CA2347544A1 - Personal computer card for collection of real-time biological data - Google Patents

Personal computer card for collection of real-time biological data

Info

Publication number
CA2347544A1
CA2347544A1 CA002347544A CA2347544A CA2347544A1 CA 2347544 A1 CA2347544 A1 CA 2347544A1 CA 002347544 A CA002347544 A CA 002347544A CA 2347544 A CA2347544 A CA 2347544A CA 2347544 A1 CA2347544 A1 CA 2347544A1
Authority
CA
Canada
Prior art keywords
signal
personal computer
computer card
signal receiver
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002347544A
Other languages
French (fr)
Other versions
CA2347544C (en
Inventor
Patrick A. Lichter
Spencer J. Lien
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
QRS Diagnostic LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2347544A1 publication Critical patent/CA2347544A1/en
Application granted granted Critical
Publication of CA2347544C publication Critical patent/CA2347544C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6825Hand
    • A61B5/6826Finger
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • A61B5/02055Simultaneously evaluating both cardiovascular condition and temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/683Means for maintaining contact with the body
    • A61B5/6838Clamps or clips
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0443Modular apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0475Special features of memory means, e.g. removable memory cards
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02411Detecting, measuring or recording pulse rate or heart rate of foetuses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/03Detecting, measuring or recording fluid pressure within the body other than blood pressure, e.g. cerebral pressure; Measuring pressure in body tissues or organs
    • A61B5/033Uterine pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/097Devices for facilitating collection of breath or for directing breath into or through measuring devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14552Details of sensors specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/30Input circuits therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/398Electrooculography [EOG], e.g. detecting nystagmus; Electroretinography [ERG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/92Computer assisted medical diagnostics

Abstract

A real time biological data processing PC card (10) is lightweight, cost effective, and portable. The real time biological data processing PC card is capable of converting a host personal computer system (27) into a powerful diagnostic instrument. Each real time biological data processing PC card is adapted to input, and process biological data from one or more biological da ta sensors (21). It is interchangeable with other real time biological data processing PC cards. A practitioner having three different real time biological data processing PC cards, for example, each one corresponding to a different biological data collection device, effectively carries three full sized, powerful diagnostic instruments. The full resources of a host persona l computer can be utilized, and converted into a powerful diagnostic instrumen t, for each biological data collection device, by the insertion of one of the real time biological data processing PC cards.

Claims (171)

1. Canceled
2. A portable biological data collection device, comprising:
at least one biological data receiver for inputting biological data;
signal-conditioning circuitry operatively coupled to the at least one biological data receiver, the signal-conditioning circuitry comprising at least one analog-to-digital converter and being adapted to output at least one digital signal; and a digital interface operatively coupled to the signal-conditioning circuitry, the digital interface being adapted to interface the portable biological data collection device to a host microprocessor system, wherein the digital interface comprises a compact flash card interface, the compact flash card interface being adapted to communicate with the host microprocessor system and to relay the at least one digital signal to the host microprocessor system on a real-time basis as the signal conditioning circuitry outputs the at least one digital signal.
3. A portable biological data collection device, comprising:
at least one biological data receiver for inputting biological data;
signal-conditioning circuitry operatively coupled to the at least one biological data receiver, the signal-conditioning circuitry comprising at least one analog-to-digital converter and being adapted to output at least one digital signal; and a digital interface operatively coupled to the signal-conditioning circuitry, the digital interface being adapted to interface the portable biological data collection device to a host microprocessor system, wherein the digital interface comprises a game-set card interface, the 36a game-set card interface being adapted to communicate with a game-set host microprocessor system on a real-time basis as the signal conditioning circuitry outputs the at least one digital signal.
4. A personal computer card for collecting biological data, comprising:
a pulse-oximetry signal receiver, the pulse-oximetry signal receiver being adapted to receive a pulse-oximetry signal from a pulse-oximetry sensor and further being adapted to output the pulse-oximetry signal;
a blood-pressure signal receiver, the blood-pressure signal receiver being adapted to receive a blood-pressure signal from a blood-pressure sensor and further being adapted to output the blood-pressure signal;
a temperature signal receiver, the temperature signal receiver being adapted to receive a body-temperature signal from a body-temperature sensor and further being adapted to output the body-temperature signal;
signal-conditioning circuitry operatively coupled to at least one of the pulse-oximetry signal receiver, the blood-pressure signal receiver and the temperature signal receiver, the signal-conditioning circuitry comprising at least one analog-to-digital converter and being adapted to output at least one digital signal; and a personal computer card interface operatively coupled to the signal-conditioning circuitry, the personal computer card interface being adapted to provide an interface between the personal computer card and a host microprocessor system.
5. The personal computer card as set forth in Claim 4, wherein the personal computer card interface is adapted to relay the at least one digital signal to the host microprocessor system on a real-time basis as the at least one digital signal is output by the signal-conditioning circuitry.
6. The personal computer card as set forth in Claim 4, wherein:
the personal computer card comprises a personal computer card housing;
the pulse-oximetry signal receiver is coupled to the personal computer card housing;
the blood-pressure signal receiver is coupled to the personal computer card housing;
the temperature signal receiver is coupled to the personal computer card housing;
the signal-conditioning circuitry is operatively coupled to at least one of the pulse-oximetry signal receiver, the blood-pressure signal receiver and the temperature signal receiver; and the personal computer card interface is disposed within the personal computer card housing.
7. The personal computer card as set forth in Claim 4, wherein:
the pulse-oximetry sensor is coupled to the pulse-oximetry signal receiver, the pulse-oximetry sensor being adapted to be placed into close proximity with a patient, to output a pulse-oximetry signal and to relay the pulse-oximetry signal to the pulse-oximetry signal receiver;
the blood-pressure sensor is coupled to the blood-pressure signal receiver, the blood-pressure sensor being adapted to be placed into close proximity with a patient, to output a blood-pressure signal and to relay the blood-pressure signal to the blood-pressure data receiver;

the body-temperature sensor is coupled to the temperature signal receiver, the body-temperature sensor being adapted to be placed into close proximity with a patient, to output a body-temperature signal and to relay the body-temperature signal to the temperature signal receiver.
8. A personal computer card for collecting biological data, comprising:
a temperature signal receiver, the temperature signal receiver being adapted to receive a body-temperature signal from a body-temperature sensor and further being adapted to output the body-temperature signal;
signal-conditioning circuitry operatively coupled to the temperature signal receiver, the signal-conditioning circuitry being adapted to receive the body-temperature signal from the temperature signal receiver and to convert the body-temperature signal into digitized body-temperature data; and a personal computer card interface operatively coupled to the signal-conditioning circuitry, the personal computer card interface being adapted to provide an interface between the personal computer card and a host microprocessor system.
9. The personal computer card as set forth in Claim 8, wherein the personal computer card interface is adapted to relay the digitized body-temperature data to the host computer on a real-time basis as the body-temperature signal is converted by the signal conditioning circuitry.
10. The personal computer card as set forth in Claim 8, wherein:

40.

the personal computer card comprises a personal computer card housing;
the temperature signal receiver is coupled to the personal computer card housing;
the signal-conditioning circuitry is operatively coupled to the temperature signal receiver; and the personal computer card interface is disposed within the personal computer card housing.
11. The personal computer card as set forth in Claim 8, wherein the body-temperature sensor is coupled to the temperature signal receiver, the body-temperature sensor being adapted to be placed into close proximity with a patient, to output a body-temperature signal and to relay the body-temperature signal to the temperature signal receiver.
12. A personal computer card for collecting biological data, comprising:
a blood-pressure signal receiver, the blood-pressure signal receiver being adapted to receive a blood-pressure signal from a blood-pressure sensor and further being adapted to output the blood-pressure signal;
signal-conditioning circuitry operatively coupled to the blood-pressure signal receiver, the signal-conditioning circuitry being adapted to receive the blood-pressure signal from the blood-pressure signal receiver and to convert the blood-pressure signal into digitized blood-pressure data; and a personal computer card interface operatively coupled to the signal-conditioning circuitry, the personal computer card interface being adapted to provide an interface between the personal computer card and a host microprocessor system.

41.
13. The personal computer card as set forth in Claim 12, wherein the personal computer card interface is adapted to relay the digitized blood-pressure data to the host computer on a real-time basis as the blood-pressure signal is converted by the signal conditioning circuitry.
14. The personal computer card as set forth in Claim 12, wherein:
the personal computer card comprises a personal computer card housing;
the blood-pressure signal receiver is coupled to the personal computer card housing;
the signal-conditioning circuitry is operatively coupled to the blood-pressure signal receiver; and the personal computer card interface is disposed within the personal computer card housing.
15. The personal computer card as set forth in Claim 12, wherein the blood-pressure data sensor is coupled to the blood-pressure signal receiver, the blood-pressure data sensor being adapted to be placed into close proximity with a patient, to output a blood-pressure signal and to relay the blood-pressure signal to the blood-pressure receiver.
16. A personal computer card for collecting biological data, comprising:
a flow signal receiver, the flow signal receiver being adapted to receive a flow signal from a flow sensor and further being adapted to output the flow signal;

42.

a line pressure signal receiver, the line pressure signal receiver being adapted to receive a line pressure signal from a line pressure sensor and further being adapted to output the line pressure signal;
signal-conditioning circuitry operatively coupled to at least one of the flow signal receiver and the line pressure signal receiver, the signal-conditioning circuitry comprising at least one analog-to-digital converter and being adapted to output at least one digital signal; and a personal computer card interface operatively coupled to the signal-conditioning circuitry, the personal computer card interface being adapted to provide an interface between the personal computer card and a host microprocessor system.
17. The personal computer card as set forth in Claim 16, wherein the personal computer card interface is adapted to relay the at least one digital signal to the host microprocessor system on a real-time basis as the at least one digital signal is output by the signal-conditioning circuitry.
18. The personal computer card as set forth in Claim 16, wherein:
the personal computer card comprises a personal computer card housing;
the flow signal receiver is coupled to the personal computer card housing;
the line pressure signal receiver is coupled to the personal computer card housing;
the signal-conditioning circuitry is operatively coupled to at least one of the flow signal receiver and the line pressure signal receiver; and the personal computer card interface is disposed within the personal computer card housing.
19. The personal computer card as set forth in Claim 16, wherein:
the flow sensor is coupled to the flow signal receiver, the flow sensor being adapted to contact a line of a ventilator, to output a flow signal and to relay the flow signal to the flow signal receiver; and the line pressure sensor is coupled to the line pressure signal receiver, the line pressure sensor being adapted to contact a line of a ventilator, to output a line pressure signal and to relay the line pressure signal to the line pressure data receiver.
20. The personal computer card as set forth in Claim 19, wherein:
the flow signal receiver comprises at least one pressure sensor; and the line pressure signal receiver comprises a pressure sensor.
21. A personal computer card for collecting biological data, comprising:
a flow signal receiver, the flow signal receiver being adapted to receive a flow signal from a flow sensor and further being adapted to output the flow signal;
signal-conditioning circuitry operatively coupled to the flow signal receiver, the signal-conditioning circuitry being adapted to receive the flow signal from the flow signal receiver and to convert the flow signal into digitized flow data; and a personal computer card interface operatively coupled to the signal-conditioning circuitry, the personal computer card interface being adapted to provide an interface between the personal computer card and a host microprocessor system.
22. The personal computer card as set forth in Claim 21, wherein the personal computer card interface is adapted to relay the digitized flow data to the host computer on a real-time basis as the flow signal is converted by the signal conditioning circuitry.
23. The personal computer card as set forth in Claim 21, wherein:
the personal computer card comprises a personal computer card housing;
the flow signal receiver is coupled to the personal computer card housing;
the signal-conditioning circuitry is operatively coupled to the flow signal receiver; and the personal computer card interface is disposed within the personal computer card housing.
24. The personal computer card as set forth in Claim 21, wherein the flow sensor is coupled to the flow signal receiver, the flow sensor being adapted to contact a line of a ventilator, to output a flow signal and to relay the flow signal to the flow signal receiver.
25. The personal computer card as set forth in Claim 24, wherein the flow signal receiver comprises at least one pressure sensor.
26. A personal computer card for collecting biological data, comprising:
a line pressure signal receiver, the line pressure signal receiver being adapted to receive a line pressure signal from a line pressure sensor and further being adapted to output the line pressure signal;
signal-conditioning circuitry operatively coupled to the line pressure signal receiver, the signal-conditioning circuitry being adapted to receive the line pressure signal from the line pressure signal receiver and to convert the line pressure signal into digitized line pressure data; and a personal computer card interface operatively coupled to the signal-conditioning circuitry, the personal computer card interface being adapted to provide an interface between the personal computer card and a host microprocessor system.
27. The personal computer card as set forth in Claim 26, wherein the personal computer card interface is adapted to relay the digitized Line pressure data to the host computer on a real-time basis as the line pressure signal is converted by the signal conditioning circuitry.
28. The personal computer card as set forth in Claim 26, wherein:
the personal computer card comprises a personal computer card housing;
the line pressure signal receiver is coupled to the personal computer card housing;
the signal-conditioning circuitry is operatively coupled to the line pressure signal receiver; and the personal computer card interface is disposed within the personal computer card housing.
29. The personal computer card as set forth in Claim 26, wherein the line pressure sensor is coupled to the line pressure signal receiver, the line pressure sensor being adapted to contact a line of a ventilator, to output a line pressure signal and, to relay the line pressure signal to the line pressure receiver.
30. The personal computer card as set forth in Claim 29, wherein the line pressure signal receiver comprises a pressure sensor.
31. A personal computer card for collecting biological data, comprising:
a pulse-oximetry signal receiver, the pulse-oximetry signal receiver being adapted to receive a pulse-oximetry signal from a pulse-oximetry sensor and further being adapted to output the pulse-oximetry signal;
a respiration-rate signal receiver, the respiration-rate signal receiver being adapted to receive a respiration-rate signal from a respiration-rate sensor and further being adapted to output the respiration-rate signal;
a nasal-air pressure/thermistor signal receiver, the nasal-air pressure/thermistor signal receiver being adapted to receive a nasal-air pressure/temperature signal from a nasal-air/thermistor pressure sensor and further being adapted to output the nasal-air pressure/thermistor signal;
signal-conditioning circuitry operatively coupled to at least one of the pulse-oximetry signal receiver, the respiration-rate signal receiver and the nasal-air pressure/thermistor signal receiver, the signal-conditioning circuitry comprising at least one analog-to-digital converter and being adapted to output at least one digital signal; and a personal computer card interface operatively coupled to the signal-conditioning circuitry, the personal computer card interface being adapted to provide an interface between the personal computer card and a host microprocessor system.
32. The personal computer card as set forth in Claim 31, wherein the personal computer card interface is adapted to relay the at least one digital signal to the host microprocessor system on a real-time basis as the at least one digital signal is output by the signal-conditioning circuitry.
33. The personal computer card as set forth in Claim 31, wherein:
the personal computer card comprises a personal computer card housing;
the pulse-oximetry signal receiver is coupled to the personal computer card housing;
the respiration-rate signal receiver is coupled to the personal computer card housing;
the nasal-air pressure/thermistor signal receiver is coupled to the personal computer card housing;
the signal-conditioning circuitry is operatively coupled to at least one of the pulse-oximetry signal receiver, the respiration-rate signal receiver and the nasal-air pressure/thermistor signal receiver; and the personal computer card interface is disposed within the personal computer card housing.
34. The personal computer card as set forth in Claim 31, wherein:

48.

the pulse-oximetry sensor is coupled to the pulse-oximetry signal receiver, the pulse-oximetry sensor being adapted to bel placed into close proximity with a patient, to output a pulse-oximetry signal and to relay the pulse-oximetry signal to the pulse-oximetry signal receiver;
the respiration-rate sensor is coupled to the respiration-rate signal receiver, the respiration-rate sensor being adapted to be placed into close proximity with a patient, to output a respiration-rate signal and to relay the respiration-rate signal to the respiration-rate signal receiver;
the nasal-air pressure/thermistor sensor is coupled to the nasal-air pressure/thermistor signal receiver, the nasal-air pressure/thermistor sensor being adapted to be placed into close proximity with a patient, to output a nasal-air pressure/thermistor signal and to relay the nasal-air pressure/thermistor signal to the nasal-air pressure/thermistor signal receiver.
35. The personal computer card as set forth in Claim 34, wherein:
the respiration-rate sensor comprises a chest band and a microphone; and the nasal-air pressure/thermistor sensor comprises a nasal cannula.
36. The personal computer card as set forth in Claim 35, wherein:
the respiration-rate signal receiver comprises a strain gauge; and the nasal-air pressure/thermistor signal receiver comprises a pressure/thermistor sensor.
37. A personal computer card for collecting biological data, comprising:
a respiration-rate signal receiver, the respiration-rate signal receiver being adapted to receive a respiration-rate signal from a respiration-rate sensor and further being adapted to output the respiration-rate signal;
signal-conditioning circuitry operatively coupled to the respiration-rate signal receiver, the signal-conditioning circuitry being adapted to receive the respiration-rate signal from the respiration-rate signal receiver and to convert the respiration-rate signal into digitized respiration-rate data; and a personal computer card interface operatively coupled to the signal-conditioning circuitry, the personal computer card interface being adapted to provide an interface between the personal computer card and a host microprocessor system.
38. The personal computer card as set forth in Claim 37, wherein the personal computer card interface is adapted to relay the digitized respiration-rate data to the host computer on a real-time basis as the respiration-rate signal is converted by the signal conditioning circuitry.
39. The personal computer card as set forth in Claim 37, wherein:
the personal computer card comprises a personal computer card housing;
the respiration-rate signal receiver is coupled to the personal computer card housing;
the signal-conditioning circuitry is operatively coupled to the respiration-rate receiver; and the personal computer card interface is disposed within the personal computer card housing.
40. The personal computer card as set forth in Claim 37, wherein the respiration-rate sensor is coupled to the respiration-rate signal receiver, the respiration-rate sensor being adapted to be placed into close proximity with a patient, to output a respiration-rate signal and to relay the respiration-rate signal to the respiration-rate receiver.
41. The personal computer card as set forth in Claim 40, wherein the respiration-rate signal receiver comprises a strain gauge.
42. A personal computer card for collecting biological data, comprising:
a nasal-air pressure/thermistor signal receiver, the nasal-air pressure/thermistor signal receiver being adapted to receive a nasal-air pressure/thermistor signal from a nasal-air pressure/thermistor sensor and further being adapted to output the nasal-air pressure/thermistor signal;
signal-conditioning circuitry operatively coupled to the nasal-air pressure/thermistor signal receiver, the signal-conditioning circuitry being adapted to receive the nasal-air pressure/thermistor signal from the nasal-air pressure/thermistor signal receiver and to convert the nasal-air pressure/thermistor signal into digitized nasal-air pressure/thermistor data; and a personal computer card interface operatively coupled to the signal-conditioning circuitry, the personal computer card interface being adapted to provide an interface between the personal computer card and a host microprocessor system.
43. The personal computer card as set forth in Claim 42, wherein the personal computer card interface is adapted to relay the digitized nasal-air pressure/thermistor data to the host computer on a real-time basis as the nasal-air pressure/thermistor signal is converted by the signal conditioning circuitry.
44. The personal computer card as set forth in Claim 42, wherein:
the personal computer card comprises a personal computer card housing;
the nasal-air pressure/thermistor signal receiver is coupled to the personal computer card housing;
the signal-conditioning circuitry is operatively coupled to the nasal-air pressure/thermistor signal receiver; and the personal computer card interface is disposed within the personal computer card housing.
45. The personal computer card as set forth in Claim 42, wherein the nasal-air preassure/thermistor sensor is coupled to the nasal-air pressure/thermistor signal receiver, the nasal-air pressure/thermistor sensor being adapted to be placed into close proximity with a patient, to output a nasal-air pressure/thermistor signal and to relay the nasal-air pressure/thermistor signal to the nasal-air pressure/thermistor signal receiver.

52.
46. The personal computer card as set forth in Claim 45, wherein the nasal-air pressure thermistor signal receiver comprises a pressure/temperature sensor.
47. A personal computer card for collecting biological data, comprising:
an electrocardiography (ECG) signal receiver, the ECG signal receiver being adapted to receive ECG
signals from a plurality of ECG sensors and further being adapted to output the ECG signals;
signal-conditioning circuitry operatively coupled to the ECG signal receiver, the signal-conditioning circuitry being adapted to receive the ECG
signals from the ECG signal receiver and to output digitized ECG data; and a personal computer card interface operatively coupled to the signal-conditioning circuitry, the personal computer card interface being adapted to provide an interface between the personal computer card and a host microprocessor system and to relay the digitized ECG data to the host microprocessor system on a real-time basis as the digitized ECG data is output by the signal-conditioning circuitry.
48. Canceled.
49. The personal computer card as set forth in Claim 47, wherein:
the personal computer card comprises a personal computer card housing;
the ECG signal receiver is coupled to the personal computer card housing;

the signal-conditioning circuitry is operatively coupled to the ECG signal receiver; and the personal computer card interface is disposed within the personal computer card housing.
50. The personal computer card as set forth in Claim 47, wherein:
the plurality of ECG sensors are coupled to the ECG
signal receiver, the plurality of ECG sensors being adapted to be placed into close proximity with a patient, to output ECG signals and to relay the ECG
signals to the ECG signal receiver.
51. A personal computer card for collecting biological data, comprising:
a hydrogen signal receiver, the hydrogen signal receiver being adapted to receive a hydrogen signal from a hydrogen sensor and further being adapted to output the hydrogen signal;

signal-conditioning circuitry operatively coupled to the hydrogen signal receiver, the signal-conditioning circuitry being adapted to receive the hydrogen signal from the hydrogen signal receiver and to output digitized hydrogen data; and a personal computer card interface operatively coupled to the signal-conditioning circuitry, the personal computer card interface being adapted to provide an interface between the personal computer card and a host microprocessor system.
52. The personal computer card as set forth in Claim 51, wherein the personal computer card interface is adapted to relay the digitized hydrogen data to the host microprocessor system on a real-time basis as the digitized hydrogen data is output by the signal-conditioning circuitry.
53. The personal computer card as set forth in Claim 51, wherein:
the personal computer card comprises a personal computer card housing;
the hydrogen signal receiver is coupled to the personal computer card housing;
the signal-conditioning circuitry is operatively coupled to the hydrogen signal receiver; and the personal computer card interface is disposed within the personal computer card housing.
54. The personal computer card as set forth in Claim 51, wherein the hydrogen sensor is coupled to the hydrogen signal receiver, the hydrogen sensor being adapted to be placed into close proximity with a patient, to output a hydrogen signal and to relay the hydrogen signal to the hydrogen signal receiver.
55. A personal computer card for collecting biological data, comprising:
an alcohol signal receiver, the alcohol signal receiver being adapted to receive an alcohol signal from an alcohol sensor and further being adapted to output the alcohol signal;
signal-conditioning circuitry operatively coupled to the alcohol signal receiver, the signal-conditioning circuitry being adapted to receive the alcohol signal from the alcohol signal receiver and to output digitized alcohol data; and a personal computer card interface operatively coupled to the signal-conditioning circuitry, the personal computer card interface being adapted to provide an interface between the personal computer card and a host microprocessor system.
56. The personal computer card as set forth in Claim 55, wherein the personal computer card interface is adapted to relay the digitized alcohol data to the host microprocessor system on a real-time basis as the digitized alcohol data is output by the signal-conditioning circuitry.
57. The personal computer card as set forth in Claim 55, wherein:
the personal computer card comprises a personal computer card housing;
the alcohol signal receiver is coupled to the personal computer card housing;
the signal-conditioning circuitry is operatively coupled to the alcohol signal receiver; and the personal computer card interface is disposed within the personal computer card housing.
58. The personal computer card as set forth in Claim 55, wherein the alcohol sensor is coupled to the alcohol signal receiver, the alcohol sensor being adapted to be placed into close proximity with a patient, to output an alcohol signal and to relay the alcohol signal to the alcohol signal receiver.
59. A personal computer card for collecting biological data, comprising:
a pulse-oximetry signal receiver, the pulse-oximetry signal receiver being adapted to receive a pulse-oximetry signal from a pulse-oximetry sensor and further being adapted to output the pulse-oximetry signal;

a respiration-rate signal receiver, the respiration-rate signal receiver being adapted to receive a respiration-rate signal from a respiration-rate sensor and further being adapted to output the respiration-rate signal;
a nasal-air pressure signal receiver, the nasal-air pressure signal receiver being adapted to receive a nasal-air pressure signal from a nasal-air pressure sensor and further being adapted to output the nasal-air pressure signal;
a sound signal receiver, the sound signal receiver being adapted to receive a sound signal from a sound sensor and further being adapted to output the sound signal;
a motion signal receiver, the motion signal receiver being adapted to receive a motion signal from a motion sensor and further being adapted to output the motion signal;
a position signal receiver, the position signal receiver being adapted to receive a position signal from a position sensor and further being adapted to output the position signal;
an electrocardiography (ECG) signal receiver, the ECG signal receiver being adapted to receive ECG signals from a plurality of ECG sensors and further being adapted to output the ECG signals;
signal-conditioning circuitry operatively coupled to at least one of the pulse-oximetry signal receiver, the respiration-rate signal receiver, the nasal-air pressure signal receiver, the sound signal receiver, the motion signal receiver, the position signal receiver and the ECG signal receiver, the signal-conditioning circuitry comprising at least one analog-to-digital converter and being adapted to output at least one digital signal; and a personal computer card interface operatively coupled to the signal-conditioning circuitry, the personal computer card interface being adapted to provide an interface between the personal computer card and a host microprocessor system.
60. The personal computer card as set forth in Claim 59, wherein the personal computer card interface is adapted to relay the at least one digital signal to the host microprocessor system on a real-time basis as the at least one digital signal is output by the signal-conditioning circuitry.
61. The personal computer card as set forth in Claim 59, wherein:
the personal computer card comprises a personal computer card housing;
the pulse-oximetry signal receiver is coupled to the personal computer card housing;
the respiration-rate signal receiver is coupled to the personal computer card housing;
the nasal-air pressure/thermistor signal receiver is coupled to the personal computer card housing;
the sound signal receiver is coupled to the personal computer card housing;
the motion signal receiver is coupled to the personal computer card housing;
the position signal receiver is coupled to the personal computer card housing;
the ECG signal receiver is coupled to the personal computer card housing;
the signal-conditioning circuitry is operatively coupled to at least one of the pulse-oximetry signal receiver, the respiration-rate signal receiver, the nasal-air pressure/thermistor signal receiver, the sound signal receiver, the motion signal receiver, the position signal receiver and the ECG signal receiver;
and the personal computer card interface is disposed within the personal computer card housing.
62. The personal computer card as set forth in Claim 59, wherein:
the pulse-oximetry sensor is coupled to the pulse-oximetry signal receiver, the pulse-oximetry sensor being adapted to be placed into close proximity with a patient, to output a pulse-oximetry signal and to relay the pulse-oximetry signal to the pulse-oximetry signal receiver;
the respiration-rate sensor is coupled to the respiration-rate signal receiver, the respiration-rate sensor being adapted to be placed into close proximity with a patient, to output a respiration-rate signal and to relay the respiration-rate signal to the respiration-rate signal receiver;
the nasal-air pressure/thermistor sensor is coupled to the nasal-air pressure/thermistor signal receiver, the nasal-air pressure/thermistor sensor being adapted to be placed into close proximity with a patient, to output a nasal-air pressure/thermistor signal and to relay the nasal-air pressure/thermistor signal to the nasal-air pressure/thermistor signal receiver;
the sound sensor is coupled to the sound signal receiver, the sound sensor being adapted to be placed into close proximity with a patient, to output a sound signal and to relay the sound signal to the sound signal receiver;
the motion sensor is coupled to the motion signal receiver, the motion sensor being adapted to be placed into close proximity with a patient, to output a motion signal and to relay the motion signal to the motion signal receiver;
the position sensor is coupled to the position signal receiver, the position sensor being adapted to be placed into close proximity with a patient, to output a position signal and to relay the position signal to the position signal receiver; and the plurality of ECG sensors are coupled to the ECG
signal receiver, the plurality of ECG sensors being adapted to be placed into close proximity with a patient, to output ECG signals and to relay the ECG
signals to the ECG signal receiver.
63. A personal computer card for collecting biological data, comprising:
a pulse-oximetry signal receiver, the pulse-oximetry signal receiver being adapted to receive a pulse-oximetry signal from a pulse-oximetry sensor and further being adapted to output the pulse-oximetry signal;
a respiration-rate signal receiver, the respiration-rate signal receiver being adapted to receive a respiration-rate signal from a respiration-rate sensor and further being adapted to output the respiration-rate signal;
a nasal-air pressure/thermistor signal receiver, the nasal-air pressure/thermistor signal receiver being adapted to receive a nasal-air pressure/thermistor signal from a nasal-air pressure/thermistor sensor and further being adapted to output the nasal-air pressure/thermistor signal;
a sound signal receiver, the sound signal receiver being adapted to receive a sound signal from a sound sensor and further being adapted to output the sound signal;

a motion signal receiver, the motion signal receiver being adapted to receive a motion signal from a motion sensor and further being adapted to output the motion signal;

a position signal receiver, the position signal receiver being adapted to receive a position signal from a position sensor and further being adapted to output the position signal;

an electrocardiography (ECG) signal receiver, the ECG signal receiver being adapted to receive ECG signals from a plurality of ECG sensors and further being adapted to output the ECG signals;
an electroencepholograhy (EEG) signal receiver, the EEG signal receiver being adapted to receive EEG signals from a plurality of EEG sensors and further being adapted to output the EEG signals;
an electrooculogram (EOG) signal receiver, the EOG
signal receiver being adapted to receive EOG signals from a plurality of EOG sensors and further being adapted to output the EOG signals;
an electromyography (EMG) signal receiver, the EMG
signal receiver being adapted to receive EMG signals from a plurality of EMG sensors and further being adapted to output the EMG signals;
signal-conditioning circuitry operatively coupled to at least one of the pulse-oximetry signal receiver, the respiration-rate signal receiver, the nasal-air pressure signal receiver, the sound signal receiver, the motion signal receiver, the position signal receiver, the ECG signal receiver, the EEG signal receiver, the EOG signal receiver and the EMG signal receiver, the signal-conditioning circuitry comprising at least one analog-to-digital converter and being adapted to output at least one digital signal; and a personal computer card interface operatively coupled to the signal-conditioning circuitry, the personal computer card interface being adapted to provide an interface between the personal computer card and a host microprocessor system.
64. The personal computer card as set forth in Claim 63, wherein the personal computer card interface is adapted to relay the at least one digital signal to the host microprocessor system on a real-time basis as the at least one digital signal is output by the signal-conditioning circuitry.
65. The personal computer card as set forth in Claim 63, wherein:
the personal computer card comprises a personal computer card housing;
the pulse-oximetry signal receiver is coupled to the personal computer card housing;
the respiration-rate signal receiver is coupled to the personal computer card housing;
the nasal-air pressure/thermistor signal receiver is coupled to the personal computer card housing;
the sound signal receiver is coupled to the personal computer card housing;
the motion signal receiver is coupled to the personal computer card housing;
the position signal receiver is coupled to the personal computer card housing;
the ECG signal receiver is coupled to the personal computer card housing;
the EEG signal receiver is coupled to the personal computer card housing;
the EOG signal receiver is coupled to the personal computer card housing;

the EMG signal receiver is coupled to the personal computer card housing;
the signal-conditioning circuitry is operatively coupled to at least one of the pulse-oximetry signal receiver, the respiration-rate signal receiver, the nasal-air pressure signal receiver, the sound signal receiver, the motion signal receiver, the position signal receiver, the ECG signal receiver, the EEG signal receiver, the EOG signal receiver and the EMG signal receiver; and the personal computer card interface is disposed within the personal computer card housing.
66. The personal computer card as set forth in Claim 63, wherein:
the pulse-oximetry sensor is coupled to the pulse-oximetry signal receiver, the pulse-oximetry sensor being adapted to be placed into close proximity with a patient, to output a pulse-oximetry signal and to relay the pulse-oximetry signal to the pulse-oximetry signal receiver;
the respiration-rate sensor is coupled to the respiration-rate signal receiver, the respiration-rate sensor being adapted to be placed into close proximity with a patient, to output a respiration-rate signal and to relay the respiration-rate signal to the respiration-rate signal receiver;
the nasal-air pressure/thermistor sensor is coupled to the nasal-air pressure/thermistor signal receiver, the nasal-air pressure/thermistor sensor being adapted to be placed into close proximity with a patient, to output a nasal-air pressure/thermistor signal and to relay the nasal-air pressure/thermistor signal to the nasal-air pressure/thermistor signal receiver;

the sound sensor is coupled to the sound signal receiver, the sound sensor being adapted to be placed into close proximity with a patient, to output a sound signal and to relay the sound signal to the sound signal receiver;
the motion sensor is coupled to the motion signal receiver, the motion sensor being adapted to be placed into close proximity with a patient, to output a motion signal and to relay the motion signal to the motion signal receiver;
the position sensor is coupled to the position signal receiver, the position sensor being adapted to be placed into close proximity with a patient, to output a position signal and to relay the position signal to the position signal receiver;
the plurality of ECG sensors are coupled to the ECG
signal receiver, the plurality of ECG sensors being adapted to be placed into close proximity with a patient, to output ECG signals and to relay the ECG
signals to the ECG signal receiver;
the plurality of EEG sensors are coupled to the EEG
signal receiver, the plurality of EEG sensors being adapted to be placed into close proximity with a patient, to output EEG signals and to relay the EEG
signals to the EEG signal receiver;
the plurality of EOG sensors are coupled to the EOG
signal receiver, the plurality of EOG sensors being adapted to be placed into close proximity with a patient, to output EOG signals and to relay the EOG
signals to the EOG signal receiver; and the plurality of EMG sensors are coupled to the EMG
signal receiver, the plurality of EMG sensors being adapted to be placed into close proximity with a patient, to output EMG signals and to relay the EMG
signals to the EMG signal receiver.
67. A personal computer card for collecting biological data, comprising:
a sound signal receiver, the sound signal receiver being adapted to receive a sound signal from a sound sensor and further being adapted to output the sound signal;
signal-conditioning circuitry operatively coupled to the sound signal receiver, the signal-conditioning circuitry being adapted to receive the sound signal from the sound signal receiver and to convert the sound signal into digitized sound signal data; and a personal computer card interface operatively coupled to the signal-conditioning circuitry, the personal computer card interface being adapted to provide an interface between the personal computer card and a host microprocessor system.
68. The personal computer card as set forth in Claim 67, wherein the personal computer card interface is adapted to relay the digitized sound signal data to the host computer on a real-time basis as the sound signal is converted by the signal conditioning circuitry.
69. The personal computer card as set forth in Claim 67, wherein:
the personal computer card comprises a personal computer card housing;
the sound signal receiver is coupled to the personal computer card housing;
the signal-conditioning circuitry is operatively coupled to the sound signal receiver; and the personal computer card interface is disposed within the personal computer card housing.
70. The personal computer card as set forth in Claim 67, wherein the sound sensor is coupled to the sound signal receiver, the sound sensor being adapted to be placed into close proximity with a patient, to output a sound signal and to relay the sound signal to the sound signal receiver.
71. A personal computer card for collecting biological data, comprising:
a motion signal receiver, the motion signal receiver being adapted to receive a motion signal from a motion sensor and further being adapted to output the motion signal;
signal-conditioning circuitry operatively coupled to the motion signal receiver, the signal-conditioning circuitry being adapted to receive the motion signal from the motion signal receiver and to convert the motion signal into digitized motion signal data; and a personal computer card interface operatively coupled to the signal-conditioning circuitry, the personal computer card interface being adapted to provide an interface between the personal computer card and a host microprocessor system.
72. The personal computer card as set forth in Claim 71, wherein the personal computer card interface is adapted to relay the digitized motion signal data to the host computer on a real-time basis as the motion signal is converted by the signal conditioning circuitry.
73. The personal computer card as set forth in Claim 71, wherein:

the personal computer card comprises a personal computer card housing;
the motion signal receiver is coupled to the personal computer card housing;
the signal-conditioning circuitry is operatively coupled to the motion signal receiver; and the personal computer card interface is disposed within the personal computer card housing.
74. The personal computer card as set forth in Claim 71, wherein the motion sensor is coupled to the motion signal receiver, the motion sensor being adapted to be placed into close proximity with a patient, to output a motion signal and to relay the motion signal to the motion signal receiver.
75. A personal computer card for collecting biological data, comprising:
a position signal receiver, the position signal receiver being adapted to receive a position signal from a position sensor and further being adapted to output the position signal;
signal-conditioning circuitry operatively coupled to the position signal receiver, the signal-conditioning circuitry being adapted to receive the position signal from the position signal receiver and to convert the position signal into digitized position signal data; and a personal computer card interface operatively coupled to the signal-conditioning circuitry, the personal computer card interface being adapted to provide an interface between the personal computer card and a host microprocessor system.
76. The personal computer card as set forth in Claim 75, wherein the personal computer card interface is adapted to relay the digitized position signal data to the host computer on a real-time basis as the position signal is converted by the signal conditioning circuitry.
77. The personal computer card as set forth in Claim 75, wherein:
the personal computer card comprises a personal computer card housing;
the position signal receiver is coupled to the personal computer card housing;
the signal-conditioning circuitry is operatively coupled to the position signal receiver; and the personal computer card interface is disposed within the personal computer card housing.
78. The personal computer card as set forth in Claim 75, wherein the position sensor is coupled to the position signal receiver, the position sensor being adapted to be placed into close proximity with a patient, to output a position signal and to relay the position signal to the position signal receiver.
79. A personal computer card for collecting biological data, comprising:
an electrooculogram (EOG) signal receiver, the EOG
signal receiver being adapted to receive EOG signals from a plurality of EOG sensors and further being adapted to output the EOG signals;
signal-conditioning circuitry operatively coupled to the EOG signal receiver, the signal-conditioning circuitry being adapted to receive the EOG signals from the EOG signal receiver and to output digitized EOG
data; and a personal computer card interface operatively coupled to the signal-conditioning circuitry, the personal computer card interface being adapted to provide an interface between the personal computer card and a host microprocessor system.
80. The personal computer card as set forth in Claim 79, wherein the personal computer card interface is adapted to relay the digitized EOG data to the host microprocessor system on a real-time basis as the digitized EOG data is output by the signal-conditioning circuitry.
81. The personal computer card as set forth in Claim 79, wherein:
the personal computer card comprises a personal computer card housing;
the EOG signal receiver is coupled to the personal computer card housing;
the signal-conditioning circuitry is operatively coupled to the EOG signal receiver; and the personal computer card interface is disposed within the personal computer card housing.
82. The personal computer card as set forth in Claim 79, wherein:
the plurality of EOG sensors are coupled to the EOG
signal receiver, the plurality of EOG sensors being adapted to be placed into close proximity with a patient, to output EOG signals and to relay the EOG
signals to the EOG signal receiver.
83. A personal computer card for collecting biological data, comprising:

an electromyography (EMG) signal receiver, the EMG
signal receiver being adapted to receive EMG signals from a plurality of EMG sensors and further being adapted to output the EMG signals;
signal-conditioning circuitry operatively coupled to the EMG signal receiver, the signal-conditioning circuitry being adapted to receive the EMG signals from the EMG signal receiver and to output digitized EMG
data; and a personal computer card interface operatively coupled to the signal-conditioning circuitry, the personal computer card interface being adapted to provide an interface between the personal computer card and a host microprocessor system.
84. The personal computer card as set forth in Claim 83, wherein the personal computer card interface is adapted to relay the digitized EMG data to the host microprocessor system on a real-time basis as the digitized EMG data is output by the signal-conditioning circuitry.
85. The personal computer card as set forth in Claim 83, wherein:
the personal computer card comprises a personal computer card housing;
the EMG signal receiver is coupled to the personal computer card housing;
the signal-conditioning circuitry is operatively coupled to the EMG signal receiver; and the personal computer card interface is disposed within the personal computer card housing.
86. The personal computer card as set forth in Claim 83, wherein:

the plurality of EMG sensors are coupled to the EMG
signal receiver, the plurality of EMG sensors being adapted to be placed into close proximity with a patient, to output EMG signals and to relay the EMG
signals to the EMG signal receiver.
87. A personal computer card for collecting biological data, comprising:
a fetal heart-rate signal receiver, the fetal heart-rate signal receiver being adapted to receive a fetal heart-rate signal from a fetal heart-rate sensor and further being adapted to output the fetal heart-rate signal;
a contraction signal receiver, the contraction signal receiver being adapted to receive a contraction signal from a contraction sensor and further being adapted to output the contraction signal;
signal-conditioning circuitry operatively coupled to at least one of the fetal heart-rate signal receiver and the contraction signal receiver, the signal-conditioning circuitry comprising at least one analog-to-digital converter and being adapted to output at least one digital signal; and a personal computer card interface operatively coupled to the signal-conditioning circuitry, the personal computer card interface being adapted to provide an interface between the personal computer card and a host microprocessor system.
88. The personal computer card as set forth in Claim 87, wherein the personal computer card interface is adapted to relay the at least one digital signal to the host microprocessor system on a real-time basis as the at least one digital signal is output by the signal-conditioning circuitry.
89. The personal computer card as set forth in Claim 87, wherein:
the personal computer card comprises a personal computer card housing;
the fetal heart-rate signal receiver is coupled to the personal computer card housing;
the contraction signal receiver is coupled to the personal computer card housing;
the signal-conditioning circuitry is operatively coupled to at least one of the fetal heart-rate receiver and the contraction signal receiver; and the personal computer card interface is disposed within the personal computer card housing.
90. The personal computer card as set forth in Claim 87, wherein:
the fetal heart-rate sensor is coupled to the fetal heart-rate signal receiver, the fetal heart-rate sensor being adapted to be placed into close proximity with a patient, to output a fetal heart-rate signal and to relay the fetal heart-rate signal to the fetal heart-rate signal receiver; and the contraction sensor is coupled to the contraction signal receiver, the contraction sensor being adapted to be placed into close proximity with a patient, to output a contraction signal and to relay the contraction signal to the contraction signal receiver.
91. A personal computer card for collecting biological data, comprising: a fetal heart-rate signal receiver, the fetal heart-rate signal receiver being adapted to receive a fetal heart-rate signal from a fetal heart-rate sensor and further being adapted to output the fetal heart-rate signal;

signal-conditioning circuitry operatively coupled to the fetal heart-rate signal receiver, the signal-conditioning circuitry being adapted to receive the fetal heart-rate signal from the fetal heart-rate signal receiver and to convert the fetal heart-rate signal into digitized fetal heart-rate data; and a personal computer card interface operatively coupled to the signal-conditioning circuitry, the personal computer card interface being adapted to provide an interface between the personal computer card and a host microprocessor system.
92. The personal computer card as set forth in Claim 91 wherein the personal computer card interface is adapted to relay the digitized fetal heart-rate data to the host computer on a real-time basis as the fetal heart-rate signal is converted by the signal conditioning circuitry.
93. The personal computer card as set forth in Claim 91, wherein:
the personal computer card comprises a personal computer card housing;
the fetal heart-rate signal receiver is coupled to the personal computer card housing;
the signal-conditioning circuitry is operatively coupled to the fetal heart-rate signal receiver; and the personal computer card interface is disposed within the personal computer card housing.
94. The personal computer card as set forth in Claim 91, wherein the fetal heart-rate sensor is coupled to the fetal heart-rate signal receiver, the fetal heart-rate sensor being adapted to be placed into close proximity with a patient, to output a fetal heart-rate signal and to relay the fetal heart-rate signal to the fetal heart-rate receiver.
95. A personal computer card for collecting biological data, comprising:
a contraction signal receiver, the contraction signal receiver being adapted to receive a contraction signal from a contraction sensor and further being adapted to output the contraction signal;
signal-conditioning circuitry operatively coupled to the contraction signal receiver, the signal-conditioning circuitry being adapted to receive the contraction signal from the contraction signal receiver and to convert the contraction signal into digitized contraction data; and a personal computer card interface operatively coupled to the signal-conditioning circuitry, the personal computer card interface being adapted to provide an interface between the personal computer card and a host microprocessor system.
96. The personal computer card as set forth in Claim 95, wherein the personal computer card interface is adapted to relay the digitized contraction data to the host computer on a real-time basis as the contraction signal is converted by the signal conditioning circuitry.
97. The personal computer card as set forth in Claim 95, wherein:
the personal computer card comprises a personal computer card housing;
the contraction signal receiver is coupled to the personal computer card housing;

the signal-conditioning circuitry is operatively coupled to the contraction signal receiver; and the personal computer card interface is disposed within the personal computer card housing.
98. The personal computer card as set forth in Claim 95, wherein the contraction sensor is coupled to the contraction signal receiver, the contraction sensor being adapted to be placed into close proximity with a patient, to output a contraction signal and to relay the contraction signal to the contraction receiver.
99. A personal computer card for collecting biological data, comprising:
a blood glucose signal receiver, the blood glucose signal receiver being adapted to receive a blood glucose signal from a blood glucose sensor and further being adapted to output the blood glucose signal;
signal-conditioning circuitry operatively coupled to the blood glucose signal receiver, the signal-conditioning circuitry being adapted to receive the blood glucose signal from the blood glucose signal receiver and to output digitized blood glucose data; and a personal computer card interface operatively coupled to the signal-conditioning circuitry, the personal computer card interface being adapted to provide an interface between the personal computer card and a host microprocessor system.
100. The personal computer card as set forth in Claim 99, wherein the personal computer card interface is adapted to relay the digitized blood glucose data to the host computer on a real-time basis as the digitized blood glucose data is output by the signal-conditioning circuitry.
101. The personal computer card as set forth in Claim 99, wherein:
the personal computer card comprises a personal computer card housing;
the blood glucose signal receiver is coupled to the personal computer card housing;
the signal-conditioning circuitry is operatively coupled to the blood glucose signal receiver; and the personal computer card interface is disposed within the personal computer card housing.
102. The personal computer card as set forth in Claim 99, wherein:
the blood glucose sensor comprises a non-invasive blood glucose sensor; and the blood glucose sensor is coupled to the blood glucose signal receiver, the blood glucose sensor being adapted to be placed into close proximity with a patient, to output a blood glucose signal and to relay the blood glucose signal to the blood glucose signal receiver.
103. A personal computer card for collecting biological data, comprising:
a blood cholesterol signal receiver, the blood cholesterol signal receiver being adapted to receive a blood cholesterol signal from a blood cholesterol sensor.
and further being adapted to output the blood cholesterol signal;
signal-conditioning circuitry operatively coupled to the blood cholesterol signal receiver, the signal-conditioning circuitry being adapted to receive the blood cholesterol signal from the blood cholesterol signal receiver and to output digitized blood cholesterol data; and a personal computer card interface operatively coupled to the signal-conditioning circuitry, the personal computer card interface being adapted to provide an interface between the personal computer card and a host microprocessor system.
104. The personal computer card as set forth in Claim 103, wherein the personal computer card interface is adapted to relay the digitized blood cholesterol data to the host computer on a real-time basis as the digitized blood cholesterol data is output by the signal-conditioning circuitry.
105. The personal computer card as set forth in Claim 103, wherein:
the personal computer card comprises a personal computer card housing;
the blood cholesterol signal receiver is coupled to the personal computer card housing;
the signal-conditioning circuitry is operatively coupled to the blood cholesterol signal receiver; and the personal computer card interface is disposed within the personal computer card housing.
106. The personal computer card as set forth in Claim 103, wherein:
the blood cholesterol sensor comprises a non-invasive blood cholesterol sensor; and the blood cholesterol sensor is coupled to the blood cholesterol signal receiver, the blood cholesterol sensor being adapted to be placed into close proximity with a patient, to output a blood cholesterol signal and to relay the blood cholesterol signal to the blood cholesterol signal receiver.
107. A personal computer card for collecting biological data, comprising:
an oxygen signal receiver, the oxygen signal receiver being adapted to receive an oxygen signal from an oxygen sensor and further being adapted to output the oxygen signal;
a carbon-dioxide signal receiver, the carbon-dioxide signal receiver being adapted to receive a carbon-dioxide signal from a carbon-dioxide sensor and further being adapted to output the carbon-dioxide signal;
a nitrogen signal receiver, the nitrogen signal receiver being adapted to receive a nitrogen signal from a nitrogen sensor and further being adapted to output the nitrogen signal;
signal-conditioning circuitry operatively coupled to at least one of the oxygen signal receiver, the carbon-dioxide signal receiver and the nitrogen signal receiver, the signal-conditioning circuitry comprising at least one analog-to-digital converter and being adapted to output at least one digital signal; and a personal computer card interface operatively coupled to the signal-conditioning circuitry, the personal computer card interface being adapted to provide an interface between the personal computer card and a host microprocessor system.
108. The personal computer card as set forth in Claim 107, wherein the personal computer card interface is adapted to relay the at least one digital signal to the host microprocessor system on a real-time basis as the at least one digital signal is output by the signal-conditioning circuitry.
109. The personal computer card as set forth in Claim 107, wherein:
the personal computer card comprises a personal computer card housing;
the oxygen signal receiver is coupled to the personal computer card housing;
the carbon-dioxide signal receiver is coupled to the personal computer card housing;
the nitrogen signal receiver is coupled to the personal computer card housing;
the signal-conditioning circuitry is operatively coupled to at least one of the oxygen signal receiver, the carbon-dioxide signal receiver and the nitrogen signal receiver; and the personal computer card interface is disposed within the personal computer card housing.
110. The personal computer card as set forth in Claim 107, wherein:
the oxygen sensor comprises a non-invasive oxygen sensor;
the oxygen sensor is coupled to the oxygen signal receiver, the oxygen sensor being adapted to be placed into close proximity with a patient, to output an oxygen signal and to relay the oxygen signal to the oxygen signal receiver;
the carbon-dioxide sensor comprises a non-invasive carbon-dioxide sensor;
the carbon-dioxide sensor is coupled to the carbon-dioxide signal receiver, the carbon-dioxide sensor being adapted to be placed into close proximity with a patient, to output a carbon-dioxide signal and to relay the carbon-dioxide signal to the carbon-dioxide signal receiver;
the nitrogen sensor comprises a non-invasive nitrogen sensor; and the nitrogen sensor is coupled to the nitrogen signal receiver, the nitrogen sensor being adapted to be placed into close proximity with a patient, to output a nitrogen signal and to relay the nitrogen signal to the nitrogen signal receiver.
111. The personal computer card as set forth in Claim 107, wherein:
the personal computer card further comprises a carbon-monoxide signal receiver, the carbon-monoxide signal receiver being adapted to receive a carbon-monoxide signal from a carbon-monoxide sensor and further being adapted to output the carbon-monoxide signal;
the signal-conditioning circuitry is operatively coupled to at least one of the oxygen signal receiver, the carbon-dioxidel signal receiver, the nitrogen signal receiver and the carbon-dioxide signal receiver.
112. A personal computer card for collecting biological data, comprising:
a carbon dioxide receiver, the carbon dioxide signal receiver being adapted to receive a carbon dioxide signal from a carbon dioxide sensor and further being adapted to output the carbon dioxide signal;
signal-conditioning circuitry operatively coupled to the carbon dioxide signal receiver, the signal-conditioning circuitry being adapted to receive the carbon dioxide signal from the carbon dioxide signal receiver and to output digitized carbon dioxide data; and a personal computer card interface operatively coupled to the signal-conditioning circuitry, the personal computer card interface being adapted to provide an interface between the personal computer card and a host microprocessor system.
113. The personal computer card as set forth in Claim 112, wherein the personal computer card interface is adapted to relay the digitized carbon dioxide data to the host computer on a real-time basis as the digitized carbon dioxide data is output by the signal-conditioning circuitry.
114. The personal computer card as set forth in Claim 112, wherein:
the personal computer card comprises a personal computer card housing;
the carbon dioxide signal receiver is coupled to the personal computer card housing;
the signal-conditioning circuitry is operatively coupled to the carbon dioxide signal receiver; and the personal computer card interface is disposed within the personal computer card housing.
115. The personal computer card as set forth in Claim 112, wherein:
the carbon dioxide sensor comprises a non-invasive carbon dioxide sensor; and the carbon dioxide sensor is coupled to the carbon dioxide signal receiver, the oxygen sensor being adapted to be placed into close proximity with a patient, to output a carbon dioxide signal and to relay the carbon dioxide signal to the carbon dioxide signal receiver.
116. A personal computer card for collecting biological data, comprising:
a nitrogen receiver, the nitrogen signal receiver being adapted to receive a nitrogen signal from a nitrogen sensor and further being adapted to output the nitrogen signal;
signal-conditioning circuitry operatively coupled to the nitrogen signal receiver, the signal-conditioning circuitry being adapted to receive the nitrogen signal from the nitrogen signal receiver and to output digitized nitrogen data; and a personal computer card interface operatively coupled to the signal-conditioning circuitry, the personal computer card interface being adapted to provide an interface between the personal computer card and a host microprocessor system.
117. The personal computer card as set forth in Claim 116, wherein the personal computer card interface is adapted to relay the digitized nitrogen data to the host computer on a real-time basis as the digitized nitrogen data is output by the signal-conditioning circuitry.
118. The personal computer card as set forth in Claim 116, wherein:
the personal computer card comprises a personal computer card housing;
the nitrogen signal receiver is coupled to the personal computer card housing;
the signal-conditioning circuitry is operatively coupled to the nitrogen signal receiver; and the personal computer card interface is disposed within the personal computer card housing.
119. The personal computer card as set forth in Claim 116, wherein:
the nitrogen sensor comprises a non-invasive nitrogen sensor; and the nitrogen sensor is coupled to the nitrogen signal receiver, the nitrogen sensor being adapted to be placed into close proximity with a patient, to output a nitrogen signal and to relay the nitrogen signal to the nitrogen signal receiver.
120. A personal computer card for collecting biological data, comprising:
a carbon monoxide receiver, the carbon monoxide signal receiver being adapted to receive a carbon monoxide signal from a carbon monoxide sensor and further being adapted to output the carbon monoxide signal;
signal-conditioning circuitry operatively coupled to the carbon monoxide signal receiver, the signal-conditioning circuitry being adapted to receive the carbon monoxide signal from the carbon monoxide signal receiver and to output digitized carbon monoxide data; and a personal computer card interface operatively coupled to the signal-conditioning circuitry, the personal computer card interface being adapted to provide an interface between the personal computer card and a host microprocessor system.
121. The personal computer card as set forth in Claim 120, wherein the personal computer card interface is adapted to relay the digitized carbon monoxide data to the host computer on a real-time basis as the digitized carbon monoxide data is output by the signal-conditioning circuitry.
122. The personal computer card as set forth in Claim 120, wherein:
the personal computer card comprises a personal computer card housing;
the carbon monoxide signal receiver is coupled to the personal computer card housing;
the signal-conditioning circuitry is operatively coupled to the carbon monoxide signal receiver; and the personal computer card interface is disposed within the personal computer card housing.
123. The personal computer card as set forth in Claim 120, wherein:
the carbon monoxide sensor comprises a non-invasive carbon monoxide sensor; and the carbon monoxide sensor is coupled to the carbon monoxide signal receiver, the carbon monoxide sensor being adapted to be placed into close proximity with a patient, to output a carbon monoxide signal and to relay the carbon monoxide signal to the carbon monoxide signal receiver.
124. A personal computer card for collecting biological data, comprising:
an oxygen signal receiver, the oxygen signal receiver being adapted to receive an oxygen signal from an oxygen sensor and further being adapted to output the oxygen signal;
signal-conditioning circuitry operatively coupled to the oxygen signal receiver, the signal-conditioning circuitry being adapted to receive the oxygen signal from the oxygen signal receiver and to output digitized oxygen data; and a personal computer card interface operatively coupled to the signal-conditioning circuitry, the personal computer card interface being adapted to provide an interface between the personal computer card and a host microprocessor system.
125. The personal computer card as set forth in Claim 124, wherein the personal computer card interface is adapted to relay the digitized oxygen data to the host microprocessor system on a real-time basis as the digitized oxygen data is output by the signal-conditioning circuitry.
126. The personal computer card as set forth in Claim 124, wherein:
the personal computer card comprises a personal computer card housing;
the oxygen signal receiver is coupled to the personal computer card housing;
the signal-conditioning circuitry is operatively coupled to the oxygen signal receiver; and the personal computer card interface is disposed within the personal computer card housing.
127. The personal computer card as set forth in Claim 124, wherein the oxygen sensor is coupled to the oxygen signal receiver, the oxygen sensor being adapted to be placed into close proximity with a patient, to output an oxygen signal and to relay the oxygen signal to the oxygen signal receiver.
128. A personal computer card for collecting biological data, comprising:
a first conductor signal receiver, the first conductor signal receiver being adapted to receive a first conductor signal from a first conductor, the first conductor being adapted to be placed into close proximity with a patient;
a second conductor signal receiver, the second conductor signal receiver being adapted to receive a second conductor signal from a second conductor, the second conductor being adapted to be placed into close proximity with a patient;
signal-conditioning circuitry operatively coupled to the first conductor signal receiver and the second conductor receiver, the signal-conditioning circuitry being adapted to receive the first conductor signal from the first conductor signal receiver and being adapted to receive the second conductor signal from the second conductor signal receiver; and a personal computer card interface operatively coupled to the signal-conditioning circuitry, the personal computer card interface being adapted to provide an interface between the personal computer card and a host microprocessor system.
129. The personal computer card for collecting biological data as set forth in Claim 128, and further comprising:
a current source adapted to apply a predetermined current to at least one of the first conductor signal receiver and the second conductor signal receiver; and an electrical resistance detector, the electrical resistance detector being adapted to determine an electrical resistance of the patient, based on the predetermined current applied by the current source.
130. The personal computer card for collecting biological data as set forth in Claim 128, wherein:

at least one of the first conductor signal receiver and the second conductor signal receiver is adapted to receive a predetermined current from a current source on the host microprocessor system; and an electrical resistance between the first conductor signal receiver and the second conductor signal receiver can be determined by an electrical resistance detector on the host microprocessor system, the electrical resistance detector being adapted to determine an electrical resistance of the patient, based on the predetermined current applied by the current source.
131. The personal computer card as set forth in Claim 129, wherein the electrical resistance detector is adapted to determine a body composition of the patient.
132. The personal computer card as set forth in Claim 131, wherein the body composition of the patient comprises a fat composition of the patient.
133. The personal computer card as set forth in Claim 131, wherein the personal computer card interface is adapted to relay the electrical resistance to the host microprocessor system on a real-time basis as the electrical resistance detector determines the electrical resistance of the patient.
134. The personal computer card as set forth in Claim 129, wherein:
the personal computer card comprises a personal computer card housing;
the current source is coupled to the personal computer card housing;

the electrical resistance detector is operatively coupled to the personal computer card housing; and the personal computer card interface is disposed within the personal computer card housing.
135. The personal computer card as set forth in Claim 129, wherein:
the first conductor is coupled to the first conductor signal receiver, the first conductor being adapted to be placed into close proximity with a patient; are coupled to the ECG signal receiver, the plurality of ECG sensors being adapted to be placed into close proximity with a patient, to output ECG signals and to relay the ECG signals to the ECG signal receiver.
136. A personal computer card for collecting biological data, comprising:
a heart-beat signal receiver, the heart beat signal receiver being adapted to receive a heart beat signal from a heart beat sensor and further being adapted to output the heart beat signal;
signal-conditioning circuitry operatively coupled to the heart beat signal receiver, the signal-conditioning circuitry comprising at least one analog-to-digital converter and being adapted to output at least one digital signal; and a personal computer card interface operatively coupled to the signal-conditioning circuitry, the personal computer card interface being adapted to provide an interface between the personal computer card and a host microprocessor system.
137. The personal computer card as set forth in Claim 136, wherein the personal computer card interface is adapted to relay the at least one digital signal to the host microprocessor system on a real-time basis as the at least one digital signal is output by the signal-conditioning circuitry.
138. The personal computer card as set forth in Claim 136, wherein;
the personal computer card comprises a personal computer card housing;
the heart-beat signal receiver is coupled to the personal computer card housing;
the signal-conditioning circuitry is operatively coupled to the heart-beat signal receiver; and the personal computer card interface is disposed within the personal computer card housing.
139. The personal computer card as set forth in Claim 136, wherein the heart-beat sensor is coupled to the heart-beat signal receiver, the heart-beat sensor being adapted to be placed into close proximity with a patient, to output a heart-beat signal and to relay the heart-beat signal to the heart-beat signal.
140. A personal computer card for collecting biological data, comprising:
an ear probe signal receiver, the ear probe signal receiver being adapted to receive an ear probe signal from an ear probe sensor and further being adapted to output the ear probe signal;
signal-conditioning circuitry operatively coupled to the ear probe signal receiver, the signal-conditioning circuitry comprising at least one analog-to-digital converter and being adapted to output at least one digital signal; and a personal computer card interface operatively coupled to the signal-conditioning circuitry, the personal computer card interface being adapted to provide an interface between the personal computer card and a host microprocessor system.
141. The personal computer card as set forth in Claim 140, wherein the personal computer card interface is adapted to relay the at least one digital signal to the host microprocessor system on a real-time basis as the at least one digital signal is output by the signal-conditioning circuitry.
142. The personal computer card as set forth in Claim 140, wherein:
the personal computer card comprises a personal computer card housing;
the ear probe signal receiver is coupled to the personal computer card housing;
the signal-conditioning circuitry is operatively coupled to the ear probe signal receiver; and the personal computer card interface is disposed within the personal computer card housing.
143. The personal computer card as set forth in Claim 140, wherein the ear probe sensor is coupled to the ear probe signal receiver, the ear probe sensor being adapted to be placed into close proximity with a patient, to output an ear probe signal and to relay the ear probe signal to the ear probe signal receiver.
144. The personal computer card as set forth in Claim 143, wherein:
the ear probe sensor comprises a hand-held wand adapted to be placed into an ear of a patient; and 90.

the ear probe sensor is adapted to measure a pressure of an eardrum of the patient.
145. Canceled
146. Canceled
147. Canceled 91.
148. Canceled
149. Canceled
150. A personal computer card for collecting biological data, comprising:
a pencil probe signal receiver, the pencil probe signal receiver being adapted to receive a pencil probe signal from a pencil probe sensor and further being adapted to output the pencil probe signal;
signal-conditioning circuitry operatively coupled to the pencil probe signal receiver, the signal-conditioning circuitry comprising at least one analog-to-digital converter and being adapted to output at least one digital signal; and a personal computer card interface operatively coupled to the signal-conditioning circuitry, the personal computer card interface being adapted to provide an interface between the personal computer card and a host microprocessor system.
151. The personal computer card as set forth in Claim 150, wherein the personal computer card interface is adapted to relay the at least one digital signal to the host microprocessor system on a real-time basis as the at least one digital signal is output by the signal-conditioning circuitry.
152. The personal computer card as set forth in Claim 150, wherein:
the personal computer card comprises a personal computer card housing;
the pencil probe signal receiver is coupled to the personal computer card housing;
the signal-conditioning circuitry is operatively coupled to the pencil probe signal receiver; and the personal computer card interface is disposed within the personal computer card housing.
153. The personal computer card as set forth in Claim 150, wherein the pencil probe sensor is coupled to the pencil probe signal receiver, the pencil probe sensor being adapted to be placed into close proximity with a patient, to output a pencil probe signal and to relay the pencil probe signal to the pencil probe signal receiver.
154. The personal computer card as set forth in Claim 153, wherein:
the pencil probe sensor comprises a hand-held wand adapted to emit acoustical signals; and the pencil probe sensor is adapted to measure a blood flow of the patient, based upon the emitted acoustical signals.

93.
155. A personal computer card for collecting biological data, comprising:
an electroencephalography (EEG) signal receiver, the EEG signal receiver being adapted to receive EEG signals from a plurality of EEG sensors and further being adapted to output the EEG signals;
signal-conditioning circuitry operatively coupled to the EEG signal receiver, the signal-conditioning circuitry comprising at least one analog-to-digital converter and being adapted to output at least one digital signal; and a personal computer card interface operatively coupled to the signal-conditioning circuitry, the personal computer card interface being adapted to provide an interface between the personal computer card and a host microprocessor system and to relay the at least one digital signal to the host microprocessor system on a real-time basis as the at least one digital signal is output by the signal-conditioning circuitry.
156. Canceled
157. The personal computer card as set forth in Claim 155, wherein:
the personal computer card comprises a personal computer card housing;
the EEG signal receiver is coupled to the personal computer card housing;
the signal-conditioning circuitry is operatively coupled the EEG signal receiver; and the personal computer card interface is disposed withing the personal computer card housing.
158. The personal computer card as set forth in Claim 155, wherein the plurality of EEG sensors are coupled to the EEG signal receiver, the plurality of EEG
sensors being. adapted to be placed into close proximity with a patient, to output EEG signals and to relay the EEG signals to the EEG signal receiver.
159. A portable biological data collection device, comprising:
a personal computer card housing;
a biological data receiver coupled to the personal computer card housing, the biological data receiver being adapted to receive biological data and to output the biological data;
signal-conditioning circuitry operatively coupled to the biological data receiver, the signal-conditioning circuitry being adapted to receive the biological data from the biological data receiver and to convert the biological data into digitized biological data; and a personal computer card interface disposed within the personal computer card housing, the personal computer card interface being adapted to communicate with a set-top box and to relay the digitized biological data to the set-top box on a real-time basis as the biological data is converted by the signal conditioning circuitry.
160. The portable biological data collection device as set forth in Claim 159, wherein:
the set-top box comprises a host microprocessor system; and the personal computer card interface is adapted to relay the digitized biological data to the set-top box on a real-time basis for transmission by the set-top box to another host microprocessor system.
161. A portable biological data collection device, comprising:
a game-set card housing;
a biological data receiver coupled to the game-set card housing, the biological data receiver being adapted to receive biological data and to output the biological data;
signal-conditioning circuitry operatively coupled to the biological data receiver, the signal-conditioning circuitry being adapted to receive the biological data from the biological data receiver and to convert the biological data into digitized biological data; and a game-set card interface disposed within the game-set card housing, the game-set card interface being adapted to communicate with a game-set and to relay the digitized biological data to the game-set on a real-time basis as the biological data is converted by the signal conditioning circuitry.
162. The portable biological data collection device as set forth in Claim 161, wherein:
the game-set card housing comprises a personal computer card housing; and the game-set card interface comprises a personal computer card interface.
163. The host microprocessor system as set forth in Claim 161, wherein the game-set card housing comprises a compact flash card.
164. A portable biological data collection device, comprising:
a computer card housing;

a biological data receiver coupled to the computer card housing, the biological data receiver being adapted to receive biological data and to output the biological data;
signal-conditioning circuitry operatively coupled to the biological data receiver, the signal-conditioning circuitry being adapted to receive the biological data from the biological data receiver and to convert the biological data into digitized biological data; and a compact flash card interface disposed within the computer card housing, the compact flash card interface being adapted to communicate with a host microprocessor system and to relay the digitized biological data to the host microprocessor system on a real-time basis as the biological data is converted by the signal conditioning circuitry.
165. A host microprocessor system configurable among a plurality of biological data collection device modes, comprising:
a personal computer card slot adapted to receive a personal computer card therein;
a personal computer card interface adapted to communicate with a personal computer card inserted into the personal computer card slot and adapted to receive digitized biological data from a personal computer card inserted into the personal computer card slot;
a microprocessor;
a data bus operatively connected between the microprocessor and the personal computer card interface;
an input device adapted to receive designation data from a personal computer card within the personal computer card slot, the input device being operatively connected to the microprocessor and the designation data being indicative of a type of the digitized biological data from a personal computer card inserted into the personal computer card slot, the designation data comprising one of a first identifier and a second identifier, the first identifier indicating that the digitized biological data should be interpreted by the microprocessor as first biological data and the second identifier indicating that the digitized biological data should be interpreted by the microprocessor as second biological data; and a configurer adapted to configure the host microprocessor system into a first real-time biological data collecting and analyzing device upon receipt of the first identifier, and adapted to configure the host microprocessor system into a second real-time biological data. collecting and analyzing device upon receipt of the second identifier, the configurer being operatively connected to the microprocessor.
166. The host microprocessor system as set forth in Claim 165, the designation data comprising a third identifier indicating that the digitized biological data should be interpreted by the microprocessor as third biological data, and the host microprocessor system being configurable into a third real-time biological data collecting and analyzing device.
167. The host microprocessor system as set forth in Claim 165, wherein:
the host microprocessor system comprises a set-top box; and the set-top box is adapted to receive the digitized biological data and to transmit the digitized biological data to at least one other host microprocessor system.
168. The host microprocessor system as set forth in Claim 167, wherein the set-top box is adapted to transmit the digitized biological data real-time to the at least one other host microprocessor system.
169. The host microprocessor system as set forth in Claim 167, wherein the set-top box is adapted to transmit the digitized biological data to the at least one other host microprocessor system at a later time either automatically at predetermined intervals or upon transmit instructions.
170. The host microprocessor system as set forth in Claim 165, wherein the host microprocessor system comprises a game set.
171. The host microprocessor system as set forth in Claim 165, wherein:
the personal computer card slot is adapted to receive a compact flash card therein;
the personal computer card interface is adapted to communicate with a compact flash card inserted into the personal computer card slot.
CA002347544A 1998-10-15 1999-09-28 Personal computer card for collection of real-time biological data Expired - Fee Related CA2347544C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/173,059 US6159147A (en) 1997-02-28 1998-10-15 Personal computer card for collection of real-time biological data
US09/173,059 1998-10-15
PCT/US1999/022644 WO2000021434A1 (en) 1998-10-15 1999-09-28 Personal computer card for collection of real-time biological data

Publications (2)

Publication Number Publication Date
CA2347544A1 true CA2347544A1 (en) 2000-04-20
CA2347544C CA2347544C (en) 2009-12-22

Family

ID=22630356

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002347544A Expired - Fee Related CA2347544C (en) 1998-10-15 1999-09-28 Personal computer card for collection of real-time biological data

Country Status (7)

Country Link
US (1) US6159147A (en)
EP (1) EP1124479A4 (en)
CN (1) CN1330525A (en)
AU (1) AU763773B2 (en)
CA (1) CA2347544C (en)
MX (1) MXPA01003784A (en)
WO (1) WO2000021434A1 (en)

Families Citing this family (422)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6018673A (en) 1996-10-10 2000-01-25 Nellcor Puritan Bennett Incorporated Motion compatible sensor for non-invasive optical blood analysis
GB2332943B (en) * 1996-10-30 2000-01-19 Mercury Diagnostics Inc Detection device
US6712762B1 (en) * 1997-02-28 2004-03-30 Ors Diagnostic, Llc Personal computer card for collection of real-time biological data
US5881723A (en) 1997-03-14 1999-03-16 Nellcor Puritan Bennett Incorporated Ventilator breath display and graphic user interface
US7890158B2 (en) 2001-06-05 2011-02-15 Lumidigm, Inc. Apparatus and method of biometric determination using specialized optical spectroscopy systems
US6628809B1 (en) 1999-10-08 2003-09-30 Lumidigm, Inc. Apparatus and method for identification of individuals by near-infrared spectrum
US7996187B2 (en) 2005-02-16 2011-08-09 Card Guard Scientific Survival Ltd. Method and system for health monitoring
US7222054B2 (en) 1998-03-03 2007-05-22 Card Guard Scientific Survival Ltd. Personal ambulatory wireless health monitor
US6391005B1 (en) 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6949816B2 (en) 2003-04-21 2005-09-27 Motorola, Inc. Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8480580B2 (en) 1998-04-30 2013-07-09 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6175752B1 (en) 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
EP1077636B1 (en) * 1998-05-13 2004-01-21 Cygnus, Inc. Signal processing for measurement of physiological analytes
DE19840965A1 (en) * 1998-09-08 2000-03-09 Disetronic Licensing Ag Device for self-administration of a product fluid
JP4046883B2 (en) * 1999-02-09 2008-02-13 株式会社タニタ Body fat scale and health management system
WO2000047109A1 (en) * 1999-02-12 2000-08-17 Cygnus, Inc. Devices and methods for frequent measurement of an analyte present in a biological system
US8265907B2 (en) 1999-03-03 2012-09-11 Card Guard Scientific Survival Ltd. System and a method for physiological monitoring
ITBO990179A1 (en) * 1999-04-16 2000-10-16 Technogym Srl TELECOMMUNICATIONS SYSTEM FOR THE EXCHANGE OF PHYSIOLOGICAL STATUS BETWEEN A PHYSICAL PERSON AND AN INFORMATION SYSTEM.
US6264614B1 (en) * 1999-08-31 2001-07-24 Data Critical Corporation System and method for generating and transferring medical data
US6928311B1 (en) * 1999-08-31 2005-08-09 Nir Diagnostics Inc. Compact device for measuring, tissue analytes
AU778361B2 (en) * 1999-10-07 2004-12-02 La Mont, Llc Physiological signal monitoring apparatus and method
US20020062069A1 (en) * 1999-10-08 2002-05-23 Mault James R. System and method of integrated calorie management using interactive television
US6816605B2 (en) 1999-10-08 2004-11-09 Lumidigm, Inc. Methods and systems for biometric identification of individuals using linear optical spectroscopy
US7738936B1 (en) 1999-11-10 2010-06-15 Pacesetter, Inc. Methods and systems for reducing data acquisition, power and/or processing for pulse oximetry applications
US6612984B1 (en) 1999-12-03 2003-09-02 Kerr, Ii Robert A. System and method for collecting and transmitting medical data
US6865509B1 (en) * 2000-03-10 2005-03-08 Smiths Detection - Pasadena, Inc. System for providing control to an industrial process using one or more multidimensional variables
US7194371B1 (en) * 2000-03-27 2007-03-20 Cardiobeat.Com Medical testing system and method
CA2407993A1 (en) * 2000-05-04 2001-11-08 Healthetech, Inc. Interactive physiological monitoring system
EP1290652A2 (en) 2000-05-05 2003-03-12 Hill-Rom Services, Inc. Hospital monitoring and control system and method
AU2001261198A1 (en) 2000-05-05 2001-11-20 Hill-Rom Services, Inc. Patient point of care computer system
US6506162B1 (en) * 2000-06-09 2003-01-14 K-Jump Health Co., Ltd. Electronic blood pressure gauge equipped with dismountable external memory device
US6699188B2 (en) 2000-06-22 2004-03-02 Guidance Interactive Technologies Interactive reward devices and methods
US6553244B2 (en) * 2000-08-18 2003-04-22 Cygnus, Inc. Analyte monitoring device alarm augmentation system
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
AU2002222456A1 (en) 2000-12-07 2002-06-18 Children's Medical Center Corporation Automated interpretive medical care system and methodology
US6560471B1 (en) 2001-01-02 2003-05-06 Therasense, Inc. Analyte monitoring device and methods of use
US7412396B1 (en) 2001-02-15 2008-08-12 Haq Mohamed M Virtual clinic for medical practice
WO2002080126A2 (en) 2001-03-30 2002-10-10 Hill-Rom Services, Inc. Hospital bed and network system
US7041468B2 (en) 2001-04-02 2006-05-09 Therasense, Inc. Blood glucose tracking apparatus and methods
US20030050539A1 (en) * 2001-05-29 2003-03-13 Morteza Naghavi System and method for a personal computer medical device based away from a hospital
US6845327B2 (en) * 2001-06-08 2005-01-18 Epocal Inc. Point-of-care in-vitro blood analysis system
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
EP1404233B1 (en) 2001-06-12 2009-12-02 Pelikan Technologies Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7344507B2 (en) 2002-04-19 2008-03-18 Pelikan Technologies, Inc. Method and apparatus for lancet actuation
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
WO2002100254A2 (en) 2001-06-12 2002-12-19 Pelikan Technologies, Inc. Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7033371B2 (en) 2001-06-12 2006-04-25 Pelikan Technologies, Inc. Electric lancet actuator
US7025774B2 (en) 2001-06-12 2006-04-11 Pelikan Technologies, Inc. Tissue penetration device
AP2004002960A0 (en) * 2001-06-19 2004-03-31 Digital Sports Media Physiological monitoring and system
AU2002332870A1 (en) * 2001-09-13 2003-03-24 The Boeing Company Method for transmitting vital health statistics to a remote location form an aircraft
US6966880B2 (en) * 2001-10-16 2005-11-22 Agilent Technologies, Inc. Universal diagnostic platform
DE10153416A1 (en) * 2001-10-30 2003-05-22 Berufsgenossenschaftlicher Ver Device for examining disorders of bladder function
US8858434B2 (en) 2004-07-13 2014-10-14 Dexcom, Inc. Transcutaneous analyte sensor
US20040034284A1 (en) * 2002-04-10 2004-02-19 Aversano Thomas R. Patient initiated emergency response system
US7331931B2 (en) 2002-04-19 2008-02-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8360992B2 (en) 2002-04-19 2013-01-29 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7232451B2 (en) 2002-04-19 2007-06-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US7713214B2 (en) 2002-04-19 2010-05-11 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with optical analyte sensing
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7491178B2 (en) 2002-04-19 2009-02-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7229458B2 (en) 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7297122B2 (en) 2002-04-19 2007-11-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7892185B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US6733464B2 (en) 2002-08-23 2004-05-11 Hewlett-Packard Development Company, L.P. Multi-function sensor device and methods for its use
US20040133086A1 (en) * 2002-09-10 2004-07-08 Ciurczak Emil W. Apparatus and method for non-invasive measurement of blood constituents
US6866639B2 (en) * 2002-09-23 2005-03-15 Everest Biomedical Instruments Handheld low voltage testing device
US7381184B2 (en) 2002-11-05 2008-06-03 Abbott Diabetes Care Inc. Sensor inserter assembly
US20040100376A1 (en) * 2002-11-26 2004-05-27 Kimberly-Clark Worldwide, Inc. Healthcare monitoring system
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
WO2004061420A2 (en) 2002-12-31 2004-07-22 Therasense, Inc. Continuous glucose monitoring system and methods of use
US7751594B2 (en) 2003-04-04 2010-07-06 Lumidigm, Inc. White-light spectral biometric sensors
US7668350B2 (en) 2003-04-04 2010-02-23 Lumidigm, Inc. Comparative texture analysis of tissue for biometric spoof detection
US7587287B2 (en) 2003-04-04 2009-09-08 Abbott Diabetes Care Inc. Method and system for transferring analyte test data
AU2004227886A1 (en) 2003-04-04 2004-10-21 Lumidigm, Inc. Multispectral biometric sensor
US7460696B2 (en) 2004-06-01 2008-12-02 Lumidigm, Inc. Multispectral imaging biometrics
DE602004028463D1 (en) 2003-05-30 2010-09-16 Pelikan Technologies Inc METHOD AND DEVICE FOR INJECTING LIQUID
US7850621B2 (en) 2003-06-06 2010-12-14 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US8460243B2 (en) 2003-06-10 2013-06-11 Abbott Diabetes Care Inc. Glucose measuring module and insulin pump combination
US8066639B2 (en) 2003-06-10 2011-11-29 Abbott Diabetes Care Inc. Glucose measuring device for use in personal area network
WO2006001797A1 (en) 2004-06-14 2006-01-05 Pelikan Technologies, Inc. Low pain penetrating
US7722536B2 (en) * 2003-07-15 2010-05-25 Abbott Diabetes Care Inc. Glucose measuring device integrated into a holster for a personal area network device
US20190357827A1 (en) 2003-08-01 2019-11-28 Dexcom, Inc. Analyte sensor
US7399205B2 (en) 2003-08-21 2008-07-15 Hill-Rom Services, Inc. Plug and receptacle having wired and wireless coupling
US7920906B2 (en) 2005-03-10 2011-04-05 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US7172557B1 (en) * 2003-08-29 2007-02-06 Caldyne, Inc. Spirometer, display and method
TW200512594A (en) * 2003-09-16 2005-04-01 Metal Ind Res & Dev Ct A pro-PDA field-measuring system and method
US8282576B2 (en) 2003-09-29 2012-10-09 Sanofi-Aventis Deutschland Gmbh Method and apparatus for an improved sample capture device
US8065161B2 (en) 2003-11-13 2011-11-22 Hospira, Inc. System for maintaining drug information and communicating with medication delivery devices
US20060100907A1 (en) * 2003-10-07 2006-05-11 Holland Geoffrey N Medication management system
US20050278194A1 (en) * 2003-10-07 2005-12-15 Holland Geoffrey N Medication management system
US7490021B2 (en) 2003-10-07 2009-02-10 Hospira, Inc. Method for adjusting pump screen brightness
US20060089855A1 (en) * 2003-10-07 2006-04-27 Holland Geoffrey N Medication management system
US7895053B2 (en) 2003-10-07 2011-02-22 Hospira, Inc. Medication management system
US9123077B2 (en) 2003-10-07 2015-09-01 Hospira, Inc. Medication management system
EP1680014A4 (en) 2003-10-14 2009-01-21 Pelikan Technologies Inc Method and apparatus for a variable user interface
USD902408S1 (en) 2003-11-05 2020-11-17 Abbott Diabetes Care Inc. Analyte sensor control unit
EP1706026B1 (en) 2003-12-31 2017-03-01 Sanofi-Aventis Deutschland GmbH Method and apparatus for improving fluidic flow and sample capture
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
EP1718198A4 (en) 2004-02-17 2008-06-04 Therasense Inc Method and system for providing data communication in continuous glucose monitoring and management system
US7160254B2 (en) 2004-03-08 2007-01-09 Mark Noar Intelligent self-interpreting electroviscerogram system and method
EP1751546A2 (en) 2004-05-20 2007-02-14 Albatros Technologies GmbH & Co. KG Printable hydrogel for biosensors
US8229185B2 (en) 2004-06-01 2012-07-24 Lumidigm, Inc. Hygienic biometric sensors
EP1765194A4 (en) 2004-06-03 2010-09-29 Pelikan Technologies Inc Method and apparatus for a fluid sampling device
US9775553B2 (en) 2004-06-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
WO2005119524A2 (en) 2004-06-04 2005-12-15 Therasense, Inc. Diabetes care host-client architecture and data management system
US7319386B2 (en) 2004-08-02 2008-01-15 Hill-Rom Services, Inc. Configurable system for alerting caregivers
US8787630B2 (en) 2004-08-11 2014-07-22 Lumidigm, Inc. Multispectral barcode imaging
US7887492B1 (en) 2004-09-28 2011-02-15 Impact Sports Technologies, Inc. Monitoring device, method and system
US20060074324A1 (en) * 2004-10-06 2006-04-06 Shu-Mei Wu Biosensing meter plus blood pressure measuring apparatus
US8029441B2 (en) 2006-02-28 2011-10-04 Abbott Diabetes Care Inc. Analyte sensor transmitter unit configuration for a data monitoring and management system
US20090105569A1 (en) 2006-04-28 2009-04-23 Abbott Diabetes Care, Inc. Introducer Assembly and Methods of Use
US9788771B2 (en) 2006-10-23 2017-10-17 Abbott Diabetes Care Inc. Variable speed sensor insertion devices and methods of use
US8571624B2 (en) 2004-12-29 2013-10-29 Abbott Diabetes Care Inc. Method and apparatus for mounting a data transmission device in a communication system
US9351669B2 (en) 2009-09-30 2016-05-31 Abbott Diabetes Care Inc. Interconnect for on-body analyte monitoring device
US10226207B2 (en) 2004-12-29 2019-03-12 Abbott Diabetes Care Inc. Sensor inserter having introducer
US9398882B2 (en) 2005-09-30 2016-07-26 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor and data processing device
US7697967B2 (en) 2005-12-28 2010-04-13 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
US8333714B2 (en) 2006-09-10 2012-12-18 Abbott Diabetes Care Inc. Method and system for providing an integrated analyte sensor insertion device and data processing unit
US9636450B2 (en) 2007-02-19 2017-05-02 Udo Hoss Pump system modular components for delivering medication and analyte sensing at seperate insertion sites
US9259175B2 (en) 2006-10-23 2016-02-16 Abbott Diabetes Care, Inc. Flexible patch for fluid delivery and monitoring body analytes
US7883464B2 (en) 2005-09-30 2011-02-08 Abbott Diabetes Care Inc. Integrated transmitter unit and sensor introducer mechanism and methods of use
US9743862B2 (en) 2011-03-31 2017-08-29 Abbott Diabetes Care Inc. Systems and methods for transcutaneously implanting medical devices
US9572534B2 (en) 2010-06-29 2017-02-21 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
US7731657B2 (en) 2005-08-30 2010-06-08 Abbott Diabetes Care Inc. Analyte sensor introducer and methods of use
US8613703B2 (en) 2007-05-31 2013-12-24 Abbott Diabetes Care Inc. Insertion devices and methods
US8512243B2 (en) 2005-09-30 2013-08-20 Abbott Diabetes Care Inc. Integrated introducer and transmitter assembly and methods of use
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
US20060188399A1 (en) * 2005-02-04 2006-08-24 Jadi, Inc. Analytical sensor system for field use
US7545272B2 (en) * 2005-02-08 2009-06-09 Therasense, Inc. RF tag on test strips, test strip vials and boxes
US20060264762A1 (en) 2005-03-28 2006-11-23 Ric Investments, Llc. PC-based physiologic monitor and system for resolving apnea episodes during sedation
US7801338B2 (en) 2005-04-27 2010-09-21 Lumidigm, Inc. Multispectral biometric sensors
US8112240B2 (en) 2005-04-29 2012-02-07 Abbott Diabetes Care Inc. Method and apparatus for providing leak detection in data monitoring and management systems
GB2427691A (en) * 2005-06-24 2007-01-03 Micro Medical Ltd Apparatus to detect patent foramen ovale
US7657294B2 (en) 2005-08-08 2010-02-02 Nellcor Puritan Bennett Llc Compliant diaphragm medical sensor and technique for using the same
US7657295B2 (en) 2005-08-08 2010-02-02 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7590439B2 (en) 2005-08-08 2009-09-15 Nellcor Puritan Bennett Llc Bi-stable medical sensor and technique for using the same
US9924886B2 (en) * 2005-08-09 2018-03-27 Ingo Flore Medical measuring device
EP1921980A4 (en) 2005-08-31 2010-03-10 Univ Virginia Improving the accuracy of continuous glucose sensors
US20070060808A1 (en) * 2005-09-12 2007-03-15 Carine Hoarau Medical sensor for reducing motion artifacts and technique for using the same
US7869850B2 (en) 2005-09-29 2011-01-11 Nellcor Puritan Bennett Llc Medical sensor for reducing motion artifacts and technique for using the same
US7904130B2 (en) 2005-09-29 2011-03-08 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7899510B2 (en) 2005-09-29 2011-03-01 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US8880138B2 (en) 2005-09-30 2014-11-04 Abbott Diabetes Care Inc. Device for channeling fluid and methods of use
US7881762B2 (en) 2005-09-30 2011-02-01 Nellcor Puritan Bennett Llc Clip-style medical sensor and technique for using the same
US7486979B2 (en) 2005-09-30 2009-02-03 Nellcor Puritan Bennett Llc Optically aligned pulse oximetry sensor and technique for using the same
US7483731B2 (en) 2005-09-30 2009-01-27 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US9521968B2 (en) 2005-09-30 2016-12-20 Abbott Diabetes Care Inc. Analyte sensor retention mechanism and methods of use
US7766829B2 (en) 2005-11-04 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
WO2007059263A2 (en) * 2005-11-16 2007-05-24 Cardiopulmonary Technologies, Inc, Side-stream respiratory gas monitoring system and method
US20080235058A1 (en) * 2005-12-01 2008-09-25 The General Electric Company Vital sign monitor utilizing historic patient data
US20070129636A1 (en) * 2005-12-01 2007-06-07 Friedman Bruce A Vital sign monitor utilizing historic patient data
US11298058B2 (en) 2005-12-28 2022-04-12 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
CA2636034A1 (en) 2005-12-28 2007-10-25 Abbott Diabetes Care Inc. Medical device insertion
US20070179356A1 (en) * 2005-12-29 2007-08-02 Guidance Interactive Healthcare, Inc. Programmable devices, systems and methods for encouraging the monitoring of medical parameters
US20080015422A1 (en) * 2005-12-29 2008-01-17 Guidance Interactive Healthcare, Inc. Combined peripheral and health monitoring devices
US20070198653A1 (en) * 2005-12-30 2007-08-23 Kurt Jarnagin Systems and methods for remote computer-based analysis of user-provided chemogenomic data
US7736310B2 (en) 2006-01-30 2010-06-15 Abbott Diabetes Care Inc. On-body medical device securement
US7885698B2 (en) 2006-02-28 2011-02-08 Abbott Diabetes Care Inc. Method and system for providing continuous calibration of implantable analyte sensors
US7826879B2 (en) 2006-02-28 2010-11-02 Abbott Diabetes Care Inc. Analyte sensors and methods of use
US9675290B2 (en) 2012-10-30 2017-06-13 Abbott Diabetes Care Inc. Sensitivity calibration of in vivo sensors used to measure analyte concentration
US8346335B2 (en) 2008-03-28 2013-01-01 Abbott Diabetes Care Inc. Analyte sensor calibration management
US7618369B2 (en) 2006-10-02 2009-11-17 Abbott Diabetes Care Inc. Method and system for dynamically updating calibration parameters for an analyte sensor
US8473022B2 (en) 2008-01-31 2013-06-25 Abbott Diabetes Care Inc. Analyte sensor with time lag compensation
US7620438B2 (en) 2006-03-31 2009-11-17 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US8219173B2 (en) 2008-09-30 2012-07-10 Abbott Diabetes Care Inc. Optimizing analyte sensor calibration
US9339217B2 (en) 2011-11-25 2016-05-17 Abbott Diabetes Care Inc. Analyte monitoring system and methods of use
US7801582B2 (en) 2006-03-31 2010-09-21 Abbott Diabetes Care Inc. Analyte monitoring and management system and methods therefor
US9392969B2 (en) 2008-08-31 2016-07-19 Abbott Diabetes Care Inc. Closed loop control and signal attenuation detection
US8140312B2 (en) 2007-05-14 2012-03-20 Abbott Diabetes Care Inc. Method and system for determining analyte levels
US7630748B2 (en) 2006-10-25 2009-12-08 Abbott Diabetes Care Inc. Method and system for providing analyte monitoring
US8224415B2 (en) 2009-01-29 2012-07-17 Abbott Diabetes Care Inc. Method and device for providing offset model based calibration for analyte sensor
US8226891B2 (en) 2006-03-31 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US8374668B1 (en) 2007-10-23 2013-02-12 Abbott Diabetes Care Inc. Analyte sensor with lag compensation
US7653425B2 (en) 2006-08-09 2010-01-26 Abbott Diabetes Care Inc. Method and system for providing calibration of an analyte sensor in an analyte monitoring system
US7344503B2 (en) * 2006-04-03 2008-03-18 The General Electric Company System and method for monitoring pre-eclamptic patients
US8021310B2 (en) 2006-04-21 2011-09-20 Nellcor Puritan Bennett Llc Work of breathing display for a ventilation system
US8073518B2 (en) 2006-05-02 2011-12-06 Nellcor Puritan Bennett Llc Clip-style medical sensor and technique for using the same
WO2007143225A2 (en) 2006-06-07 2007-12-13 Abbott Diabetes Care, Inc. Analyte monitoring system and method
US8175346B2 (en) 2006-07-19 2012-05-08 Lumidigm, Inc. Whole-hand multispectral biometric imaging
US7995808B2 (en) 2006-07-19 2011-08-09 Lumidigm, Inc. Contactless multispectral biometric capture
US8355545B2 (en) 2007-04-10 2013-01-15 Lumidigm, Inc. Biometric detection using spatial, temporal, and/or spectral techniques
CN101506826A (en) 2006-07-19 2009-08-12 光谱辨识公司 Multibiometric multispectral imager
US7804984B2 (en) 2006-07-31 2010-09-28 Lumidigm, Inc. Spatial-spectral fingerprint spoof detection
US7801339B2 (en) 2006-07-31 2010-09-21 Lumidigm, Inc. Biometrics with spatiospectral spoof detection
US8145288B2 (en) 2006-08-22 2012-03-27 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
TW200829208A (en) * 2006-09-05 2008-07-16 N I Medical Ltd Medical instrument
US8219170B2 (en) 2006-09-20 2012-07-10 Nellcor Puritan Bennett Llc System and method for practicing spectrophotometry using light emitting nanostructure devices
US20100145170A1 (en) * 2006-09-21 2010-06-10 Starr Life Sciences Corp. Small Animal Pulse Oximeter User Interface
US8359079B2 (en) * 2006-09-21 2013-01-22 Starr Life Sciences Corporation Pulse oximetry system and techniques for deriving cardiac and breathing parameters from extra-thoracic blood flow measurements
US20080076991A1 (en) * 2006-09-21 2008-03-27 Starr Life Sciences Corp. Medical display devices for cardiac and breathing parameters derived from extra-thoracic blood flow measurements
US20080077020A1 (en) 2006-09-22 2008-03-27 Bam Labs, Inc. Method and apparatus for monitoring vital signs remotely
US8175671B2 (en) 2006-09-22 2012-05-08 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8190225B2 (en) 2006-09-22 2012-05-29 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8396527B2 (en) 2006-09-22 2013-03-12 Covidien Lp Medical sensor for reducing signal artifacts and technique for using the same
US7869849B2 (en) 2006-09-26 2011-01-11 Nellcor Puritan Bennett Llc Opaque, electrically nonconductive region on a medical sensor
US7784461B2 (en) 2006-09-26 2010-08-31 Nellcor Puritan Bennett Llc Three-dimensional waveform display for a breathing assistance system
US7574245B2 (en) 2006-09-27 2009-08-11 Nellcor Puritan Bennett Llc Flexible medical sensor enclosure
US7796403B2 (en) 2006-09-28 2010-09-14 Nellcor Puritan Bennett Llc Means for mechanical registration and mechanical-electrical coupling of a faraday shield to a photodetector and an electrical circuit
US7684842B2 (en) * 2006-09-29 2010-03-23 Nellcor Puritan Bennett Llc System and method for preventing sensor misuse
JP2010507176A (en) 2006-10-16 2010-03-04 ホスピラ・インコーポレイテツド System and method for comparing and utilizing dynamic information and configuration information from multiple device management systems
CN102772212A (en) 2006-10-26 2012-11-14 雅培糖尿病护理公司 Method, device and system for detection of sensitivity decline in analyte sensors
US20080119753A1 (en) * 2006-11-16 2008-05-22 Cardiopulmonary Technologies, Inc. Premature infant side-stream respiratory gas monitoring sensor
EP2096989B1 (en) * 2006-11-23 2012-11-21 Flore, Ingo Medical measuring device
EP2101645A2 (en) * 2006-12-13 2009-09-23 Phonak AG Providing hearing health care services by means of a home entertainment device
WO2008074533A1 (en) * 2006-12-21 2008-06-26 International Business Machines Corporation Training coordinator device and method
US8732188B2 (en) 2007-02-18 2014-05-20 Abbott Diabetes Care Inc. Method and system for providing contextual based medication dosage determination
US8930203B2 (en) 2007-02-18 2015-01-06 Abbott Diabetes Care Inc. Multi-function analyte test device and methods therefor
US8123686B2 (en) 2007-03-01 2012-02-28 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
US8280469B2 (en) 2007-03-09 2012-10-02 Nellcor Puritan Bennett Llc Method for detection of aberrant tissue spectra
US7894869B2 (en) * 2007-03-09 2011-02-22 Nellcor Puritan Bennett Llc Multiple configuration medical sensor and technique for using the same
US8265724B2 (en) 2007-03-09 2012-09-11 Nellcor Puritan Bennett Llc Cancellation of light shunting
EP2120713A2 (en) 2007-03-21 2009-11-25 Lumidigm, Inc. Biometrics based on locally consistent features
CA2683959C (en) 2007-04-14 2017-08-29 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
US10111608B2 (en) 2007-04-14 2018-10-30 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
EP2146623B1 (en) 2007-04-14 2014-01-08 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
EP2146625B1 (en) 2007-04-14 2019-08-14 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
US8117047B1 (en) 2007-04-16 2012-02-14 Insight Diagnostics Inc. Healthcare provider organization
US20080269579A1 (en) * 2007-04-30 2008-10-30 Mark Schiebler System for Monitoring Changes in an Environmental Condition of a Wearer of a Removable Apparatus
US7928850B2 (en) 2007-05-08 2011-04-19 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8461985B2 (en) 2007-05-08 2013-06-11 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8456301B2 (en) 2007-05-08 2013-06-04 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8665091B2 (en) 2007-05-08 2014-03-04 Abbott Diabetes Care Inc. Method and device for determining elapsed sensor life
US9125548B2 (en) 2007-05-14 2015-09-08 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8239166B2 (en) 2007-05-14 2012-08-07 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8444560B2 (en) 2007-05-14 2013-05-21 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8600681B2 (en) 2007-05-14 2013-12-03 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US10002233B2 (en) 2007-05-14 2018-06-19 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8103471B2 (en) 2007-05-14 2012-01-24 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8260558B2 (en) 2007-05-14 2012-09-04 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8560038B2 (en) 2007-05-14 2013-10-15 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
TWI322681B (en) * 2007-05-25 2010-04-01 Health gaming device and method of using such device
US11330988B2 (en) 2007-06-12 2022-05-17 Sotera Wireless, Inc. Body-worn system for measuring continuous non-invasive blood pressure (cNIBP)
US11607152B2 (en) 2007-06-12 2023-03-21 Sotera Wireless, Inc. Optical sensors for use in vital sign monitoring
US8602997B2 (en) * 2007-06-12 2013-12-10 Sotera Wireless, Inc. Body-worn system for measuring continuous non-invasive blood pressure (cNIBP)
US8419649B2 (en) * 2007-06-12 2013-04-16 Sotera Wireless, Inc. Vital sign monitor for measuring blood pressure using optical, electrical and pressure waveforms
US8617069B2 (en) 2007-06-21 2013-12-31 Abbott Diabetes Care Inc. Health monitor
AU2008265541B2 (en) 2007-06-21 2014-07-17 Abbott Diabetes Care, Inc. Health management devices and methods
US8160900B2 (en) 2007-06-29 2012-04-17 Abbott Diabetes Care Inc. Analyte monitoring and management device and method to analyze the frequency of user interaction with the device
US8834366B2 (en) 2007-07-31 2014-09-16 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor calibration
EP2203114B1 (en) * 2007-09-07 2011-11-16 Flore, Ingo Medical measuring device for bioelectrical impedance measurement
US8409093B2 (en) 2007-10-23 2013-04-02 Abbott Diabetes Care Inc. Assessing measures of glycemic variability
US8377031B2 (en) 2007-10-23 2013-02-19 Abbott Diabetes Care Inc. Closed loop control system with safety parameters and methods
US8082160B2 (en) 2007-10-26 2011-12-20 Hill-Rom Services, Inc. System and method for collection and communication of data from multiple patient care devices
US9026370B2 (en) 2007-12-18 2015-05-05 Hospira, Inc. User interface improvements for medical devices
US20090164239A1 (en) 2007-12-19 2009-06-25 Abbott Diabetes Care, Inc. Dynamic Display Of Glucose Information
US8346328B2 (en) 2007-12-21 2013-01-01 Covidien Lp Medical sensor and technique for using the same
US8352004B2 (en) 2007-12-21 2013-01-08 Covidien Lp Medical sensor and technique for using the same
US8252229B2 (en) 2008-04-10 2012-08-28 Abbott Diabetes Care Inc. Method and system for sterilizing an analyte sensor
WO2009126900A1 (en) 2008-04-11 2009-10-15 Pelikan Technologies, Inc. Method and apparatus for analyte detecting device
US20090275809A1 (en) * 2008-05-01 2009-11-05 Starr Life Sciences Corp. Portable Modular Kiosk Based Physiologic Sensor System with Display and Data Storage for Clinical and Research Applications including Cross Calculating and Cross Checked Physiologic Parameters Based Upon Combined Sensor Input
US20090275810A1 (en) * 2008-05-01 2009-11-05 Starr Life Sciences Corp. Portable modular pc based system for continuous monitoring of blood oxygenation and respiratory parameters
US8591410B2 (en) 2008-05-30 2013-11-26 Abbott Diabetes Care Inc. Method and apparatus for providing glycemic control
US8924159B2 (en) 2008-05-30 2014-12-30 Abbott Diabetes Care Inc. Method and apparatus for providing glycemic control
US8876755B2 (en) 2008-07-14 2014-11-04 Abbott Diabetes Care Inc. Closed loop control system interface and methods
US9943644B2 (en) 2008-08-31 2018-04-17 Abbott Diabetes Care Inc. Closed loop control with reference measurement and methods thereof
US20100057040A1 (en) 2008-08-31 2010-03-04 Abbott Diabetes Care, Inc. Robust Closed Loop Control And Methods
US8986208B2 (en) 2008-09-30 2015-03-24 Abbott Diabetes Care Inc. Analyte sensor sensitivity attenuation mitigation
US9326707B2 (en) 2008-11-10 2016-05-03 Abbott Diabetes Care Inc. Alarm characterization for analyte monitoring devices and systems
US8103456B2 (en) 2009-01-29 2012-01-24 Abbott Diabetes Care Inc. Method and device for early signal attenuation detection using blood glucose measurements
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
US9402544B2 (en) 2009-02-03 2016-08-02 Abbott Diabetes Care Inc. Analyte sensor and apparatus for insertion of the sensor
US10136816B2 (en) 2009-08-31 2018-11-27 Abbott Diabetes Care Inc. Medical devices and methods
DE102009011381A1 (en) 2009-03-05 2010-09-09 Flore, Ingo, Dr. Diagnostic measuring device
WO2010111489A2 (en) * 2009-03-27 2010-09-30 LifeWatch Corp. Methods and apparatus for processing physiological data acquired from an ambulatory physiological monitoring unit
US8497777B2 (en) 2009-04-15 2013-07-30 Abbott Diabetes Care Inc. Analyte monitoring system having an alert
US8271106B2 (en) 2009-04-17 2012-09-18 Hospira, Inc. System and method for configuring a rule set for medical event management and responses
WO2010127050A1 (en) 2009-04-28 2010-11-04 Abbott Diabetes Care Inc. Error detection in critical repeating data in a wireless sensor system
EP2425209A4 (en) 2009-04-29 2013-01-09 Abbott Diabetes Care Inc Method and system for providing real time analyte sensor calibration with retrospective backfill
US11896350B2 (en) 2009-05-20 2024-02-13 Sotera Wireless, Inc. Cable system for generating signals for detecting motion and measuring vital signs
US8956293B2 (en) * 2009-05-20 2015-02-17 Sotera Wireless, Inc. Graphical ‘mapping system’ for continuously monitoring a patient's vital signs, motion, and location
US8200321B2 (en) * 2009-05-20 2012-06-12 Sotera Wireless, Inc. Method for measuring patient posture and vital signs
US9184490B2 (en) 2009-05-29 2015-11-10 Abbott Diabetes Care Inc. Medical device antenna systems having external antenna configurations
US9775529B2 (en) 2009-06-17 2017-10-03 Sotera Wireless, Inc. Body-worn pulse oximeter
US20100331631A1 (en) * 2009-06-30 2010-12-30 Nellcor Puritan Bennett Llc Oxygen saturation ear sensor design that optimizes both attachment method and signal quality
US8613892B2 (en) 2009-06-30 2013-12-24 Abbott Diabetes Care Inc. Analyte meter with a moveable head and methods of using the same
EP3689237B1 (en) 2009-07-23 2021-05-19 Abbott Diabetes Care, Inc. Method of manufacturing and system for continuous analyte measurement
BR112012004177A2 (en) 2009-08-26 2016-03-29 Lumidigm Inc biometric method and system, system, method, object location, object discrimination, and background methods, and multifaceted prism
US9314195B2 (en) 2009-08-31 2016-04-19 Abbott Diabetes Care Inc. Analyte signal processing device and methods
WO2011026148A1 (en) 2009-08-31 2011-03-03 Abbott Diabetes Care Inc. Analyte monitoring system and methods for managing power and noise
ES2950160T3 (en) 2009-08-31 2023-10-05 Abbott Diabetes Care Inc Displays for a medical device
US20110066043A1 (en) * 2009-09-14 2011-03-17 Matt Banet System for measuring vital signs during hemodialysis
US11253169B2 (en) 2009-09-14 2022-02-22 Sotera Wireless, Inc. Body-worn monitor for measuring respiration rate
US20110066008A1 (en) * 2009-09-14 2011-03-17 Matt Banet Body-worn monitor for measuring respiration rate
US10806351B2 (en) * 2009-09-15 2020-10-20 Sotera Wireless, Inc. Body-worn vital sign monitor
US10420476B2 (en) 2009-09-15 2019-09-24 Sotera Wireless, Inc. Body-worn vital sign monitor
US20110066044A1 (en) * 2009-09-15 2011-03-17 Jim Moon Body-worn vital sign monitor
US8527038B2 (en) * 2009-09-15 2013-09-03 Sotera Wireless, Inc. Body-worn vital sign monitor
WO2011041469A1 (en) 2009-09-29 2011-04-07 Abbott Diabetes Care Inc. Method and apparatus for providing notification function in analyte monitoring systems
US8185181B2 (en) 2009-10-30 2012-05-22 Abbott Diabetes Care Inc. Method and apparatus for detecting false hypoglycemic conditions
US8924878B2 (en) 2009-12-04 2014-12-30 Covidien Lp Display and access to settings on a ventilator graphical user interface
US9119925B2 (en) 2009-12-04 2015-09-01 Covidien Lp Quick initiation of respiratory support via a ventilator user interface
US8335992B2 (en) 2009-12-04 2012-12-18 Nellcor Puritan Bennett Llc Visual indication of settings changes on a ventilator graphical user interface
US9262588B2 (en) 2009-12-18 2016-02-16 Covidien Lp Display of respiratory data graphs on a ventilator graphical user interface
US8499252B2 (en) 2009-12-18 2013-07-30 Covidien Lp Display of respiratory data graphs on a ventilator graphical user interface
CN102687152B (en) 2009-12-19 2017-03-22 皇家飞利浦电子股份有限公司 COPD exacerbation prediction system
WO2011077275A2 (en) 2009-12-21 2011-06-30 Koninklijke Philips Electronics N.V. Bode index measurement
CN102687155A (en) 2009-12-28 2012-09-19 皇家飞利浦电子股份有限公司 Biofeedback for program guidance in pulmonary rehabilitation
USD924406S1 (en) 2010-02-01 2021-07-06 Abbott Diabetes Care Inc. Analyte sensor inserter
DE102010010610A1 (en) * 2010-03-08 2011-09-08 Pulsion Medical Systems Ag Portable sensor device and patient monitor
CN102782691B (en) 2010-03-08 2016-06-01 皇家飞利浦电子股份有限公司 For obtaining the system and method for dyspneic objective metric
WO2011112753A1 (en) 2010-03-10 2011-09-15 Abbott Diabetes Care Inc. Systems, devices and methods for managing glucose levels
US20110224500A1 (en) * 2010-03-10 2011-09-15 Sotera Wireless, Inc. Body-worn vital sign monitor
US8570149B2 (en) 2010-03-16 2013-10-29 Lumidigm, Inc. Biometric imaging using an optical adaptive interface
EP4245220A3 (en) 2010-03-24 2023-12-20 Abbott Diabetes Care, Inc. Medical device inserters
US20130024212A1 (en) 2010-03-31 2013-01-24 Koninklijke Philips Electronics N.V. Method and system for optimizing questionnaires
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9173593B2 (en) 2010-04-19 2015-11-03 Sotera Wireless, Inc. Body-worn monitor for measuring respiratory rate
US8747330B2 (en) 2010-04-19 2014-06-10 Sotera Wireless, Inc. Body-worn monitor for measuring respiratory rate
US9339209B2 (en) 2010-04-19 2016-05-17 Sotera Wireless, Inc. Body-worn monitor for measuring respiratory rate
US9173594B2 (en) 2010-04-19 2015-11-03 Sotera Wireless, Inc. Body-worn monitor for measuring respiratory rate
US8888700B2 (en) 2010-04-19 2014-11-18 Sotera Wireless, Inc. Body-worn monitor for measuring respiratory rate
US8979765B2 (en) 2010-04-19 2015-03-17 Sotera Wireless, Inc. Body-worn monitor for measuring respiratory rate
US9351654B2 (en) 2010-06-08 2016-05-31 Alivecor, Inc. Two electrode apparatus and methods for twelve lead ECG
US8509882B2 (en) 2010-06-08 2013-08-13 Alivecor, Inc. Heart monitoring system usable with a smartphone or computer
US8635046B2 (en) 2010-06-23 2014-01-21 Abbott Diabetes Care Inc. Method and system for evaluating analyte sensor response characteristics
US11064921B2 (en) 2010-06-29 2021-07-20 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
US10092229B2 (en) 2010-06-29 2018-10-09 Abbott Diabetes Care Inc. Calibration of analyte measurement system
US8676285B2 (en) 2010-07-28 2014-03-18 Covidien Lp Methods for validating patient identity
WO2012020433A1 (en) * 2010-08-09 2012-02-16 Mir Srl-Medical International Research Portable device for monitoring and reporting of medical information for the evidence -based management of patients with chronic respiratory disease
US8554298B2 (en) 2010-09-21 2013-10-08 Cividien LP Medical ventilator with integrated oximeter data
US10856752B2 (en) 2010-12-28 2020-12-08 Sotera Wireless, Inc. Body-worn system for continuous, noninvasive measurement of cardiac output, stroke volume, cardiac power, and blood pressure
CA2825331A1 (en) * 2011-01-21 2012-07-26 Worcester Polytechnic Institute Physiological parameter monitoring with a mobile communication device
CN103491860B (en) 2011-02-18 2016-10-19 索泰拉无线公司 For measuring the optical pickocff of physiological property
US9439574B2 (en) 2011-02-18 2016-09-13 Sotera Wireless, Inc. Modular wrist-worn processor for patient monitoring
US10136845B2 (en) 2011-02-28 2018-11-27 Abbott Diabetes Care Inc. Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same
CA3177983A1 (en) 2011-02-28 2012-11-15 Abbott Diabetes Care Inc. Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same
JP6141827B2 (en) 2011-04-15 2017-06-07 デックスコム・インコーポレーテッド Method of operating a system for measuring an analyte and sensor system configured to implement the method
AU2012299169B2 (en) 2011-08-19 2017-08-24 Icu Medical, Inc. Systems and methods for a graphical interface including a graphical representation of medical data
WO2013059615A1 (en) 2011-10-21 2013-04-25 Hospira, Inc. Medical device update system
US9622691B2 (en) 2011-10-31 2017-04-18 Abbott Diabetes Care Inc. Model based variable risk false glucose threshold alarm prevention mechanism
WO2013066873A1 (en) 2011-10-31 2013-05-10 Abbott Diabetes Care Inc. Electronic devices having integrated reset systems and methods thereof
EP2775918B1 (en) 2011-11-07 2020-02-12 Abbott Diabetes Care Inc. Analyte monitoring device and methods
US8710993B2 (en) 2011-11-23 2014-04-29 Abbott Diabetes Care Inc. Mitigating single point failure of devices in an analyte monitoring system and methods thereof
US9317656B2 (en) 2011-11-23 2016-04-19 Abbott Diabetes Care Inc. Compatibility mechanisms for devices in a continuous analyte monitoring system and methods thereof
CA2840642C (en) 2011-12-11 2022-01-18 Abbott Diabetes Care Inc. Analyte sensor devices, connections, and methods
WO2013090709A1 (en) 2011-12-16 2013-06-20 Hospira, Inc. System for monitoring and delivering medication to a patient and method of using the same to minimize the risks associated with automated therapy
ES2741725T3 (en) 2012-03-30 2020-02-12 Icu Medical Inc Air detection system and method to detect air in a pump of an infusion system
US10362967B2 (en) 2012-07-09 2019-07-30 Covidien Lp Systems and methods for missed breath detection and indication
US10463788B2 (en) 2012-07-31 2019-11-05 Icu Medical, Inc. Patient care system for critical medications
EP2890297B1 (en) 2012-08-30 2018-04-11 Abbott Diabetes Care, Inc. Dropout detection in continuous analyte monitoring data during data excursions
US9968306B2 (en) 2012-09-17 2018-05-15 Abbott Diabetes Care Inc. Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems
EP2901153A4 (en) 2012-09-26 2016-04-27 Abbott Diabetes Care Inc Method and apparatus for improving lag correction during in vivo measurement of analyte concentration with analyte concentration variability and range data
US9254095B2 (en) 2012-11-08 2016-02-09 Alivecor Electrocardiogram signal detection
US9220430B2 (en) 2013-01-07 2015-12-29 Alivecor, Inc. Methods and systems for electrode placement
EP2964079B1 (en) 2013-03-06 2022-02-16 ICU Medical, Inc. Medical device communication method
US10433773B1 (en) 2013-03-15 2019-10-08 Abbott Diabetes Care Inc. Noise rejection methods and apparatus for sparsely sampled analyte sensor data
US10076285B2 (en) 2013-03-15 2018-09-18 Abbott Diabetes Care Inc. Sensor fault detection using analyte sensor data pattern comparison
US9474475B1 (en) 2013-03-15 2016-10-25 Abbott Diabetes Care Inc. Multi-rate analyte sensor data collection with sample rate configurable signal processing
US9254092B2 (en) 2013-03-15 2016-02-09 Alivecor, Inc. Systems and methods for processing and analyzing medical data
WO2014190264A1 (en) 2013-05-24 2014-11-27 Hospira, Inc. Multi-sensor infusion system for detecting air or an occlusion in the infusion system
CA2913915C (en) 2013-05-29 2022-03-29 Hospira, Inc. Infusion system which utilizes one or more sensors and additional information to make an air determination regarding the infusion system
EP3003442B1 (en) 2013-05-29 2020-12-30 ICU Medical, Inc. Infusion system and method of use which prevents over-saturation of an analog-to-digital converter
US9170193B2 (en) 2013-06-06 2015-10-27 General Electric Company Detecting coolant leaks in turbine generators
US9247911B2 (en) 2013-07-10 2016-02-02 Alivecor, Inc. Devices and methods for real-time denoising of electrocardiograms
US9097657B2 (en) 2013-07-23 2015-08-04 General Electric Company Leak detection of stator liquid cooling system
CA2922425C (en) 2013-08-30 2023-05-16 Hospira, Inc. System and method of monitoring and managing a remote infusion regimen
US9662436B2 (en) 2013-09-20 2017-05-30 Icu Medical, Inc. Fail-safe drug infusion therapy system
US10311972B2 (en) 2013-11-11 2019-06-04 Icu Medical, Inc. Medical device system performance index
EP3071253B1 (en) 2013-11-19 2019-05-22 ICU Medical, Inc. Infusion pump automation system and method
US9420956B2 (en) 2013-12-12 2016-08-23 Alivecor, Inc. Methods and systems for arrhythmia tracking and scoring
CA2933166C (en) 2013-12-31 2020-10-27 Abbott Diabetes Care Inc. Self-powered analyte sensor and devices using the same
EP3110474B1 (en) 2014-02-28 2019-12-18 ICU Medical, Inc. Infusion system and method which utilizes dual wavelength optical air-in-line detection
EP4151150A1 (en) 2014-03-30 2023-03-22 Abbott Diabetes Care, Inc. Method and apparatus for determining meal start and peak events in analyte monitoring systems
WO2015168427A1 (en) 2014-04-30 2015-11-05 Hospira, Inc. Patient care system with conditional alarm forwarding
JP2017517302A (en) 2014-05-29 2017-06-29 ホスピーラ インコーポレイテッド Infusion system and pump with configurable closed loop delivery rate catchup
US9724470B2 (en) 2014-06-16 2017-08-08 Icu Medical, Inc. System for monitoring and delivering medication to a patient and method of using the same to minimize the risks associated with automated therapy
US11386998B2 (en) * 2014-08-07 2022-07-12 Board Of Regents Of The University Of Nebraska Systems and techniques for estimating the severity of chronic obstructive pulmonary disease in a patient
US9539383B2 (en) 2014-09-15 2017-01-10 Hospira, Inc. System and method that matches delayed infusion auto-programs with manually entered infusion programs and analyzes differences therein
US9950129B2 (en) 2014-10-27 2018-04-24 Covidien Lp Ventilation triggering using change-point detection
US11344668B2 (en) 2014-12-19 2022-05-31 Icu Medical, Inc. Infusion system with concurrent TPN/insulin infusion
US10850024B2 (en) 2015-03-02 2020-12-01 Icu Medical, Inc. Infusion system, device, and method having advanced infusion features
US9839363B2 (en) 2015-05-13 2017-12-12 Alivecor, Inc. Discordance monitoring
US10213139B2 (en) 2015-05-14 2019-02-26 Abbott Diabetes Care Inc. Systems, devices, and methods for assembling an applicator and sensor control device
WO2016183493A1 (en) 2015-05-14 2016-11-17 Abbott Diabetes Care Inc. Compact medical device inserters and related systems and methods
ES2845725T3 (en) 2015-05-26 2021-07-27 Icu Medical Inc Infusion pump system and method with multiple drug library editor source capability
AU2016291569B2 (en) 2015-07-10 2021-07-08 Abbott Diabetes Care Inc. System, device and method of dynamic glucose profile response to physiological parameters
CN105125134A (en) * 2015-09-16 2015-12-09 苏州合欣美电子科技有限公司 Physical sign monitoring toilet seat based on Internet of Things
JP7209538B2 (en) * 2015-11-16 2023-01-20 レスピリックス,インコーポレイテッド Devices and methods for monitoring physiological parameters
US10360787B2 (en) 2016-05-05 2019-07-23 Hill-Rom Services, Inc. Discriminating patient care communications system
WO2017197024A1 (en) 2016-05-13 2017-11-16 Icu Medical, Inc. Infusion pump system and method with common line auto flush
CA3027176A1 (en) 2016-06-10 2017-12-14 Icu Medical, Inc. Acoustic flow sensor for continuous medication flow measurements and feedback control of infusion
EP3484541A4 (en) 2016-07-14 2020-03-25 ICU Medical, Inc. Multi-communication path selection and security system for a medical device
WO2018136898A1 (en) 2017-01-23 2018-07-26 Abbott Diabetes Care Inc. Systems, devices and methods for analyte sensor insertion
WO2018175489A1 (en) 2017-03-21 2018-09-27 Abbott Diabetes Care Inc. Methods, devices and system for providing diabetic condition diagnosis and therapy
AU2018354120A1 (en) 2017-10-24 2020-04-23 Dexcom, Inc. Pre-connected analyte sensors
US11331022B2 (en) 2017-10-24 2022-05-17 Dexcom, Inc. Pre-connected analyte sensors
US10089055B1 (en) 2017-12-27 2018-10-02 Icu Medical, Inc. Synchronized display of screen content on networked devices
GB2576136B (en) * 2018-07-14 2022-08-24 Arete Medical Tech Ltd Multi-test respiratory diagnostic device
GB2576137B (en) * 2018-07-14 2022-07-13 Arete Medical Tech Ltd Multi-test respiratory diagnostic device
US10861592B2 (en) 2018-07-17 2020-12-08 Icu Medical, Inc. Reducing infusion pump network congestion by staggering updates
US10741280B2 (en) 2018-07-17 2020-08-11 Icu Medical, Inc. Tagging pump messages with identifiers that facilitate restructuring
EP3824386B1 (en) 2018-07-17 2024-02-21 ICU Medical, Inc. Updating infusion pump drug libraries and operational software in a networked environment
WO2020018389A1 (en) 2018-07-17 2020-01-23 Icu Medical, Inc. Systems and methods for facilitating clinical messaging in a network environment
EP3827337A4 (en) 2018-07-26 2022-04-13 ICU Medical, Inc. Drug library management system
US10692595B2 (en) 2018-07-26 2020-06-23 Icu Medical, Inc. Drug library dynamic version management
USD1002852S1 (en) 2019-06-06 2023-10-24 Abbott Diabetes Care Inc. Analyte sensor device
US11278671B2 (en) 2019-12-04 2022-03-22 Icu Medical, Inc. Infusion pump with safety sequence keypad
US11672934B2 (en) 2020-05-12 2023-06-13 Covidien Lp Remote ventilator adjustment
WO2022020184A1 (en) 2020-07-21 2022-01-27 Icu Medical, Inc. Fluid transfer devices and methods of use
US11135360B1 (en) 2020-12-07 2021-10-05 Icu Medical, Inc. Concurrent infusion with common line auto flush
USD999913S1 (en) 2020-12-21 2023-09-26 Abbott Diabetes Care Inc Analyte sensor inserter

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5307263A (en) * 1992-11-17 1994-04-26 Raya Systems, Inc. Modular microprocessor-based health monitoring system
US5479457A (en) 1993-08-27 1995-12-26 Vlsi Technology Inc. Method and apparatus for attenuating jitter in a digital transmission line
US5549115A (en) 1994-09-28 1996-08-27 Heartstream, Inc. Method and apparatus for gathering event data using a removable data storage medium and clock
US5623925A (en) * 1995-06-05 1997-04-29 Cmed, Inc. Virtual medical instrument for performing medical diagnostic testing on patients
US5999168A (en) * 1995-09-27 1999-12-07 Immersion Corporation Haptic accelerator for force feedback computer peripherals
US5701894A (en) * 1995-11-09 1997-12-30 Del Mar Avionics Modular physiological computer-recorder
EP0841800A3 (en) * 1996-11-11 1998-05-27 Instromedix, Inc. Concurrent medical patient data and voice communication method and apparatus
US5827179A (en) * 1997-02-28 1998-10-27 Qrs Diagnostic, Llc Personal computer card for collection for real-time biological data

Also Published As

Publication number Publication date
US6159147A (en) 2000-12-12
CA2347544C (en) 2009-12-22
EP1124479A1 (en) 2001-08-22
MXPA01003784A (en) 2003-07-21
WO2000021434A1 (en) 2000-04-20
AU6276699A (en) 2000-05-01
CN1330525A (en) 2002-01-09
EP1124479A4 (en) 2008-10-08
AU763773B2 (en) 2003-07-31

Similar Documents

Publication Publication Date Title
CA2347544A1 (en) Personal computer card for collection of real-time biological data
US6712762B1 (en) Personal computer card for collection of real-time biological data
US5827179A (en) Personal computer card for collection for real-time biological data
KR100592934B1 (en) Wearable physiological signal detection module and measurement apparatus with the same
KR101902594B1 (en) Wireless fetal monitoring system
EP1153573A2 (en) Stethoscope mouse
US20090024044A1 (en) Data recording for patient status analysis
US20090312638A1 (en) medical diagnostic device
CN201139553Y (en) Multifunctional diagnosis examination device for general practice
CN109276272A (en) A kind of multifunctional intellectual stethoscope
EP2526859B1 (en) Portable and wearable system for the acquisition, displaying, storage and proximal elaboration of an electrocardiographic signal (ECG), for recognising arrhythmic and ischaemic events, with remote transmission
TW200927065A (en) Monitoring and control system for cardiopulmonary function and device thereof
WO2000067636A1 (en) Physiological signal acquisition cable
JP2001314386A (en) Portable electrocardiogram memory and transmission apparatus
CN205107654U (en) Electronic sphygmomanometer with auscultation function
JP2008229320A (en) Miniature, wireless apparatus for processing physiological signals and use thereof
AU4094100A (en) Physiological signal acquisition cable
KR20020088039A (en) Remote diagnosis equipment as a personal computer peripheral
MXPA99007894A (en) Personal computer card for collection of real-time biological data
KR20160065465A (en) Integrated Amplifier sensing apparatus for sensing biological signal
JPH0628643B2 (en) Portable biological signal processor

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed
MKLA Lapsed

Effective date: 20120928