular seals in an oversliding connector
US3785193A (en) 1971-04-10 1974-01-15 Kinley J Liner expanding apparatus
US3746092A (en) 1971-06-18 1973-07-17 Cities Service Oil Co Means for stabilizing wellbores
US3746091A (en) 1971-07-26 1973-07-17 H Owen Conduit liner for wellbore
US3712376A (en) 1971-07-26 1973-01-23 Gearhart Owen Industries Conduit liner for wellbore and method and apparatus for setting same
US3746068A (en) 1971-08-27 1973-07-17 Minnesota Mining & Mfg Fasteners and sealants useful therefor
US3779025A (en) 1971-10-07 1973-12-18 Raymond Int Inc Pile installation
US3764168A (en) 1971-10-12 1973-10-09 Schlumberger Technology Corp Drilling expansion joint apparatus
US3797259A (en) 1971-12-13 1974-03-19 Baker Oil Tools Inc Method for insitu anchoring piling
US3885298A (en) * 1972-04-26 1975-05-27 Texaco Inc Method of sealing two telescopic pipes together
US3776307A (en) 1972-08-24 1973-12-04 Gearhart Owen Industries Apparatus for setting a large bore packer in a well
US3818734A (en) 1973-05-23 1974-06-25 J Bateman Casing expanding mandrel
US3866954A (en) * 1973-06-18 1975-02-18 Bowen Tools Inc Joint locking device
FR2234448B1 (en) 1973-06-25 1977-12-23 Petroles Cie Francaise
US3893718A (en) * 1973-11-23 1975-07-08 Jonathan S Powell Constricted collar insulated pipe coupling
SU511468A1 (en) 1973-11-29 1976-04-25 Предприятие П/Я Р-6476 One-piece flared joint
DE2458188C3 (en) 1973-12-10 1979-06-13 Kubota Ltd., Osaka (Japan) Pipe connector
US3898163A (en) * 1974-02-11 1975-08-05 Lambert H Mott Tube seal joint and method therefor
GB1460864A (en) 1974-03-14 1977-01-06 Sperryn Co Ltd Pipe unions
US3887006A (en) 1974-04-24 1975-06-03 Dow Chemical Co Fluid retainer setting tool
US3948321A (en) 1974-08-29 1976-04-06 Gearhart-Owen Industries, Inc. Liner and reinforcing swage for conduit in a wellbore and method and apparatus for setting same
US3970336A (en) * 1974-11-25 1976-07-20 Parker-Hannifin Corporation Tube coupling joint
US3915478A (en) * 1974-12-11 1975-10-28 Dresser Ind Corrosion resistant pipe joint
US3945444A (en) 1975-04-01 1976-03-23 The Anaconda Company Split bit casing drill
US4026583A (en) * 1975-04-28 1977-05-31 Hydril Company Stainless steel liner in oil well pipe
BR7600832A (en) 1975-05-01 1976-11-09 Caterpillar Tractor Co PIPE ASSEMBLY JOINT PREPARED FOR AN ADJUSTER AND METHOD FOR MECHANICALLY ADJUSTING AN ADJUSTER TO THE END OF A METAL TUBE LENGTH
US3977473A (en) 1975-07-14 1976-08-31 Page John S Jr Well tubing anchor with automatic delay and method of installation in a well
US4053247A (en) * 1975-07-24 1977-10-11 Marsh Jr Richard O Double sleeve pipe coupler
SU612004A1 (en) 1976-01-04 1978-06-25 Всесоюзный научно-исследовательский институт по креплению скважин и буровым растворам Device for fitting metal plug inside pipe
SU620582A1 (en) 1976-01-04 1978-08-25 Всесоюзный научно-исследовательский институт по креплению скважин и буровым растворам Device for placing metal patch inside pipe
US4152821A (en) * 1976-03-01 1979-05-08 Scott William J Pipe joining connection process
US4069573A (en) 1976-03-26 1978-01-24 Combustion Engineering, Inc. Method of securing a sleeve within a tube
USRE30802E (en) 1976-03-26 1981-11-24 Combustion Engineering, Inc. Method of securing a sleeve within a tube
SU607950A1 (en) 1976-04-21 1978-05-25 Татарский Государственный Научно-Исследовательский И Проектный Институт Нефтяной Промышленности Device for mounting corrugated plug in borehole
GB1542847A (en) 1976-04-26 1979-03-28 Curran T Pipe couplings
US4011652A (en) * 1976-04-29 1977-03-15 Psi Products, Inc. Method for making a pipe coupling
US4304428A (en) * 1976-05-03 1981-12-08 Grigorian Samvel S Tapered screw joint and device for emergency recovery of boring tool from borehole with the use of said joint
US4060131A (en) 1977-01-10 1977-11-29 Baker International Corporation Mechanically set liner hanger and running tool
US4098334A (en) 1977-02-24 1978-07-04 Baker International Corp. Dual string tubing hanger
US4205422A (en) 1977-06-15 1980-06-03 Yorkshire Imperial Metals Limited Tube repairs
SU641070A1 (en) 1977-08-29 1979-01-05 Всесоюзный научно-исследовательский институт по креплению скважин и буровым растворам Hydraulic core head
SU832049A1 (en) 1978-05-03 1981-05-23 Всесоюзный Научно-Исследовательскийинститут По Креплению Скважини Буровым Pactbopam Expander for setting expandale shanks in well
GB1563740A (en) 1978-05-05 1980-03-26 No 1 Offshore Services Ltd Securing of structures to tubular metal piles underwater
US4190108A (en) 1978-07-19 1980-02-26 Webber Jack C Swab
US4379471A (en) * 1978-11-02 1983-04-12 Rainer Kuenzel Thread protector apparatus
SE427764B (en) 1979-03-09 1983-05-02 Atlas Copco Ab MOUNTAIN CULTURAL PROCEDURES REALLY RUCH MOUNTED MOUNTAIN
US4274665A (en) * 1979-04-02 1981-06-23 Marsh Jr Richard O Wedge-tight pipe coupling
SU909114A1 (en) 1979-05-31 1982-02-28 Всесоюзный научно-исследовательский институт по креплению скважин и буровым растворам Method of repairing casings
US4253687A (en) 1979-06-11 1981-03-03 Whiting Oilfield Rental, Inc. Pipe connection
EP0021349B1 (en) 1979-06-29 1985-04-17 Nippon Steel Corporation High tensile steel and process for producing the same
SU874952A1 (en) 1979-06-29 1981-10-23 Татарский Государственный Научно-Исследовательский И Проектный Институт Нефтяной Промышленности Министерства Нефтяной Промышленности Expander
SU899850A1 (en) 1979-08-17 1982-01-23 Всесоюзный научно-исследовательский институт по креплению скважин и буровым растворам Apparatus for setting expandable tail piece in well
FR2464424A1 (en) * 1979-09-03 1981-03-06 Aerospatiale METHOD FOR PROVIDING A CANALIZATION OF A CONNECTING TIP AND PIPELINE THUS OBTAINED
US4402372A (en) * 1979-09-24 1983-09-06 Reading & Bates Construction Co. Apparatus for drilling underground arcuate paths and installing production casings, conduits, or flow pipes therein
GB2058877B (en) 1979-09-26 1983-04-07 Spun Concrete Ltd Tunnel linings
AU539012B2 (en) 1979-10-19 1984-09-06 Eastern Company, The Stabilizing rock structures
SU853089A1 (en) 1979-11-29 1981-08-07 Всесоюзный Научно-Исследовательс-Кий Институт По Креплению Скважини Буровым Pactbopam Blank for patch for repairing casings
SU894169A1 (en) 1979-12-25 1981-12-30 Всесоюзный научно-исследовательский институт по креплению скважин и буровым растворам Borehole expander
US4305465A (en) 1980-02-01 1981-12-15 Dresser Industries, Inc. Subsurface tubing hanger and stinger assembly
FR2475949A1 (en) * 1980-02-15 1981-08-21 Vallourec DUDGEONING PROCESS, DUDGEON LIKELY TO BE USED FOR THE IMPLEMENTATION OF THIS PROCESS, AND ASSEMBLY OBTAINED USING THE SAME
US4359889A (en) 1980-03-24 1982-11-23 Haskel Engineering & Supply Company Self-centering seal for use in hydraulically expanding tubes
SU907220A1 (en) 1980-05-21 1982-02-23 Татарский Научно-Исследовательский И Проектныий Институт Нефтяной Промышленности Method of setting a profiled closure in well
US4635333A (en) 1980-06-05 1987-01-13 The Babcock & Wilcox Company Tube expanding method
US4423889A (en) 1980-07-29 1984-01-03 Dresser Industries, Inc. Well-tubing expansion joint
NO159201C (en) 1980-09-08 1988-12-07 Atlas Copco Ab PROCEDURE FOR BOLTING IN MOUNTAIN AND COMBINED EXPANSION BOLT AND INSTALLATION DEVICE FOR SAME.
US4368571A (en) 1980-09-09 1983-01-18 Westinghouse Electric Corp. Sleeving method
US4366971A (en) * 1980-09-17 1983-01-04 Allegheny Ludlum Steel Corporation Corrosion resistant tube assembly
US4391325A (en) 1980-10-27 1983-07-05 Texas Iron Works, Inc. Liner and hydraulic liner hanger setting arrangement
US4380347A (en) * 1980-10-31 1983-04-19 Sable Donald E Well tool
US4483399A (en) 1981-02-12 1984-11-20 Colgate Stirling A Method of deep drilling
SU959878A1 (en) 1981-03-05 1982-09-23 Предприятие П/Я М-5057 Tool for cold expansion of tubes
US4508129A (en) * 1981-04-14 1985-04-02 Brown George T Pipe repair bypass system
US4393931A (en) 1981-04-27 1983-07-19 Baker International Corporation Combination hydraulically set hanger assembly with expansion joint
SU976019A1 (en) 1981-05-13 1982-11-23 Всесоюзный научно-исследовательский институт по креплению скважин и буровым растворам Method of setting a patch of corrugated pipe length
SU1158400A1 (en) 1981-05-15 1985-05-30 Уральское Отделение Всесоюзного Ордена Трудового Красного Знамени Научно-Исследовательского Института Железнодорожного Транспорта System for power supply of d.c.electric railways
SU976020A1 (en) 1981-05-27 1982-11-23 Татарский научно-исследовательский и проектный институт нефтяной промышленности Apparatus for repairing casings within a well
US4573248A (en) * 1981-06-04 1986-03-04 Hackett Steven B Method and means for in situ repair of heat exchanger tubes in nuclear installations or the like
US4411435A (en) 1981-06-15 1983-10-25 Baker International Corporation Seal assembly with energizing mechanism
SU1041671A1 (en) 1981-06-22 1983-09-15 Татарский Государственный Научно-Исследовательский И Проектный Институт Нефтяной Промышленности Casing repair apparatus
US4828033A (en) * 1981-06-30 1989-05-09 Dowell Schlumberger Incorporated Apparatus and method for treatment of wells
SU989038A1 (en) 1981-08-11 1983-01-15 Всесоюзный научно-исследовательский институт по креплению скважин и буровым растворам Apparatus for repairing casings
US4530527A (en) 1981-09-21 1985-07-23 Boart International Limited Connection of drill tubes
US4429741A (en) 1981-10-13 1984-02-07 Christensen, Inc. Self powered downhole tool anchor
AU566422B2 (en) 1981-10-15 1987-10-22 Thompson, W.H. A polymerisable fluid
SE8106165L (en) 1981-10-19 1983-04-20 Atlas Copco Ab PROCEDURE FOR MOUNTAIN AND MOUNTAIN
SU1002514A1 (en) 1981-11-09 1983-03-07 Всесоюзный Ордена Трудового Красного Знамени Научно-Исследовательский Институт Буровой Техники Device for setting plaster in well
US4421169A (en) 1981-12-03 1983-12-20 Atlantic Richfield Company Protective sheath for high temperature process wells
US4420866A (en) 1982-01-25 1983-12-20 Cities Service Company Apparatus and process for selectively expanding to join one tube into another tube
GB2115860A (en) 1982-03-01 1983-09-14 Hughes Tool Co Apparatus and method for cementing a liner in a well bore
US4473245A (en) * 1982-04-13 1984-09-25 Otis Engineering Corporation Pipe joint
US5263748A (en) * 1982-05-19 1993-11-23 Carstensen Kenneth J Couplings for standard A.P.I. tubings and casings
US4413682A (en) 1982-06-07 1983-11-08 Baker Oil Tools, Inc. Method and apparatus for installing a cementing float shoe on the bottom of a well casing
SU1051222A1 (en) 1982-07-01 1983-10-30 Всесоюзный научно-исследовательский институт по креплению скважин и буровым растворам Casing repair method
US4440233A (en) 1982-07-06 1984-04-03 Hughes Tool Company Setting tool
US4501327A (en) 1982-07-19 1985-02-26 Philip Retz Split casing block-off for gas or water in oil drilling
US4592577A (en) 1982-09-30 1986-06-03 The Babcock & Wilcox Company Sleeve type repair of degraded nuclear steam generator tubes
US4739916A (en) 1982-09-30 1988-04-26 The Babcock & Wilcox Company Sleeve repair of degraded nuclear steam generator tubes
US4462471A (en) * 1982-10-27 1984-07-31 James Hipp Bidirectional fluid operated vibratory jar
SU1086118A1 (en) 1982-11-05 1984-04-15 Татарский государственный научно-исследовательский и проектный институт нефтяной промышленности "ТатНИПИнефть" Apparatus for repairing a casing
US4519456A (en) * 1982-12-10 1985-05-28 Hughes Tool Company Continuous flow perforation washing tool and method
US4444250A (en) * 1982-12-13 1984-04-24 Hydril Company Flow diverter
US4505017A (en) 1982-12-15 1985-03-19 Combustion Engineering, Inc. Method of installing a tube sleeve
US4485847A (en) 1983-03-21 1984-12-04 Combustion Engineering, Inc. Compression sleeve tube repair
US4526232A (en) 1983-07-14 1985-07-02 Shell Offshore Inc. Method of replacing a corroded well conductor in an offshore platform
US4553776A (en) 1983-10-25 1985-11-19 Shell Oil Company Tubing connector
US4637436A (en) 1983-11-15 1987-01-20 Raychem Corporation Annular tube-like driver
US4796668A (en) * 1984-01-09 1989-01-10 Vallourec Device for protecting threadings and butt-type joint bearing surfaces of metallic tubes
JPS60205091A (en) * 1984-03-29 1985-10-16 住友金属工業株式会社 Pipe joint for oil well pipe
US4793382A (en) 1984-04-04 1988-12-27 Raychem Corporation Assembly for repairing a damaged pipe
SU1212575A1 (en) 1984-04-16 1986-02-23 Львовский Ордена Ленина Политехнический Институт Им.Ленинского Комсомола Arrangement for expanding pilot borehole
US4605063A (en) 1984-05-11 1986-08-12 Baker Oil Tools, Inc. Chemical injection tubing anchor-catcher
SU1250637A1 (en) 1984-12-29 1986-08-15 Предприятие П/Я Р-6767 Arrangement for drilling holes with simultaneous casing-in
US4576386A (en) 1985-01-16 1986-03-18 W. S. Shamban & Company Anti-extrusion back-up ring assembly
US4629218A (en) 1985-01-29 1986-12-16 Quality Tubing, Incorporated Oilfield coil tubing
SU1430498A1 (en) 1985-02-04 1988-10-15 Всесоюзный Научно-Исследовательский Институт Буровой Техники Arrangement for setting a patch in well
US4646787A (en) * 1985-03-18 1987-03-03 Institute Of Gas Technology Pneumatic pipe inspection device
US4590995A (en) 1985-03-26 1986-05-27 Halliburton Company Retrievable straddle packer
US4611662A (en) 1985-05-21 1986-09-16 Amoco Corporation Remotely operable releasable pipe connector
US4817710A (en) 1985-06-03 1989-04-04 Halliburton Company Apparatus for absorbing shock
DE3523388C1 (en) * 1985-06-29 1986-12-18 Friedrichsfeld GmbH Keramik- und Kunststoffwerke, 6800 Mannheim Connection arrangement with a screw sleeve
SU1295799A1 (en) 1985-07-19 1995-02-09 Татарский Государственный Научно-Исследовательский И Проектный Институт Нефтяной Промышленности Device for expanding tubes
US4660863A (en) 1985-07-24 1987-04-28 A-Z International Tool Company Casing patch seal
US4669541A (en) 1985-10-04 1987-06-02 Dowell Schlumberger Incorporated Stage cementing apparatus
SU1745873A1 (en) 1986-01-06 1992-07-07 Всесоюзный научно-исследовательский институт по креплению скважин и буровым растворам Hydraulic and mechanical mandrel for expanding corrugated patch in casing
US4662446A (en) 1986-01-16 1987-05-05 Halliburton Company Liner seal and method of use
SU1324722A1 (en) 1986-03-26 1987-07-23 Предприятие П/Я А-7844 Arrangement for expanding round billets
US4651836A (en) * 1986-04-01 1987-03-24 Methane Drainage Ventures Process for recovering methane gas from subterranean coalseams
US4693498A (en) * 1986-04-28 1987-09-15 Mobil Oil Corporation Anti-rotation tubular connection for flowlines or the like
FR2598202B1 (en) * 1986-04-30 1990-02-09 Framatome Sa METHOD FOR COVERING A PERIPHERAL TUBE OF A STEAM GENERATOR.
US4685191A (en) 1986-05-12 1987-08-11 Cities Service Oil And Gas Corporation Apparatus and process for selectively expanding to join one tube into another tube
JP2515744B2 (en) 1986-06-13 1996-07-10 東レ株式会社 Heat resistant aromatic polyester
US4685834A (en) 1986-07-02 1987-08-11 Sunohio Company Splay bottom fluted metal piles
US4730851A (en) 1986-07-07 1988-03-15 Cooper Industries Downhole expandable casting hanger
SU1432190A1 (en) 1986-08-04 1988-10-23 Всесоюзный научно-исследовательский институт по креплению скважин и буровым растворам Device for setting patch in casing
US4711474A (en) 1986-10-21 1987-12-08 Atlantic Richfield Company Pipe joint seal rings
SU1411434A1 (en) 1986-11-24 1988-07-23 Татарский Государственный Научно-Исследовательский И Проектный Институт "Татнипинефть" Method of setting a connection pipe in casing
DE3720620A1 (en) 1986-12-22 1988-07-07 Rhydcon Groten Gmbh & Co Kg METHOD FOR PRODUCING PIPE CONNECTIONS FOR HIGH PRESSURE HYDRAULIC LINES
US4776394A (en) * 1987-02-13 1988-10-11 Tri-State Oil Tool Industries, Inc. Hydraulic stabilizer for bore hole tool
US5015017A (en) * 1987-03-19 1991-05-14 Geary George B Threaded tubular coupling
US4735444A (en) * 1987-04-07 1988-04-05 Claud T. Skipper Pipe coupling for well casing
US4714117A (en) * 1987-04-20 1987-12-22 Atlantic Richfield Company Drainhole well completion
US4817716A (en) 1987-04-30 1989-04-04 Cameron Iron Works Usa, Inc. Pipe connector and method of applying same
FR2616032B1 (en) 1987-05-26 1989-08-04 Commissariat Energie Atomique COAXIAL CAVITY ELECTRON ACCELERATOR
JPS63293384A (en) * 1987-05-27 1988-11-30 住友金属工業株式会社 Frp pipe with screw coupling
US4872253A (en) * 1987-10-07 1989-10-10 Carstensen Kenneth J Apparatus and method for improving the integrity of coupling sections in high performance tubing and casing
US4830109A (en) 1987-10-28 1989-05-16 Cameron Iron Works Usa, Inc. Casing patch method and apparatus
US4865127A (en) 1988-01-15 1989-09-12 Nu-Bore Systems Method and apparatus for repairing casings and the like
SU1679030A1 (en) 1988-01-21 1991-09-23 Татарский Государственный Научно-Исследовательский И Проектный Институт Нефтяной Промышленности Method of pit disturbance zones isolation with shaped overlaps
FR2626613A1 (en) * 1988-01-29 1989-08-04 Inst Francais Du Petrole DEVICE AND METHOD FOR PERFORMING OPERATIONS AND / OR INTERVENTIONS IN A WELL
US4907828A (en) * 1988-02-16 1990-03-13 Western Atlas International, Inc. Alignable, threaded, sealed connection
US4887646A (en) * 1988-02-18 1989-12-19 The Boeing Company Test fitting
SU1677248A1 (en) 1988-03-31 1991-09-15 Всесоюзный научно-исследовательский и проектный институт по креплению скважин и буровым растворам Method for straightening deformed casing string
GB2216926B (en) 1988-04-06 1992-08-12 Jumblefierce Limited Drilling method and apparatus
SU1601330A1 (en) 1988-04-25 1990-10-23 Всесоюзный Научно-Исследовательский Институт Буровой Техники Method of setting a patch in unsealed interval of casing
SU1686123A1 (en) 1988-06-08 1991-10-23 Всесоюзный научно-исследовательский и проектный институт по креплению скважин и буровым растворам Device for casing repairs
US4892337A (en) * 1988-06-16 1990-01-09 Exxon Production Research Company Fatigue-resistant threaded connector
SU1627663A1 (en) 1988-07-29 1991-02-15 Татарский Государственный Научно-Исследовательский И Проектный Институт Нефтяной Промышленности Casing maintenance device
US4934312A (en) 1988-08-15 1990-06-19 Nu-Bore Systems Resin applicator device
SU1672225A1 (en) 1988-08-16 1991-08-23 Специальное Конструкторское Бюро Часового И Камневого Станкостроения Device for volumetric metering out of powders
GB8820608D0 (en) 1988-08-31 1988-09-28 Shell Int Research Method for placing body of shape memory within tubing
SE466690B (en) 1988-09-06 1992-03-23 Exploweld Ab PROCEDURE FOR EXPLOSION WELDING OF Pipes
US5664327A (en) 1988-11-03 1997-09-09 Emitec Gesellschaft Fur Emissionstechnologie Gmbh Method for producing a hollow composite members
US4941512A (en) 1988-11-14 1990-07-17 Cti Industries, Inc. Method of repairing heat exchanger tube ends
DE3887905D1 (en) 1988-11-22 1994-03-24 Tatarskij Gni Skij I Pi Neftja EXPANDING TOOL FOR TUBES.
EP0397876B1 (en) 1988-11-22 1995-09-20 Tatarsky Gosudarstvenny Nauchno-Issledovatelsky I Proektny Institut Neftyanoi Promyshlennosti Method and device for making profiled pipes used for well construction
DE3855788D1 (en) 1988-11-22 1997-03-20 Tatarskij Gni Skij I Pi Neftja METHOD FOR FASTENING THE PRODUCTIVE LAYER WITHIN A HOLE
US5083608A (en) 1988-11-22 1992-01-28 Abdrakhmanov Gabdrashit S Arrangement for patching off troublesome zones in a well
SU1659621A1 (en) 1988-12-26 1991-06-30 Всесоюзный научно-исследовательский и проектно-конструкторский институт геофизических методов исследований, испытания и контроля нефтегазоразведочных скважин Device for casing repairs
US4913758A (en) 1989-01-10 1990-04-03 Nu-Bore Systems Method and apparatus for repairing casings and the like
US5209600A (en) 1989-01-10 1993-05-11 Nu-Bore Systems Method and apparatus for repairing casings and the like
SU1686124A1 (en) 1989-02-24 1991-10-23 Всесоюзный научно-исследовательский и проектный институт по креплению скважин и буровым растворам Casing repairs method
DE8902572U1 (en) * 1989-03-03 1990-07-05 Siemens Ag, 1000 Berlin Und 8000 Muenchen, De
US4941532A (en) 1989-03-31 1990-07-17 Elder Oil Tools Anchor device
SU1698413A1 (en) 1989-04-11 1991-12-15 Инженерно-строительный кооператив "Магистраль" Borehole reamer
SU1663179A2 (en) 1989-04-11 1991-07-15 Всесоюзный научно-исследовательский и проектный институт по креплению скважин и буровым растворам Hydraulic mandrel
US5059043A (en) * 1989-04-24 1991-10-22 Vermont American Corporation Blast joint for snubbing unit
SU1686125A1 (en) 1989-05-05 1991-10-23 Всесоюзный научно-исследовательский и проектный институт по креплению скважин и буровым растворам Device for downhole casing repairs
SU1730429A1 (en) 1989-05-12 1992-04-30 Туркменский Государственный Научно-Исследовательский И Проектный Институт Нефтяной Промышленности "Туркменнипинефть" Bottomhole design
US4915426A (en) * 1989-06-01 1990-04-10 Skipper Claud T Pipe coupling for well casing
US5156223A (en) * 1989-06-16 1992-10-20 Hipp James E Fluid operated vibratory jar with rotating bit
US4958691A (en) * 1989-06-16 1990-09-25 James Hipp Fluid operated vibratory jar with rotating bit
US4968184A (en) 1989-06-23 1990-11-06 Halliburton Company Grout packer
SU1710694A1 (en) 1989-06-26 1992-02-07 Всесоюзный научно-исследовательский и проектный институт по креплению скважин и буровым растворам Method for casing repair
SU1747673A1 (en) 1989-07-05 1992-07-15 Всесоюзный научно-исследовательский и проектный институт по креплению скважин и буровым растворам Device for application of patch liner to casing pipe
SU1663180A1 (en) 1989-07-25 1991-07-15 Азербайджанский государственный научно-исследовательский и проектный институт нефтяной промышленности Casing string straightener
US4971152A (en) 1989-08-10 1990-11-20 Nu-Bore Systems Method and apparatus for repairing well casings and the like
MY106026A (en) * 1989-08-31 1995-02-28 Union Oil Company Of California Well casing flotation device and method
US5405171A (en) * 1989-10-26 1995-04-11 Union Oil Company Of California Dual gasket lined pipe connector
US5044676A (en) * 1990-01-05 1991-09-03 Abbvetco Gray Inc. Tubular threaded connector joint with separate interfering locking profile
US5062349A (en) 1990-03-19 1991-11-05 Baroid Technology, Inc. Fluid economizer control valve system for blowout preventers
US5156043A (en) 1990-04-02 1992-10-20 Air-Mo Hydraulics Inc. Hydraulic chuck
NL9001081A (en) 1990-05-04 1991-12-02 Eijkelkamp Agrisearch Equip Bv TUBULAR COVER FOR SEALING MATERIAL.
US5337823A (en) 1990-05-18 1994-08-16 Nobileau Philippe C Preform, apparatus, and methods for casing and/or lining a cylindrical volume
US5093015A (en) 1990-06-11 1992-03-03 Jet-Lube, Inc. Thread sealant and anti-seize compound
DE4019599C1 (en) 1990-06-20 1992-01-16 Abb Reaktor Gmbh, 6800 Mannheim, De
SU1804543A3 (en) 1990-06-25 1993-03-23 Яpыш Aлekcahдp Tapacobич Assembly of patches for repair of casings
US5425559A (en) 1990-07-04 1995-06-20 Nobileau; Philippe Radially deformable pipe
ZA915511B (en) 1990-07-17 1992-04-29 Commw Scient Ind Res Org Rock bolt system and method of rock bolting
US5095991A (en) * 1990-09-07 1992-03-17 Vetco Gray Inc. Device for inserting tubular members together
RU2068940C1 (en) 1990-09-26 1996-11-10 Александр Тарасович Ярыш Patch for repairing casing strings
SU1749267A1 (en) 1990-10-22 1992-07-23 Всесоюзный Научно-Исследовательский И Проектный Институт По Креплению Скважин И Буровым Растворам "Бурение" Method of fabricating corrugated steel patch
US5052483A (en) 1990-11-05 1991-10-01 Bestline Liner Systems Sand control adapter
GB9025230D0 (en) * 1990-11-20 1991-01-02 Framo Dev Ltd Well completion system
US5174376A (en) 1990-12-21 1992-12-29 Fmc Corporation Metal-to-metal annulus packoff for a subsea wellhead system
GB2255781B (en) 1991-02-15 1995-01-18 Reactive Ind Inc Adhesive system
GB9107282D0 (en) 1991-04-06 1991-05-22 Petroline Wireline Services Retrievable bridge plug and a running tool therefor
SE468545B (en) 1991-05-24 1993-02-08 Exploweld Ab PROCEDURE AND DEVICE MECHANICALLY JOIN AN INTERNAL PIPE TO AN EXTERNAL PIPE BY AN EXPLOSIVE GAS
US5197553A (en) 1991-08-14 1993-03-30 Atlantic Richfield Company Drilling with casing and retrievable drill bit
RU2016345C1 (en) 1991-08-27 1994-07-15 Василий Григорьевич Никитченко Device for applying lubrication to inner surface of longitudinal-corrugated pipe
WO1993005267A2 (en) 1991-08-31 1993-03-18 Petroline Wireline Services Pack-off tool
US5511620A (en) * 1992-01-29 1996-04-30 Baugh; John L. Straight Bore metal-to-metal wellbore seal apparatus and method of sealing in a wellbore
US5333692A (en) * 1992-01-29 1994-08-02 Baker Hughes Incorporated Straight bore metal-to-metal wellbore seal apparatus and method of sealing in a wellbore
US5211234A (en) 1992-01-30 1993-05-18 Halliburton Company Horizontal well completion methods
RU2068943C1 (en) 1992-02-21 1996-11-10 Татарский Государственный Научно-Исследовательский И Проектный Институт Нефтяной Промышленности Method for pumping in well
RU2039214C1 (en) 1992-03-31 1995-07-09 Западно-Сибирский научно-исследовательский и проектно-конструкторский институт технологии глубокого разведочного бурения Borehole running in method
US5339894A (en) * 1992-04-01 1994-08-23 Stotler William R Rubber seal adaptor
GB2270098B (en) 1992-04-03 1995-11-01 Tiw Corp Hydraulically actuated liner hanger arrangement and method
US5226492A (en) 1992-04-03 1993-07-13 Intevep, S.A. Double seals packers for subterranean wells
US5286393A (en) 1992-04-15 1994-02-15 Jet-Lube, Inc. Coating and bonding composition
MY108830A (en) 1992-06-09 1996-11-30 Shell Int Research Method of completing an uncased section of a borehole
MY108743A (en) 1992-06-09 1996-11-30 Shell Int Research Method of greating a wellbore in an underground formation
US5351752A (en) * 1992-06-30 1994-10-04 Exoko, Incorporated (Wood) Artificial lifting system
US5332038A (en) 1992-08-06 1994-07-26 Baker Hughes Incorporated Gravel packing system
US5318122A (en) 1992-08-07 1994-06-07 Baker Hughes, Inc. Method and apparatus for sealing the juncture between a vertical well and one or more horizontal wells using deformable sealing means
US5348093A (en) * 1992-08-19 1994-09-20 Ctc International Cementing systems for oil wells
US5390735A (en) 1992-08-24 1995-02-21 Halliburton Company Full bore lock system
US5617918A (en) 1992-08-24 1997-04-08 Halliburton Company Wellbore lock system and method of use
US5348087A (en) 1992-08-24 1994-09-20 Halliburton Company Full bore lock system
US5343949A (en) * 1992-09-10 1994-09-06 Halliburton Company Isolation washpipe for earth well completions and method for use in gravel packing a well
US5361843A (en) 1992-09-24 1994-11-08 Halliburton Company Dedicated perforatable nipple with integral isolation sleeve
US5332049A (en) * 1992-09-29 1994-07-26 Brunswick Corporation Composite drill pipe
US5396957A (en) 1992-09-29 1995-03-14 Halliburton Company Well completions with expandable casing portions
US5325923A (en) 1992-09-29 1994-07-05 Halliburton Company Well completions with expandable casing portions
US5337808A (en) 1992-11-20 1994-08-16 Natural Reserves Group, Inc. Technique and apparatus for selective multi-zone vertical and/or horizontal completions
US5462120A (en) * 1993-01-04 1995-10-31 S-Cal Research Corp. Downhole equipment, tools and assembly procedures for the drilling, tie-in and completion of vertical cased oil wells connected to liner-equipped multiple drainholes
FR2703102B1 (en) 1993-03-25 1999-04-23 Drillflex Method of cementing a deformable casing inside a wellbore or a pipe.
US5346007A (en) 1993-04-19 1994-09-13 Mobil Oil Corporation Well completion method and apparatus using a scab casing
FR2704898B1 (en) 1993-05-03 1995-08-04 Drillflex TUBULAR STRUCTURE OF PREFORM OR MATRIX FOR TUBING A WELL.
US5394941A (en) 1993-06-21 1995-03-07 Halliburton Company Fracture oriented completion tool system
RU2056201C1 (en) 1993-07-01 1996-03-20 Татарский Государственный Научно-Исследовательский И Проектный Институт Нефтяной Промышленности Tube rolling out apparatus
US5360292A (en) 1993-07-08 1994-11-01 Flow International Corporation Method and apparatus for removing mud from around and inside of casings
RU2064357C1 (en) 1993-08-06 1996-07-27 Татарский Государственный Научно-Исследовательский И Проектный Институт Нефтяной Промышленности Expander for expanding shaped-tube devices
US5370425A (en) * 1993-08-25 1994-12-06 S&H Fabricating And Engineering, Inc. Tube-to-hose coupling (spin-sert) and method of making same
US5845945A (en) * 1993-10-07 1998-12-08 Carstensen; Kenneth J. Tubing interconnection system with different size snap ring grooves
US5388648A (en) 1993-10-08 1995-02-14 Baker Hughes Incorporated Method and apparatus for sealing the juncture between a vertical well and one or more horizontal wells using deformable sealing means
US5375661A (en) * 1993-10-13 1994-12-27 Halliburton Company Well completion method
US5439320A (en) 1994-02-01 1995-08-08 Abrams; Sam Pipe splitting and spreading system
DE4406167C2 (en) 1994-02-25 1997-04-24 Bbc Reaktor Gmbh Method for achieving a tight connection between a tube and a sleeve
US5435395A (en) 1994-03-22 1995-07-25 Halliburton Company Method for running downhole tools and devices with coiled tubing
GB2287996B (en) 1994-03-22 1997-08-06 British Gas Plc Joining thermoplastic pipe to a coupling
FR2717855B1 (en) 1994-03-23 1996-06-28 Drifflex Method for sealing the connection between an inner liner on the one hand, and a wellbore, casing or an outer pipe on the other.
RO113267B1 (en) 1994-05-09 1998-05-29 Stan Oprea Expandable drilling bit
US5613557A (en) 1994-07-29 1997-03-25 Atlantic Richfield Company Apparatus and method for sealing perforated well casing
US5474334A (en) * 1994-08-02 1995-12-12 Halliburton Company Coupling assembly
US5472055A (en) 1994-08-30 1995-12-05 Smith International, Inc. Liner hanger setting tool
US5667252A (en) 1994-09-13 1997-09-16 Framatome Technologies, Inc. Internal sleeve with a plurality of lands and teeth
US5606792A (en) 1994-09-13 1997-03-04 B & W Nuclear Technologies Hydraulic expander assembly and control system for sleeving heat exchanger tubes
RU2091655C1 (en) 1994-09-15 1997-09-27 Акционерное общество открытого типа "Уральский научно-исследовательский институт трубной промышленности" Profiled pipe
US5454419A (en) 1994-09-19 1995-10-03 Polybore, Inc. Method for lining a casing
RU2079633C1 (en) 1994-09-22 1997-05-20 Товарищество с ограниченной ответственностью "ЛОКС" Method of drilling of additional wellbore from production string
US5507343A (en) 1994-10-05 1996-04-16 Texas Bcc, Inc. Apparatus for repairing damaged well casing
US5624560A (en) * 1995-04-07 1997-04-29 Baker Hughes Incorporated Wire mesh filter including a protective jacket
US5642781A (en) * 1994-10-07 1997-07-01 Baker Hughes Incorporated Multi-passage sand control screen
JP3633654B2 (en) * 1994-10-14 2005-03-30 株式会社デンソー Manufacturing method of rotor for electromagnetic clutch and electromagnetic clutch provided with rotor manufactured by the manufacturing method
US5497840A (en) 1994-11-15 1996-03-12 Bestline Liner Systems Process for completing a well
DE69528435D1 (en) 1994-11-22 2002-11-07 Baker Hughes Inc Procedure for drilling and completing boreholes
US5695009A (en) * 1995-10-31 1997-12-09 Sonoma Corporation Downhole oil well tool running and pulling with hydraulic release using deformable ball valving member
US5524937A (en) * 1994-12-06 1996-06-11 Camco International Inc. Internal coiled tubing connector
MY121223A (en) 1995-01-16 2006-01-28 Shell Int Research Method of creating a casing in a borehole
RU2083798C1 (en) 1995-01-17 1997-07-10 Товарищество с ограниченной ответственностью "ЛОКС" Method for separating beds in well by shaped blocking unit
US5829520A (en) 1995-02-14 1998-11-03 Baker Hughes Incorporated Method and apparatus for testing, completion and/or maintaining wellbores using a sensor device
US5576485A (en) * 1995-04-03 1996-11-19 Serata; Shosei Single fracture method and apparatus for simultaneous measurement of in-situ earthen stress state and material properties
US5536422A (en) 1995-05-01 1996-07-16 Jet-Lube, Inc. Anti-seize thread compound
GB9510465D0 (en) 1995-05-24 1995-07-19 Petroline Wireline Services Connector assembly
FR2737533B1 (en) 1995-08-04 1997-10-24 Drillflex INFLATABLE TUBULAR SLEEVE FOR TUBING OR CLOSING A WELL OR PIPE
FI954309A (en) 1995-09-14 1997-03-15 Rd Trenchless Ltd Oy Drilling device and drilling method
US5743335A (en) 1995-09-27 1998-04-28 Baker Hughes Incorporated Well completion system and method
US6196336B1 (en) 1995-10-09 2001-03-06 Baker Hughes Incorporated Method and apparatus for drilling boreholes in earth formations (drilling liner systems)
UA67719C2 (en) 1995-11-08 2004-07-15 Shell Int Research Deformable well filter and method for its installation
GB9522942D0 (en) 1995-11-09 1996-01-10 Petroline Wireline Services Downhole tool
US5611399A (en) * 1995-11-13 1997-03-18 Baker Hughes Incorporated Screen and method of manufacturing
GB9524109D0 (en) 1995-11-24 1996-01-24 Petroline Wireline Services Downhole apparatus
FR2741907B3 (en) 1995-11-30 1998-02-20 Drillflex METHOD AND INSTALLATION FOR DRILLING AND LINERING A WELL, IN PARTICULAR AN OIL DRILLING WELL, BY MEANS OF INITIALLY FLEXIBLE BUTTED TUBULAR SECTIONS, AND HARDENED IN SITU
RU2105128C1 (en) 1995-12-01 1998-02-20 Акционерное общество открытого типа "Сибирский научно-исследовательский институт нефтяной промышленности" Method for restoring tightness of casing strings
RU2108445C1 (en) 1995-12-01 1998-04-10 Акционерное общество открытого типа "Сибирский научно-исследовательский институт нефтяной промышленности" Method for restoring tightness of casing clearance
RU2095179C1 (en) 1996-01-05 1997-11-10 Акционерное общество закрытого типа "Элкам-Нефтемаш" Liner manufacture method
US6056059A (en) 1996-03-11 2000-05-02 Schlumberger Technology Corporation Apparatus and method for establishing branch wells from a parent well
US5944107A (en) 1996-03-11 1999-08-31 Schlumberger Technology Corporation Method and apparatus for establishing branch wells at a node of a parent well
GB9605801D0 (en) 1996-03-20 1996-05-22 Head Philip A casing and method of installing the casing in a well and apparatus therefore
US5775422A (en) * 1996-04-25 1998-07-07 Fmc Corporation Tree test plug
US5685369A (en) 1996-05-01 1997-11-11 Abb Vetco Gray Inc. Metal seal well packer
US5829524A (en) 1996-05-07 1998-11-03 Baker Hughes Incorporated High pressure casing patch
US5794702A (en) 1996-08-16 1998-08-18 Nobileau; Philippe C. Method for casing a wellbore
AU4149397A (en) * 1996-08-30 1998-03-19 Camco International, Inc. Method and apparatus to seal a junction between a lateral and a main wellbore
HRP960524A2 (en) 1996-11-07 1999-02-28 Januueić Nikola Lubricant for threaded joints based on solid lubricants and a process for the preparation thereof
GB2319315B (en) 1996-11-09 2000-06-21 British Gas Plc A method of joining lined pipes
US6142230A (en) 1996-11-14 2000-11-07 Weatherford/Lamb, Inc. Wellbore tubular patch system
US5785120A (en) 1996-11-14 1998-07-28 Weatherford/Lamb, Inc. Tubular patch
US5957195A (en) 1996-11-14 1999-09-28 Weatherford/Lamb, Inc. Wellbore tool stroke indicator system and tubular patch
US5875851A (en) 1996-11-21 1999-03-02 Halliburton Energy Services, Inc. Static wellhead plug and associated methods of plugging wellheads
GB9625937D0 (en) 1996-12-13 1997-01-29 Petroline Wireline Services Downhole running tool
GB9625939D0 (en) 1996-12-13 1997-01-29 Petroline Wireline Services Expandable tubing
US5833001A (en) 1996-12-13 1998-11-10 Schlumberger Technology Corporation Sealing well casings
DE69814038T2 (en) 1997-02-04 2003-12-18 Shell Int Research METHOD AND DEVICE FOR CONNECTING TUBULAR ELEMENTS FOR THE PETROLEUM INDUSTRY
US5857524A (en) 1997-02-27 1999-01-12 Harris; Monty E. Liner hanging, sealing and cementing tool
US6012874A (en) 1997-03-14 2000-01-11 Dbm Contractors, Inc. Micropile casing and method
US5951207A (en) 1997-03-26 1999-09-14 Chevron U.S.A. Inc. Installation of a foundation pile in a subsurface soil
US5931511A (en) * 1997-05-02 1999-08-03 Grant Prideco, Inc. Threaded connection for enhanced fatigue resistance
US6112817A (en) 1997-05-06 2000-09-05 Baker Hughes Incorporated Flow control apparatus and methods
US6085838A (en) 1997-05-27 2000-07-11 Schlumberger Technology Corporation Method and apparatus for cementing a well
EP0881359A1 (en) 1997-05-28 1998-12-02 Herrenknecht GmbH Method and arrangement for constructing a tunnel by using a driving shield
WO1998057031A1 (en) * 1997-06-09 1998-12-17 Phillips Petroleum Company System for drilling and completing multilateral wells
US5967568A (en) 1997-06-13 1999-10-19 M&Fc Holding Company, Inc. Plastic pipe adaptor for a mechanical joint
US5984369A (en) 1997-06-16 1999-11-16 Cordant Technologies Inc. Assembly including tubular bodies and mated with a compression loaded adhesive bond
FR2765619B1 (en) 1997-07-01 2000-10-06 Schlumberger Cie Dowell METHOD AND DEVICE FOR COMPLETING WELLS FOR THE PRODUCTION OF HYDROCARBONS OR THE LIKE
GB9714651D0 (en) 1997-07-12 1997-09-17 Petroline Wellsystems Ltd Downhole tubing
US5944100A (en) * 1997-07-25 1999-08-31 Baker Hughes Incorporated Junk bailer apparatus for use in retrieving debris from a well bore of an oil and gas well
MY122241A (en) 1997-08-01 2006-04-29 Shell Int Research Creating zonal isolation between the interior and exterior of a well system
EP0899420A1 (en) 1997-08-27 1999-03-03 Shell Internationale Researchmaatschappij B.V. Method for installing a scrolled resilient sheet alongside the inner surface of a fluid conduit
US5979560A (en) 1997-09-09 1999-11-09 Nobileau; Philippe Lateral branch junction for well casing
US6021850A (en) 1997-10-03 2000-02-08 Baker Hughes Incorporated Downhole pipe expansion apparatus and method
US6029748A (en) 1997-10-03 2000-02-29 Baker Hughes Incorporated Method and apparatus for top to bottom expansion of tubulars
US6098717A (en) 1997-10-08 2000-08-08 Formlock, Inc. Method and apparatus for hanging tubulars in wells
CA2218278C (en) 1997-10-10 2001-10-09 Baroid Technology,Inc Apparatus and method for lateral wellbore completion
GB9723031D0 (en) 1997-11-01 1998-01-07 Petroline Wellsystems Ltd Downhole tubing location method
FR2771133B1 (en) 1997-11-17 2000-02-04 Drillflex DEVICE FOR PLACING A FILTERING ENCLOSURE WITHIN A WELL
US6354373B1 (en) 1997-11-26 2002-03-12 Schlumberger Technology Corporation Expandable tubing for a well bore hole and method of expanding
US6047505A (en) 1997-12-01 2000-04-11 Willow; Robert E. Expandable base bearing pile and method of bearing pile installation
US6017168A (en) 1997-12-22 2000-01-25 Abb Vetco Gray Inc. Fluid assist bearing for telescopic joint of a RISER system
US6062324A (en) 1998-02-12 2000-05-16 Baker Hughes Incorporated Fluid operated vibratory oil well drilling tool
US6035954A (en) * 1998-02-12 2000-03-14 Baker Hughes Incorporated Fluid operated vibratory oil well drilling tool with anti-chatter switch
US6050346A (en) 1998-02-12 2000-04-18 Baker Hughes Incorporated High torque, low speed mud motor for use in drilling oil and gas wells
US6138761A (en) 1998-02-24 2000-10-31 Halliburton Energy Services, Inc. Apparatus and methods for completing a wellbore
US6263972B1 (en) 1998-04-14 2001-07-24 Baker Hughes Incorporated Coiled tubing screen and method of well completion
EP0952305A1 (en) 1998-04-23 1999-10-27 Shell Internationale Researchmaatschappij B.V. Deformable tube
EP0952306A1 (en) 1998-04-23 1999-10-27 Shell Internationale Researchmaatschappij B.V. Foldable tube
US6135208A (en) 1998-05-28 2000-10-24 Halliburton Energy Services, Inc. Expandable wellbore junction
RU2144128C1 (en) 1998-06-09 2000-01-10 Открытое Акционерное общество "Татнефть" Татарский научно-исследовательский и проектный институт нефти Gear for expanding of pipes
US6182775B1 (en) 1998-06-10 2001-02-06 Baker Hughes Incorporated Downhole jar apparatus for use in oil and gas wells
US6074133A (en) 1998-06-10 2000-06-13 Kelsey; Jim Lacey Adjustable foundation piering system
FR2780751B1 (en) 1998-07-06 2000-09-29 Drillflex METHOD AND DEVICE FOR TUBING A WELL OR A PIPELINE
US6109355A (en) 1998-07-23 2000-08-29 Pes Limited Tool string shock absorber
US6722440B2 (en) 1998-08-21 2004-04-20 Bj Services Company Multi-zone completion strings and methods for multi-zone completions
US6283211B1 (en) 1998-10-23 2001-09-04 Polybore Services, Inc. Method of patching downhole casing
US6712154B2 (en) * 1998-11-16 2004-03-30 Enventure Global Technology Isolation of subterranean zones
US6634431B2 (en) 1998-11-16 2003-10-21 Robert Lance Cook Isolation of subterranean zones
GB2343691B (en) 1998-11-16 2003-05-07 Shell Int Research Isolation of subterranean zones
US6557640B1 (en) 1998-12-07 2003-05-06 Shell Oil Company Lubrication and self-cleaning system for expansion mandrel
WO2000031370A1 (en) 1998-11-25 2000-06-02 Exxonmobil Upstream Research Company Method for installing tubular members axially into an over-pressured region of the earth
WO2001004535A1 (en) 1999-07-09 2001-01-18 Enventure Global Technology Two-step radial expansion
GB2344606B (en) 1998-12-07 2003-08-13 Shell Int Research Forming a wellbore casing by expansion of a tubular member
AU772327B2 (en) 1998-12-22 2004-04-22 Weatherford Technology Holdings, Llc Procedures and equipment for profiling and jointing of pipes
AU766437B2 (en) 1998-12-22 2003-10-16 Weatherford/Lamb Inc. Downhole sealing for production tubing
GB0106820D0 (en) 2001-03-20 2001-05-09 Weatherford Lamb Tubing anchor
US6352112B1 (en) 1999-01-29 2002-03-05 Baker Hughes Incorporated Flexible swage
AU771884B2 (en) 1999-02-11 2004-04-08 Shell Internationale Research Maatschappij B.V. Wellhead
AU770008B2 (en) 1999-02-25 2004-02-12 Shell Internationale Research Maatschappij B.V. Mono-diameter wellbore casing
AU770359B2 (en) 1999-02-26 2004-02-19 Shell Internationale Research Maatschappij B.V. Liner hanger
GB2348223B (en) 1999-03-11 2003-09-24 Shell Internat Res Maatschhapp Method of creating a casing in a borehole
EP1169547B1 (en) 1999-04-09 2003-07-02 Shell Internationale Researchmaatschappij B.V. Method of creating a wellbore in an underground formation
CA2306656C (en) 1999-04-26 2006-06-06 Shell Internationale Research Maatschappij B.V. Expandable connector for borehole tubes
GB2359837B (en) 1999-05-20 2002-04-10 Baker Hughes Inc Hanging liners by pipe expansion
US6598677B1 (en) 1999-05-20 2003-07-29 Baker Hughes Incorporated Hanging liners by pipe expansion
GB2369639B (en) 1999-07-07 2004-02-18 Schlumberger Technology Corp Downhole anchoring tools conveyed by non-rigid carriers
US6409175B1 (en) 1999-07-13 2002-06-25 Grant Prideco, Inc. Expandable joint connector
GB9920935D0 (en) 1999-09-06 1999-11-10 E2 Tech Ltd Apparatus for and a method of anchoring a first conduit to a second conduit
US6564875B1 (en) 1999-10-12 2003-05-20 Shell Oil Company Protective device for threaded portion of tubular member
GB2373524B (en) 1999-10-12 2004-04-21 Enventure Global Technology Lubricant coating for expandable tubular members
US6457749B1 (en) 1999-11-16 2002-10-01 Shell Oil Company Lock assembly
US6460615B1 (en) 1999-11-29 2002-10-08 Shell Oil Company Pipe expansion device
WO2003029607A1 (en) 2001-10-03 2003-04-10 Enventure Global Technlogy Mono-diameter wellbore casing
US6419026B1 (en) 1999-12-08 2002-07-16 Baker Hughes Incorporated Method and apparatus for completing a wellbore
CA2327920C (en) 1999-12-10 2005-09-13 Baker Hughes Incorporated Apparatus and method for simultaneous drilling and casing wellbores
US6513600B2 (en) 1999-12-22 2003-02-04 Richard Ross Apparatus and method for packing or anchoring an inner tubular within a casing
US6578630B2 (en) 1999-12-22 2003-06-17 Weatherford/Lamb, Inc. Apparatus and methods for expanding tubulars in a wellbore
US6752215B2 (en) 1999-12-22 2004-06-22 Weatherford/Lamb, Inc. Method and apparatus for expanding and separating tubulars in a wellbore
FR2808557B1 (en) 2000-05-03 2002-07-05 Schlumberger Services Petrol METHOD AND DEVICE FOR REGULATING THE FLOW RATE OF FORMATION FLUIDS PRODUCED BY AN OIL WELL OR THE LIKE
US6457518B1 (en) 2000-05-05 2002-10-01 Halliburton Energy Services, Inc. Expandable well screen
US6640895B2 (en) 2000-07-07 2003-11-04 Baker Hughes Incorporated Expandable tubing joint and through-tubing multilateral completion method
AU782084B2 (en) 2000-08-15 2005-06-30 Baker Hughes Incorporated Self lubricating swage
US6419147B1 (en) 2000-08-23 2002-07-16 David L. Daniel Method and apparatus for a combined mechanical and metallurgical connection
US6648076B2 (en) 2000-09-08 2003-11-18 Baker Hughes Incorporated Gravel pack expanding valve
US6478092B2 (en) 2000-09-11 2002-11-12 Baker Hughes Incorporated Well completion method and apparatus
US6607032B2 (en) 2000-09-11 2003-08-19 Baker Hughes Incorporated Multi-layer screen and downhole completion method
US6564870B1 (en) 2000-09-21 2003-05-20 Halliburton Energy Services, Inc. Method and apparatus for completing wells with expanding packers for casing annulus formation isolation
US6517126B1 (en) 2000-09-22 2003-02-11 General Electric Company Internal swage fitting
WO2002053867A2 (en) 2001-01-03 2002-07-11 Enventure Global Technology Mono-diameter wellbore casing
US6450261B1 (en) 2000-10-10 2002-09-17 Baker Hughes Incorporated Flexible swedge
US6725934B2 (en) 2000-12-21 2004-04-27 Baker Hughes Incorporated Expandable packer isolation system
US6695067B2 (en) 2001-01-16 2004-02-24 Schlumberger Technology Corporation Wellbore isolation technique
US6648071B2 (en) 2001-01-24 2003-11-18 Schlumberger Technology Corporation Apparatus comprising expandable bistable tubulars and methods for their use in wellbores
US6550821B2 (en) 2001-03-19 2003-04-22 Grant Prideco, L.P. Threaded connection
US6662876B2 (en) 2001-03-27 2003-12-16 Weatherford/Lamb, Inc. Method and apparatus for downhole tubular expansion
GB0108384D0 (en) 2001-04-04 2001-05-23 Weatherford Lamb Bore-lining tubing
GB0108638D0 (en) 2001-04-06 2001-05-30 Weatherford Lamb Tubing expansion
GB0109711D0 (en) 2001-04-20 2001-06-13 E Tech Ltd Apparatus
GB0109993D0 (en) 2001-04-24 2001-06-13 E Tech Ltd Method
US6899183B2 (en) 2001-05-18 2005-05-31 Smith International, Inc. Casing attachment method and apparatus
DE60203109T2 (en) 2001-05-24 2006-05-18 Shell Internationale Research Maatschappij B.V. RADIAL EXTENDIBLE TUBE WITH SUPPORTED END PART
GB0114872D0 (en) 2001-06-19 2001-08-08 Weatherford Lamb Tubing expansion
US6550539B2 (en) 2001-06-20 2003-04-22 Weatherford/Lamb, Inc. Tie back and method for use with expandable tubulars
US6655459B2 (en) 2001-07-30 2003-12-02 Weatherford/Lamb, Inc. Completion apparatus and methods for use in wellbores
GB2398087B (en) 2001-09-06 2006-06-14 Enventure Global Technology System for lining a wellbore casing
AU2002319813A1 (en) 2001-09-07 2003-03-24 Enventure Global Technology Adjustable expansion cone assembly

Also Published As

Publication number Publication date
NO20025900D0 (en) 2002-12-09
NO20025900L (en) 2003-06-11
GB2382828A (en) 2003-06-11
GB0500600D0 (en) 2005-02-16
GB2413136B (en) 2006-05-24
CA2410274C (en) 2010-09-28
GB0225505D0 (en) 2002-12-11
AU2002306209A1 (en) 2003-08-21
GB2413136A (en) 2005-10-19
US20020121372A1 (en) 2002-09-05
GB2382828B (en) 2005-10-12
US6745845B2 (en) 2004-06-08

Similar Documents

Publication Publication Date Title
CA2410274A1 (en) Isolation of subterranean zones
US6328113B1 (en) Isolation of subterranean zones
US6712154B2 (en) Isolation of subterranean zones
CA2425725C (en) Inflatable packer and method
AU2009294332B2 (en) Single packer system for fluid management in a wellbore
RU2734470C1 (en) Annular barrier with expansion module
US7987914B2 (en) Controlling actuation of tools in a wellbore with a phase change material
US9322249B2 (en) Enhanced expandable tubing run through production tubing and into open hole
KR101598730B1 (en) Self-Controlled Inflow Control Device
CA2450561C (en) Method of expanding a sand screen
US6609567B2 (en) Tubing hanger with lateral feed-through connection
RU2180395C2 (en) Gear and process of double-zone production from wells
CA2467903A1 (en) Self sealing expandable inflatable packers
CN101111661A (en) Method of installing an expandable tubular in a wellbore
WO2009027662A2 (en) Sealing assembly
US6691786B2 (en) Inflatable flow control device and method
CN107735544B (en) A part of seal shaft
WO2004076798B1 (en) Apparatus for radially expanding and plastically deforming a tubular member
WO2004083594A2 (en) Apparatus and method radially expanding a wellbore casing using an expansion mandrel and a rotary expansion tool
WO2006088743B1 (en) Radial expansion of a wellbore casing against a formation
SU1548407A1 (en) Method and apparatus for isolating formations in reinforcing of wells
GB2399367A (en) Inflatable packer with control line
GB2404402A (en) A method of applying expandable slotted casings
RU2136848C1 (en) Unit for hydrovacuum treatment of well
RU2055159C1 (en) Device for selective isolation of producing formation in well cementing

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20171030