CA2390016C - Implantable cardiac rhythm management device for assessing status of chf patients - Google Patents

Implantable cardiac rhythm management device for assessing status of chf patients Download PDF

Info

Publication number
CA2390016C
CA2390016C CA002390016A CA2390016A CA2390016C CA 2390016 C CA2390016 C CA 2390016C CA 002390016 A CA002390016 A CA 002390016A CA 2390016 A CA2390016 A CA 2390016A CA 2390016 C CA2390016 C CA 2390016C
Authority
CA
Canada
Prior art keywords
patient
rate
ratio
minute ventilation
heart failure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002390016A
Other languages
French (fr)
Other versions
CA2390016A1 (en
Inventor
Donald L. Hopper
Jeffrey E. Stahmann
Bruce R. Jones
James P. Nelson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cardiac Pacemakers Inc
Original Assignee
Cardiac Pacemakers Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/434,009 external-priority patent/US6275727B1/en
Application filed by Cardiac Pacemakers Inc filed Critical Cardiac Pacemakers Inc
Publication of CA2390016A1 publication Critical patent/CA2390016A1/en
Application granted granted Critical
Publication of CA2390016C publication Critical patent/CA2390016C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • A61N1/36585Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by two or more physical parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/3627Heart stimulators for treating a mechanical deficiency of the heart, e.g. congestive heart failure or cardiomyopathy

Abstract

A method and apparatus for providing congestive heart failure therapy status.
An electronic device, preferably a cardiac rhythm management device, capable of measuring transthoracic impedance and for sensing a level of physical activity is implanted in a patient. The transthoracic impedance signal is processed to obtain an estimate of the subject's minute ventilation, respiratory rate, tidal volume, inspiratory rate and expiratory rate. From accelerometer measured activity, an estimate is obtained of oxygen uptake, carbon dioxide production and work rate. Ratios of tidal volume to respiratory rate, tidal volume to inspiratory time, tidal volume to expiratory time, heart rate to minute ventilation, respiratory rate to minute ventilation, tidal volume to minute ventilation, minute ventilation to oxygen uptake, minute ventilation to carbon dioxide production, minute ventilation to work rate, heart rate to work rate, oxygen uptake to heart rate and other ratios are meaningful status indicators for assessing the efficacy of particular therapy regimens to CHF patients.

Description

CA 02390016 2002-05-06 pCT~S00/19230 11'~PI~AN l AhLE l,'ARIjIA(~' R~IYT~Il~I MANAGEMENT DE~1CE
FOR ASSESSING STATUS OF CHF PATIENTS
BACKGROUND OF THE INVENTION
Field of the Invention:
This invention relates generally to an apparatus and method for treating and assessing the efficacy of such treatment of CHF patients, and more particularly to an improved cardiac rhythm management device incorporating circuitry for sensing respiratory, heart rate and/or activity-related parameters.
Discussion of the Related Art:
"Cardiac Pacemakers" and "Cardiac Rhythm Management"(CRM) devices are both used as generic terms for pacemakers and defibrillators. CRMs have long been used in the treatment of bradycardia and tachycardia, but only more recently CRMs have been specifically designed to enhance the hemodynamic performance of the heart for patients suffering from CHF. Pacemakers designed for treatment of bradycardia have incorporated a variety of physiologic sensors whereby the pacing rate of the pacemaker can be made to vary automatically with changes in physiologic demand. Thus, for example, the Hauck et al. Patent 5,318,597 describes a rate adaptive pacemaker in which the pacing rate is adjusted in accordance with changes in a patient's minute ventilation. Means are provided in the CRM for measuring variations in transthoracic impedance and for processing of the impedance signal to extract a minute ventilation signal that is used to vary the pacing rate of an implantable pacemaker between lower and upper programmed rate limit values in that there is a direct correlation between a patient's minute ventilation and the body's hemodynamic demand.
Other rate adaptive CRMs have incorporated some form of an activity sensor, such as an accelerometer, for developing a control signal that varies with a patient's level of physical activity. This control signal is then used to vary the pacing rate of a rate adaptive CRM device to maintain an appropriate pacing rate for the level of exercise being exerted.
In implantable CRM devices especially designed for treating patients with CHF, one approach that has proved successful involves the automatic optimization of the AV delay of an implantable, dual-chamber pacemaker. For a general description of the prior art relating to pacemakers for treating CHF, reference is made to the Baumann Patent 5,800,471.
The present invention constitutes a departure from the related art in that even though the apparatus employed incorporates circuitry for implementing impedance plethysmography in generating a signal component relating to minute ventilation and an accelerometer responsive to patient activity, the information derived from these sensors is used to monitor a CHF patient's status so that the efficacy of a change in pacing therapy or drug therapy can be read from the implanted device periodically for review and analysis by a medical professional.
Studies have shown that patients with chronic heart failure are limited by exertional dyspnea and exercise intolerance. Such patients often exhibit elevated ventilatory response to exercise, which can be characterized by a steeper slope relating minute ventilation to carbon dioxide output during exercise. In addition to the increased ventilation, such patients have also been noted to have an abnormal breathing pattern, such that at a given minute ventilation, respiratory rate is increased while the change in tidal volume is less significant compared with normal subjects.
The ventilatory response to exercise, as characterized by the regression slope relating minute ventilation to carbon dioxide output during exercise by CHF patients, has been found to be significantly higher in such patients than for normal subjects. See "The Role of Peripheral Chemoreflex in Chronic Congestive Heart Failure" by T.P. Chua et al, CHF; Nov./Dec. 1997; pp. 22-28.
The method of the present invention is earned out by implanting in the patient a CRM device of a type incorporating a transthoracic impedance sensor, a patient activity sensor and a processor operatively coupled to the transthoracic impedance sensor for controlling the delivery of cardiac stimulating pulses to the patient's heart. The processor is programmed to permit it to derive a plurality of respiratory parameters from signals produced by the transthoracic impedance sensor. A
telemetry link may also be provided to allow the respiratory parameters or signals relating thereto to be transmitted to an external monitor for viewing ~by a medical professional.

Either the processor forming a part of the implanted CRM device or a processor contained within the external monitor computes predetermined ratio values involving the derived respiratory parameters as congestive heart failure therapy status indicators.
The apparatus involved may further include an activity sensor connected to the microprocessor for deriving a plurality of physiologic parameters based upon the signal output of the activity sensor. The activity sensor derived parameters may also be telemetered to the external monitor for display or for further processing and display.
Meaningful ratios that serve as CHF status indicators include: ventilatory tidal volume to respiratory rate (V,/RR); ventilatory tidal volume to inspiratory time (Vt/T;); ventilatory tidal volume to expiratory time (V,/Te); minute ventilation to carbon dioxide output (MV/VCO,); respiratory rate to minute ventilation (RR/MV);
and tidal volume to minute ventilation (Vt/MV). Another ratio of interest is O, pulse, which is the amount of oxygen uptake per heartbeat (VO,/HR).
Other researchers have found a high correlation between oxygen consumption (VOZ) and carbon dioxide production (VCO,) with heart rate and physical activity to the point where it is possible to estimate these respiratory parameters based on measured heart rate and physical activity. See, for example, "Combined Heart Rate and Activity Improve Estimates of Oxygen Consumption in Carbon Dioxide Production Rate" by Jon K. Moon and Nancy F. Butte, J. Applied Physiology, 81 (4:1754-1761 ) 1996. The present invention takes advantage of such high correlation, providing a way in which a particular pacing or drug therapy affects the status of CHF patients in whom the present invention is utilized.
SUMMARY OF THE INVENTION
The present invention provides a method and apparatus for monitoring a patient's status of congestive heart failure. The method is carried out by first implanting in the patient an electronic device capable of measuring transthoracic impedance and for sensing a level of physical activity. The transthoracic impedance signal is then processed such that an estimate is derived of the patient's minute ventilation, respiratory rate and tidal volume. Likewise, the oxygen uptake (V02) and carbon dioxide production values (VCO,) are estimated from the accelerometer measured activity. It has been found that by calculating a ratio of tidal volume to respiratory rate, a first CHF status indicator is obtained.
Also, once tidal volume information from a patient is arrived at, his or her inspiratory time can also be derived. The ratio of tidal volume to inspiratory time is found to comprise a second congestive heart failure status indicator that is meaningful. The ratio of minute ventilation to carbon dioxide production can be derived as a third congestive heart failure status indicator. Similarly, the ratio of oxygen uptake to heart rate is found to be a further CHF status indicator.
The invention also contemplates the use of the CHF status indicators (ratios) in the closed-loop control of a CRM device that for example may adjust a pacing parameter to optimize the benefit afforded by the pacing therapy.
The foregoing features, objects and advantages of the invention will become apparent to those skilled in the art from the following detailed description of a preferred embodiment, especially when considered in conjunction with the accompanying description and drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1, is a block diagram representation of a CRM device configured in accordance with the present invention.
DETAILED DESCRIPTION OF THE INVENTION
The present invention is applicable to a monitoring a variety of conditions of the heart. The invention is generally described in the context of an implantable cardiac rhythm management device configured to monitor chronic heart failure (CHF) patients for illustrative purposes only. The appended claims are not intended to be limited to any specific example or embodiment described in this patent:
Referring to Figure 1 there is illustrated by means of an electrical schematic block diagram the hardware platform to carry out the method of the present invention can be. Shown enclosed by a broken line box 10 is a CRM device having electrodes 12 and 14 disposed thereon. Electrode 12 may comprise an uninsulated portion of the metal, typically titanium, hermetically sealed housing while electrode 14 may be disposed on the device's header. CRM device 10 is adapted to be coupled to a patient's heart via an electrical lead assembly 16 comprising an body member having a distal tip electrode 20 and a ring electrode 22 affixed to the surface thereof.
Body member 18 is typically a flexible elongated and tubular and composed of a biocompatible material. Extending the length of the lead are electrical conductors 24 that connect through electrical contacts in the lead barrel to the internal circuitry of the CRM device.
Contained within the hermetically sealed housing is a R-wave sensing amplifier 26 that picks up and amplifies ventricular depolarization signals picked up by the electrode 20. The output from the sense amplifier is applied as an input to a microprocessor circuit 28 by way of conductor 30. The microprocessor, following a stored program, provides a control signal on line 32 to a pulse generator 34 whose output signal is applied over one of the conductors 24 to the tip electrode 20 for stimulating and thereby evoking a paced response from the heart.
In accordance with the present invention, circuitry is also provided for measuring impedance changes within at least one chamber of the heart due to the influx and outflow of blood. In this regard, there is provided an oscillator 36 which, when activated, produces an alternating current of a predetermined frequency, typically in a range of from about 2000 Hz to X000 Hz and of an amplitude below about 10 microamperes, which insures that the output from the oscillator will not stimulate heart tissue. This signal is preferably applied between the indifferent electrode 12 on the implanted CRM device and the ring electrode 22 on the lead and comprises an AC carrier signal that is modulated by the influx and outflow blood from the right ventricle. The modulated carrier signal is developed between the tip electrode 20 and the indifferent electrode 14 on the device's header and is amplified by sense amplifier 38 and then demodulated by demodulator circuit 40 to remove the modulating envelope from the carrier. The envelope signal is a measure of instantaneous impedance as a function of time.
The impedance vs. time (Z vs. t) analog signal is converted to a digital format by A/D converter 41 and is then applied to a signal processing circuit 42 which comprises a peak/ valley/zero cross detector. When a zero cross is detected, the circuit 42 calculates the preceding peak-to-valley amplitude and issues an interrupt signal to the microprocessor 28. Upon receiving this interrupt, the microprocessor fetches the peak-to-valley amplitude from the signal processing circuit 42 and sums the absolute values of the peak-to-valley amplitudes over an eight-second interval.
This eight-second sum of the peak-to-valley amplitudes comprises the sensor input that is used in establishing the minute ventilation delta signal fed over line 32 to the pulse generator 34 for adjusting the rate at which the pulse generator issues cardiac stimulating pulses to the heart.
The aforereferenced Hauck et al. '597 patent, hereby incorporated by reference, describes a system for developing a delta rate signal for a rate adaptive pacemaker based upon variations in minute ventilation index. This patent describes, in detail, how a transthoracic impedance waveform can be signal processed to derive respiratory related factors including respiratory rate (RR), tidal volume (V,) inspiratory time (T;), expiratory time (Te) and minute ventilation (MV) and need not be repeated here. It is also known from the prior art that estimates of VO, and VCO, can be derived from patient activity information provided by a patient worn accelerometer. Reference is again made to the Moon et al. publication, supra.
The CRM device 10 also includes an activity sensor in the form of an integrated silicon accelerometer 44 that is bonded to a ceramic circuit board contained within the housing of the CRM device. The accelerometer includes a mass suspended by four leaf spring elements from a frame. The springs each include a piezoresistive element forming the four legs of a Wheatstone bridge which becomes unbalanced from displacement of the mass due to acceleration forces in a direction perpendicular to the frame.
To conserve battery power, the Wheatstone bridge is energized in a pulse mode where a predetermined voltage is applied across it for only a short period of WO 01/32260 CA 02390016 2002-05-06 pCT~S00/19230 time, typically 15 microseconds, and at a repetition rate of about 146 Hz. The raw accelerometer output from device 44 is then amplified by amplifier 46 before being applied to a switched capacitor bandpass filter 48. The pass band of the filter 48 effectively excludes motion artifacts due to external noise sources while allowing passage of signal components whose frequencies are related to body motion due to exercise.
The output from the bandpass filter 48 is converted to a digital quantity by A/D converter 52 and then signal processed by circuits before being applied to the microprocessor 28.
The CRM device 10 further includes a telemetry circuit 54 of known construction which allows information stored in the microprocessor's RAM
memory banks to be read out transcutaneously to an external monitor 56 for viewing by a medical professional. Moreover, the telemetry link 58 allows programmable operands of the pacemaker to be altered following implantation of the CRM device.
1 S In accordance with the present invention, we provide a CRM device which, when implanted in a patient, provides for the read-out of both respiratory data and activity data, whereby a physician or other caregiver can compute, as ratios, a number of features indicative of CHF patient status. Included are respiratory rate to minute ventilation (RR/MV); tidal volume to minute ventilation (T;/MV); heart rate to minute ventilation (HR/MV). heart rate to work rate (HR/WR), minute ventilation to oxygen uptake (MV/VO,) and minute ventilation to work rate (MV/WR). Other computed ratios, such as tidal volume to inspiratory time (V,/T;), tidal volume to expiratory time (V,/Te), minute ventilation to CO, production (MV/CO~) and tidal volume to respiratory rate (V~/RR) also prove meaningful and the factors are readily obtained from a state-of the-art rate-adaptive pacemaker incorporating an accelerometer and impedance measuring circuits. In addition, the ratio of oxygen uptake to heart rate (VO,/HR) could also be used wherein oxygen uptake could be measured with an accelerometer and heart rate being measured by the CRM device. Further, a factor indicative of the patients body mass index (BMI) could also be incorporated into the measurements to increase the specificity of the calculations.

If an increase in the HR/MV ratio is detected following a change in therapy, it is indicative of worsening of CHF and suggests that the therapy was ineffective.
Likewise, should the Vt/RR ratio decrease, it suggests that the patient's condition has worsened and that the therapy should be modified accordingly.
The V,/T; ratio is a good indicator of change in CHF status. An increase in this ratio following a change in pacing therapy or drug therapy is indicative that the change was counter-productive.
The MVNCO, ratio or slope increases as a patient's CHF condition worsens.
The slope for normal persons is about 0.025 while a typical CHF patient will exhibit a slope of 0.035 or higher at rest and at relatively low levels of exercise.
The RR/MV ratio gives the percentage of current MV due to increases or decreases in respiratory rate. An increase in this ratio would be indicative of a CHF
patient's worsening condition.
The V~/MV ratio gives the percentage of current MV due to increases or decreases in tidal volume. A decrease in this ratio would be indicative of a CHF
patient" s worsening condition.
The above listed ratios are listed for exemplary purposes. Those skilled in the art will recognize that other ratios derived from the above listed variables and derivatives of those variables will also be indicative of a CHF patient's condition.
It can be seen that by data logging accelerometer data (activity) and transthoracic impedance within an implanted CRM device for subsequent readout and processing, valuable information on CHF patient condition can be stored over a prolonged period of time and then telemetered to a healthcare professional via the implanted device's telemetry link.
Alternatively, one or more of the derived ratios can be compared to corresponding ratios) previously computed and stored to determined whether a change in therapy has proven beneficial or has resulted in a worsening of the patient's CHF status. If so, a programmable parameter of the CRM can be adjusted accordingly in either a closed-loop (automatic) or open-loop (manual) fashion.
This invention has been described in considerable detail to provide those WO 01/32260 CA 02390016 2002-05-06 pCT~S00/19230 skilled in the art with the information needed to make and use the invention.
However, it is to be understood that the invention can be carried out by specifically different ratios, equipment and devices, and that various modifications, both as to the ratios, equipment and operating procedures, can be accomplished without departing from the scope of the invention itself.

Claims (17)

WHAT IS CLAIMED IS:
1. A method of monitoring a patient's congestive heart failure status, characterized by:
measuring transthoracic impedance;
deriving at least one respiratory related factor from the transthoracic impedance;
calculating a ratio indicative of the patient's congestive heart failure status from at least one of the respiratory related factors; and monitoring said patient's congestive heart failure status based on said ratio.
2. A method of monitoring a patient's congestive heart failure status characterized by:
providing a device for measuring the patient's transthoracic impedance at first and second times;
deriving at least two respiratory related factors from the measured transthoracic impedance measurement;
computing a ratio of said at least two respiratory related factors;
assessing the patient's congestive heart failure status based upon any change in the computed ratio taken at the first and second times; and monitoring said patient's congestive heart failure status based on said measurements.
3. A method as in Claim 1, wherein the ratio indicative of the patient's congestive heart failure status is one of tidal volume to respiratory rate, tidal volume to inspiratory time, tidal volume to expiratory time, respiratory rate to minute ventilation and tidal volume to minute ventilation.
4. A method as in either Claim 1 or Claim 3, further characterized by:
measuring a heart rate; and calculating the ratio indicative of the patient's congestive heart failure status from a ratio including the heart rate and a respiratory related factor.
5. A method as in Claim 4, wherein the ratio indicative of the patient's congestive heart failure status is heart rate to minute ventilation.
6. A method as in any one of Claims 2 to 5, wherein calculating the ratio indicative of the patient's congestive heart failure status further includes at least one of an oxygen uptake value factor and a carbon dioxide production value factor of the patient.
7. A method as in Claim 6, wherein at least one of the patient's oxygen uptake and carbon dioxide production values are estimated using an accelerometer.
8. A method as in either Claim 6 or Claim 7, wherein the ratio indicative of the patient's con-gestive heart failure status is minute ventilation to oxygen uptake, minute ventilation to carbon dioxide production, minute ventilation to work rate or heart rate to work rate.
9. Apparatus for monitoring a patient's status of congestive heart failure, characterized by:
a cardiac rhythm management device having a heart rate sensor, a transthoracic impedance sensor and a microprocessor connected to the heart rate sensor and the trans-thoracic impedance sensor for controlling delivery of cardiac stimulating pulses to the patient's heart, wherein the microprocessor derives a heart rate parameter from signals produced by the heart rate sensor and a plurality of respiratory parameters from signals produced by the transthoracic impedance sensor and calculates at least one ratio as a congestive heart failure status indicator from at least one of the respiratory parameters and the heart rate parameter, for monitoring the patient's congestive heart failure status based on said ratio.
10. An apparatus as in Claim 9, wherein the cardiac rhythm management device is further characterized by a telemetric transmitter connected to the microprocessor for transmitting signals relating to the heart rate parameter and the respiratory parameters from the cardiac rhythm manage-ment device to a monitor, wherein the monitor displays the ratios.
11. The apparatus as in either Claim 9 or Claim 10, wherein the respiratory parameters include minute ventilation, respiratory rate, tidal volume, inspiratory time and expiratory time.
12. The apparatus as in either Claim 10 or Claim 11, further characterized by a patient activity sensor connected to the microprocessor.
13. The apparatus as in any one of Claims 10 to 12, wherein the microprocessor derives at least one physiologic parameter from signals produced by the activity sensor; the telemetric transmitter transmits signals indicative of the physiologic parameters to the monitor; and the monitor displays ratios calculated by the microprocessor including at least one of the physiologic parameters as congestive heart failure status indicators.
14. The apparatus as in any one of Claims 9 to 13, wherein the ratios of respiratory parameters include at least one of ratio of tidal volume to respiratory rate, ratio of tidal volume to inspiratory time, ratio of tidal volume to expiratory time, ratio of tidal volume to minute ventilation and ratio of respiratory rate to minute ventilation.
15. The apparatus as in any one of Claims 9 to 14, wherein the plurality of physiologic para-meters further includes heart rate, oxygen uptake, carbon dioxide output and work rate.
16. The apparatus as in any one of Claims 13 to 15, wherein the ratio values of the physiologic parameters include oxygen uptake to heart rate, minute ventilation to oxygen uptake, minute ventila-tion to carbon dioxide production, minute ventilation to work rate and heart rate to work rate.
17. A method of monitoring a patient's congestive heart failure status, characterized by:
measuring acceleration due to body motion as a measure of the patient's level of activity;
measuring the patient's heart rate;
calculating oxygen uptake from the measured acceleration and a ratio of oxygen uptake to heart rate indicative of the patient's congestive heart failure status; and monitoring said patient's congestive heart failure status based on said ratio.
CA002390016A 1999-11-04 2000-07-13 Implantable cardiac rhythm management device for assessing status of chf patients Expired - Fee Related CA2390016C (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US09/434,009 1999-11-04
US09/434,009 US6275727B1 (en) 1999-11-04 1999-11-04 Implantable cardiac rhythm management device for assessing status of CHF patients
US09/547,519 US6459929B1 (en) 1999-11-04 2000-04-12 Implantable cardiac rhythm management device for assessing status of CHF patients
US09/547,519 2000-04-12
PCT/US2000/019230 WO2001032260A1 (en) 1999-11-04 2000-07-13 Implantable cardiac rhythm management device for assessing status of chf patients

Publications (2)

Publication Number Publication Date
CA2390016A1 CA2390016A1 (en) 2001-05-10
CA2390016C true CA2390016C (en) 2006-05-09

Family

ID=27030048

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002390016A Expired - Fee Related CA2390016C (en) 1999-11-04 2000-07-13 Implantable cardiac rhythm management device for assessing status of chf patients

Country Status (7)

Country Link
US (1) US6459929B1 (en)
EP (1) EP1225954B1 (en)
AT (1) ATE372808T1 (en)
AU (1) AU5934300A (en)
CA (1) CA2390016C (en)
DE (1) DE60036396T2 (en)
WO (1) WO2001032260A1 (en)

