CA2328470A1 - Polyester fiber and methods for making same - Google Patents

Polyester fiber and methods for making same Download PDF

Info

Publication number
CA2328470A1
CA2328470A1 CA002328470A CA2328470A CA2328470A1 CA 2328470 A1 CA2328470 A1 CA 2328470A1 CA 002328470 A CA002328470 A CA 002328470A CA 2328470 A CA2328470 A CA 2328470A CA 2328470 A1 CA2328470 A1 CA 2328470A1
Authority
CA
Canada
Prior art keywords
polyester
moieties
fiber
mole
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002328470A
Other languages
French (fr)
Inventor
Larry F. Charbonneau
Garo Khanarian
Robert E. Johnson
Helmut B. Witteler
John A. Flint
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2328470A1 publication Critical patent/CA2328470A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/672Dicarboxylic acids and dihydroxy compounds
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • D01F6/86Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from polyetheresters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]

Abstract

A polyester fiber made from a polymer having ethylene glycol moieties, isosorbide moieties and terepthaloyl moieties, and the method of making the fiber is described. The polyester fiber is used to form articles suitable for commercial, especially textile, and industrial uses, and has an inherent viscosity of at least 0.35 dL/g when measured as a 1% (weight/volume) solution of the polyester in o-chlorophenol at a temperature of 25 ~C.

Description

POLYESTER FIBER AND METHODS FOR MAKING SAME
Field of the Disclosure This disclosure relates to a polyester fiber, methods of making the same, and articles made therefrom. In particular, this disclosure relates to a fiber of polyester wherein the polyester has an isosorbide moiety, terephthaloyl moiety and ethylene glycol moiety, methods of making the same, and articles made therefrom.
Backg~gund of the Disclosure Polyester fibers are produced in large quantities for use in a variety of applications. In particular, these fibers are desirable for use in textiles, particularly in combination with natural fibers such as cotton and wool.
Clothing, rugs and other items may be fashioned from these fibers. Further, polyester fibers are desirable for use in industrial applications due to their elasticity and strength.
In particular, they are used to make articles such as tire cords and ropes.
The term "fibers" as used herein is meant to include continuous monofilaments, non-twisted or entangled multifilament yarns, staple yarns, spun yarns and non-woven materials. Such fibers may be used to form uneven fabrics, knitted fabrics, fabric webs, or any other fiber-containing structures, such as tire cords.
Synthetic fibers, such as nylon, acrylic, polyesters and others, are made by spinning and drawing the polymer into a filament, which is then formed into a yarn by winding many filaments together. These fibers are often treated mechanically and/or chemically to impart desirable characteristics such as strength, elasticity, heat resistance, hand (feel of fabric) and the like as known in the art based on the desired end product to be fashioned from the fibers.

WO 99/54534 PCT/US99/0'7015 The polymers currently used for fiber formation are generally based on completely man-made or synthetic molecules. In contrast, the diol 1,4:3,6-dianhydro-D-sorbitol, referred to hereinafter as isosorbide, the structure of which is illustrated below, is readily made from renewable resources, such as sugars and starches. For example, isosorbide can be made from D-glucose by hydrogenation followed by acid-catalyzed dehydration.
OH
.... H O
O H
OH
Isosorbide has been incorporated as a monomer into polyesters that also include terephthaloyl moieties. See, for example, R. Storbeck et al, Makromol.
Chem., Vol. 194, pp. 53-64 (1993); R. Storbeck et al, ~, Vol. 34, p. 5003 (1993). However, it is generally believed that secondary alcohols such as isosorbide have poor reactivity and are sensitive to acid-catalyzed reactions.
See, for example, D. Braun et al., J. Prakt.Chem., Vol. 334, pp. 298-310 (1992). As a result of the poor reactivity, polyesters made with an isosorbide monomer and esters of terephthalic acid are expected to have a relatively low molecular weight.
Ballauff et al, Polyesters (Derived from Renewable Sources), Polymeric Materials Encyclopedia, Vol. 8, p. 5892 (1996).
Copolymers containing isosorbide moieties, ethylene glycol moieties, and terephthaloyl moieties have been reported only rarely. A copolymer containing these three moieties, in which the mole ratio of ethylene glycol to isosorbide was about 90:10, was reported in published German Patent Application No. 1,263,981 (1968). The polymer was used as a minor component (about 10%) of a blend with polypropylene to improve the dyeability of polypropylene fiber. It was made by melt polymerization of dimethyl terephthalate, ethylene glycol, and isosorbide, but the conditions, which were described only in general terms in the publication, would not have given a polymer having a high molecular weight.
Copolymers of these same three monomers were described again recently, where it was observed that the glass transition temperature Tg of the copolymer increases with isosorbide monomer content up to about 200°C for the isosorbide terephthalate homopolymer. The polymer samples were made by reacting terephthaloyl dichloride in solution with the diol monomers. This method yielded a copolymer with a molecular weight that is apparently higher than was obtained in the German Patent Application described above, but still relatively low when compared against other polyester polymers and copolymers. Further, these polymers were made by solution polymerization and were thus free of diethylene glycol moieties as a product of polymerization. See R. Storbeck, Dissertation, Universitat Karlsruhe (1994); R. Storbeck, et al., J. Annl. Polymer Science.
Vol. 59, pp. 1199-1202 (1996).
U.S. Patent 4,418,174 describes a process for the preparation of polyesters useful as raw materials in the production of aqueous stowing lacquers. The polyesters are prepared with an alcohol and an acid. One of the many preferred alcohols is dianhydrosorbitol. However, the average molecular weight of the polyesters is from 1,000 to 10,000, and no polyester actually containing a dianhydrosorbitol moiety was made.
U.S. Patent 5,179,143 describes a process for the preparation of compression molded materials. Also, described therein are hydroxyl containing polyesters.
These hydroxyl containing polyesters are listed to include polyhydric alcohols, including 1,4:3,6-dianhydrosorbitol. Again, however, the highest molecular weights reported are relatively low, i.e. 400 to 10,000, and no polyester actually containing the 1,4:3,6-dianhydrosorbitol moiety was made.
Published PCT Application WO 97/14739 and WO 96/25449 describe cholesteric and nernatic liquid crystalline polyesters that include isosorbide moieties as monomer units. Such polyesters have relatively low molecular weight and are not isotropic.
summary of the Disclosure Contrary to the teachings and expectations that have been published in the prior art, isotropic, i.e., semi-crystalline and amorphous or nonliquid crystalline, copolyesters containing terephthaloyl moieties, ethylene glycol moieties, isosorbide moieties and, optionally, diethylene glycol moieties, are readily synthesized in molecular weights that are suitable for making fabricated products such as fibers on an industrial scale. Further, fibers made from these polyesters offer improved strength, elasticity and abrasion resistance. In particular, such fibers show good potential for use in textiles, and may be useful in industrial applications as well.
The process conditions for producing the polyester fiber, particularly the amounts of monomers used in the polyester, are desirably chosen so that the final polymeric product used for manufacturing fibers contains the desired amounts of the various monomer units, preferably with equimolar amounts of monomer units derived from a diol and a diacid. Because of the volatility of some of the monomers, including isosorbide, and depending on the method of manufacture of the polyester, some of the monomers are desirably included in excess at the beginning of the polymerization reaction and removed as the reaction proceeds. This is particularly true of ethylene glycol and isosorbide.
The polyester may be formed by any method known in the art. Preferably, however, the polyester is formed by solvent or melt polymerization. The choice of method may be determined by the desired amount of diethylene glycol in the final product.
In a preferred embodiment, the number of terephthaloyl moieties in the polymer is in the range of about 25% to about 50 mole % (mole % of the total 5 polymer). The polymer may also include amounts of one or more other aromatic diacid moieties such as, for example, those derived from isophthalic acid, 2,5-furandicarboxylic acid, 2,5-thiophenedicarboxylic acid, 2,6-naphthalenedi-carboxylic acid, 2,7-naphthalenedicarboxylic acid, and 4,4'-bibenzoic acid at combined levels up to about 25 mole % (mole % of the total polymer).
In a preferred embodiment, ethylene glycol monomer units are present in amounts of about 5 mole % to about 49.75 mole %. The polymer may also contain diethylene glycol moieties. Depending on the method of manufacture, the amount of diethylene glycol moieties is in the range of about 0.0 mole % to about 25 mole %.
15 In a preferred embodiment, isosorbide is present in the polymer in amounts in the range of about 0.25 mole % to about 40 mole %. One or more other diol monomer units may also be included in amounts up to a total of about 45 mole %.
The polyester has an inherent viscosity, which is an indicator of molecular weight, of at least about 0.35 dL/g, as measured on a 1% (weight/volume) solution 20 of the polymer in o-chlorophenol at a temperature of 25°C. A higher inherent viscosity, such as at least about 0.40 dL/g, preferably at least about 0.50 dL/g, is desired for optimal fiber formation for use in commercial applications, such as textile manufacture. Further processing of the polyester may achieve inherent viscosities up to about 2.0 dL/g and even higher, which can be useful for the 25 formation of fibers for both commercial uses and industrial purposes, such as tire cords, cables and the like.
The polyester fibers of the present invention are suitable for use in textile manufacture or other commercial applications, and for use in industrial applications.
They may be woven or knitted to form fabrics, or may be provided in the form of continuous monofilaments, multifilament yarns or staple yarns.
petailed Description of the Preferred Embodiments of the Disclosure The polyester fiber and a method of manufacturing the same are described in detail below. In particular, the method of manufacturing a polyester comprising terephthaloyl moieties, ethylene glycol moieties and isosorbide moieties is described, as well as the process of forming fibers from such a polymer for use in commercial or industrial applications.
In a preferred embodiment, ethylene glycol monomer units are present in the polymer in amounts of about 33 mole % to about 49.9 mole %, preferably 37 mole to about 45 mole %, although higher amounts may be included as necessary to achieve the desired results. The polymer composition may also contain diethylene glycol monomer units. Depending on the method of manufacture, the amount of diethylene glycol monomer units is in the range of from about 0.0 mole % to about 5.0 mole %, preferably 0.25 mole % to about 5 mole %, although higher amounts may be included as necessary to achieve the desired results. Diethylene glycol may be produced as a by-product of the polymerization process, or may be added directly to the composition to help accurately regulate the amount of diethylene glycol monomer units that are in the polymer.
In preferred embodiments, isosorbide moieties are present in the polymer in amounts in the range of from about 0.10 mole % to about 10 mole %, preferably from about 0.25 mole % to about 5.0 mole %, although higher amounts may be included as necessary to achieve the desired results. Isosorbide is most preferably present in the range of 1 mole% to 3 mole %. One or more other diol monomer units may optionally be included in amounts up to a total of about 2.0 mole %, but preferably less than 1 mole %. The amount of other diols included may however be higher as necessary to achieve the desired results. Examples of the optional other _'j_ diol units include aliphatic alkylene glycols having from 3-12 carbon atoms and having the empirical formula HO-CnH2ri OH, where n is an integer from 3-12, including branched diols such as 2,2-dimethyl-1,3-propanediol; cis or trans-1,4-cyclohexanedimethanol and mixtures of the cis and trans isomers; triethylene glycol;
2,2-bis[4-(2-hydroxyethoxy)phenyl] propane; 1,1-bis[4-(2-hydroxy-ethoxy)phenyl]cyclohexane; 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene; 1,4:3,6-dianhydromannitol; 1,4:3,6-dianhydroiditol; and 1,4-anhydroerythritol.
Terephthaloyl moieties in the polyester may range from 25-50 mole %, but are preferably in the range of from about 40-50 mole %, although higher amounts may be included as necessary to achieve the desired results. Other aromatic diacid moieties in the polymer, if desired, may include, for example, those derived from isophthalic acid, 2,5-furandicarboxylic acid, 2,5-thiophenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, and 4,4'-bibenzoic acid, at combined levels up to about 10 mole %, preferably between 0.01 and 5 mole % of the total polymer, although higher amounts may be included as necessary to achieve the desired results.
It is preferable that equimolar amounts of diacid monomer units and diol monomer units are present in the polymer in order to achieve a high molecular weight and high inherent viscosity, which provide a lower shrinkage rate and higher glass transition temperature (Tg) than, for example, polyethylene terephthalate).
The polyester formed has an inherent viscosity, which is an indicator of molecular weight, of at least about 0.35 dL/g, as measured on a 1 % (weight/volume) solution of the polymer in o-chlorophenol at a temperature of 25°C. Preferably, the inherent viscosity is at least about 0.45 dL/g. Most preferably, an inherent viscosity of about 0.5 - 1.5 is desired.
The molecular weight is normally not measured directly. Instead, the inherent viscosity of the polymer in solution or the melt viscosity is used as an indicator of molecular weight. For the present polymers, the inherent viscosity is _g_ measured by the method described previously, with a molecular weight corresponding to an inherent viscosity of about 0.35 dL/g or more. Higher molecular weights corresponding to inherent viscosities of at least about 0.45 dL/g are preferred for commercial applications, and molecular weights corresponding to inherent viscosities of about 0.8 dL/g to 2.0 dL/g, and even higher are desired for industrial uses. Generally, the inherent viscosity/molecular weight relationship can be fitted to the linear equation:
log (IV) = 0.586 x log(MW) - 2.9672.
The inherent viscosities are a better indicator of molecular weight for comparisons of samples and are used as the indicator of molecular weight herein.
The polyesters used to make the fibers of the invention can be made by any of several methods. The product compositions vary somewhat depending on the method used, particularly in the amount of diethylene glycol residue that is present in the polymer. These methods include the reaction of the diol monomers with the acid chlorides of terephthalic acid and any other acids that may be present.
The reaction of terephthaloyl dichloride with isosorbide and ethylene glycol is readily earned out by combining the monomers in a solvent (e.g., toluene) in the presence of a base, such as pyridine, which neutralizes HCl as it is produced. This procedure is described in R. Storbeck et al., ~. A 1. Po vmer Science, Vol. 59, pp. 1199 -(1996). Other well-known variations using terephthaloyl dichloride may also be used (e.g., interfacial polymerization), or the monomers may simply be stirred together while heating.
When the polymer is made using the acid chlorides, the ratio of monomer units in the product polymer is about the same as the ratio of reacting monomers.
Therefore, the ratio of monomers charged to the reactor is about the same as the desired ratio in the product. A stoichiometric equivalent of the diol and diacids generally will be used to obtain a high molecular weight polymer.

The polymers can also be made by a melt polymerization process, in which the acid component is either terephthalic acid or dimethyl terephthlate, and also may include the free acid or dimethyl ester of any other aromatic diacids that may be desired iri the polyester polymer composition. The diacids or dimethyl esters are heated with the diols (ethylene glycol, isosorbide, optional diols) in the presence of a catalyst to a high enough temperature that the monomers combine to form esters and diesters, then oligomers, and finally polymers. The polymeric product at the end of the polymerization process is a molten polymer. The diol monomers (e.g., ethylene glycol and isosorbide) are volatile and distill from the reactor as the polymerization proceeds. Therefore, an excess of these diols is desirably charged to the reaction to obtain a polymer, and the amounts must be adjusted according to the characteristics of the polymerization vessel, such as the efficiency of the distillation column and the efficiency of monomer recovery and recycle. Such modifications in the amounts of monomers and the like in accordance with the characteristics of a reactor are readily made by practitioners in the art. Further, skilled practitioners can readily determine the amount of each component desirably charged to any particular reactor to form the polymer of the invention.
The above described melt polymerization process is the preferred method of making the polymer and is described in detail in copending commonly assigned U.S.
Application No. 09/064,844 (Attorney Docket No. 032358-001), incorporated herein by reference. The melt polymerization processes using dimethyl terephthalate and terephthalic acid are also summarized below.
Dimeth lv Tere;~h~halate Process In this process, which is earned out in two stages, terephthalic acid and the optional diacid monomers, if present, are used as their dimethyl ester derivatives.
The diols (e.g., ethylene glycol and isosorbide) are mixed with the dimethyl ester of the aromatic diacid (e.g., dimethyl terephthalate) in the presence of an ester interchange catalyst, which causes exchange of the ethylene glycol for the methyl group of the dimethyl esters through a transesterification reaction. This results in the formation of methanol, which distills out of the reaction flask, and bis (2-hydroxyethylterephthalate). Because of the stoichiometry of this reaction, somewhat more than two moles of ethylene glycol are desirably added as reactants for the ester interchange reaction.
Catalysts that bring about ester interchange include salts (usually acetates) of the following metals: Li, Ca, Mg, Mn, Zn, Pb, and combinations thereof, Ti(OR)4, where R is an alkyl group having 2 - 12 carbon atoms, and PbO. 'The catalyst 10 components are generally included in an amount of about 10 ppm to about 100 ppm.
Preferred catalysts for ester interchange include Mn(OAc)2, Co(OAc)2, and Zn{OAc)2, where OAc is the abbreviation for acetate, and combinations thereof.
The polycondensation catalyst used in the second stage of the reaction, preferably Sb(III) oxide, may be added initially or at the start of the polycondensation stage. A
15 catalyst that has been used with particularly good success is based on salts of Mn(II) and Co(II), used in the amount of about 50 to about 100 ppm each. These are preferably used in the form of Mn(II) acetate tetrahydrate and Co(II) acetate tetrahydrate, although other salts of the same metals may also be used.
Ester interchange is desirably brought about by heating and stirring the 20 mixture of reactants under an inert atmosphere (e.g., nitrogen) at atmospheric pressure from room temperature to a temperature high enough to induce the ester interchange (about 150°C). Methanol is formed as a by-product and distills out of the reactor. The reaction is gradually heated to about 250°C until methanol evolution stops. The end of methanol evolution can be recognized by a drop in the 25 overhead temperature of the reaction vessel.
A small amount of an additive having a boiling point of 170-240°C
may be added to the ester interchange to aid in the heat transfer within the reaction medium and to help retain volatile components in the vessel that may sublime into the packed column. The additive must be inert and not react with alcohols or dimethyl terephthalate at temperatures below 300°C. Preferably, the additive has a boiling point greater than 170 ° C, more preferably within the range of 170 ° C to 240 ° C, and is used in an amount between about 0.05 and 10 wt %, more preferably between about 0.25 and 1 wt % of the reaction mixture. A preferred additive is tetrahydronaphthalene. Other examples include Biphenyl ether, Biphenyl sulfone and benzophenone. Other such solvents are described in U.S. Patent 4,294,956, the contents of which are hereby incorporated by reference.
The second stage of the reaction is commenced by adding a polycondensation catalyst if it was not added at the beginning of the process, and a sequestering agent for the transesterification catalyst. Polyphosphoric acid is an example of a sequestering agent and is normally added in an amount of about 10 to about 100 ppm of phosphorous per gram of dimethyl terephthalate. An example of a polycondensation catalyst is antimony (III) oxide, which may be used at a level of 100 to about 400 ppm.
The polycondensation reaction is typically carried out at a temperature from about 250°C to 285°C. During this time, ethylene glycol distills out of the reaction due to condensation of the bis(2-hydroxyethyl) terephthalate to form polymer and by-product ethylene glycol, which is collected as a distillate.
The polycondensation reaction described above is preferably carried out under vacuum, which can be applied while the reactor is being heated to the temperature of the polycondensation reaction after polyphosphoric acid and Sb(III) oxide have been added. Alternatively, vacuum can be applied after the polycondensation reaction temperature reaches 280°C - 285°C. In either case, the reaction is accelerated by the application of vacuum. Heating under vacuum is continued until the molten polymer reaches the desired molecular weight, usually recognized by an increase in the melt viscosity to a pre-determined level.
This is observed as an increase in the torque needed for the stirring motor to maintain stirring. An inherent viscosity of at least 0.5 dL/g, and generally up to about 0.65 dL/g or greater, can be achieved by this melt polymerization process without further efforts at raising molecular weight. For certain composition ranges, the molecular weight can be increased further by solid state polymerization, described below.
Terenhthalic Acid Process The terephthalic acid process is similar to the dimethyl terephthalate process except that the initial esterification reaction that leads to bis(2-hydroxy-ethylterephthalate) and other low molecular weight esters is carried out at a slightly elevated pressure (autogenous pressure, about 25 to SO psig). Instead of a two-fold excess of diols, a smaller excess (about 10% to about 60%) of diols (ethylene glycol, isosorbide and other diols, if any) is used. The intermediate esterification product is a mixture of oligomers, since not enough diol is present to generate a diester of terephthaiic acid. The catalysts are also different. No added catalyst is necessary in the esterification reaction.
A polycondensation catalyst (e.g., Sb(III) or Ti(IV) salts) is still desirable to achieve a high molecular weight polymer. The catalyst that is needed to achieve a high molecular weight can be added after the esterification reaction, or it can be conveniently charged with the reactants at the beginning of the reaction.
Catalysts that are useful for making a high molecular weight polymer directly from terephthalic acid and the diols include the acetate or other alkanoate salts of Co(II) and Sb(III), oxides of Sb(III) and Ge(IV), and Ti(OR)4 (where R is an alkyl group having 2 to 12 carbon atoms), as well as glycol solubilized metal oxides. The use of these and other catalysts in the preparation of polyesters is well-known in the art.
The reaction may be carried out in discrete steps, but this is not necessary.
In practice on a large scale, it may be carried out in steps as the reactants and intermediate products are pumped from reactor to reactor at increasing temperatures.

In a batch process, the reactants and catalyst may be charged to a reactor at room temperature and then gradually heated to about 285°C as the polymer forms. The pressure is vented in the range of about 200°C to about 250°C, and a vacuum is then desirably applied.
Esterification to form bis(2-hydroxyethylterephthalate) esters and oligomers takes place at elevated temperatures (between room temperature and about 220°C to 265°C under autogenous pressure), and the polymer is made at temperatures in the range of about 275°C to about 285°C under a high vacuum (less than 10 Torr, preferably less than 1 'Torn}. The vacuum is needed to remove residual ethylene glycol, isosorbide and water vapor from the reaction to raise the molecular weight.
A polymer having an inherent viscosity of at least 0.5 dL/g, and generally up to about 0.65 dL/g, can be achieved by the direct polymerization process, without subsequent solid state polymerization. The progress of the polymerization can be followed by the melt viscosity, which is easily observed by the torque that is required to maintain stirring of the molten polymer at a constant rpm.
Solid State Pol~~rization Polymers can not be made by the melt condensation process described above having an inherent viscosity of about 0.65 dL/g or greater without further treatment.
Compositions of ethylene glycol, isosorbide, and terephthalic acid having isosorbide in an amount of about 0.25% to about 10% on a mole basis may have their molecular weight increased further by solid state polymerization. The product made by melt polymerization, after extruding, cooling, and palletizing, is essentially non-crystalline. The material can be made semi-crystalline by heating it to a temperature in the range of about 115°C to about 140°C for an extended period of time (about 2 to about 12 hours). This induces crystallization so that the product can then be heated to a much higher temperature to raise the molecular weight. The process works best for low levels of isosorbide, from about 0.25 mole % to about 3 mole %, because the polyester crystallizes more easily with low levels of isosorbide.
The polymer may also be crystallized prior to solid state polymerization by treatment with a relatively poor solvent for polyesters, such as acetone, which S induces crystallization. Such solvents reduce the glass transition temperature T(g), allowing for crystallization. Solvent induced crystallization is known for polyesters and is described in U.S. Patent Nos. 5,164,478 and 3,684,766, which are hereby incorporated by reference.
The crystallized polymer is subjected to solid state polymerization by placing the pelletized or pulverized polymer into a stream of an inert gas, usually nitrogen, or under a vacuum of 1 Torr, at an elevated temperature, above 140°C
but below the melting temperature of the polymer, for a period of about two to 16 hours.
Solid state polymerization is generally earned out at a temperature in the range of about 190° to about 210°C for a period of about two to about 16 hours.
Good results are 1S obtained by heating the polymer to from about 19S° to about 198°C for about 10 hours. This solid state polymerization may raise the inherent viscosity to about 0.8 dL/g or higher.
F~,l~~r Production The monomer composition of the polyester polymer is desirably chosen to result in a partially crystalline polymer. This crystallinity is desirable for the formation of fibers, providing strength and elasticity. As first produced, the polyester is mostly amorphous in structure. In preferred embodiments, the polyester polymer readily crystallizes on reheating and/or extension of the polymer.
In the process of the invention, fibers are made from the polymer by any 2S process known in the art. Generally, however, melt spinning is preferred for polyester fibers.

Melt spinning, which is most commonly used for polyesters such as polyethylene terephthalate), comprises heating the polymer to form a molten liquid, or melting the polymer against a heated surface. The molten polymer is forced through a spinneret with a plurality of fine holes. Upon contact with air or a non-reactive gas stream after passing through the spinneret, the polymer solution from each spinneret solidifies into filaments. The filaments are gathered together downstream from the spinneret by a convergence guide, and may be taken up by a roller or a plurality of rollers. This process allows filaments of various sizes and cross sections to be formed, including filaments having a round, elliptical, square, rectangular, lobed or dog-boned cross section, for example.
Following the extrusion and uptake of the fiber, the fiber is usually drawn, thereby increasing the crystallization and maximizing desirable properties such as orientation along the longitudinal axis, which increases elasticity, and strength. The drawing may be done in combination with takeup by using a series of rollers, some of which are generally heated, as known in the art, or may be done as a separate stage in the process of fiber formation.
The polymer may be spun at speeds of from about 600 to 6000 meters per minute or higher, depending on the desired fiber size. For textile applications, a fiber with a denier per filament of from about 0.1 to about 100 is desired.
Preferably, the denier is about 0.5 to 20, more preferably 0.7 to 10. However, for industrial applications the fiber should be from about 0.5 to 100 denier per filament, preferably about 1.0 to 10.0, most preferably 3.0 to 5.0 denier per filament.
The required size and strength of a fiber is application specific, however, and the appropriate size of the fiber can readily be determined by one of ordinary skill in the art for any given application.
The resulting filamentary material is amenable to fi~rther processing through the use of additional processing equipment, or it may be used directly in applications requiring a continuous filament textile yarn. If desired, the filamentary material subsequently may be converted from a flat yam to a textured yarn through known false twist texturing conditions or other processes known in the art. In particular, it is desirable to increase the surface area of the fiber to provide a softer feel and to enhance the ability of the fibers to breathe, thereby providing better insulation and water retention in the case of textiles, for example. The fibers may therefore be crimped or twisted by the false twist method, air jet, edge crimp, gear crimp or stuffer box, for example. Alternatively, the fibers may be cut into shorter lengths, called staple, which may be processed into a yarn. A skilled artisan can determine the best method of crimping or twisting based on the desired application and the composition of the fiber.
After formation, the fibers are finished by any method appropriate to the desired final use. In the case of textiles, this may include dyeing, sizing or addition of chemical agents such as antistatic agents, flame retardants, W light stabilizers, antioxidants, pigments, dyes, stain resistants, antimicrobial agents and the like, which are appropriate to adjust the look and hand of the fibers. For industrial applications, the fibers may be treated to impart additional desired characteristics such as strength, elasticity or shrinkage, for example.
The continuous filament fiber of the invention may be used either as produced or texturized for use in a variety of applications such as textile fabrics for apparel and home furnishings, for example. High tenacity fiber can be used in industrial applications such as high strength fabrics, tarpaulins, sail cloth, sewing threads and rubber reinforcement for tires and V-belts, for example.
The staple fiber of the invention may be used to form a blend with natural fibers, especially cotton and wool. In particular, the polyester is a chemically resistant fiber which is generally resistant to mold, mildew, and other problems inherent to natural fibers. The polyester fiber further provides strength and abrasion resistance and lowers the cost of material. Therefore, it is ideal for use in textiles WO 99/54534 PC'f/US99/07015 and other commercial applications, such as for use in fabrics for apparel, home furnishings and carpets.
Further, the polyester polymer of the invention may be used with another synthetic polymer to form a heterogenous fiber, thereby providing a fiber with improved properties. Polymers which may be used include those listed in copending application Serial Nos. 09/064,826 (Attorney Docket No. 032358-005) and 09/064.720 {Attorney Docket No. 032358-008). The heterogeneous fiber may be formed in any suitable manner, such as side-by-side, sheath-core and matrix designs, as known in the art.
The polyester polymer of the invention may also be used to form a blend which may be used to produce a fiber having improved properties. Examples of polymers which may be blended with the polyester polymer of the invention are those found for example in co-pending application Serial Nos. 09/064,826 (Attorney Docket No. 032358-005) and 09/064.720 (Attorney Docket No. 032358-008).
Further, the fiber may itself be made by any method known in the art using isosorbide-containing polyesters such as those described in copending application Serial Nos. Q~/064.826 (Attorney Docket No. 032358-005) and 09/064.720 (Attorney Docket No. 032358-008).
The fiber of the invention, its manufacture and properties are further illustrated by the following non-limiting examples.
E~camnles The polymer molecular weights are estimated based on inherent viscosity (LV.), which is measured for a 1 % solution (wt/volume) of polymer in o-chlorophenol at a temperature of 25°C. The levels of catalyst components are expressed as parts per million (ppm), based on a comparison of the weight of the metal with the weight of either the dimethyl terephthalate or terephthalic acid, depending on which monomer is used.

Exa 1 A) Polymerization The following polymerization reactants are added to a 4-liter polymerization flask fitted with a jacketed Vigreux column approximately 14 inches long and inch in diameter with air cooling, a mechanical stirrer, and a water-cooled condenser: dimethyl terephthalate (780.1g), isosorbide (62.6g), and ethylene glycol (504.7g), which corresponds to a mole ratio of 1: 0.106: 2.13. A catalyst of Mn(II) acetate tetrahydrate (0.296g), Co(II) acetate tetrahydrate (0.297g), and Sb(III) oxide (0.308g) is also charged. This corresponds to 85 ppm manganese (weight of metal as a fraction of the weight of dimethyl terephthalate), 90 ppm cobalt, and 330 ppm antimony. The flask is purged with a stream of nitrogen while the temperature is raised to 250°C over a period of two hours, using a fluidized sand bath as a heating medium. Methanol is continuously collected as the reaction is heated above approximately 150°C. By noting when the temperature drops at the top of the Vigreux column, it is possible to determine the end of methanol evolution, indicating the finish of the first step of the reaction, which is the transesterification of the diols and dimethyl terephthalate. At this point, 91 ppm of phosphorous is added in the form of a polyphosphoric acid solution in ethylene glycol. In this case, 0.244g of polyphosphoric acid mixed with approximately 1 ml of ethylene glycol is used. Also at this time, the nitrogen purge is stopped. Heating is continued while a vacuum is gradually applied. The attainment of full vacuum, preferably less than 1 Torr, takes approximately 1 hour. During this hour, the reaction mixture is heated to 285°C. Also during this time, ethylene glycol distills off, and a low molecular weight polymer forms. The molten polymer is heated under vacuum at 285°C for about 2 hours, or until the polymer achieves sufficient melt viscosity, as determined by an increase in torque of the stirrer. When sufficient viscosity is achieved, the polymerization is stopped, and the flask is removed from the sand bath.

The cooled polymer is removed from the flask and ground. The solution inherent viscosity (LV.) of the material is 0.44 dL/g. The monomer unit composition of the polymer, determined by proton NMR, is about 3% isosorbide, 44% ethylene gyicol, 3°!° diethylene glycol, and 50%
terephthalic acid, all expressed as a mole % of the polymer, as shown in Table 1. It is noteworthy that the amount of isosorbide in the polymer is approximately half of the amount that was charged, when compared with the amount of terephthalic acid. Unreacted isosorbide was found in the distillates, especially in the ethylene glycol.
The amount of isosorbide in the polymer by this process thus is very dependent on the efficiency of the distillation or other separation methods that are used in the process.
A skilled practitioner can readily establish specific process details according to the characteristics of the reactor, distillation columns and other equipment used.
B) Fiber Making The above produced polymer was ground and dried at 130°C overnight in a vacuum oven. Rods were made from the polymer by first placing it in a mold which was then heated under gentle pressure from a plunger. The pressure was provided by a hydraulic press. When the polymer began to soften, more pressure (500-lbs/in2) was applied to compress the polymer into a hard rod. The ingress of moisture was reduced by encasing the equipment in a Lucite~ box which was continuously purged by a flow of dry nitrogen.
Spinning was immediately carned out on a single filament spinning machine.
The polymer in rod form was melted by pressing it against a heated "grid"
which was conical in shape with a hole at the apex. The machine temperatures were slowly raised until the melted polymer started to flow through this hole. In the present example, this occurred at 287°C. The polymer was then filtered through a bed of 80/120 shattered metal, and finally emerged from the single hole spinneret capillary, 0.020" diameter and 0.030" long. The throughput was 0.30 grams per minute (gpm), and the fiber, which was to be drawn, was taken up at SO meters per minute (mpm).
These conditions were found to give low orientation single filaments of about denier per filament (dpf). A temperature scan was made to produce the optimum spun fiber for subsequent drawing. A fiber sample was also made at the maximum take up speed possible in order to obtain a feel for draw down and to measure the spun fiber properties. :In the present case that speed was 2500 mpm.
Single filament drawing was performed on modular draw units with hot shoes between each roll. The fiber was drawn in two stages using the second stage to develop the maximum fiber tenacity and crystallinity. The hot shoe temperatures used in the present example were 90°C and 160°C. In this way, a single filament was collected and small samples cut from the last roll. A sample was tested for its tensile properties using ASTM test method D3822. The tests were conducted on a three inch gauge length at 60% strain, and the results are exhibited in Table 1.
Exam~es 2-13 The conditions used to spin and draw similar fibers 2-13 from other polymer compositions of the invention, as well as the resulting tensile properties, are also presented in Table 1. Further, comparative examples using compositions of polyethylene terephthalate) are presented in Table 1. These polymer fibers were produced and spun in the same manner as Example 1 using the conditions set forth in Table 1.
Table 2 provides additional data regarding birefringence and orientation of the drawn fibers of Examples lA and B, 2A, 3A, 4A, 8B, 9A and B, 10A, 11A and Comparative Examples 1 and 2, which are polyethylene terephthalate). The birefringence of the fibers was measured by x-ray scattering with a Leitz Orthoplane Polarized Light Microscope with a Berek tilt type microscope. The orientation of the fibers was measured by X-ray scattering from the crystalline phase with a Rigaku Rotating Type generator having a two dimensional (2D) position sensitive detector using Ka radiation. The measurement of birefringence divided by orientation is a measure of the normalized birefringence of the fiber independent of the draw ratio and orientation.
It is to be understood that the above described embodiments are illustrative only and that modification throughout may occur to one skilled in the art.
Accordingly, this invention is not to be regarded as limited to the embodiments disclosed herein.

00 M V'1d~ N ~ ~O N

~
I~ 00 l~ f IW O f b4 b O

Ov N v0 tW 0 Ov ~ N v1 -i ,-r f ~C ~D ~D d' ~ N ~t N

~U

eat ~ N M ~ ~ M

b ~ N N M O

pa ~ .-r.~ .~ ,-r...

0 M Ov V7 ~C M O~ f ~D N CT

y ~ ~ M O ~ f M ~ N . '. d -~ t O O o~o~ o~4oNO~ O N 0 0 ~", w N .-~.-1.-,.-.~~ .-~ .-, w O O O O O O O O

O N ~ ~ ~ N ~ f O OO f f d G 00 .

Os Ov Gv Ov Ov O~ Ov ~ O O

O O C O C O O O O

d' 'v.

E., O

N W O d' f ~ N M O~

00 00 00 ~ ~

~ O ..sO

N O O O O O O O O O O

by G
.., ..

N

w .
r .

p M -~ ~ V'7M V'100 O O V7 O

t~ f f f f f ~O ~O 00 ~D ~O

4.

~.
b n ~

f o o o o o o O ~t -~ ~ O N h f O~ O~

~U O f 1~ ~ M
~

m 0 0~ ~O M M
0 -i -~ N N

O V1 ~1 ~D f O

N

O O
cd U

iF

W .-.

Q d d ~ ~ ~ ~

~ ~ N c o ~ d E-"
n o O ?t ~G iC iG i! >t P! iG p .-~W
f W U W W W W W W W W .-.r.

Claims (36)

What is claimed is:
1. A fiber comprising a polyester, wherein said polyester comprises terephthaloyl moieties; optionally, one or more other aromatic diacid moieties;
ethylene glycol moieties; isosorbide moieties; and, optionally one or more other diol moieties, wherein said polyester has an inherent viscosity of at least about 0.35 dL/g when measured as a 1 % (weight/volume) solution of said polyester in o-chlorophenol at a temperature of 25°C.
2. The fiber according to Claim 1, wherein said terephthaloyl moieties are derived from terephthalic acid or dimethyl terephthalate.
3. The fiber according to Claim 1, wherein the polyester further comprises diethylene glycol moieties.
4. The fiber according to Claim 1, wherein said one or more other diol moieties are derived from aliphatic alkylene glycols or branched aliphatic glycols having from 3-12 carbon atoms and having the empirical formula HO-C n H2n-OH, where n is an integer from 3-12; cis or trans-1,4-cyclohexanedimethanol or mixtures thereof; triethylene glycol; 2,2-bis[4-(2-hydroxyethoxy)phenyl]propane;
1,1-bis[4-(2-hydroxyethoxy)phenyl]cyclohexane; 9,9-bis[4-(2-hydroxyethoxy)-phenyl]fluorene;
1,4:3,6-dianhydromannitol; 1,4:3,6-dianhydroiditol; or 1,4-anhydroerythritol.
5. The fiber according to Claim 4, wherein said other diol moieties are derived from cis-1,4-cyclohexanedimethanol, trans-1,4-cyclohexanedimethanol, or mixtures thereof.
6. The fiber according to Claim 1, wherein said optional one or more aromatic diacid moieties are derived from isophthalic acid, 2,5-furandicarboxylic acid, 2,5-thiophenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, or 4,4'-bibenzoic acid.
7. The fiber according to Claim 6, wherein said one or more other aromatic diacid moieties are derived from isophthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4'-bibenzoic acid, or mixtures thereof.
8. The fiber according to Claim 1, wherein said inherent viscosity is from about 0.45 to 1.0 dL/g.
9. The fiber according to Claim 8, wherein said inherent viscosity is from about 0.50 dL/g to 0.70 dL/g.
10. The fiber according to Claim 1, wherein said terephthaloyl moieties are present in an amount of from about 40 to 50 mole % of said polyester, said other aromatic diacid moieties are present in an amount of from about 0.1 to 10.0 mole %
of the polyester, said ethylene glycol moieties are present in an amount of from about 33 to 49.9 mole % of said polyester, said isosorbide moieties are present in an amount of from about 0.25 to 10.0 mole % of said polyester, and said other diol moieties are present in an amount of up to about 2.0 mole % of said polyester.
11. The fiber according to Claim 10, wherein said other diol moieties are diethylene glycol moieties in an amount up to about 5.0 mole % of said polyester.
12. The fiber according to Claim 1, having an initial modulus of from about 20 to 150 gpd.
13. The fiber according to Claim 1, having a denier per filament of from about 0.5 to 20.
14. The fiber according to Claim 1, having a cross section selected from the group consisting of circular, elliptical, square, rectangular, crescent-shaped, multi-lobed and dog-boned.
15. A method of making a fiber, wherein the fiber comprises a polyester, said method comprising:
a) forming the polyester;
b) spinning the polyester into a fiber; and c) drawing the spun fiber, wherein the polyester comprises terephthaloyl moieties; optionally, other aromatic diacid moieties; ethylene glycol moieties; isosorbide moieties; and, optionally, one or more other diol moieties; wherein said polyester has an inherent viscosity of at least about 0.35 dL/g when measured as a 1 % (weight/volume) solution of said polyester in o-chlorophenol at a temperature of 25°C.
16. The method according to Claim 15, wherein forming the polyester comprises:
(a) combining in a reactor a monomer comprising a terephthaloyl moiety; optionally, one or more other monomers containing an aromatic diacid moiety; a monomer comprising an ethylene glycol moiety; a monomer comprising an isosorbide moiety; and optionally, one or more other monomers comprising a diol moiety with a condensation catalyst suitable for condensing aromatic diacids and glycols; and (b) heating said monomers and said catalyst to a temperature sufficient to polymerize said monomers into a polyester polymer having at least a terephthaloyl moiety, ethylene glycol moiety and isosorbide moiety, wherein said heating is continued for a sufficient time to yield a polyester having an inherent viscosity of at least about 0.35 dL/g when measured as a 1 % (weight/volume) solution of said polyester in o-chlorophenol at a temperature of 25°C.
17. The method according to Claim 16, wherein heating said monomers further includes stirring said monomers with the concurrent removal of by-products by distillation and/or evaporation.
18. The method according to Claim 16, wherein said monomer comprising a terephthaloyl moiety is terephthalic acid.
19. The method according to Claim 18, wherein water and unreacted monomer are removed while said monomers polymerize.
20. The method according to Claim 16, wherein said monomer comprising a terephthaloyl moiety is dimethyl terephthalate.
21. The method according to Claim 20, wherein methanol and unreacted monomer are removed while said monomers polymerize.
22. The method according to Claim 15, wherein said one or more optional other diol moieties are derived from aliphatic alkylene glycols or branched aliphatic glycols having from 3-12 carbon atoms and having the empirical formula HO-C n H2n-OH, where n is an integer from 3-12; cis or trans-1,4-cyclohexanedimethanol or mixtures thereof; triethylene glycol;
2,2-bis[4-(2-hydroxyethoxy)phenyl] propane; 1,1-bis[4-(2-hydroxyethoxy) phenyl] cyclohexane;
or 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene.
23. The method according to Claim 15, wherein said optional other aromatic diacid moieties are derived from isophthalic acid, 2,5-furandicarboxylic acid, 2,5-thiophenedicarboxylic acid, 2,6-naphthalenedi-carboxylic acid, 2,7-naphthalenedicarboxylic acid, or 4,4'-bibenzoic acid.
24. The method according to Claim 16, wherein said terephthaloyl moieties are present in an amount of about 40 to 50 mole % of said polyester, said optional other aromatic diacid moieties are present in an amount up to about 10 mole % of said polyester, said ethylene glycol moieties are present in an amount of about 33 to 49.9 mole % of the polyester, said isosorbide moieties are present in an amount of about 0.25 to 10.0 mole % of said polyester, and said one or more other diol moieties are present in an amount up to about 2.0 mole % of said polyester.
25. The method according to Claim 24, wherein said one or more other diol moieties are diethylene glycol moieties in an amount of up to about 5.0 mole %
of said polyester.
26. The method according to Claim 16, further comprising increasing the molecular weight of said polyester by solid state polymerization.
27. The method according to Claim 26, wherein said solid state polymerization comprises:
(a) crystallizing said polyester by heating said polyester to a temperature in the range of about 115°C to about 140°C; and (b) heating said polyester under vacuum or in a stream of inert gas at an elevated temperature above 140°C but below the melting temperature of said polyester to yield a polyester having an increased inherent viscosity.
28. The method according to Claim 27, wherein said heating step (b) is carried out at a temperature of about 195° to 198°C for about 10 hours.
29. The method according to Claim 27, wherein said increased inherent viscosity is at least about 0.65 dL/g.
30. The method according to Claim 15, wherein spinning the polyester into fiber comprises:
a) melting said polyester;
b) extruding said molten polyester through a spinning orifice; and c) cooling said extruded polyester, thereby forming a fiber.
31. The method according to Claim 15, wherein drawing the spun fiber comprises:
a) heating the spun fiber;
b) exerting tension on the heated spun fiber, thereby stretching the heated spun fiber; and c) collecting and cooling the stretched fiber.
32. A staple blend, comprising the fiber of Claim 1 and at least one other fiber selected from the group consisting of synthetic fibers, cotton fiber and wool fiber.
33. An article comprising the staple blend of Claim 35.
34. An article made from the fiber of Claim 1.
35. The article according to Claim 34, wherein the article is selected from a textile fabric, high strength industrial fabric, sewing threads, and cording for rubber reinforcement.
36. The article according to Claim 34, wherein the fiber size is from about 0.5 to 20 dpf.
CA002328470A 1998-04-23 1999-04-22 Polyester fiber and methods for making same Abandoned CA2328470A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/064,719 US6063495A (en) 1998-04-23 1998-04-23 Polyester fiber and methods for making same
US09/064,719 1998-04-23
PCT/US1999/007015 WO1999054534A1 (en) 1998-04-23 1999-04-22 Polyester fiber and methods for making same

Publications (1)

Publication Number Publication Date
CA2328470A1 true CA2328470A1 (en) 1999-10-28

Family

ID=22057843

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002328470A Abandoned CA2328470A1 (en) 1998-04-23 1999-04-22 Polyester fiber and methods for making same

Country Status (12)

Country Link
US (1) US6063495A (en)
EP (1) EP1127179A4 (en)
JP (1) JP2002512315A (en)
KR (1) KR20010034807A (en)
CN (1) CN1102676C (en)
AU (1) AU740725B2 (en)
BR (1) BR9909934A (en)
CA (1) CA2328470A1 (en)
ID (1) ID26161A (en)
MY (1) MY121372A (en)
TR (1) TR200003054T2 (en)
WO (1) WO1999054534A1 (en)

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6639067B1 (en) * 1998-09-09 2003-10-28 Willard C. Brinegar Continuous process for the production of anhydrosugar alcohols
US6485819B2 (en) 2000-12-19 2002-11-26 E. I. Du Pont De Nemours And Company Aliphatic-aromatic copolyesters
US6368710B1 (en) 2000-12-19 2002-04-09 E. I. Du Pont De Nemours And Company Sulfonated aliphatic-aromatic copolyesters
US6818730B2 (en) 2002-04-26 2004-11-16 E. I. Du Pont De Nemours And Company Process to produce polyesters which incorporate isosorbide
US6656577B1 (en) 2002-06-14 2003-12-02 E. I. Du Pont De Nemours & Company Process for making poly(ethylene-co-isosorbide) terephthalate polymer
US6914120B2 (en) * 2002-11-13 2005-07-05 Eastman Chemical Company Method for making isosorbide containing polyesters
US7052764B2 (en) * 2002-12-19 2006-05-30 E. I. Du Pont De Nemours And Company Shaped articles comprising poly[(trimethylene-co-dianhydrosugar ester) dicarboxylate] or poly(trimethylene-co-dianhydro-dicarboxylate with improved stability
US6737481B1 (en) 2002-12-19 2004-05-18 E. I. Du Pont De Nemours And Company Ester-modified dicarboxylate polymers
JP4559789B2 (en) * 2004-07-15 2010-10-13 Jx日鉱日石エネルギー株式会社 Liquid crystalline polymer composition containing non-liquid crystalline optically active polyester
US20060287494A1 (en) 2005-06-17 2006-12-21 Crawford Emmett D Polyester compositions containing high amounts of cyclobutanediol and articles made therefrom
US20060199871A1 (en) * 2005-03-02 2006-09-07 Hale Wesley R Multilayered, transparent articles and a process for their preparation
US7959998B2 (en) * 2005-03-02 2011-06-14 Eastman Chemical Company Transparent, oxygen-scavenging compositions containing polyesters comprising a cyclobutanediol and articles prepared therefrom
US20100184940A1 (en) * 2005-03-02 2010-07-22 Eastman Chemical Company Polyester Compositions Which Comprise Cyclobutanediol and Certain Thermal Stabilizers, and/or Reaction Products Thereof
US7959836B2 (en) * 2005-03-02 2011-06-14 Eastman Chemical Company Process for the preparation of transparent, shaped articles containing polyesters comprising a cyclobutanediol
US7955674B2 (en) * 2005-03-02 2011-06-07 Eastman Chemical Company Transparent polymer blends containing polyesters comprising a cyclobutanediol and articles prepared therefrom
US7704605B2 (en) 2006-03-28 2010-04-27 Eastman Chemical Company Thermoplastic articles comprising cyclobutanediol having a decorative material embedded therein
IL171198A (en) * 2005-09-29 2009-08-03 Shiltex Ltd Composite cable
US20070106054A1 (en) * 2005-10-28 2007-05-10 Crawford Emmett D Polyester compositions containing cyclobutanediol having a certain combination of inherent viscosity and high glass transition temperature and articles made therefrom
US8193302B2 (en) 2005-10-28 2012-06-05 Eastman Chemical Company Polyester compositions which comprise cyclobutanediol and certain phosphate thermal stabilizers, and/or reaction products thereof
US8586701B2 (en) * 2005-10-28 2013-11-19 Eastman Chemical Company Process for the preparation of copolyesters based on 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
CN103351583B (en) * 2005-10-28 2018-08-28 伊士曼化工公司 The polymer blend and its product for including cyclobutanediol with certain of logarithmic viscosity number and medium glass transition temperature combination
US9598533B2 (en) 2005-11-22 2017-03-21 Eastman Chemical Company Polyester compositions containing cyclobutanediol having a certain combination of inherent viscosity and moderate glass transition temperature and articles made therefrom
US7358324B2 (en) 2005-12-06 2008-04-15 Dak Americas Llc Manufacturing method of co-polyester resins for clear mono-layer containers with improved gas barrier characteristics
US20070128389A1 (en) * 2005-12-06 2007-06-07 Dak Americas Llc Process for manufacturing co-polyester barrier resins without solid-state polymerization, co-polyester resins made by the process, and clear mono-layer containers made of the co-polyester resins
US7737246B2 (en) * 2005-12-15 2010-06-15 Eastman Chemical Company Polyester compositions which comprise cyclobutanediol, cyclohexanedimethanol, and ethylene glycol and manufacturing processes therefor
US20070142511A1 (en) * 2005-12-15 2007-06-21 Crawford Emmett D Polyester compositions which comprise cyclobutanediol ethylene glycol, titanium, and phosphorus with improved color and manufacturing processes therefor
US9169388B2 (en) 2006-03-28 2015-10-27 Eastman Chemical Company Polyester compositions which comprise cyclobutanediol and certain thermal stabilizers, and/or reaction products thereof
US20080108759A1 (en) * 2006-11-08 2008-05-08 Sodergard Nils D A Lactic Acid Polymers
WO2009070238A2 (en) 2007-11-21 2009-06-04 Eastman Chemical Company Plastic baby bottles, other blow molded articles, and processes for their manufacture
US8501287B2 (en) 2007-11-21 2013-08-06 Eastman Chemical Company Plastic baby bottles, other blow molded articles, and processes for their manufacture
US8198371B2 (en) 2008-06-27 2012-06-12 Eastman Chemical Company Blends of polyesters and ABS copolymers
US20100099828A1 (en) * 2008-10-21 2010-04-22 Eastman Chemical Company Clear Binary Blends of Aliphatic Polyesters and Aliphatic-Aromatic Polyesters
US8895654B2 (en) * 2008-12-18 2014-11-25 Eastman Chemical Company Polyester compositions which comprise spiro-glycol, cyclohexanedimethanol, and terephthalic acid
US8394997B2 (en) 2010-12-09 2013-03-12 Eastman Chemical Company Process for the isomerization of 2,2,4,4-tetraalkylcyclobutane-1,3-diols
US8420869B2 (en) 2010-12-09 2013-04-16 Eastman Chemical Company Process for the preparation of 2,2,4,4-tetraalkylcyclobutane-1,3-diols
US8420868B2 (en) 2010-12-09 2013-04-16 Eastman Chemical Company Process for the preparation of 2,2,4,4-tetraalkylcyclobutane-1,3-diols
US20130095270A1 (en) 2011-10-14 2013-04-18 Eastman Chemical Company Polyester compositions containing furandicarboxylic acid or an ester thereof, cyclobutanediol and cyclohexanedimethanol
US20130217830A1 (en) 2012-02-16 2013-08-22 Eastman Chemical Company Clear Semi-Crystalline Articles with Improved Heat Resistance
EP3907312A1 (en) * 2012-03-30 2021-11-10 DuPont Industrial Biosciences USA, LLC Polyesters and fibers made therefrom
US8658810B2 (en) 2012-06-22 2014-02-25 Eastman Chemical Company Method for producing purified dialkyl-furan-2,5-dicarboxylate vapor
US8859788B2 (en) 2012-06-22 2014-10-14 Eastman Chemical Company Esterification of furan-2,5-dicarboxylic acid to a dialkyl-furan-2,5-dicarboxylate vapor with rectification
US8912349B2 (en) 2012-06-22 2014-12-16 Eastman Chemical Company Method for producing purified dialkyl-furan-2,5-dicarboxylate separation and solid liquid separation
KR101492129B1 (en) * 2012-12-31 2015-02-11 주식회사 휴비스 Co-polyester Composition and Fibers for Thermally Adhesive Binder and Method of Preparing Same
JP6507156B2 (en) 2013-06-20 2019-04-24 フラニックス・テクノロジーズ・ベーフェー Method of producing fiber, and fiber and yarn produced from the fiber
CN103469628A (en) * 2013-09-16 2013-12-25 上海大学 Method for dyeing polyether type high-hydrophilicity polyester fiber
US9517584B2 (en) 2013-12-18 2016-12-13 Eastman Chemical Company Articles comprising isosorbide and processes for their manufacture
FR3054244B1 (en) * 2016-07-22 2019-09-06 Roquette Freres SEMI-CRYSTALLINE THERMOPLASTIC POLYESTER FOR THE MANUFACTURE OF FIBERS
CN106283263B (en) * 2016-08-31 2018-07-27 江苏恒力化纤股份有限公司 Porous soft super fine denier polyester fiber of one kind and preparation method thereof
FR3065958B1 (en) * 2017-05-05 2020-09-04 Roquette Freres METHOD OF MANUFACTURING A COMPOSITE MATERIAL
JP7194123B2 (en) 2017-05-31 2022-12-21 エスケー ケミカルズ カンパニー リミテッド POLYESTER RESIN AND METHOD FOR MANUFACTURING THE SAME AND RESIN MOLDED PRODUCTS FORMED THEREOF
KR102568693B1 (en) * 2017-06-02 2023-08-21 에스케이케미칼 주식회사 Polyester fiber, preparation method thereof and article formed therefrom
KR102568694B1 (en) 2017-06-22 2023-08-22 에스케이케미칼 주식회사 Polyester container and preparation method thereof
KR20190001551A (en) * 2017-06-26 2019-01-04 에스케이케미칼 주식회사 Polyester film and preparation method thereof
US10696645B2 (en) 2017-07-20 2020-06-30 Eastman Chemical Company Method for producing purified dialkyl-furan-2,5-dicarboxylate
FR3081871B1 (en) * 2018-05-31 2020-11-27 Roquette Freres PROCESS FOR CRYSTALLIZING A POLYESTER CONTAINING AT LEAST ONE 1,4: 3,6-DIANHYDROHEXITOL PATTERN.
FR3104179B1 (en) 2019-12-10 2022-09-09 Roquette Freres Colored synthetic fiber
CN112574399B (en) * 2021-02-26 2021-05-07 中国科学院宁波材料技术与工程研究所 High-temperature-resistant polycyclic aromatic hydrocarbon polyester hollow container and preparation method thereof

Family Cites Families (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2985995A (en) * 1960-11-08 1961-05-30 Du Pont Compact interlaced yarn
NL128493C (en) * 1961-05-31
US3199281A (en) * 1961-09-27 1965-08-10 Du Pont Composite polyester yarn of differentially shrinkable continuous filaments
GB1079686A (en) * 1963-05-17 1967-08-16 Courtaulds Ltd Polyesters
US3966867A (en) * 1968-08-31 1976-06-29 Akzona Incorporated Manufacture of unique polyethylene terephthalate fiber
US4159617A (en) * 1969-11-17 1979-07-03 Fiber Industries, Inc. Resilient polyester fibers
US3684766A (en) * 1970-02-16 1972-08-15 Eastman Kodak Co Process for enhancing the inherent viscosity of bisphenol polyesters
US3785993A (en) * 1971-06-04 1974-01-15 Ici America Inc Stable liquid emulsifier compositions
US3795627A (en) * 1971-06-04 1974-03-05 Ici America Inc Stable liquid emulsifier compositions
US3859445A (en) * 1971-06-04 1975-01-07 Ici America Inc Stable liquid emulsifier compositions in bread making
BE788788A (en) * 1971-09-13 1973-03-13 Treuhandvereinigung Ag PRODUCT FOR PRESERVING, PROMOTING AND RESTORING HAIR AND METHOD OF MANUFACTURING THIS PRODUCT
DE2248290A1 (en) * 1971-11-11 1973-05-17 Indal Oy HAIRCARE PRODUCTS AND METHOD OF MANUFACTURING THESS
US3871947A (en) * 1973-01-15 1975-03-18 Minnesota Mining & Mfg Biaxially oriented polyethylene terephthalate film having a surface suitable for writing thereon
US4195161A (en) * 1973-09-26 1980-03-25 Celanese Corporation Polyester fiber
JPS5218832A (en) * 1975-07-30 1977-02-12 Pola Chem Ind Inc Method of making cosmetic preparation
US4146663A (en) * 1976-08-23 1979-03-27 Asahi Kasei Kogyo Kabushiki Kaisha Composite fabric combining entangled fabric of microfibers and knitted or woven fabric and process for producing same
JPS53138446A (en) * 1977-05-10 1978-12-02 Adeka Argus Chem Co Ltd Resin composition
US4157419A (en) * 1977-09-16 1979-06-05 E. I. Du Pont De Nemours And Company Polyester feed yarn for draw-texturing
US4209559A (en) * 1978-03-27 1980-06-24 Teijin Limited Linear crystalline terephthalate polyester yarn and textile goods made therefrom
US4223128A (en) * 1978-05-16 1980-09-16 Celanese Corporation Process for preparing polyethylene terephthalate useful for beverage containers
DE2965897D1 (en) * 1978-05-26 1983-08-25 Ici Plc Method of improving the processability of rigid polymers; melts, solutions and shaped articles prepared according to this method
US4246381A (en) * 1979-06-18 1981-01-20 Union Carbide Corporation Polyarylate blends with copolyesters
US4231922A (en) * 1979-06-18 1980-11-04 Union Carbide Corporation Impact modified polyarylate blends
US4225549A (en) * 1979-07-18 1980-09-30 The Mead Corporation Method to increase the heat deflection temperature of amorphous polyethylene terephthalate
US4259458A (en) * 1979-08-09 1981-03-31 Union Carbide Corporation Polyarylate containing blends
US4294956A (en) * 1979-08-27 1981-10-13 Union Carbide Corporation Process for preparing polyarylates in the presence of a diphenyl ether
US4294957A (en) * 1979-08-27 1981-10-13 Union Carbide Corporation Process for preparing polyarylates
DE2938464A1 (en) * 1979-09-22 1981-04-09 Bayer Ag, 5090 Leverkusen THERMOPLASTIC POLYCARBONATES, THEIR PRODUCTION AND THEIR USE AS MOLDED BODIES AND FILMS
US4259478A (en) * 1979-12-14 1981-03-31 Eastman Kodak Company Process for preparing high molecular weight copolyesters
DE3002762A1 (en) * 1980-01-26 1981-07-30 Bayer Ag, 5090 Leverkusen METHOD FOR THE PRODUCTION OF HETEROCYCLIC-AROMATIC OLIGOCARBONATES WITH DIPHENOL CARBONATE END GROUPS AND THE USE THEREOF FOR THE PRODUCTION OF THERMOPLASTIC, HIGH-MOLECULAR HETEROCYCLIC-AROMATIC COBOLATE
US4374239A (en) * 1980-03-03 1983-02-15 Union Carbide Corporation Process for preparing polyarylates
US4526923A (en) * 1980-06-23 1985-07-02 Ethyl Corporation Polyethylene terephthalate blends
EP0043481B1 (en) * 1980-07-02 1984-11-28 Bayer Ag Semipermeable membranes
US4355080A (en) * 1981-03-02 1982-10-19 Eastman Kodak Company Polyester-acrylic composite sheet having improved weatherability
DE3111092A1 (en) * 1981-03-20 1982-09-30 Bayer Ag, 5090 Leverkusen METHOD FOR PRODUCING 1.4-3.6-DIANHYDRO-HEXITOLS
DE3111093A1 (en) * 1981-03-20 1982-10-07 Bayer Ag, 5090 Leverkusen METHOD FOR THE PRODUCTION OF CELL-SHAPED POLYURETHANE PLASTERS, IF ANY, USING DIANES OF THE DIANHYDRO-HEXITE SERIES
US4351917A (en) * 1981-04-06 1982-09-28 Celanese Corporation Poly(ester-amide) capable of forming an anisotropic melt phase derived from 6-hydroxy-2-naphthoic acid, aromatic monomer capable of forming an amide linkage, and other aromatic hydroxyacid
DE3115071A1 (en) * 1981-04-14 1982-10-28 Bayer Ag, 5090 Leverkusen METHOD FOR PRODUCING POLYESTERS USING MANNITE OR SORBITE DERIVATIVES, MIXTURES OF POLYESTERS AND THESE MANNITE OR SORBITE DERIVATIVES AND THEIR USE FOR THE PRODUCTION OF AQUEOUS BURNING VARNISHES
DE3115072A1 (en) * 1981-04-14 1982-11-04 Bayer Ag, 5090 Leverkusen METHOD FOR PRODUCING POLYESTERS OR ALKYD RESINS, RESINS AVAILABLE BY THIS PROCESS AND THE USE THEREOF AS A PAINT CONTAINER
US4725647A (en) * 1981-08-27 1988-02-16 Amoco Corporation Process for preparing polyesters in the presence of a processing aid
DE3151366A1 (en) * 1981-12-24 1983-07-14 Bayer Ag, 5090 Leverkusen "BINDING AGENT FOR AQUEOUS BURNING VARNISHES BASED ON POLYESTERS AND METHOD FOR THE PRODUCTION THEREOF"
US4497865A (en) * 1982-02-17 1985-02-05 Toray Industries, Inc. Polyethylene terephthalate film, process for the production thereof and magnetic recording medium therefrom
US4386186A (en) * 1982-03-29 1983-05-31 Union Carbide Corporation Process for preparing polyarylates
EP0095712B2 (en) * 1982-05-28 1993-06-23 Asahi Kasei Kogyo Kabushiki Kaisha Easily dyeable polyethylene terephtalate fibre and process for preparing the same
US4439586A (en) * 1982-06-30 1984-03-27 Union Carbide Corporation Process for preparing polyarylates
DE3229412A1 (en) * 1982-08-06 1984-02-09 Bayer Ag, 5090 Leverkusen METHOD FOR PRODUCING DIANHYDROHEXITOL MIXTURES FROM HEXITOLS, DIANHYDRO-HEXITOL MIXTURES CONTAINING DIANHYDRO IDITES AND THE USE THEREOF FOR PRODUCING POLYMERS
DE3233086A1 (en) * 1982-09-07 1984-03-08 Bayer Ag, 5090 Leverkusen METHOD FOR PRODUCING POLYURETHANE ELASTOMERS USING DIOLES OF THE DIANHYDRO-HEXIT SERIES IN CONNECTION WITH POLYOXYALKYLENE-POLYDIALKYLSILOXANE COPOLYMERS
US4557982A (en) * 1983-04-07 1985-12-10 Teijin Limited Magnetic recording flexible disc
US4438226A (en) * 1983-04-22 1984-03-20 The Dow Chemical Company Polyurethanes derived from 1,4-lactones of 3,6-anhydro-2,3,4,5,6-pentahydroxyhexanoic acid
US4435562A (en) * 1983-05-06 1984-03-06 The Goodyear Tire & Rubber Company Process for the production of polyester copolymers
US4474918A (en) * 1983-05-31 1984-10-02 Eastman Kodak Company Thermoplastic polyester compositions having improved barrier properties
US4443563A (en) * 1983-06-08 1984-04-17 The Dow Chemical Company Polyurethanes based on 1;4-3:6 dianhydrohexitols
DE3429149A1 (en) * 1984-08-08 1986-02-20 Bayer Ag, 5090 Leverkusen METHOD FOR THE PRODUCTION OF STABILIZED POLYAMINES, STABILIZED POLYAMINES OF RETARDED REACTIVITY AND THEIR USE FOR THE PRODUCTION OF POLYURETHANE
DE3437915A1 (en) * 1984-10-17 1986-04-17 Bayer Ag, 5090 Leverkusen METHOD FOR THE PRODUCTION OF POLYETHERESTER POLYOLS, CORRESPONDING PROCESS PRODUCTS AND THEIR USE
US4551520A (en) * 1984-11-30 1985-11-05 Eastman Kodak Company Polyesters of trans-4,4-stilbenedicarboxylic acid, terephthalic acid and 1,4-cyclohexanedimethanol
DE3522978A1 (en) * 1985-06-27 1987-01-15 Bayer Ag METHOD FOR PRODUCING LIGHT-FAST, SOLVENT-RESISTANT POLYURETHANE URBAN ELASTOMER COATINGS IN THE REACTIVE COATING PROCESS
US4805788A (en) * 1985-07-30 1989-02-21 Yoshino Kogyosho Co., Ltd. Container having collapse panels with longitudinally extending ribs
US4713436A (en) * 1986-04-04 1987-12-15 A. E. Staley Manufacturing Company Glycoside-containing polyester preparation process
JPH0722965B2 (en) * 1986-07-18 1995-03-15 ダイアホイルヘキスト株式会社 Polyester shrink wrapping film
US4863046A (en) * 1987-12-24 1989-09-05 Continental Pet Technologies, Inc. Hot fill container
US5005716A (en) * 1988-06-24 1991-04-09 Hoover Universal, Inc. Polyester container for hot fill liquids
US5179143A (en) * 1988-07-26 1993-01-12 Bayer Aktiengesellschaft Process for the preparation of compression molded materials
US5021289A (en) * 1988-11-15 1991-06-04 Eastman Kodak Company Reinforced polymeric sheet material
US4993566A (en) * 1989-12-19 1991-02-19 Hoover Universal, Inc. Spiral container base structure for hot fill pet container
US4993567A (en) * 1990-03-12 1991-02-19 Hoover Universal, Inc. Involute embossment base structure for hot fill PET container
US5124388A (en) * 1990-05-07 1992-06-23 Eastman Kodak Company Films and containers of heat resistant copolyesters
US5120822A (en) * 1990-08-21 1992-06-09 E. I. Du Pont De Nemours And Company Polyester process comprising the addition of a tetraalkyl zirconate catalyst
JPH0659686B2 (en) * 1990-10-29 1994-08-10 ダイアホイルヘキスト株式会社 Biaxially oriented polyester film for capacitors
US5141120A (en) * 1991-03-01 1992-08-25 Hoover Universal, Inc. Hot fill plastic container with vacuum collapse pinch grip indentations
US5141121A (en) * 1991-03-18 1992-08-25 Hoover Universal, Inc. Hot fill plastic container with invertible vacuum collapse surfaces in the hand grips
US5412005A (en) * 1991-05-03 1995-05-02 Novamont S.P.A. Biodegradable polymeric compositions based on starch and thermoplastic polymers
US5164478A (en) * 1991-08-13 1992-11-17 Hoechst Celanese Corp. Process for producing polyarylate having low color
US5296550A (en) * 1991-11-01 1994-03-22 Enichem S.P.A. Impact modified polyester blends with improved polymer compatibility
US5321056A (en) * 1992-06-19 1994-06-14 Rohm And Haas Company Amorphous, aromatic polyester containing impact modifier
US5382474A (en) * 1992-09-24 1995-01-17 Basf Corporation Method for producing polyethylene terephthalate fibers with reduced flammability
BE1006297A3 (en) * 1992-10-26 1994-07-12 Axxis Nv Plastic sheet, process for the production thereof and shape parts containing the plate.
DE4415353A1 (en) * 1993-05-04 1994-11-10 Basf Ag Diols
US5484632A (en) * 1993-10-07 1996-01-16 Eastman Chemical Company Non-oriented, heat-sealing polyester film
US5464890A (en) * 1993-11-12 1995-11-07 Shakespeare Company Polyester monofilaments extruded from a high temperature polyester resin blend with increased resistance to hydrolytic and thermal degradation and fabrics thereof
DE4401055A1 (en) * 1994-01-15 1995-07-20 Basf Ag Process for the preparation of thermoplastic polyesters with a low carboxyl end group content
BE1008335A3 (en) * 1994-04-18 1996-04-02 Axxis Nv PLASTIC PLATE CONTAINING A COPOLYESTER, A METHOD FOR MANUFACTURING THE PLASTIC PLATE AND FORMULAS MADE FROM THE PLASTIC PLATE.
DE4423141A1 (en) * 1994-07-01 1996-01-04 Hoechst Ag Polyester dispersions as an additive in coating materials
DE19504913A1 (en) * 1995-02-15 1996-08-22 Basf Ag New chiral neumatic polyesters
DE19505680C1 (en) * 1995-02-20 1996-05-23 Inventa Ag Condensn. injection moulding of preform for food-quality bottle
DE19519579C2 (en) * 1995-05-29 1997-03-20 Hoechst Ag Amorphous, transparent plate made of a crystallizable thermoplastic
DE19519577A1 (en) * 1995-05-29 1996-12-05 Hoechst Ag Pigmented amorphous sheet with good optical properties etc.
DE19519578A1 (en) * 1995-05-29 1996-12-05 Hoechst Ag Transparent coloured amorphous sheet with good optical properties etc.
CA2222692A1 (en) * 1995-05-29 1996-12-05 Hoechst Aktiengesellschaft Amorphous, transparently colored, optionally uv-stabilized sheet of a crystallizable thermoplastic
US5607757A (en) * 1995-06-02 1997-03-04 Eastman Chemical Company Paper machine fabric
US5721397A (en) * 1995-06-07 1998-02-24 Weinberg; Martin J. Electrical insulation and products protected thereby
DE19522118C1 (en) * 1995-06-19 1997-03-13 Hoechst Ag Amorphous, transparent, UV-stabilized plate made of a crystallizable thermoplastic, process for its production and its use
DE19528336A1 (en) * 1995-08-02 1997-02-06 Hoechst Ag Amorphous, transparent plate made of a crystallizable thermoplastic with high standard viscosity
US5616404A (en) * 1995-10-10 1997-04-01 Eastman Chemical Company Orientable, heat setable semi-crystalline copolyesters
DE19538700A1 (en) * 1995-10-18 1997-04-24 Hoechst Ag Polymers forming cholesteric phases, process for their preparation and use
US5596888A (en) * 1995-10-23 1997-01-28 Milliken Research Corporation Knitted furniture support fabric
DE19612973A1 (en) * 1996-04-01 1997-10-02 Hoechst Ag LCP blends

Also Published As

Publication number Publication date
BR9909934A (en) 2001-09-11
CN1102676C (en) 2003-03-05
EP1127179A1 (en) 2001-08-29
ID26161A (en) 2000-11-30
TR200003054T2 (en) 2001-01-22
WO1999054534A9 (en) 2000-01-27
US6063495A (en) 2000-05-16
MY121372A (en) 2006-01-28
EP1127179A4 (en) 2005-09-21
JP2002512315A (en) 2002-04-23
AU3637199A (en) 1999-11-08
AU740725B2 (en) 2001-11-15
CN1298460A (en) 2001-06-06
KR20010034807A (en) 2001-04-25
WO1999054534A1 (en) 1999-10-28

Similar Documents

Publication Publication Date Title
US6063495A (en) Polyester fiber and methods for making same
JP4361054B2 (en) Molded articles with improved stability
JP3630662B2 (en) Copolymer polytrimethylene terephthalate
JP5916756B2 (en) Fibers and yarns made from fluorinated polyester blends
US5955196A (en) Polyester fibers containing naphthalate units
KR101944127B1 (en) A fabric prepared from fluorinated polyester blend yarns
EP0595814A1 (en) Copolyesters for high modulus fibers
KR101854488B1 (en) Fluorinated polyester blend
JP5926743B2 (en) Carpet made from yarn containing fluorinated polyester blend
JP6099325B2 (en) Latent crimped polyester composite short fiber and non-woven fabric thereof
MXPA00010290A (en) Polyester fiber and methods for making same
JPH08113826A (en) Highly shrinkable fiber and its production
KR100656686B1 (en) Polyester Fibers Containing Naphthalate Units

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued