CA2334588A1 - Patient-controlled drug administration device - Google Patents

Patient-controlled drug administration device Download PDF

Info

Publication number
CA2334588A1
CA2334588A1 CA002334588A CA2334588A CA2334588A1 CA 2334588 A1 CA2334588 A1 CA 2334588A1 CA 002334588 A CA002334588 A CA 002334588A CA 2334588 A CA2334588 A CA 2334588A CA 2334588 A1 CA2334588 A1 CA 2334588A1
Authority
CA
Canada
Prior art keywords
chamber
flow
agent
diaphragm
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002334588A
Other languages
French (fr)
Inventor
Charlie J. Mcphee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
I Flow Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2334588A1 publication Critical patent/CA2334588A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/14212Pumping with an aspiration and an expulsion action
    • A61M5/1424Manually operated pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M2005/1401Functional features
    • A61M2005/1405Patient controlled analgesia [PCA]

Abstract

A PCA device includes a fluid conduit having an upstream portion and a downstream portion, a first flow-restricting orifice in the upstream portion, a second flow-restricting orifice in the downstream portion, a pressure-responsive check valve in the downstream portion in parallel with t he second flow-restricting orifice, and a bolus dose delivery mechanism includi ng a chamber in fluid communication between the upstream portion and the down- stream portion. Continuous flow is provided through the first flow-restricting orifice, the chamber, and the second flow-restrictive orifice, the continuou s flow serving to fill the chamber at a controlled rate through the first flow- restrictive orifice. The bolus dose delivery mechanism is manually actuable to express t he contents of the chamber through the check valve to supplement the continuous flow through the downstream portion. The bolus dose delivery mechanism includes a resilient diaphragm that forms a sealed closure for the chamber. The diaphragm is movable from a decompressed position to a compressed position by a plunger that directly engages the diaphragm, and it is restored to the de-compressed position by the flow of fluid into the chamber.

Description

PATIENT-CONTROLLED DRUG ADMINISTRATION DEVICE
BACKGROUND OF THE INVENTION
s The present invention relates to the field of patient-controlled drug administration devices. More specifically, it relates to an apparatus for administering a medicinal agent to a patient that allows the patient to provide a precisely controlled self administered bolus dose of the agent in addition to a continuous flow of the agent.
~o In many clinical situations, it is necessary to administer a continuous flow of a medicinal agent to a patient, and to augment the basal flow periodically or intermittently with a supplemental or "bolus" dose of the agent.
This regimen is frequently used in the management of chronic pain, where a continuous flow of an analgesic is maintained by infusion, but a bolus dose of ~s the analgesic is infused at selected times when the patient experiences a sharp increase in the pain. Because most analgesics must be carefully administered to avoid overdosing, the timing and the volume of the bolus doses must be carefully controlled. This control is often exercised by a medical practitioner who administers the bolus dose when it is deemed necessary or desirable.
zo In chronic care situations, or in home care situations, it is impractical, in many cases, to have a medical practitioner available whenever a patient wants or needs a supplemental bolus dose. Consequently, a number of drug administration devices have been developed that allow the patient to self administer a controlled bolus dose. These devices (sometimes called patient-Zs controlled administration devices, or "PCA" devices) typically provide a bolus .. ..
21-96-2b00 ~ 02:34588 2000-12-07 US 009912852 .. ~ ~ . . .
24235PC1 , .. ~ . , . . , .
. ..
.. ~. ~ . , ~ ~~~ ~ ~ , ~
. . ~ ' ~.. ~~ ~ ~~ ~.
,.
.... ...
dose that is no more than a predetermined volume, and they also typically include a "lock-out" mechanism, by which is meant a mechanism that limits the frequency of bolus dose administration, or that limits the total bolus dose volume administered over a selected time interval. Some, but not all, prior art PCA devices also allow a controlled continuous flow of the agent between bolus doses. Examples of prior art PCA devices are disclosed in the following U.S. patents: 4,398,908 - Siposs;
4,544,371 - Dormandy, Jr. et al.; 4,548,607 - Harris; 4,601,707 - Albisser et al.;
4,634,427 - Hannula et al.; 4,668,231 - de Vries et al.; 4,699,615 - Fischell et al.;
4,828,551 - Gertler et al.; 4,898,584 - Borsanyi et al.; 4,898,585 - Borsanyi et al.;
5,011,477 - Winchell et al.; 5,061,243 - Wincheil et al.; and 5,304,153 -Tsujikawa.
Many of the prior art PCA devices are specifically designed to be implantable within the patient's body. For example, of the above-listed patents, the following disclose implantable devices: Dormandy, Jr. et al. '371, Harris '607, Hannula et al. '427, de Vries et al. '231, Fischefl et al. '615, Borsanyi et al. '584, and Borsanyi et al. '585. This approach, which requires a surgical procedure for the implantation, may not be suitable for all patients, especially those whose need for the drug is temporary, even if relatively long-term.
Many of the non-implantable PCA devices that have been developed to date are bulky or complex. Such devices are typically expensive to manufacture, and therefore not suitable for single-patient disposable applications. Other devices, while providing convenient delivery of bolus doses on patient demand, require a parallel system for delivery of a continuous flow. An example of the latter type of device is disclosed in U.S. Patent No. 5,304,153 - Tsujikawa.
EP-A-0 523 456, which corresponds to the above mentioned US Patent No.
5,304,153, discloses a device for self-dosing a liquid medicine and comprising a casing having a chamber for receiving the liquid medicine to be self-dosed by a AMENDED SHEET

21-06-2000 ~ 02334588 2000-12-07 ~ ..
. 2,423bPC1 » ~ ~ ~ ~' " US 009912852 .. ~ , .. " .
:. ~~ ~ ' " ~ ~ ~~' . . . . : . . .. . . ..
~ ~ ~ ~ ~ ' .. ..
. . ~ ~ .. ~~
.... ...
patient. The chamber has inlet and outlet ports communicating with the chamber, and a piston is fitted liquid-tightly in the chamber. A push button is attached to the actuating piston and is capable of being pressed by the patient a desired number of times corresponding to an amount of dosed liquid medicine, and a spring urging the piston towards the home position. With the patient's hand being removed from the button the spring forces the piston backwards to its home position and a resulting negative pressure causes a subsequent smooth refilling of the chamber.
The device described may be combined with an apparatus having a usual dosing line through which the liquid medicine flows continuously at a iow flow rate.
Thus, there has been a need for a non-implantable PCA device that provides convenient, measured, patient-controlled bolus doses of a therapeutic agent, and that also allows for a regulated continuous or basal flow of the agent.
Furthermore, it would be advantageous if such a device were to have a "lock-out"
mechanism that limits the total bolus dose volume delivered at any one time or over any specified time interval. In addition, it would be advantageous for such a device to be simply constructed and easily and inexpensively manufactured, so that it may be made as a single-patient disposable apparatus.
SUMMARY OF THE INVENTION
The present invention provides a device for the administration of a liquid therapeutic agent to a patient, said device being of the type comprising a fluid flow conduit having an upstream portion and a downstream portion, which are in liquid communication via first and second conduit sections connected in parallel, a check valve in fluid communication with the second conduit section that is responsive to a predetermined cracking pressure to allow fluid flow from the second conduit section AMENDED SHEET

21-06-2b00 ~ 02334588 2000-12-07 24235PC1 ' ~ " US 009912852 .. . .. ~.. , . .
:. .: ~ ~ ~' ; : ...
~ ~ . ..
. . . ~~ , ~ . .~ ~ ,.
~ : ~ ~ '..' ~~~~ ~ ~~ ..
- ~ .... ...
3a to the downstream portion, and a bolus dose delivery mechanism that is selectively actuate able to apply a pressure that is at least equal to the cracking pressure to express a predetermined volume of the agent through the second conduit section and the check valve. The device according to the invention is characterised in that the fluid flow conduit is defined in a housing, which also defines a chamber therein having an inlet lumen in fluid communication with said upstream portion and first and second outlet lumens constituting said conduit sections and being separately in communication with the downstream portion, and in that the bolus dose delivery mechanism is selectively actuate able to (a) apply said pressure at least equal to the cracking pressure to the chamber so as to express said volume there from through the second outlet lumen, and (b) allow a refilling of the chamber with the agent through the first inlet lumen while also allowing a continuous flow of the agent from the chamber through the first outlet lumen. Continuous flow is provided through the first flow-restricting orifice, the chamber, and the second flow-restrictive orifice, the continuous flow serving to fill the chamber at a controlled rate through the first flow-restrictive orifice. The bolus dose delivery mechanism is manually actuable to express the contents of the chamber through the check valve to supplement the continuous flow through the downstream portion.
In a particular preferred embodiment, the bolus dose delivery mechanism comprises a resilient diaphragm that forms a sealed closure for the chamber.
The diaphragm is movable from a decompressed position to a compressed position by a plunger that is in direct engagement with the exterior surface of the diaphragm, and it is restored to the decompressed position by the flow of fluid into the chamber.
AMENDED SHEET
In operation, a liquid therapeutic agent is continuously delivered, under pressure, to the chamber through the upstream portion at a flow rate controlled by the first flow-restricting orifice. The agent fills the chamber against the resistance offered by the diaphragm, the fluid flow pushing the diaphragm s from its compressed to its decompressed position as the chamber fills. A
fractional portion of the agent that flows into the chamber also flows out of the chamber, throughout the filling process, through the second flow-restricting orifice. All of the outflow is through the second flow-restricting orifice, the pressure of the flow being less than the cracking pressure of the check valve.
~o When the chamber is filled to capacity, after a predetermined time interval, the diaphragm is in its fully decompressed position, in which it offers little or no resistance to the fluid flow into the chamber. With the chamber filled, the continuous flow rate through the device achieves a predetermined steady state, regulated by the first and second flow-restricting orifices.
is When a bolus dose is desired, the plunger is depressed to push the diaphragm toward its compressed position. This compression of the volume of the chamber pressurizes its contents to a pressure above the cracking pressure of the check valve, thereby opening the check valve so that the contents of the chamber are expressed through the check valve. Because the open check 2o valve offers less flow resistance that the second flow-restricting orifice that is in parallel with it, substantially all of the outflow from the chamber is through the check valve, rather than the second flow-restricting orifice.
After the bolus dose is thus delivered, the chamber is refilled, as described above, by the continuous flow of the agent. Because a 25 predetermined time interval must elapse before the chamber is completely refilled and ready to deliver another bolus dose on demand, the maximum volume of the total bolus dose deliverable over any given period of time is defined by a predetermined limit. Thus, the above-described lock-out function S
is thereby provided.
As will be more fully appreciated from the detailed description that follows, the subject invention provides both a controlled continuous (basal) flow and a controlled bolus dose on demand. The total volume of the bolus s dose deliverable over a given period of time is, however, limited to a predetermined maximum by the above-described lack-out function. These capabilities are achieved in device that may be made small enough and light enough in weight to be comfortably worn (e.g., on the wrist) by a patient.
Furthermore, a PCA device in accordance with the present invention is simple ~o in construction, and may therefore be manufactured inexpensively, so as to be adapted for single patient, disposable use. Such simplicity also lends itself to reliability and ease of maintenance and care.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a semi-schematic view of a drug infusion system employing a patient-controlled administration (PCA) device in accordance with a preferred embodiment of the present invention;
Figure 2 is a longitudinal cross-sectional view of a PCA device in accordance with a preferred embodiment of the present invention, taken along 20 line 2 - 2 of Figure 1, showing the diaphragm of the bolus dose delivery mechanism in its compressed position;
Figure 3 is an enlarged detailed view of the check valve of the PCA
device of Figure 2, as encompassed within the broken outline 3 of Figure 2;
Figure 4 is a cross-sectional view, similar to Figure 2, but showing the 2s diaphragm of the bolus dose delivery mechanism in its decompressed position;
and Figure 5 is a cross-sectional view taken along line 5 - 5 of Figure 4.

DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT
Referring now to the drawings, Figure 1 shows a drug infusion system employing a patient-controlled administration (PCA) device 12 in accordance with a preferred embodiment of the present invention. The system s comprises a pressurized fluid source 14 that holds a supply of a liquid therapeutic agent, and that pumps the agent into the PCA device 12 through a supply conduit 18 under a predetermined pressure. The supply conduit 18 is fluidly connected to the upstream side of the PCA device 12, as will be described below. The downstream side of the PCA device 12 is fluidly io connected to a delivery tube 20, as described below, which terminates in a needle (not shown), which may be configured for intravenous, subcutaneous, intramuscular, or intrathecal injection.
Figures 2 through 5 illustrate the PCA device 12 in detail. The device 12 comprises a housing 22 defining a fluid conduit having an upstream portion ~ s 24 and a downstream portion 26. The upstream portion 24 is fluidly connectable to the supply conduit 18, while the downstream portion 26 is fluidly connectable to the delivery conduit 20. The fluid conduit of the PCA
device 12 includes a chamber 28 having an inlet part 30 in fluid communication with the upstream portion 24 and first and second outlet ports 32, 34 in fluid communication with the downstream portion 26. In a specific preferred embodiment of the invention, the chamber 28 has a maximum volume of about 0.5 ml when filled. A first or upstream flow-restricting orifice 36 is contained within the upstream portion 24, and a second or downstream flow-restricting orifice 38 is contained within the first outlet port 32 at the juncture with the downstream portion 26.
The PCA device 12 includes a bolus dose delivery mechanism, which is best described with reference to Figure 4. The bolus dose delivery mechanism includes the chamber 28, which is enclosed by the housing 22 on all sides except for one side that is sealed by a resilient diaphragm 40. The diaphragm 40 has a raised central portion 42 that is directly engaged by the inner end of a plunger 44 that is axially movable within a cylindrical fitting 46. The diaphragm 40 also has a peripheral bead 48 that seats in a conforming circular s groove 50 in the housing 22. A peripheral skirt 51 is provided circumferentially around the distal (inner) end of the cylindrical fitting 46.
The skirt 51 defines an annular slot 52 between itself and the distal end of the fitting 46. The slot 52 receives an annular lip 53 that extends proximally (outwardly) from the housing 22, whereby the fitting 46 is attached to the ~o housing 22 and secured thereto by means such as a suitable adhesive, or by ultrasonic welding. When the fitting 46 is thus attached to the housing 22, the distal (inner) end of the fitting presses the diaphragm bead 48 firmly into the groove 50, creating a fluid-tight seal therebetween.
The plunger 44 has a circumferential ridge S4 that is engageable against ~s the distal or interior-facing side of an annular shoulder 56 within the cylindrical fitting 46. The engagement between the shoulder 56 and the ridge 54 limits the travel of the plunger 44 in the proximal or outward direction within the cylindrical fitting 46 under the resilient force of the diaphragm 40.
The plunger 44 is thus captured between the diaphragm 40 and the shoulder zo 56. The cylindrical fitting 46 has an open proximal or outer end through which the proximal end of the plunger 44 is accessible to the finger or thumb of the patient or other user of the device 12. Thus, the proximal end of the plunger 44 forms a pushbutton 58 (Figure 1 ) for manual actuation of the bolus dose delivery mechanism.
zs Situated within the second outlet port 34 is a check valve 60. As best seen in Figure 3, the check valve 60 comprises a tubular fitting 62 tapered toward its downstream end, which is terminated by a knob-like valve body 64.
An outlet orifice 66 is provided in the tapered portion of the tubular fitting just upstream from the valve body 64. A conformal flexible membrane 68 is fixed around the exterior of the tubular fitting 62, covering the outlet orifice 66 and extending over most of the valve body 64. The membrane 68 functions much as a "duck-bill" valve element, sealing the orifice 66 (as shown in s Figures 2, 4, and 5) until the fluid pressure in the second outlet port 34 reaches a predetermined "cracking pressure" that separates the membrane 68 from the valve body 64 and thus opens the orifice 66, as shown in Figure 3.
As best shown in Figure 4, the housing 22 advantageously is formed with a pair of laterally-extending flaps 70, each of which is provided with a ,o longitudinal slot 72. The slots 72 are configured to accommodate a wrist strap (not shown), allowing the device 12 to be worn on a patient's wrist (not shown).
In operation, a liquid therapeutic agent is continuously delivered from the pressurized fluid source 14 to the chamber 28, through the supply conduit ~s 18, to the upstream portion 24 of the PCA device 12. The liquid flows into the chamber 28 through the inlet 30 at a flow rate that is regulated by the first flow-restricting orifice 36. In a specific preferred embodiment of the invention, the flow rate through the inlet 30 is regulated to about 2.5 ml/hr.
The liquid fills the chamber 28, non-linearly versus time, against the 2o diminishing resistance offered by the diaphragm 40, the fluid flow pushing the diaphragm 40 from its compressed position (Figure 2) to its decompressed position (Figure 4) as the chamber 40 fills. As the diaphragm 40 is moved from its compressed position to its decompressed position, it pushes the plunger 44 outwardly (in a proximal direction) within the cylindrical fitting 46.
2s The diaphragm 40 reaches its fully decompressed position when the chamber 28 is filled to capacity; at this point, the plunger 44 is pushed to its proximal limit of travel at which its ridge 54 abuts against the shoulder 56.
Throughout the chamber filling process, a fractional portion of the liquid that flows into the chamber 28 also flows out of the chamber 28 through the first outlet port 32, the second flow-restricting orifice 38, and the outlet portion 26. All of the outflow is through the first outlet port 32 and the second flow-restricting orifice 38, because the pressure of the flow is less than the cracking pressure of the check valve 60. This outflow is regulated by the second flow-restricting orifice 38 to about 0.5 ml/hr during the chamber filling process. Thus, with a net inflow into the chamber 28 of about 2.0 ml/hr, the 0.5 ml chamber is filled to capacity in about 15 minutes. As mentioned above, when the chamber 28 is filled to capacity, the diaphragm 40 is at its fully ~o decompressed position. In this position, it offers little or no resistance to the fluid flow through the chamber 28. Consequently, once the chamber 28 is filled, the continuous flow rate through the device increases to a steady state value of about 1.0 ml/hr, limited by the second flow-restricting orifice 38.
When a bolus dose is desired, the plunger 44 is pushed distally into the ~s cylindrical fitting 46 to push the diaphragm 40 toward its compressed position.
This results in a compression of the volume of the chamber 28 that pressurizes its contents to a pressure above the cracking pressure of the check valve 60, thereby opening the check valve 60 so that the contents of the chamber 28 are expressed through the check valve orifice 66. Because the open check valve zo 60 offers less flow resistance that the second flow-restricting orifice 38 that is in parallel with it, substantially all of the outflow from the chamber 28 is through the second outlet port 34 and the check valve 60, rather than the second flow-restricting orifice 38. The outflow from the check valve 60 enters the downstream portion 26 of the fluid conduit defined by the hosing 22, and 2s then enters the delivery tube 20 as a bolus dose of the agent.
After the bolus dose is thus delivered, the chamber 28 is refilled, as described above, by the continuous flow of the liquid agent. As described above, the filling of the chamber 28 returns the plunger 44 to its starting (proximal) position. Thus, no separate spring is required for the plunger's return movement, because the plunger return function is provided by the net effect of the pressurized fluid flow and the resistance of the diaphragm 40.
The continuous flow through the first outlet port 32 is re-established almost s immediately after the bolus dose is delivered. Because a predetermined time interval (e.g., approximately 1 S minutes in a specific preferred embodiment) must elapse before the chamber 28 is completely refilled and ready to deliver another bolus dose on demand, the maximum volume of the total bolus dose deliverable over any given period of time is defined by a predetermined limit.
~o For example, in the specific preferred embodiment described above, the maximum hourly bolus dose volume is 2.0 ml. Thus, the above-described lock-out function is thereby provided to minimize the probability of over-dosing.
It will be appreciated from the foregoing description that the PCA
~s device 12 of the present invention provides both a continuous flow and a bolus dose through nearly identical flow paths, the only difference being that the continuous flow enters the downstream portion 26 through the first outlet port 32, while the bolus dose enters the downstream portion 26 through the second outlet port 34. Thus, parallel delivery systems for the continuous flow and the 2o bolus dose are not required.
Furthermore, as compared with prior art systems employing separate, parallel flow paths for the bolus flow and the continuous flow (e.g., U.S.
Patent No. 5,304,153, supra), the present invention offers significant operational advantages that reduce the likelihood of accidental overdosing.
is Specifically, if the check valve 60 and/or the downstream flow restricting orifice 38 fails, total fluid flow through the device 12 is limited by the upstream flow restricting orifice 36. If the upstream flow restricting orifice fails, continuous fluid flow to the delivery tube 20 (and thus to the patient) is WO 99!64090 PCT/US99/12852 limited by the downstream flow restricting orifice ~ 8.
All of the components of the PCA device 12, except the diaphragm 40 and the check valve membrane 68, may be made of suitable injection-molded polymeric plastics, as is conventional in the art. The diaphragm 40 and the s check valve membrane 68 may be made from any suitable elastomeric polymeric plastic material, as is well-known in the art. Thus, the device 12 may be made inexpensively and therefore acceptable for single-patient, disposable use.
While a preferred embodiment of the invention has been described ~o herein, it will be appreciated that a number of modifications and variations may suggest themselves to those skilled in the pertinent arts. For example, the structure of the check valve 60 described above is exemplary only; other equivalent check valve structures will readily suggest themselves. Also, the structure of the diaphragm 40 may be modified without departing from the ~s scope of the invention. The fluid capacities and flow rates set forth above are likewise exemplary. Furthermore, the specific housing configuration described above may be substantially varied to suit a number of different clinical needs and patient preferences. These and other variations and modifications that may suggest themselves are considered to be within the 2o spirit and scope of the invention, as defined in the claims that follow.

Claims (7)

Claims
1. A device for the administration of a liquid therapeutic agent to a patient, comprising:
a fluid flow conduit having an upstream portion (24) and a downstream portion (26), which are in liquid communication via first and second conduit sections (34 and 36) connected in parallel, a check valve (60) in fluid communication with the second conduit section (34) that is responsive to a predetermined cracking pressure to allow fluid flow from the second conduit section to the downstream portion (26), and a bolus dose delivery mechanism that is selectively actuate able to apply a pressure that is at least equal to the cracking pressure to express a predetermined volume of the agent through the second conduit section (34) and the check valve (60), characterised in that the fluid flow conduit is defined in a housing (22), which also defines a chamber (28) therein having an inlet lumen (36) in fluid communication with said upstream portion (24) and first and second outlet lumens (34 and 36) constituting said conduit sections and being separately in communication with the downstream portion (26), and in that the bolus dose delivery mechanism is selectively actuate able to (a) apply said pressure at least equal to the cracking pressure to the chamber (28) so as to express said volume there from through the second outlet lumen (34), and (b) allow a refilling of the chamber (28) with the agent through the first inlet lumen (32) while also allowing a continuous flow of the agent from the chamber through the first outlet lumen (32).
2. The device of Claim 1, wherein the bolus dose delivery mechanism comprises:
a resilient diaphragm (40) disposed as a sealing closure for the chamber (28) and movable between a compressed state when the chamber is voided of the agent and a decompressed state when the chamber is filled with the agent; and a plunger (44) that is manually actuable to compress the diaphragm to express the agent from the chamber.
3. The device of Claim 2, wherein the plunger (44) is engageable against the diaphragm (40) and is manually movable from a first position to a second position to compress the diaphragm to express the agent from the chamber (28), and that is returned from the second position to the first position when diaphragm is moved to the decompressed state when the chamber is filled with the agent.
4. The device of Claim 2 or 3, wherein the agent flows from the inlet lumen (36) through the chamber (28) and through the first outlet lumen (32) when the diaphragm (40) is in the decompressed state, and the agent flows from the chamber through the second outlet lumen (34} and the check valve (60) only in response to the creation of the cracking pressure in the second outlet lumen (34).
5. The device according to any of the Claims 1-4, further comprising:
a first flow-restricting orifice (36) in the upstream portion (24); and a second flow-restricting orifice (38) in the first outlet lumen (32).
6. The device according to any of the Claims 1-5, wherein the check valve (60) comprises:
a tubular element (62) having an upstream end in fluid communication with the second outlet lumen (34) and a downstream end in fluid communication with the downstream portion through a valve orifice (66); and a flexible membrane (68) secured to the tubular element so as to close the valve orifice when the pressure in the second outlet lumen is less than the cracking pressure, whereby the membrane opens the valve orifice in response to the pressure in the second outlet lumen being at least equal to the cracking pressure.
7. The device of Claim 5, wherein the check valve (60) comprises:
a tubular element (62) having an upstream end in fluid communication with the second outlet lumen (34) and a downstream end in fluid communication with the downstream portion (26) through a valve orifice (66); and a flexible membrane (68) secured to the tubular element so as to close the valve orifice when the pressure in the second outlet lumen (34) is less than the cracking pressure, whereby the membrane opens the valve orifice in response to the pressure in the second outlet lumen being at least equal to the cracking pressure.
CA002334588A 1998-06-09 1999-06-08 Patient-controlled drug administration device Abandoned CA2334588A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/094,111 1998-06-09
US09/094,111 US5906597A (en) 1998-06-09 1998-06-09 Patient-controlled drug administration device
PCT/US1999/012852 WO1999064090A1 (en) 1998-06-09 1999-06-08 Patient-controlled drug administration device

Publications (1)

Publication Number Publication Date
CA2334588A1 true CA2334588A1 (en) 1999-12-16

Family

ID=22243065

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002334588A Abandoned CA2334588A1 (en) 1998-06-09 1999-06-08 Patient-controlled drug administration device

Country Status (12)

Country Link
US (1) US5906597A (en)
EP (1) EP1083949B1 (en)
JP (1) JP4156801B2 (en)
KR (1) KR100589927B1 (en)
AT (1) ATE281852T1 (en)
AU (1) AU761868B2 (en)
CA (1) CA2334588A1 (en)
DE (1) DE69921809T2 (en)
DK (1) DK1083949T3 (en)
ES (1) ES2233084T3 (en)
PT (1) PT1083949E (en)
WO (1) WO1999064090A1 (en)

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6348043B1 (en) 1998-12-29 2002-02-19 Mckinley Medical, Lllp Multi-dose infusion pump providing minimal flow between doses
US6485461B1 (en) 2000-04-04 2002-11-26 Insulet, Inc. Disposable infusion device
US6652482B2 (en) 2000-08-17 2003-11-25 Milestone Scientific Inc Dental anesthetic and delivery injection unit with automated rate control
US6669669B2 (en) * 2001-10-12 2003-12-30 Insulet Corporation Laminated patient infusion device
JP2004521667A (en) * 2000-09-08 2004-07-22 インシュレット コーポレイション Device, system and method for patient infusion
DK1695727T3 (en) 2000-11-09 2008-12-01 Insulet Corp Device for transcutaneous administration
AU2002239709B2 (en) 2000-12-21 2007-02-15 Insulet Corporation Medical apparatus remote control and method
CN1556716A (en) 2001-02-22 2004-12-22 ���Ͽع����޹�˾ Modular infusion device and method
JP4398723B2 (en) * 2001-06-01 2010-01-13 アイ−フロー コーポレイション Large-capacity bolus device
WO2003026727A1 (en) * 2001-09-28 2003-04-03 Lifevent Limited sETHOD AND APPARATUS FOR DELIVERY OF MEDICATION
US20040078028A1 (en) * 2001-11-09 2004-04-22 Flaherty J. Christopher Plunger assembly for patient infusion device
KR100443202B1 (en) * 2002-01-03 2004-08-04 정헌택 (3R,6R)-4-methyl-6-(1-methylethyl)-3-phenylmethyl-1,4-perhydrooxazine-2,5-dione from the Fruiting Bodies of Isaria japonica and apoptosis-inducing composition containing the same
US6692457B2 (en) 2002-03-01 2004-02-17 Insulet Corporation Flow condition sensor assembly for patient infusion device
US6830558B2 (en) 2002-03-01 2004-12-14 Insulet Corporation Flow condition sensor assembly for patient infusion device
US6656159B2 (en) 2002-04-23 2003-12-02 Insulet Corporation Dispenser for patient infusion device
US20040153032A1 (en) * 2002-04-23 2004-08-05 Garribotto John T. Dispenser for patient infusion device
US6656158B2 (en) 2002-04-23 2003-12-02 Insulet Corporation Dispenser for patient infusion device
US20050238507A1 (en) * 2002-04-23 2005-10-27 Insulet Corporation Fluid delivery device
JP3854190B2 (en) * 2002-04-26 2006-12-06 株式会社ジェイテクト Motor control device
US6723072B2 (en) 2002-06-06 2004-04-20 Insulet Corporation Plunger assembly for patient infusion device
US20030236489A1 (en) 2002-06-21 2003-12-25 Baxter International, Inc. Method and apparatus for closed-loop flow control system
US7018360B2 (en) * 2002-07-16 2006-03-28 Insulet Corporation Flow restriction system and method for patient infusion device
AU2003273230A1 (en) * 2002-08-13 2004-02-25 Medical Instill Technologies, Inc. Container and valve assembly for storing and dispensing substances, and related method
US7144384B2 (en) * 2002-09-30 2006-12-05 Insulet Corporation Dispenser components and methods for patient infusion device
US7128727B2 (en) * 2002-09-30 2006-10-31 Flaherty J Christopher Components and methods for patient infusion device
US6896151B1 (en) 2002-11-04 2005-05-24 Owens-Illinois Closure Inc. Self-closing fluid dispensing closure
US20040116866A1 (en) * 2002-12-17 2004-06-17 William Gorman Skin attachment apparatus and method for patient infusion device
US6936035B2 (en) * 2002-12-31 2005-08-30 I-Flow Corporation Patient controlled drug administration device
US20050182366A1 (en) * 2003-04-18 2005-08-18 Insulet Corporation Method For Visual Output Verification
US20050065760A1 (en) * 2003-09-23 2005-03-24 Robert Murtfeldt Method for advising patients concerning doses of insulin
US20050070847A1 (en) * 2003-09-29 2005-03-31 Van Erp Wilhelmus Petrus Martinus Maria Rapid-exchange balloon catheter with hypotube shaft
WO2006028794A2 (en) * 2004-09-01 2006-03-16 Dielectrics Industries, Inc. Outlet check valve for fluid bladders
US8372045B2 (en) * 2004-11-19 2013-02-12 Curlin Medical Inc. Controlled-volume infusion device
KR100640952B1 (en) * 2004-12-29 2006-11-02 동부일렉트로닉스 주식회사 method for forming metal line of semiconductor device
US20060178633A1 (en) * 2005-02-03 2006-08-10 Insulet Corporation Chassis for fluid delivery device
US8034030B2 (en) * 2005-05-25 2011-10-11 Palyon Medical (Bvi) Limited Multi-reservoir implantable pump with variable flow rate capabilities
WO2007040580A1 (en) * 2005-09-27 2007-04-12 Antlae Llc Self-powered portable syringe pump
JP4933562B2 (en) * 2005-12-12 2012-05-16 アキュ レート ピーティーワイ リミテッド Flow control device including valve and flow control unit
US7708730B2 (en) 2006-01-30 2010-05-04 Palyon Medical (Bvi) Limited Template system for multi-reservoir implantable pump
US7727180B2 (en) * 2006-05-17 2010-06-01 Sterling Investments Lc Method and apparatus for presetting device operating levels with display
EP2037999B1 (en) 2006-07-07 2016-12-28 Proteus Digital Health, Inc. Smart parenteral administration system
US7892213B2 (en) * 2007-04-20 2011-02-22 Carefusion 303, Inc. Fluid flow control system having capillary fluid flow restrictor
JP5243548B2 (en) 2007-10-25 2013-07-24 プロテウス デジタル ヘルス, インコーポレイテッド Fluid communication port for information systems
WO2009067463A1 (en) 2007-11-19 2009-05-28 Proteus Biomedical, Inc. Body-associated fluid transport structure evaluation devices
US7959598B2 (en) 2008-08-20 2011-06-14 Asante Solutions, Inc. Infusion pump systems and methods
EP2334354A4 (en) * 2008-10-15 2014-01-22 Symbios Medical Products Llc Electronic flow control
DK2196231T3 (en) * 2008-12-12 2013-06-03 Hoffmann La Roche Outpatient drug infusion system with a flexible container filler
WO2010096651A2 (en) * 2009-02-20 2010-08-26 University Of Southern California Drug delivery device with in-plane bandpass regulation check valve in heat-shrink packaging
US9222819B2 (en) 2009-02-20 2015-12-29 University Of Southern California Tracking and controlling fluid delivery from chamber
US8579885B2 (en) * 2009-02-20 2013-11-12 University Of Southern California MEMS electrochemical bellows actuator
EP2531096A4 (en) 2010-02-01 2013-09-11 Proteus Digital Health Inc Two-wrist data gathering system
CN102946798A (en) 2010-02-01 2013-02-27 普罗秋斯数字健康公司 Data gathering system
EP2383006B1 (en) * 2010-04-27 2013-03-20 Dentsply IH AB Flow control device for medical liquid
US8814829B2 (en) 2010-08-12 2014-08-26 Baxter International Inc. Drug delivery device for fluid restricted patients
US9132233B2 (en) 2010-08-26 2015-09-15 B. Braun Melsungen Ag Infusion control device
US8591456B2 (en) 2011-12-28 2013-11-26 Palyon Medical (Bvi) Limited Multiple reservoir programmable pump
WO2013149186A1 (en) 2012-03-30 2013-10-03 Insulet Corporation Fluid delivery device with transcutaneous access tool, insertion mechansim and blood glucose monitoring for use therewith
CN103536983B (en) * 2013-09-26 2015-08-19 王行环 H-matic pressure control infusion pump
WO2017091624A1 (en) 2015-11-24 2017-06-01 Insulet Corporation Wearable automated medication delivery system
WO2017091584A1 (en) 2015-11-25 2017-06-01 Insulet Corporation Wearable medication delivery device
EP3374905A1 (en) 2016-01-13 2018-09-19 Bigfoot Biomedical, Inc. User interface for diabetes management system
CN112933333B (en) 2016-01-14 2023-03-28 比格福特生物医药公司 Adjusting insulin delivery rate
WO2017205819A1 (en) 2016-05-26 2017-11-30 Insulet Corporation Multi-dose drug delivery device
US10363372B2 (en) 2016-08-12 2019-07-30 Insulet Corporation Plunger for drug delivery device
US10561797B2 (en) 2016-08-14 2020-02-18 Insulet Corporation Drug delivery device with indicator
EP3522951A1 (en) 2016-10-07 2019-08-14 Insulet Corporation Multi-stage delivery system
US10780217B2 (en) 2016-11-10 2020-09-22 Insulet Corporation Ratchet drive for on body delivery system
US10603440B2 (en) 2017-01-19 2020-03-31 Insulet Corporation Cartridge hold-up volume reduction
US11045603B2 (en) 2017-02-22 2021-06-29 Insulet Corporation Needle insertion mechanisms for drug containers
US10695485B2 (en) 2017-03-07 2020-06-30 Insulet Corporation Very high volume user filled drug delivery device
WO2019028342A1 (en) 2017-08-03 2019-02-07 Insulet Corporation Micro piston pump
US10973978B2 (en) 2017-08-03 2021-04-13 Insulet Corporation Fluid flow regulation arrangements for drug delivery devices
US11786668B2 (en) 2017-09-25 2023-10-17 Insulet Corporation Drug delivery devices, systems, and methods with force transfer elements
US10898656B2 (en) 2017-09-26 2021-01-26 Insulet Corporation Needle mechanism module for drug delivery device
US11147931B2 (en) 2017-11-17 2021-10-19 Insulet Corporation Drug delivery device with air and backflow elimination
USD928199S1 (en) 2018-04-02 2021-08-17 Bigfoot Biomedical, Inc. Medication delivery device with icons
US10874803B2 (en) 2018-05-31 2020-12-29 Insulet Corporation Drug cartridge with drive system
US11229736B2 (en) 2018-06-06 2022-01-25 Insulet Corporation Linear shuttle pump for drug delivery
US11446435B2 (en) 2018-11-28 2022-09-20 Insulet Corporation Drug delivery shuttle pump system and valve assembly
US11369735B2 (en) 2019-11-05 2022-06-28 Insulet Corporation Component positioning of a linear shuttle pump

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2471623A (en) * 1944-12-19 1949-05-31 Adrian O Hubbell Apparatus for handling fluids
US3469578A (en) * 1965-10-12 1969-09-30 Howard R Bierman Infusion device for ambulatory patients with flow control means
US3468308A (en) * 1966-01-17 1969-09-23 Howard R Bierman Pressure infusion device for ambulatory patients with pressure control means
US3831600A (en) * 1973-04-02 1974-08-27 Alza Corp Fluid flow control
US4121584A (en) * 1976-10-15 1978-10-24 R. Scott Turner Method and apparatus for controlling the dispensing of fluid
US4215689A (en) * 1977-07-27 1980-08-05 Koken Co., Ltd. Injecting apparatus for medical liquid
US4209014A (en) * 1977-12-12 1980-06-24 Canadian Patents And Development Limited Dispensing device for medicaments
CA1169323A (en) * 1980-06-03 1984-06-19 Anthony M. Albisser Insulin infusion device
US4398908A (en) * 1980-11-28 1983-08-16 Siposs George G Insulin delivery system
US4597758A (en) * 1982-09-21 1986-07-01 Baxter Travenol Laboratories, Inc. Sealing closure for a Luer fitting in open communication with a pressurized liquid supply
US4544371A (en) * 1982-10-05 1985-10-01 American Hospital Supply Corporation Implantable metered dose drug delivery system
US4548607A (en) * 1983-04-13 1985-10-22 Cordis Corporation Implantable manually actuated medication dispensing system
US4668231A (en) * 1984-02-15 1987-05-26 Cordis Corporation Implantable hand-operable dispensers for fluid medicaments
US4588394A (en) * 1984-03-16 1986-05-13 Pudenz-Schulte Medical Research Corp. Infusion reservoir and pump system
US4681560A (en) * 1984-03-16 1987-07-21 Pudenz-Schulte Medical Research Corp. Subcutaneous infusion reservoir and pump system
DE3577039D1 (en) * 1984-06-21 1990-05-17 David R Fischell FINGER-ACTUATED INFUSION SYSTEM FOR THE MEDICAL SUPPLY.
US4634427A (en) * 1984-09-04 1987-01-06 American Hospital Supply Company Implantable demand medication delivery assembly
US4559038A (en) * 1984-10-19 1985-12-17 Deltec Systems, Inc. Drug delivery system
US4626244A (en) * 1985-02-01 1986-12-02 Consolidated Controls Corporation Implantable medication infusion device
EP0231371B1 (en) * 1985-08-06 1993-02-17 BAXTER INTERNATIONAL INC. (a Delaware corporation) Patient-controlled delivery of beneficial agents
US4828551A (en) * 1987-10-13 1989-05-09 Gertler Robert A Patient controlled analgesia apparatus
US4978338A (en) * 1988-04-21 1990-12-18 Therex Corp. Implantable infusion apparatus
US4898584A (en) * 1988-05-18 1990-02-06 Baxter Healthcare Corporation Implantable patient-activated fluid delivery device
US4898585A (en) * 1988-05-18 1990-02-06 Baxter Healthcare Corporation Implantable patient-activated fluid delivery device with bolus injection port
US5011477A (en) * 1989-04-21 1991-04-30 Baxter International Inc. Continuous/bolus infusor
JP2712907B2 (en) * 1991-07-10 1998-02-16 株式会社ニッショー Apparatus for self-injecting a drug solution and device using the same
US5224934A (en) * 1991-12-06 1993-07-06 Block Medical, Inc. Patient controlled bolus dosage infuser
US5306257A (en) * 1992-05-04 1994-04-26 Prime Medical Products, Inc. Drug infuser
US5897527A (en) * 1995-06-06 1999-04-27 Tsukada Medical Research Co., Ltd. Portable analgesic system

Also Published As

Publication number Publication date
EP1083949A1 (en) 2001-03-21
WO1999064090A1 (en) 1999-12-16
KR100589927B1 (en) 2006-06-15
JP4156801B2 (en) 2008-09-24
EP1083949B1 (en) 2004-11-10
JP2002517287A (en) 2002-06-18
PT1083949E (en) 2005-03-31
KR20010072594A (en) 2001-07-31
AU4336699A (en) 1999-12-30
DE69921809T2 (en) 2005-10-27
DK1083949T3 (en) 2005-02-14
ATE281852T1 (en) 2004-11-15
AU761868B2 (en) 2003-06-12
US5906597A (en) 1999-05-25
DE69921809D1 (en) 2004-12-16
ES2233084T3 (en) 2005-06-01

Similar Documents

Publication Publication Date Title
EP1083949B1 (en) Patient-controlled drug administration device
JP5977317B2 (en) Patch pump with flexibility and conformality
US4668231A (en) Implantable hand-operable dispensers for fluid medicaments
EP1395315B1 (en) Large volume bolus device
US5356379A (en) Disposable ambulatory infusion pump assembly
US6656159B2 (en) Dispenser for patient infusion device
EP0190477B1 (en) Body mounted pump housing and pump assembly employing the same
US5232448A (en) Patient-controlled analgesia device
US5224934A (en) Patient controlled bolus dosage infuser
EP0504255B1 (en) Self-driven pump device
US9649434B2 (en) Large-volume bolus patient controlled drug administration device with lock-out
AU707645B2 (en) Fluid administration apparatus
CA1238830A (en) Implantable insulin administration device
EP0143503B1 (en) Implantable hand-operable dispensers for fluid medicaments
EP2667917B1 (en) Detachable drug delivery device
JP2020523086A (en) Bolus delivery device
JPH11114061A (en) Chemical liquid supplying instrument
GB2307953A (en) Fluid administration apparatus

Legal Events

Date Code Title Description
FZDE Discontinued