Families Citing this family (244)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6076015A (en) * 1998-02-27 2000-06-13 Cardiac Pacemakers, Inc. Rate adaptive cardiac rhythm management device using transthoracic impedance
US6535763B1 (en) * 1999-08-22 2003-03-18 Cardia Pacemakers, Inc. Event marker alignment by inclusion of event marker transmission latency in the real-time data stream
US6721594B2 (en) 1999-08-24 2004-04-13 Cardiac Pacemakers, Inc. Arrythmia display
US6600949B1 (en) 1999-11-10 2003-07-29 Pacesetter, Inc. Method for monitoring heart failure via respiratory patterns
US6589188B1 (en) 2000-05-05 2003-07-08 Pacesetter, Inc. Method for monitoring heart failure via respiratory patterns
US6522914B1 (en) * 2000-07-14 2003-02-18 Cardiac Pacemakers, Inc. Method and apparatuses for monitoring hemodynamic activities using an intracardiac impedance-derived parameter
US6459934B1 (en) * 2000-07-21 2002-10-01 Cardiac Pacemakers, Inc. Estimate of efficiency using acceleration-heart rate ratio
US7069070B2 (en) * 2003-05-12 2006-06-27 Cardiac Pacemakers, Inc. Statistical method for assessing autonomic balance
US7428436B2 (en) * 2000-11-02 2008-09-23 Cardiac Pacemakers, Inc. Method for exclusion of ectopic events from heart rate variability metrics
US6741885B1 (en) 2000-12-07 2004-05-25 Pacesetter, Inc. Implantable cardiac device for managing the progression of heart disease and method
US6665558B2 (en) * 2000-12-15 2003-12-16 Cardiac Pacemakers, Inc. System and method for correlation of patient health information and implant device data
US8548576B2 (en) 2000-12-15 2013-10-01 Cardiac Pacemakers, Inc. System and method for correlation of patient health information and implant device data
US6941167B2 (en) 2000-12-15 2005-09-06 Cardiac Pacemakers, Inc. System and method for displaying cardiac events
US20050283197A1 (en) * 2001-04-10 2005-12-22 Daum Douglas R Systems and methods for hypotension
US6684101B2 (en) * 2001-04-25 2004-01-27 Cardiac Pacemakers, Inc. Implantable medical device employing single drive, dual sense impedance measuring
US7346394B2 (en) * 2001-04-27 2008-03-18 Cardiac Pacemakers, Inc. Cardiac stimulation at high ventricular wall stress areas
US6961615B2 (en) * 2002-02-07 2005-11-01 Pacesetter, Inc. System and method for evaluating risk of mortality due to congestive heart failure using physiologic sensors
US6645153B2 (en) * 2002-02-07 2003-11-11 Pacesetter, Inc. System and method for evaluating risk of mortality due to congestive heart failure using physiologic sensors
GB0205771D0 (en) * 2002-03-12 2002-04-24 Monitoring Tech Ltd Method and apparatus for the setting or adjustment of a cardiac pacemaker
FR2846246B1 (en) * 2002-10-25 2005-06-24 Ela Medical Sa ACTIVE IMPLANTABLE MEDICAL DEVICE OF CARDIAC STIMULATOR, DEFIBRILLATOR, CARDIOVERTOR, OR MULTISITE DEVICE WITH IMPROVED MANAGEMENT OF RESPIRATORY BREAKS OR HYPOPNEES
US7072711B2 (en) 2002-11-12 2006-07-04 Cardiac Pacemakers, Inc. Implantable device for delivering cardiac drug therapy
US20050080348A1 (en) 2003-09-18 2005-04-14 Stahmann Jeffrey E. Medical event logbook system and method
US7343199B2 (en) * 2002-12-27 2008-03-11 Cardiac Pacemakers, Inc. Measurement of respiratory sinus arrhythmia using respiratory and electrogram sensors in an implantable device
US6949075B2 (en) * 2002-12-27 2005-09-27 Cardiac Pacemakers, Inc. Apparatus and method for detecting lung sounds using an implanted device
US7272442B2 (en) 2002-12-30 2007-09-18 Cardiac Pacemakers, Inc. Automatically configurable minute ventilation sensor
US8050764B2 (en) 2003-10-29 2011-11-01 Cardiac Pacemakers, Inc. Cross-checking of transthoracic impedance and acceleration signals
US7972275B2 (en) 2002-12-30 2011-07-05 Cardiac Pacemakers, Inc. Method and apparatus for monitoring of diastolic hemodynamics
US20040133079A1 (en) * 2003-01-02 2004-07-08 Mazar Scott Thomas System and method for predicting patient health within a patient management system
US7207947B2 (en) * 2003-01-10 2007-04-24 Pacesetter, Inc. System and method for detecting circadian states using an implantable medical device
US7555335B2 (en) * 2003-04-11 2009-06-30 Cardiac Pacemakers, Inc. Biopotential signal source separation using source impedances
US7302294B2 (en) 2003-04-11 2007-11-27 Cardiac Pacemakers, Inc. Subcutaneous cardiac sensing and stimulation system employing blood sensor
US7236819B2 (en) 2003-04-11 2007-06-26 Cardiac Pacemakers, Inc. Separation of a subcutaneous cardiac signal from a plurality of composite signals
US7218966B2 (en) 2003-04-11 2007-05-15 Cardiac Pacemakers, Inc. Multi-parameter arrhythmia discrimination
US7865233B2 (en) * 2003-04-11 2011-01-04 Cardiac Pacemakers, Inc. Subcutaneous cardiac signal discrimination employing non-electrophysiologic signal
US7477932B2 (en) 2003-05-28 2009-01-13 Cardiac Pacemakers, Inc. Cardiac waveform template creation, maintenance and use
US7186220B2 (en) * 2003-07-02 2007-03-06 Cardiac Pacemakers, Inc. Implantable devices and methods using frequency-domain analysis of thoracic signal
US7200440B2 (en) 2003-07-02 2007-04-03 Cardiac Pacemakers, Inc. Cardiac cycle synchronized sampling of impedance signal
US7678061B2 (en) * 2003-09-18 2010-03-16 Cardiac Pacemakers, Inc. System and method for characterizing patient respiration
US7757690B2 (en) * 2003-09-18 2010-07-20 Cardiac Pacemakers, Inc. System and method for moderating a therapy delivered during sleep using physiologic data acquired during non-sleep
US7591265B2 (en) 2003-09-18 2009-09-22 Cardiac Pacemakers, Inc. Coordinated use of respiratory and cardiac therapies for sleep disordered breathing
US7720541B2 (en) * 2003-08-18 2010-05-18 Cardiac Pacemakers, Inc. Adaptive therapy for disordered breathing
US7887493B2 (en) 2003-09-18 2011-02-15 Cardiac Pacemakers, Inc. Implantable device employing movement sensing for detecting sleep-related disorders
US7468040B2 (en) 2003-09-18 2008-12-23 Cardiac Pacemakers, Inc. Methods and systems for implantably monitoring external breathing therapy
US7469697B2 (en) 2003-09-18 2008-12-30 Cardiac Pacemakers, Inc. Feedback system and method for sleep disordered breathing therapy
US7970470B2 (en) * 2003-09-18 2011-06-28 Cardiac Pacemakers, Inc. Diagnosis and/or therapy using blood chemistry/expired gas parameter analysis
US7532934B2 (en) * 2003-09-18 2009-05-12 Cardiac Pacemakers, Inc. Snoring detection system and method
US8251061B2 (en) 2003-09-18 2012-08-28 Cardiac Pacemakers, Inc. Methods and systems for control of gas therapy
US8192376B2 (en) 2003-08-18 2012-06-05 Cardiac Pacemakers, Inc. Sleep state classification
US7510531B2 (en) * 2003-09-18 2009-03-31 Cardiac Pacemakers, Inc. System and method for discrimination of central and obstructive disordered breathing events
US7396333B2 (en) 2003-08-18 2008-07-08 Cardiac Pacemakers, Inc. Prediction of disordered breathing
US7668591B2 (en) 2003-09-18 2010-02-23 Cardiac Pacemakers, Inc. Automatic activation of medical processes
US8606356B2 (en) * 2003-09-18 2013-12-10 Cardiac Pacemakers, Inc. Autonomic arousal detection system and method
US7967756B2 (en) 2003-09-18 2011-06-28 Cardiac Pacemakers, Inc. Respiratory therapy control based on cardiac cycle
US7662101B2 (en) 2003-09-18 2010-02-16 Cardiac Pacemakers, Inc. Therapy control based on cardiopulmonary status
EP2008581B1 (en) 2003-08-18 2011-08-17 Cardiac Pacemakers, Inc. Patient monitoring, diagnosis, and/or therapy systems and methods
US7320675B2 (en) 2003-08-21 2008-01-22 Cardiac Pacemakers, Inc. Method and apparatus for modulating cellular metabolism during post-ischemia or heart failure
US7392084B2 (en) 2003-09-23 2008-06-24 Cardiac Pacemakers, Inc. Demand-based cardiac function therapy
US7286872B2 (en) * 2003-10-07 2007-10-23 Cardiac Pacemakers, Inc. Method and apparatus for managing data from multiple sensing channels
US7572226B2 (en) 2003-10-28 2009-08-11 Cardiac Pacemakers, Inc. System and method for monitoring autonomic balance and physical activity
US7319900B2 (en) 2003-12-11 2008-01-15 Cardiac Pacemakers, Inc. Cardiac response classification using multiple classification windows
US20060247693A1 (en) 2005-04-28 2006-11-02 Yanting Dong Non-captured intrinsic discrimination in cardiac pacing response classification
US8521284B2 (en) 2003-12-12 2013-08-27 Cardiac Pacemakers, Inc. Cardiac response classification using multisite sensing and pacing
US7774064B2 (en) 2003-12-12 2010-08-10 Cardiac Pacemakers, Inc. Cardiac response classification using retriggerable classification windows
US7471980B2 (en) * 2003-12-22 2008-12-30 Cardiac Pacemakers, Inc. Synchronizing continuous signals and discrete events for an implantable medical device
US7431699B2 (en) 2003-12-24 2008-10-07 Cardiac Pacemakers, Inc. Method and apparatus for third heart sound detection
US20050215884A1 (en) * 2004-02-27 2005-09-29 Greicius Michael D Evaluation of Alzheimer's disease using an independent component analysis of an individual's resting-state functional MRI
US7840263B2 (en) 2004-02-27 2010-11-23 Cardiac Pacemakers, Inc. Method and apparatus for device controlled gene expression
US7094207B1 (en) 2004-03-02 2006-08-22 Pacesetter, Inc. System and method for diagnosing and tracking congestive heart failure based on the periodicity of cheyne-stokes respiration using an implantable medical device
US7070568B1 (en) * 2004-03-02 2006-07-04 Pacesetter, Inc. System and method for diagnosing and tracking congestive heart failure based on the periodicity of Cheyne-Stokes Respiration using an implantable medical device
US7627366B1 (en) 2004-05-17 2009-12-01 Pacesetter, Inc. Analysis of polarization information
US7260431B2 (en) * 2004-05-20 2007-08-21 Cardiac Pacemakers, Inc. Combined remodeling control therapy and anti-remodeling therapy by implantable cardiac device
US7764995B2 (en) * 2004-06-07 2010-07-27 Cardiac Pacemakers, Inc. Method and apparatus to modulate cellular regeneration post myocardial infarct
US7747323B2 (en) 2004-06-08 2010-06-29 Cardiac Pacemakers, Inc. Adaptive baroreflex stimulation therapy for disordered breathing
US7706866B2 (en) 2004-06-24 2010-04-27 Cardiac Pacemakers, Inc. Automatic orientation determination for ECG measurements using multiple electrodes
US7729761B2 (en) 2004-07-14 2010-06-01 Cardiac Pacemakers, Inc. Method and apparatus for controlled gene or protein delivery
US7480528B2 (en) * 2004-07-23 2009-01-20 Cardiac Pacemakers, Inc. Method and apparatus for monitoring heart failure patients with cardiopulmonary comorbidities
US7269458B2 (en) 2004-08-09 2007-09-11 Cardiac Pacemakers, Inc. Cardiopulmonary functional status assessment via heart rate response detection by implantable cardiac device
US7389143B2 (en) * 2004-08-12 2008-06-17 Cardiac Pacemakers, Inc. Cardiopulmonary functional status assessment via metabolic response detection by implantable cardiac device
US7828711B2 (en) 2004-08-16 2010-11-09 Cardiac Pacemakers, Inc. Method and apparatus for modulating cellular growth and regeneration using ventricular assist device
US7387610B2 (en) 2004-08-19 2008-06-17 Cardiac Pacemakers, Inc. Thoracic impedance detection with blood resistivity compensation
US7567841B2 (en) 2004-08-20 2009-07-28 Cardiac Pacemakers, Inc. Method and apparatus for delivering combined electrical and drug therapies
US7797036B2 (en) 2004-11-30 2010-09-14 Cardiac Pacemakers, Inc. Cardiac activation sequence monitoring for ischemia detection
US7917196B2 (en) 2005-05-09 2011-03-29 Cardiac Pacemakers, Inc. Arrhythmia discrimination using electrocardiograms sensed from multiple implanted electrodes
US7805185B2 (en) 2005-05-09 2010-09-28 Cardiac Pacemakers, In. Posture monitoring using cardiac activation sequences
US7890159B2 (en) 2004-09-30 2011-02-15 Cardiac Pacemakers, Inc. Cardiac activation sequence monitoring and tracking
US7509170B2 (en) 2005-05-09 2009-03-24 Cardiac Pacemakers, Inc. Automatic capture verification using electrocardiograms sensed from multiple implanted electrodes
US7457664B2 (en) 2005-05-09 2008-11-25 Cardiac Pacemakers, Inc. Closed loop cardiac resynchronization therapy using cardiac activation sequence information
US7418293B2 (en) * 2004-11-09 2008-08-26 Cardiac Pacemakers, Inc. Multiple pulse defibrillation for subcutaneous implantable cardiac devices
US7155281B1 (en) 2004-12-03 2006-12-26 Pacesetter, Inc. Complimentary activity sensor network for disease monitoring and therapy modulation in an implantable device
US8818504B2 (en) 2004-12-16 2014-08-26 Cardiac Pacemakers Inc Leadless cardiac stimulation device employing distributed logic
US8060219B2 (en) 2004-12-20 2011-11-15 Cardiac Pacemakers, Inc. Epicardial patch including isolated extracellular matrix with pacing electrodes
US7981065B2 (en) 2004-12-20 2011-07-19 Cardiac Pacemakers, Inc. Lead electrode incorporating extracellular matrix
US7996072B2 (en) * 2004-12-21 2011-08-09 Cardiac Pacemakers, Inc. Positionally adaptable implantable cardiac device
US7386345B2 (en) * 2005-01-27 2008-06-10 Cardiac Pacemakers, Inc. Apparatus and method for temporary treatment of acute heart failure decompensation
US7680534B2 (en) * 2005-02-28 2010-03-16 Cardiac Pacemakers, Inc. Implantable cardiac device with dyspnea measurement
US7392086B2 (en) 2005-04-26 2008-06-24 Cardiac Pacemakers, Inc. Implantable cardiac device and method for reduced phrenic nerve stimulation
US8391990B2 (en) 2005-05-18 2013-03-05 Cardiac Pacemakers, Inc. Modular antitachyarrhythmia therapy system
US7922669B2 (en) 2005-06-08 2011-04-12 Cardiac Pacemakers, Inc. Ischemia detection using a heart sound sensor
US20070021678A1 (en) * 2005-07-19 2007-01-25 Cardiac Pacemakers, Inc. Methods and apparatus for monitoring physiological responses to steady state activity
US7775983B2 (en) * 2005-09-16 2010-08-17 Cardiac Pacemakers, Inc. Rapid shallow breathing detection for use in congestive heart failure status determination
US7927284B2 (en) * 2005-09-16 2011-04-19 Cardiac Pacemakers, Inc. Quantifying hemodynamic response to drug therapy using implantable sensor
US7731663B2 (en) 2005-09-16 2010-06-08 Cardiac Pacemakers, Inc. System and method for generating a trend parameter based on respiration rate distribution
US20070073352A1 (en) * 2005-09-28 2007-03-29 Euler David E Method and apparatus for regulating a cardiac stimulation therapy
US8046060B2 (en) 2005-11-14 2011-10-25 Cardiac Pacemakers, Inc. Differentiating arrhythmic events having different origins
US20070118180A1 (en) 2005-11-18 2007-05-24 Quan Ni Cardiac resynchronization therapy for improved hemodynamics based on disordered breathing detection
US8108034B2 (en) 2005-11-28 2012-01-31 Cardiac Pacemakers, Inc. Systems and methods for valvular regurgitation detection
US7766840B2 (en) 2005-12-01 2010-08-03 Cardiac Pacemakers, Inc. Method and system for heart failure status evaluation based on a disordered breathing index
US7662105B2 (en) 2005-12-14 2010-02-16 Cardiac Pacemakers, Inc. Systems and methods for determining respiration metrics
US8204585B2 (en) 2005-12-20 2012-06-19 Cardiac Pacemakers, Inc. Bio-impedance sensor and sensing method
US9155896B2 (en) * 2005-12-22 2015-10-13 Cardiac Pacemakers, Inc. Method and apparatus for improving cardiac efficiency based on myocardial oxygen consumption
US20070173728A1 (en) * 2006-01-25 2007-07-26 Yachuan Pu Cyclic variation of heart rate detection and treatment
US20070190028A1 (en) * 2006-02-13 2007-08-16 Jihong Qu Method and apparatus for heat or electromagnetic control of gene expression
US7713213B2 (en) * 2006-03-13 2010-05-11 Cardiac Pacemakers, Inc. Physiological event detection systems and methods
US7780606B2 (en) 2006-03-29 2010-08-24 Cardiac Pacemakers, Inc. Hemodynamic stability assessment based on heart sounds
US7819816B2 (en) 2006-03-29 2010-10-26 Cardiac Pacemakers, Inc. Periodic disordered breathing detection
US8712519B1 (en) 2006-03-31 2014-04-29 Pacesetter, Inc. Closed-loop adaptive adjustment of pacing therapy based on cardiogenic impedance signals detected by an implantable medical device
US7794404B1 (en) 2006-03-31 2010-09-14 Pacesetter, Inc System and method for estimating cardiac pressure using parameters derived from impedance signals detected by an implantable medical device
US8600497B1 (en) 2006-03-31 2013-12-03 Pacesetter, Inc. Systems and methods to monitor and treat heart failure conditions
US8005543B2 (en) 2006-05-08 2011-08-23 Cardiac Pacemakers, Inc. Heart failure management system
US8000780B2 (en) 2006-06-27 2011-08-16 Cardiac Pacemakers, Inc. Detection of myocardial ischemia from the time sequence of implanted sensor measurements
US8527048B2 (en) 2006-06-29 2013-09-03 Cardiac Pacemakers, Inc. Local and non-local sensing for cardiac pacing
US7599741B2 (en) * 2006-06-29 2009-10-06 Cardiac Pacemakers, Inc. Systems and methods for improving heart rate kinetics in heart failure patients
US8209013B2 (en) 2006-09-14 2012-06-26 Cardiac Pacemakers, Inc. Therapeutic electrical stimulation that avoids undesirable activation
US7963924B2 (en) * 2006-10-25 2011-06-21 Sorin Crm Sas Heart simulator
US20080119749A1 (en) 2006-11-20 2008-05-22 Cardiac Pacemakers, Inc. Respiration-synchronized heart sound trending
US8096954B2 (en) 2006-11-29 2012-01-17 Cardiac Pacemakers, Inc. Adaptive sampling of heart sounds
US9968266B2 (en) 2006-12-27 2018-05-15 Cardiac Pacemakers, Inc. Risk stratification based heart failure detection algorithm
US8768718B2 (en) * 2006-12-27 2014-07-01 Cardiac Pacemakers, Inc. Between-patient comparisons for risk stratification of future heart failure decompensation
US9022930B2 (en) * 2006-12-27 2015-05-05 Cardiac Pacemakers, Inc. Inter-relation between within-patient decompensation detection algorithm and between-patient stratifier to manage HF patients in a more efficient manner
US7629889B2 (en) 2006-12-27 2009-12-08 Cardiac Pacemakers, Inc. Within-patient algorithm to predict heart failure decompensation
US7736319B2 (en) 2007-01-19 2010-06-15 Cardiac Pacemakers, Inc. Ischemia detection using heart sound timing
US8052611B2 (en) 2007-03-14 2011-11-08 Cardiac Pacemakers, Inc. Method and apparatus for management of heart failure hospitalization
US8504153B2 (en) 2007-04-04 2013-08-06 Pacesetter, Inc. System and method for estimating cardiac pressure based on cardiac electrical conduction delays using an implantable medical device
US8208999B2 (en) 2007-04-04 2012-06-26 Pacesetter, Inc. System and method for estimating electrical conduction delays from immittance values measured using an implantable medical device
US7853327B2 (en) 2007-04-17 2010-12-14 Cardiac Pacemakers, Inc. Heart sound tracking system and method
US8209033B2 (en) * 2007-05-14 2012-06-26 Cardiac Pacemakers, Inc. Method and apparatus for regulating blood volume using volume receptor stimulation
US8271080B2 (en) 2007-05-23 2012-09-18 Cardiac Pacemakers, Inc. Decongestive therapy titration for heart failure patients using implantable sensor
WO2008147253A1 (en) * 2007-05-28 2008-12-04 St. Jude Medical Ab Implantable medical device for monitoring lung deficiency
US8265736B2 (en) 2007-08-07 2012-09-11 Cardiac Pacemakers, Inc. Method and apparatus to perform electrode combination selection
US9037239B2 (en) 2007-08-07 2015-05-19 Cardiac Pacemakers, Inc. Method and apparatus to perform electrode combination selection
US9717896B2 (en) 2007-12-18 2017-08-01 Gearbox, Llc Treatment indications informed by a priori implant information
US20090287094A1 (en) * 2008-05-15 2009-11-19 Seacrete Llc, A Limited Liability Corporation Of The State Of Delaware Circulatory monitoring systems and methods
US20090287120A1 (en) 2007-12-18 2009-11-19 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Circulatory monitoring systems and methods
US9672471B2 (en) 2007-12-18 2017-06-06 Gearbox Llc Systems, devices, and methods for detecting occlusions in a biological subject including spectral learning
US8636670B2 (en) 2008-05-13 2014-01-28 The Invention Science Fund I, Llc Circulatory monitoring systems and methods
US8280484B2 (en) 2007-12-18 2012-10-02 The Invention Science Fund I, Llc System, devices, and methods for detecting occlusions in a biological subject
WO2009094335A1 (en) 2008-01-22 2009-07-30 Cardiac Pacemakers, Inc. Respiration as a trigger for therapy optimization
EP2254661B1 (en) 2008-02-14 2015-10-07 Cardiac Pacemakers, Inc. Apparatus for phrenic stimulation detection
US8147415B2 (en) 2008-05-07 2012-04-03 Cardiac Pacemakers, Inc. System and method for detection of pulmonary embolism
US8255046B2 (en) * 2008-07-31 2012-08-28 Medtronic, Inc. Detecting worsening heart failure based on impedance measurements
US9713701B2 (en) 2008-07-31 2017-07-25 Medtronic, Inc. Using multiple diagnostic parameters for predicting heart failure events
US8231536B2 (en) * 2008-09-19 2012-07-31 Medtronic, Inc. Method and apparatus for detecting respiratory effort in a medical device
EP2370160A1 (en) * 2008-10-29 2011-10-05 Sorin CRM SAS Optimal cardiac pacing with q learning
US8632473B2 (en) * 2009-01-30 2014-01-21 Medtronic, Inc. Detecting worsening heart failure based on fluid accumulation with respiratory confirmation
EP2411090B1 (en) 2009-03-22 2015-08-19 Sorin CRM SAS Optimal deep brain stimulation therapy with q learning
US20110093026A1 (en) 2009-10-19 2011-04-21 Ramesh Wariar Method and apparatus for cardiorenal electrical stimulation
US8271072B2 (en) * 2009-10-30 2012-09-18 Medtronic, Inc. Detecting worsening heart failure
WO2011103020A1 (en) * 2010-02-16 2011-08-25 Cardiac Pacemakers, Inc. Kinetics of physiological response to activity during activities of daily living
US8975900B2 (en) * 2010-04-08 2015-03-10 Disney Enterprises, Inc. System and method for sensing human activity by monitoring impedance
US9341659B2 (en) * 2010-04-08 2016-05-17 Disney Enterprises, Inc. User interactive living organisms
US8639324B2 (en) * 2011-02-02 2014-01-28 Cardiac Pacemakers, Inc. Respiratory parameters for arrhythmia detection and therapy
WO2015020979A1 (en) 2013-08-05 2015-02-12 Cardiac Pacemakers, Inc. System and method for detecting worsening of heart failure based on rapid shallow breathing index
WO2015106015A1 (en) 2014-01-10 2015-07-16 Cardiac Pacemakers, Inc. Systems and methods for detecting cardiac arrhythmias
CN106102830B (en) 2014-01-10 2019-07-16 心脏起搏器股份公司 For improving the method and system of the communication between medical device
WO2016033197A2 (en) 2014-08-28 2016-03-03 Cardiac Pacemakers, Inc. Medical device with triggered blanking period
JP6510660B2 (en) 2015-02-06 2019-05-08 カーディアック ペースメイカーズ, インコーポレイテッド System and method for treating cardiac arrhythmias
ES2713231T3 (en) 2015-02-06 2019-05-20 Cardiac Pacemakers Inc Systems for the safe supply of electrical stimulation therapy
US10046167B2 (en) 2015-02-09 2018-08-14 Cardiac Pacemakers, Inc. Implantable medical device with radiopaque ID tag
US11285326B2 (en) 2015-03-04 2022-03-29 Cardiac Pacemakers, Inc. Systems and methods for treating cardiac arrhythmias
US10050700B2 (en) 2015-03-18 2018-08-14 Cardiac Pacemakers, Inc. Communications in a medical device system with temporal optimization
WO2016149262A1 (en) 2015-03-18 2016-09-22 Cardiac Pacemakers, Inc. Communications in a medical device system with link quality assessment
EP3337558A1 (en) 2015-08-20 2018-06-27 Cardiac Pacemakers, Inc. Systems and methods for communication between medical devices
US10357159B2 (en) 2015-08-20 2019-07-23 Cardiac Pacemakers, Inc Systems and methods for communication between medical devices
US9968787B2 (en) 2015-08-27 2018-05-15 Cardiac Pacemakers, Inc. Spatial configuration of a motion sensor in an implantable medical device
US9956414B2 (en) 2015-08-27 2018-05-01 Cardiac Pacemakers, Inc. Temporal configuration of a motion sensor in an implantable medical device
US10226631B2 (en) 2015-08-28 2019-03-12 Cardiac Pacemakers, Inc. Systems and methods for infarct detection
WO2017040115A1 (en) 2015-08-28 2017-03-09 Cardiac Pacemakers, Inc. System for detecting tamponade
CN108136189B (en) 2015-08-28 2021-10-15 心脏起搏器股份公司 System for behavioral response signal detection and therapy delivery
WO2017044389A1 (en) 2015-09-11 2017-03-16 Cardiac Pacemakers, Inc. Arrhythmia detection and confirmation
EP3359251B1 (en) 2015-10-08 2019-08-07 Cardiac Pacemakers, Inc. Adjusting pacing rates in an implantable medical device
EP3389775B1 (en) 2015-12-17 2019-09-25 Cardiac Pacemakers, Inc. Conducted communication in a medical device system
US10905886B2 (en) 2015-12-28 2021-02-02 Cardiac Pacemakers, Inc. Implantable medical device for deployment across the atrioventricular septum
WO2017127548A1 (en) 2016-01-19 2017-07-27 Cardiac Pacemakers, Inc. Devices for wirelessly recharging a rechargeable battery of an implantable medical device
WO2017136548A1 (en) 2016-02-04 2017-08-10 Cardiac Pacemakers, Inc. Delivery system with force sensor for leadless cardiac device
WO2017173275A1 (en) 2016-03-31 2017-10-05 Cardiac Pacemakers, Inc. Implantable medical device with rechargeable battery
US10328272B2 (en) 2016-05-10 2019-06-25 Cardiac Pacemakers, Inc. Retrievability for implantable medical devices
US10668294B2 (en) 2016-05-10 2020-06-02 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker configured for over the wire delivery
US10512784B2 (en) 2016-06-27 2019-12-24 Cardiac Pacemakers, Inc. Cardiac therapy system using subcutaneously sensed P-waves for resynchronization pacing management
WO2018009569A1 (en) 2016-07-06 2018-01-11 Cardiac Pacemakers, Inc. Method and system for determining an atrial contraction timing fiducial in a leadless cardiac pacemaker system
US10426962B2 (en) 2016-07-07 2019-10-01 Cardiac Pacemakers, Inc. Leadless pacemaker using pressure measurements for pacing capture verification
WO2018017226A1 (en) 2016-07-20 2018-01-25 Cardiac Pacemakers, Inc. System for utilizing an atrial contraction timing fiducial in a leadless cardiac pacemaker system
US10952686B2 (en) 2016-08-02 2021-03-23 Medtronic, Inc. Mobile application to prompt physical action to measure physiologic response in implantable device
WO2018035343A1 (en) 2016-08-19 2018-02-22 Cardiac Pacemakers, Inc. Trans septal implantable medical device
EP3503970B1 (en) 2016-08-24 2023-01-04 Cardiac Pacemakers, Inc. Cardiac resynchronization using fusion promotion for timing management
CN109640809B (en) 2016-08-24 2021-08-17 心脏起搏器股份公司 Integrated multi-device cardiac resynchronization therapy using P-wave to pacing timing
WO2018057626A1 (en) 2016-09-21 2018-03-29 Cardiac Pacemakers, Inc. Implantable cardiac monitor
US10758737B2 (en) 2016-09-21 2020-09-01 Cardiac Pacemakers, Inc. Using sensor data from an intracardially implanted medical device to influence operation of an extracardially implantable cardioverter
US10905889B2 (en) 2016-09-21 2021-02-02 Cardiac Pacemakers, Inc. Leadless stimulation device with a housing that houses internal components of the leadless stimulation device and functions as the battery case and a terminal of an internal battery
WO2018081237A1 (en) 2016-10-27 2018-05-03 Cardiac Pacemakers, Inc. Use of a separate device in managing the pace pulse energy of a cardiac pacemaker
EP3532159B1 (en) 2016-10-27 2021-12-22 Cardiac Pacemakers, Inc. Implantable medical device delivery system with integrated sensor
US10561330B2 (en) 2016-10-27 2020-02-18 Cardiac Pacemakers, Inc. Implantable medical device having a sense channel with performance adjustment
US10463305B2 (en) 2016-10-27 2019-11-05 Cardiac Pacemakers, Inc. Multi-device cardiac resynchronization therapy with timing enhancements
US10413733B2 (en) 2016-10-27 2019-09-17 Cardiac Pacemakers, Inc. Implantable medical device with gyroscope
US10765871B2 (en) 2016-10-27 2020-09-08 Cardiac Pacemakers, Inc. Implantable medical device with pressure sensor
CN109890456B (en) 2016-10-31 2023-06-13 心脏起搏器股份公司 System for activity level pacing
JP6843235B2 (en) 2016-10-31 2021-03-17 カーディアック ペースメイカーズ, インコーポレイテッド Systems and methods for activity level pacing
WO2018089311A1 (en) 2016-11-08 2018-05-17 Cardiac Pacemakers, Inc Implantable medical device for atrial deployment
US10632313B2 (en) 2016-11-09 2020-04-28 Cardiac Pacemakers, Inc. Systems, devices, and methods for setting cardiac pacing pulse parameters for a cardiac pacing device
US10881863B2 (en) 2016-11-21 2021-01-05 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with multimode communication
US10639486B2 (en) 2016-11-21 2020-05-05 Cardiac Pacemakers, Inc. Implantable medical device with recharge coil
US10881869B2 (en) 2016-11-21 2021-01-05 Cardiac Pacemakers, Inc. Wireless re-charge of an implantable medical device
US10894163B2 (en) 2016-11-21 2021-01-19 Cardiac Pacemakers, Inc. LCP based predictive timing for cardiac resynchronization
CN109996585B (en) 2016-11-21 2023-06-13 心脏起搏器股份公司 Implantable medical device with magnetically permeable housing and induction coil disposed around the housing
US11207532B2 (en) 2017-01-04 2021-12-28 Cardiac Pacemakers, Inc. Dynamic sensing updates using postural input in a multiple device cardiac rhythm management system
JP7000438B2 (en) 2017-01-26 2022-01-19 カーディアック ペースメイカーズ, インコーポレイテッド Human device communication with redundant message transmission
CN110234392B (en) 2017-01-26 2023-08-11 心脏起搏器股份公司 Leadless device with overmolded component
EP3573708B1 (en) 2017-01-26 2021-03-10 Cardiac Pacemakers, Inc. Leadless implantable device with detachable fixation
AU2018248361B2 (en) 2017-04-03 2020-08-27 Cardiac Pacemakers, Inc. Cardiac pacemaker with pacing pulse energy adjustment based on sensed heart rate
US10905872B2 (en) 2017-04-03 2021-02-02 Cardiac Pacemakers, Inc. Implantable medical device with a movable electrode biased toward an extended position
WO2018200470A1 (en) 2017-04-29 2018-11-01 Cardiac Pacemakers, Inc. Heart failure event rate assessment
US11065459B2 (en) 2017-08-18 2021-07-20 Cardiac Pacemakers, Inc. Implantable medical device with pressure sensor
US10918875B2 (en) 2017-08-18 2021-02-16 Cardiac Pacemakers, Inc. Implantable medical device with a flux concentrator and a receiving coil disposed about the flux concentrator
CN111107899B (en) 2017-09-20 2024-04-02 心脏起搏器股份公司 Implantable medical device with multiple modes of operation
US11185703B2 (en) 2017-11-07 2021-11-30 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker for bundle of his pacing
EP3717059A1 (en) 2017-12-01 2020-10-07 Cardiac Pacemakers, Inc. Methods and systems for detecting atrial contraction timing fiducials within a search window from a ventricularly implanted leadless cardiac pacemaker
WO2019108830A1 (en) 2017-12-01 2019-06-06 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with reversionary behavior
CN111417433A (en) 2017-12-01 2020-07-14 心脏起搏器股份公司 Method and system for detecting atrial contraction timing reference during ventricular filling from a ventricular implanted leadless cardiac pacemaker
WO2019108482A1 (en) 2017-12-01 2019-06-06 Cardiac Pacemakers, Inc. Methods and systems for detecting atrial contraction timing fiducials and determining a cardiac interval from a ventricularly implanted leadless cardiac pacemaker
US11529523B2 (en) 2018-01-04 2022-12-20 Cardiac Pacemakers, Inc. Handheld bridge device for providing a communication bridge between an implanted medical device and a smartphone
US10874861B2 (en) 2018-01-04 2020-12-29 Cardiac Pacemakers, Inc. Dual chamber pacing without beat-to-beat communication
US11058880B2 (en) 2018-03-23 2021-07-13 Medtronic, Inc. VFA cardiac therapy for tachycardia
CN111902187A (en) 2018-03-23 2020-11-06 美敦力公司 VFA cardiac resynchronization therapy
CN111886046A (en) 2018-03-23 2020-11-03 美敦力公司 AV-synchronized VFA cardiac therapy
CN112770807A (en) 2018-09-26 2021-05-07 美敦力公司 Capture in atrial-to-ventricular cardiac therapy
US11679265B2 (en) 2019-02-14 2023-06-20 Medtronic, Inc. Lead-in-lead systems and methods for cardiac therapy
US11697025B2 (en) 2019-03-29 2023-07-11 Medtronic, Inc. Cardiac conduction system capture
US11213676B2 (en) 2019-04-01 2022-01-04 Medtronic, Inc. Delivery systems for VfA cardiac therapy
US11712188B2 (en) 2019-05-07 2023-08-01 Medtronic, Inc. Posterior left bundle branch engagement
US11305127B2 (en) 2019-08-26 2022-04-19 Medtronic Inc. VfA delivery and implant region detection
US11717186B2 (en) 2019-08-27 2023-08-08 Medtronic, Inc. Body stability measurement
US11813466B2 (en) 2020-01-27 2023-11-14 Medtronic, Inc. Atrioventricular nodal stimulation
US11911168B2 (en) 2020-04-03 2024-02-27 Medtronic, Inc. Cardiac conduction system therapy benefit determination
US11602313B2 (en) 2020-07-28 2023-03-14 Medtronic, Inc. Determining a fall risk responsive to detecting body position movements
US11813464B2 (en) 2020-07-31 2023-11-14 Medtronic, Inc. Cardiac conduction system evaluation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68927447T2 (en) * 1988-02-17 1997-04-03 Stuart Charles Webb Frequency-sensitive pacemaker
SE9101276D0 (en) * 1991-04-26 1991-04-26 Siemens Elema Ab IMPLANT MEDICAL DEVICE
US5318597A (en) 1993-03-15 1994-06-07 Cardiac Pacemakers, Inc. Rate adaptive cardiac rhythm management device control algorithm using trans-thoracic ventilation
US5800471A (en) 1997-10-20 1998-09-01 Cardiac Pacemakers, Inc. Method for optimizing cardiac performance by determining the optimal pacing mode-AV delay from a transient heart rate signal for use in CHF, brady, and tachy/brady therapy devices
US5931858A (en) * 1998-01-12 1999-08-03 Cardiac Pacemakers, Inc. Implantable device for monitoring aerobic capacity of patients

Also Published As

Publication number Publication date
EP1225954B1 (en) 2007-09-12
WO2001032260A1 (en) 2001-05-10
CA2390016A1 (en) 2001-05-10
US6459929B1 (en) 2002-10-01
EP1225954A1 (en) 2002-07-31
ATE372808T1 (en) 2007-09-15
DE60036396T2 (en) 2008-05-29
AU5934300A (en) 2001-05-14
DE60036396D1 (en) 2007-10-25

Similar Documents

Publication Publication Date Title
CA2390016C (en) Implantable cardiac rhythm management device for assessing status of chf patients
US6275727B1 (en) Implantable cardiac rhythm management device for assessing status of CHF patients
US5931858A (en) Implantable device for monitoring aerobic capacity of patients
US6273856B1 (en) Apparatus and methods for METS measurement by accelerometer and minute ventilation sensors
US7343199B2 (en) Measurement of respiratory sinus arrhythmia using respiratory and electrogram sensors in an implantable device
EP0310024B1 (en) Ventilation controlled rate responsive cardiac pacemaker
US4596251A (en) Minute ventilation dependent rate responsive pacer
EP1768566B1 (en) Apparatus for individual intraventricular delay optimization
US7269458B2 (en) Cardiopulmonary functional status assessment via heart rate response detection by implantable cardiac device
US7335161B2 (en) Techniques for blood pressure measurement by implantable device
EP0257116B1 (en) Apparatus and method for adjusting heart/pacer rate relative to ejection time to obtain a required cardiac output
US8718751B2 (en) Monitoring system for sleep disordered breathing
US6044294A (en) Methods and apparatus for measuring impedance in the body
US8152730B2 (en) Method for continuous baroreflex sensitivity measurement
EP1390101B1 (en) Implantable medical device employing single drive, dual sense impedance measuring
JPH07542A (en) Medical treatment device
JP2002501805A (en) Non-invasive respiratory circulation monitor with synchronous bioimpedance sensing
US20110160789A1 (en) Modulation of AV Delay to Control Ventricular Interval Variability
EP2349470B1 (en) Pacemaker with neurocardiogenic syncope detection and therapy utilizing minute ventilation input

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed