CA2326133A1 - Dinitrotoluene (dnt)-free single base propellant - Google Patents

Dinitrotoluene (dnt)-free single base propellant Download PDF

Info

Publication number
CA2326133A1
CA2326133A1 CA002326133A CA2326133A CA2326133A1 CA 2326133 A1 CA2326133 A1 CA 2326133A1 CA 002326133 A CA002326133 A CA 002326133A CA 2326133 A CA2326133 A CA 2326133A CA 2326133 A1 CA2326133 A1 CA 2326133A1
Authority
CA
Canada
Prior art keywords
dnt
propellant
citrate
single base
plasticizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002326133A
Other languages
French (fr)
Inventor
Paul D. Lusk
Richard O. Toggweiler
William J. Worrell, Jr.
Sam M. Moy
Lucas R. Lopez
Philip Y. Hui
James J. Rutkowski
Joseph Prezelski
Richard Cirincione
Eva Marie Altizer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Navy
Northrop Grumman Innovation Systems LLC
Original Assignee
Alliant Techsystems Inc.
Paul D. Lusk
Richard O. Toggweiler
William J. Worrell, Jr.
Sam M. Moy
Lucas R. Lopez
Philip Y. Hui
James J. Rutkowski
Joseph Prezelski
Richard Cirincione
Eva Marie Altizer
The Government Of The United States Of America, As Represented By The Se Cretary Of The Department Of The Navy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alliant Techsystems Inc., Paul D. Lusk, Richard O. Toggweiler, William J. Worrell, Jr., Sam M. Moy, Lucas R. Lopez, Philip Y. Hui, James J. Rutkowski, Joseph Prezelski, Richard Cirincione, Eva Marie Altizer, The Government Of The United States Of America, As Represented By The Se Cretary Of The Department Of The Navy filed Critical Alliant Techsystems Inc.
Publication of CA2326133A1 publication Critical patent/CA2326133A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B25/00Compositions containing a nitrated organic compound
    • C06B25/18Compositions containing a nitrated organic compound the compound being nitrocellulose present as 10% or more by weight of the total composition
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • C06B45/04Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive
    • C06B45/06Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component
    • C06B45/10Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component the organic component containing a resin

Abstract

A plasticizer material suitable for a DNT-free single base propellant formulation containing an amount of material selected from citrate and adipate compounds.

Description

DINITROTOLUENE (DNT)-FREE SINGLE BASE PROPELLANT
BACKGROUND OF THE INVENTION
I. Field of the Invention The present invention relates generally to single base propellants and, more particularly, to the reduction of environmental hazards by the elimination of the need to incorporate dinitrotoluene (DNT) in single base propellants. The invention provides substitute, less energetic but more efficient, plasticizing compounds which enable the incorporation of additional relative amounts of nitrocellulose (NC) in the mix thereby maintaining overall energy levels.
II. Related Art Single base propellants generally contain colloided nitrocellulose powders as the chief energetic component and this makes up about 85-99$ (weight) of the propellant mix.
The nitrocellulose is combined with a plasticizer to give the mix the desired mechanical properties so that the material can be processed into grains or other shapes utilized in, for example, 155 mm Artillery charges or 120 mm tank ammunition, or for other projectile firing purposes. Varying amounts of other stabilizing additives are added to the mix to reduce hazards sensitivity and to prolong shelf life. Double or multi base propellants, on the other hand, contain the same colloided nitrocellulose component, but utilize a second, liquid energetic compound such as nitroglycerin (NC) or an equivalent energetic liquid nitrate ester as a plasticizer. A third energetic component is also added in triple based composition.
Double base powders typically contain about 80$ colloided nitrocellulose with the major portion of the remaining material consisting of the nitroglycerin fraction. The powders of the present invention are single base propellants. They must be relatively hazard insensitive
-2-and so avoid shock or heat sensitive plasticizers. An example of a prior blasting composition using NC and DNT is shown in U.S. Patent No. 3,328,217.
Most single base propellants traditionally contain a significant amount of dinitrotoluene (DNT) which acts as a plasticizer for the nitrocellulose to impart the desirable mechanical properties to the mix which, in turn, facilitate the processing of the mix into grains and other shapes utilized, for example, in the manufacture (loading) of large caliber cartridge munitions such as 155 mm Artillery charges or 120 mm tank ammunition. Such single base propellants normally contain from about 1-10~ DNT which itself is an energetic plasticizer albeit of low hazards sensitivity. In addition to being an energetic plasticizer, DNT also reduces the hygroscopic properties of the nitrocellulose making the mixture more water resistant and can be used to adjust the burning rate as it reduces the burning rate of pure nitrocellulose.
Single base propellants are produced utilizing a solvent-type process. An example of which is found in U.S.
Patent No. 4,525,313 to Muller. Ingredients are mixed utilizing volatile solvents or gelling agents which, as a rule, are selected from ketones, alcohols, ethers or mixtures thereof. The use of such solvents in combination with thermoplastic shaping processes including pressing and extruding equipment enable forming to take place at relatively low working temperatures. For example, nitrocellulose that has been turned into a doughy mass can readily be extruded in desired shapes at <50°C. The use of DNT lends itself readily to such a process inasmuch as that component can be in the form of an oil, solid or an oil-solid mixture which includes all three DNT isomers (i.e., 2,4;2,5 and 2,6 DNT) and generally freezes in the range from about 20-35°C. The solid form is generally para or
-3-2,4-dinitrotoluene. This material also lends itself readily to solvent processing with the nitrocellulose.
DNT has had a long and successful use as the major plasticizing and energy adjustment component in single base propellants and, with respect to the properties of the propellants themselves, has been quite successful. The DNT
is normally utilized with an amount of a second plasticizer, generally dibutylphthalate (DBP) which works well in combination with the DNT.
Thus, those skilled in the art appreciate that dinitrotoluene (DNT) has many attributes which make it a successful plasticizer and energy adjustment material for single base propellants: While successful from the standpoint of processing and use of the propellant, DNT
carries with it significant environmental drawbacks which have more recently provoked increasingly important concerns. Fine particulate DNT is considered quite toxic as when dust is produced in de-milling propellant. Residue DNT has traditionally been burned to destroy the material, but this produces undesirable nitrogen oxides (NOx).
Polycyclic aromatics (PAH's) are also given off by the combustion of DNT and these are considered quite carcinogenic. In addition, DNT is soluble up to about 150 PPM in water so that this presents a serious potential waste water problem. The material has not only been classified as a potential carcinogen, but also has been declared a hazardous waste by the EPA.
The dangers associated with use of DNT plasticizers has required high cost, personal protective equipment to be worn by those working with the material and expensive precautions to be taken with respect to containment and treatment of contaminated materials such as waste water containing DNT. Thus, there has long been a need in the manufacture of such single base propellants to provide a
-4-non-toxic and environmentally safe chemical to replace the DNT plasticizes without sacrificing performance in the propellant material and which can be processed with existing production equipment for single base propellants.
In addition to DNT, dibubylphthalate (DBP) is also present in many plasticizes systems for NC single base propellant compositions in lesser amounts, normally 2-5$.
While not necessarily as undesirable as DNT, DBP is also considered a toxic material. It would also be advantageous to eliminate this material from the compositions as well.
Furthermore, diphenyl amine (DPA) which is the most common stabilizer used in single-base propellants also presents a potential environmental hazard. DPA is on the Enviromental Protection Agencies Toxic Releases Inventor (TRI) list.
Accordingly, it is a primary object of the present invention to provide a single base propellant which does not require DNT as a modifier or plasticizes material.
Another object of the invention is to provide a single base propellant which does not contain DNT but which can be processed using existing single base processing equipment.
Yet another object of the invention is to provide a single base propellant which does not require DBP in the formula.
An additional object of this invention is to provide a single base propellant which does not use DPA as the stabilizer.
A further object of the present invention is to provide non-toxic and environmentally friendly chemical plasticizers for single base propellants that do not require DNT, DBP or DPA.
It is a yet still further object of the present invention to provide non-toxic and environmentally friendly plasticizers for single base propellants, the incorporation
-5-of which does not result in an overall lowered performance of the propellant.
A yet still further object of the invention is to provide new plasticizers for single base propellants which are non-toxic and environmentally safe and which can be added to the propellant utilizing the same processing solvents used for other components in existing single base processes.
Other objects and advantages of the invention will become apparent to those skilled in the art upon becoming familiar, with the present specification and appended claims.
SUt~IARY OF THE INVENTION
The present invention provides viable environmentally friendly substitutes for dinitrotoluene (DNT) in single base munition propellants which are compatible with existing solvent-type single base propellant manufacturing processes and which, in addition, enable propellants compatible in performance to existing DNT-containing loads.
In accordance with the present invention, it has been discovered that certain adipate and citrate compounds can be used in relatively small quantities to sufficiently plasticize high nitrogen (N) (about 13.2$ N) nitrocellulose (NC) in single base propellants. The required relative quantities are far less than that required using DNT, i.e., about 2-5$ versus about 7-10~ or more of DNT . Although, unlike DNT, these compounds are not energetic themselves, and thus, actually have a negative energy output with respect to the propellant compared to the positive energy of DNT, the lesser required amounts allow corresponding increases in the allowable percentage of NC in the propellant mix which offsets the negative energy of the plasticizers of the invention and results in an overall comparable energy yield for the propellant, typically
-6-impetus levels of up to 986 J/g.. This is comparable to prior DNT containing loads such as M14 utilized for 120 mm tank cartridges.
The preferred compounds in accordance with the invention include certain adipate and/or citrate compounds including diisobutyl adipate (DIBA), diisooctly adipate (DIOA), acetyltriethyl citrate (ATEC), acetyltri-n-butyl citrate, triethyl citrate and tributyl citrate. Exemplary propellant compositions include from about 94-96$ high N
nitrocellulose (about 13.2$ N), about 2-4~ plasticizer and the remainder dibutylphthalate (DBP). The DBP provides additional plasticizing qualities. In addition, a small amount, nominally 1$, diphenylamine (DPA) is added to the mix as a thermal stabilizing material.
Additional embodiments include up to about 10~ or more ATEC and no DNT or DBP. These compositions contain a lesser amount of high N nitrocellulose (about 88-90$). These formulations may also contain ethyl cellulose as the stabilizer in place of the DPA. These compositions containing approximately 10~ of the new plasticizer system result in lower energy levels that are comparable to currently produced Artillery propellants such as M1, or approximately 930 J/g impetus.
The propellant combination of the invention containing the environmentally friendly plasticizing materials can be processed using conventional single base solvent processing techniques including conventional solvents, presses, extrusion and cutting devices and solvent recovery techniques.
BRIEF DESCRIPTION OF THE DRAWINGS
In the drawings:
Figure 1 shows the accelerated aging properties of certain new compositions according to the invention relative to M14; and Figure 2 depicts ballistic test results using a Gamma Dynagun for a composition of the invention with M19 energetics.
DETAILED DESCRIPTION
In accordance with the invention, improvements have been made in single base propellant compositions which enable them to be more friendly to those engaged in the manufacturing processes and more compatible with the environment. This has been accomplished, for the most part, by eliminating dinitrotoluene (DNT) from single base propellants which is a component that has possessed attributes with regard to enhancing propellant properties but which, at the same time, has presented both a hazard to the people engaged in the manufacturing process and an environmental menace from the standpoint of creating hazardous waste materials in effluents, particularly when burned (as poly aromatic hydrocarbons) and in waste water.
According to the invention, there have been discovered certain plasticizing compounds which enable substitution for DNT without sacrificing overall propellant performance.
These compounds can sufficiently plasticize high N
nitrocellulose (NC) sufficiently to enable proper processing into grains suitable for use in large caliber munitions, particularly, 155 mm Artillery charges and 120 mm tank ammunition.
Thus, it has been discovered that certain citrate and adipate compounds successfully plasticize high N
nitrocellulose (NC) in single base propellant systems utilizing sufficiently low percentages of these non-energetic materials such that additional percentages of NC
can be incorporated,in the formula thereby maintaining the overall energy output substantially constant.
It should be noted that a variety of materials have been evaluated in this regard including adipates and _g_ citrates, phthlates, polycaprolactones, ureas, urethanes and other materials. Attributes desired and evaluated include ability to plasticize NC, toxicity, processing/physical characteristics (compatibility with single base processing solvents and equipment) and mechanical characteristics imparted to the mix, prior usage in propellants, energetic qualities, availability and cost.
As previously noted, DNT has a long history of successful prior usage and its ability to plasticize NC and create processible physical characteristics in the mix. DNT, of course, is moderately energetic and the presence of larger percentages of it does not reduce the overall energy output of the propellant material. Thus, it was quite unexpected that DNT could be replaced using a low or negative energy material without sacrificing the overall performance of the mix.
In accordance with the invention, it has been discovered that a number of citrate compounds, together with at least one adipate successfully meet the necessary criteria for substituting for DNT in single base munition propellants. Thus, according to the present invention, it has been found that diisobutyl adipate (RIBA) available, for example, as Plasthall DIBA from the C.P. Hall Company, Memphis, Tennessee, acetyltriethyl citrate (ATEC) available as Citroflex~ A-2 from Morflex, Inc., Greensboro, North Carolina, and acetyltri-n-butyl citrate available as Citroflex A-4 also from Morflex, Inc. were especially successful. Other citrates, including triethyl citrate, available as Citroflex 2, and tributyl citrate, available as Citroflex 4, both from Morflex, Inc., of Greensboro, North Carolina, were also usable.
According to the invention, then, it has been discovered that DNT-free single base propellants containing from 2-10~ by weight of these new plasticizers display the desirable ballistic, mechanical, thermochemical and stability properties of standard DNT-containing propellant formulations. An important property of these plasticizers is that they can be added to the propellant in a standard pre-mixed form with the processing solvents typically used in single base processes. The plasticizers are relatively non-toxic and are environmentally acceptable under current governmental regulations.
The processing solvents for processing single base propellants include conventional solvents for NC which vary depending on the N content of the nitrocellulose.
Thus, high grade nitrocellulose which has above about 13.15$ N is practically insoluble in ether, but is readily dispersed by plasticizers and acetone. Below about 13.15$ N, either can be used. In some cases, combinations of acetone or ether and other solvents such as alcohols or other ketones are preferred.
In any event, in normal solvent-type processing, solid blocks of NC are broken and blended into the solvent together with an amount of the desired plasticizing agent, which is added or blended in from a slurry utilizing common solvents. Additional stabilizing materials are added prior to final mixing of the solubilized/plasticized nitrocellulose. The ability to add the plasticizers dispersed in a common solvent or solvents, of course, improves the uniformity of the mix and reduces the time of the mixing cycle. In addition to the other ingredients, if more solvent is needed, this is added to the material in the final mix or possibly in stages during the mix. After all the ingredients have been added to the mixer, the mix cycle continues for a given period of time, possibly 1 hour, until the single base propellant is thoroughly mixed.
After the mixing operation has been completed, the mixed propellant is dried by removal and recovery of some of the solvent from the mixed batch until a desired level of plasticity is achieved. Adjustment procedure steps, including drying and adding solvent, may continue until the correct plasticity is achieved and thereafter the mixer is run for a short time to allow the solvent to equalize throughout the mix.
After mixing has been completed and the proper solvent level reached, the material is transferred to a blocking press where it is subjected to a high pressure hydraulic ram to pressurize the material to remove occluded air, improve consolidation and form the blocks into the proper shape for the Braining press.
The blocked material is then transferred to the Braining press. In the Braining press, various techniques are utilized to extrude strands of propellant depending on the desired final configuration or use. The strands of propellant are cut to a specified length for further drying prior to final cutting into actual grain length.
The extruded material is dried in a manner which saves and recovers as much solvent as is practical for reuse and so the first step is normally to process the load in a solvent recovery tank. The material is then subjected to a water-dry operation where additional solvents are extracted into the water and thereafter to an air-dry cycle where the surface moisture is removed. Processing of the new compositions may also be accomplished in new continuos processes where the batch operations are replaced by continuous mixers, extruders and solvent removal.
Having presented an overview of the invention, additional information with respect to certain specific examples, which are intended to exemplify rather than to limit the scope o~ the invention, will next be presented.
Much of the information is in the form of tabular data criteria which will be familiar to those skilled in the art.
Table 1 shows a prior formulation utilizing dinitrotoluene (DNT) as the principle plasticizer and energy adjustment compound. The composition is an example of a mix generally known as M14 and nominally contains about 8$ DNT. Note that the specific example contained 8.29$ DNT and 2$ DBP.

PERCENT

NITROCELLULOSE 90.00 DINITROTOLUENE 8.00 DIBUTYLPHTHALATE 2.00 TOTAL 100.00 DIPHENYLAMINE 1.00 (ADDED) MOISTURE 0.6 RESIDUAL SOLVENT 0.7 GRAPHITE GLAZE 0.2 Table 2A shows three examples (Example 1, Example 2 and Example 3) of percentage compositions formulated in accordance with the present invention in which lesser amounts of the material known as plasticizer "340" has been substituted for the DNT fraction and the percentage of NC
increased. The material known as plasticizer "340" is diisobutyl adipate or (DIBA) available as Plastall DIBA
from the C.P. Hall Company.

TABLE ' 2A
PROPELLANT COMPOSITION

EXAMPLE EXAMPLE EXAMPLE

PERCENT PERCENT PERCENT PERCENT
CONSTITUENT FORMULA MEASURED MEASURED MEASURE
D

NITROCELLULOSE 96.00 96.23 96.09 96.14 PLASTICIZER "340" 2.10 1.95 2.01 1.99 DIBUTYLPHTHALATE 1.90 1.82 1.90 1.87 TOTAL 100.00 DIPHENYLAMINE 1.00 0.97 1.00 0.98 MOISTURE 0.6 0.7 0.6 0.6 RESIDUAL SOLVENT 0.7 0.9 0.8 0.5 GRAPHITE GLAZE 0.2 0.1 0.1 0.1 PROPELLANT COMPOSITION

,.

PERCENT PERCENT
CONSTITUENT FORMULA MEASURED

NITROCELLULOS 95.00 95.04 E

PLASTICIZER 3.10 3.08 "340"

DIBUTYLPHTHAL 1.90 1.88 ATE

TOTAL 100.00 DIPHENYLAMINE 1.00 1.08 MOISTURE 0.6 0.5 RESIDUAL 0.7 0.5 SOLVENT

GRAPHITE 0.2 0.1 GLAZE

Table 2B depicts an additional example, Example 4, in which the DNT fraction is replaced by a lesser amount of a material known as plasticizer "319", which is acetyltriethyl citrate, purchased as Citroflex A-2 from Morflex, Inc.
The stability and physical test result with respect to Examples 1-4 and which correspond to the tests conducted for the prior art DNT-containing material M14 are shown in Table 3. From this it can be seen that the hygroscopicity is slightly higher owing to the superior hygroscopicity reducing properties of DNT, in larger quantities.
Percentages in Examples 1-4, however, are still within tolerable limits and, as can be seen from the remainder of Table 3 and from the closed bomb testing of Examples 1-4 described in Table 4, that the performance and stability of the DNT-free material is comparable to that of M14.

~a>tr_: .
STABILITY AND
PHYSICAL TEST

rvnu~ n r t TEST FORMUIJi ACTUAL ACTUAL ACTUAL ACTUAL

HEAT TEST SP. NO CC 10' CC 60+ CC 60+ CC 60+ CC 60+
131.5 Deg. C

NO EXPLOSION 5 Hrs MIN NE 5 HRS NE 5 HRS NE 5 HRS NE 5 HRS

FORM OF PROPELIJWTCYLINDRICALCYL CYL CYL CYL

BULK DENSITY, INFO 52.29 50.37 18.19 50.78 L8S/CUfT

HOE,cal/g INFO 855.1 858.2 861.6 851.3 HYGROSCOPICITY. INFO 0.99 1.00 1.09 0.98 a ABSOLUTE DENSITY,G/CCINFO 1.54 1.56 1.51 1.5 lfT. UNIFORMITY INFO 110.5 100.8 65.0 121.3 f100 Gtslna). G

TJIiI~ 1 CLOSED BaMBS
rveuorr t rvnuorr Z. rvnuair ~ rvnuorr w TEMPRELATIVERELATIVERELATIVERELATIVERELA?IVERELATIVERELATIVERELATIVE
Oay.QUICKNESSFORCE QUICKNESSFORCE QUICKNESSFORCE QUICKNESSFORCE

+90 85.9 98.1 91.3 98.9 103.8 99.7 85.9 98.1 TEST

-10 82.3 98.2 86.2 98.5 97.3 97.7 82.3 913.2 111592.9 100.9 97.5 100.7 107.7 101.6 92.9 100.9 STD +90 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 Z~
Figure 1 shows the accelerated aging properties of the new composition s) relative to M14 at 150° F. Results of the long term aging show that these formulations age at a comparable rate to the standard M14 propellant.
15 Figure 2A shows ballistic test results from the Gamma Dynagun for the new composition with M19 energetics. The Gamma Dynagun is an interior ballistics test device based on a 105 Howitzer that allows assessment of required charge weights to obtain comparable muzzle velocities and 20 pressures to a standard propellant lot. It can be seen from Figure 2 that the charge weight of the new composition is within the same statistical population as the standard M14 propellant lot and a number of production lots of M14.
As can be seen from the description and examples herein, it is now possible to replace the DNT traction in propellant materials such as M14 without sacrificing other desirable propellant properties. The use of other materials, particularly citrate and adipate compounds, is also promising. Note that the formulation requires less plasticizes than those utilizing DNT allowing these negative energy materials to be compensated by the addition of more NC in the formula.
Example 5 depicts in Table 5 another single base propellant that does not contain either Dinitrotoluene (DNT) or Dibutyl-phthlate (DBP). DNT and DBP as indicated are the two ingredients currently used in the M1 propellant that are considered as carcinogens and toxic materials.
Table 5 shows a comparison of the formulas of Example 5 (PAP 7993) and a batch of M1 material. A non-toxic, citrate type plasticizes Acetyl-triethyl-citrate (ATEC) was selected as replacement for DNT and DBP. The first pilot propellant sample (Example 5) was manufactured at a pilot plant using a conventional ether/alcohol solvent system. The samples were characterized for their stability, density, and burning rate characteristics.
Based on the test results, the M1 modified formulation PAP
7993 had similar burning characteristics to the as M1 propellant and its energy content was also comparable with relative force of 97~ of the M1 reference lot RAD92C071664.
It is believed that the slightly lower energy content of the composition of Example 5 (DNT, DBP, DPA free) can be compensated by increasing the charge weight in the case to give equivalent performance compared to M1 propellant.

PROPELLANT COMPOSITION
(Example 5 -PAP
7993) PERCENT PERCENT
CONSTITUENT EXAMPLE 5 (7993) RAD92C071669 Nitrocellulose 88.00 85.00 (NC) (13.15~N) Acetyltriethyl 10.00 Citrate (ATEC) EC 1.00 KN 1.00 Dinitrololuene 10.00 (DNT) Dibuylphthalate 5.00 (DBP) TOTAL 100.00 100.00 Diphenylamine 1.00 (DPA) GRAPHITE GLAZE 1.00 Impetus (J/g) 932 929 Flame temp (K) 2583 2522 Dimensions: PAP 7993 RAD92C071669 Grain length 0.252 0.221 Grain 0.050 0.052 diameter Perf diameter 0.015 0.020 Web 0.018 0.016 Density 1.56 1.57 (g/cc) Vacuum Stability 1.21(ml gas) Closed Bomb results:

Coefficient 0.00223 0.00874 Pressure 0.742 0.831 exponent RQ 92.47 100.00 RF 97.04 100.00 12,000 psi 2.366 2.147 14,000 2.647 2.424 16, 000 2 . 929 2 .714 18, 000 3.178 2.987 20,000 3.46 3.284 Table 6 shows the ballistic firing results of the new formulation PAP 7993 in the XM231 charge configuration for the 155 mm Howitzer. These data show that the new formulation meets all of the requirements for the XM231 charge.

-18_ j ~_ M
~

C ~ M
~

Z O tj c ~ 07 ~ y '' w: l .
n L' H t"~
n , n m .
' ~
..

_.= ~
3 a o .t E

r j U~

Z
' O c E .- .-r, o D ~
'o U o. ~ m ofof ' cNr~i u~ o ' r ~ Z
n 1L

' c~
.a n , a rl U7..-p l'tt"1 in y . "
' t ~ a cii~f eo o 0.0 ~ o ~ ~~ ~ v v j E

Z

h-Z m ~
a~

._ r c~
o ~ O .
x -CrJ ' ~ G7 N
, ~a d J a ~' ~ ~ r~
lt ~ r-N
~

- ~ ,.~ o ~ i Il' o ~~E

o .

f-N

-E
d _ ~

M. _ fh C1C'7""
N
E

O o ~ ao C1O ~ N N
~ ~
~

~

w tV

D CJ .--- ~ o p ~ p " ~
~~

-- sj t'i ai v ~ d 3 ~ i ' E N ~ N _ j V' >
.~

~

i .:

(L

:.~i F.r:.: tJ~iL j t:~~.~l7 n . tL l ' 11. ~ v m ~ O . p v .. ~.' V U U V U U
a ~ ' L' :

!11 ~: ~ ~
1 ~
:
~

x,.::. ,~ c;~ ~ N
.: V
.

i:::.

~..
t~, '::-.i.~
'r ':.';

.~; d ~.
-..

. ..

V
' .......... V
.. , , This invention has been described herein in considerable detail in order to comply with the Patent Statutes-and to provide those skilled in the art with the information needed to apply the novel principles and to construct and use embodiments of the example as required.
However, it is to be understood that the invention can be carried out by specifically different devices and that various modifications can be accomplished without departing from the scope of the invention itself.
What is claimed is:

Claims (17)

1. A plasticizer material suitable for a DNT-free single base propellant formulation containing an amount of material selected from citrate and adipate compounds.
2. The plasticizer of claim 1 wherein said citrate is selected from. the group consisting of acetyltriethyl citrate and acetyltri-n-butyl citrate and mixtures thereof.
3. The plasticizer of claim 1 wherein said adipate is diisobutyl adipate (DIBA).
4. A DNT-free, single base propellant containing an amount of a plasticizer selected from the group consisting of citrates and adipates.
5. The propellant of claim 4 wherein said citrate is selected from the group consisting of acetyltriethyl citrate and acetyltri-n-butyl citrate and mixtures thereof.
6. The propellant of claim 9 wherein said adipate is diisobutyl adipate (DIBA).
7. A DNT-free,single base propellant comprising:
(a) from about 93 to about 97% nitrocellulose (NC);
(b) from about 2-5% of a plasticizer selected from the group consisting of citrates and adipates;
and (c) about 2% dibutylphthalate (DBP).
8. The propellant of claim 7 wherein said citrate is selected from the group consisting of acetyltriethyl citrate and acetyltri-n-butyl citrate and mixtures thereof.
9. The propellant of claim 8 wherein said adipate is diisobutyl adipate (DIBA).
10. A DNT and DBP-free, single base propellant comprising:
(a) from about 88% to about 90%$ nitrocellulose (NC);
(b) from about 4% to about 10% citrate plasticizer;
11. The propellant of claim 10 further carrying about 1% ethyl centralite (EC).
12. The propellant of claim 11 further comprising from 0 to 1% of K2SO4 or KNO3.. 3. The propellant of claim 10 further comprising from 0% to about 1 % of KNO3 or
K2SO4.
14. A plasticizer composition suitable for a DNT and DBP-free, single base propellant composition containing an amount of citrate comprising acetyltriethyl citrate (ATEC).
15. The plasticizer of claim 14 further comprising an amount of, ethyl centralite.
16. The plasticizer of claim 10 wherein the citrate is ATEC.
17. The propellant of claim 4 wherein said plasticiser is present in an amount from about 2% to about 10%.
CA002326133A 1998-04-14 1999-04-14 Dinitrotoluene (dnt)-free single base propellant Abandoned CA2326133A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US8168498P 1998-04-14 1998-04-14
US60/081,684 1998-04-14
PCT/US1999/007737 WO1999059939A2 (en) 1998-04-14 1999-04-14 Dinitrotoluene (dnt)-free single base propellant

Publications (1)

Publication Number Publication Date
CA2326133A1 true CA2326133A1 (en) 1999-11-25

Family

ID=22165727

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002326133A Abandoned CA2326133A1 (en) 1998-04-14 1999-04-14 Dinitrotoluene (dnt)-free single base propellant

Country Status (4)

Country Link
EP (1) EP1077910A2 (en)
AU (1) AU756188B2 (en)
CA (1) CA2326133A1 (en)
WO (1) WO1999059939A2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6620269B1 (en) * 2000-09-26 2003-09-16 Breed Automotive Technology, Inc. Autoignition for gas generators
DE10152397B4 (en) * 2001-10-24 2009-08-06 BOWAS AG für Industrievertrieb Preparation of solvent-free propellant powder
JP5401888B2 (en) * 2008-09-24 2014-01-29 日油株式会社 Single base propellant
JP6998625B2 (en) * 2017-06-23 2022-01-18 シンメル・ディフェーザ・ソチエタ・ペル・アツィオーニ Compositions for single-base propulsion powders for ammunition, and ammunition provided with such compositions.
RU2746078C1 (en) * 2020-08-21 2021-04-06 Федеральное казенное предприятие "Государственный научно-исследовательский институт химических продуктов" (ФКП "ГосНИИХП") Dual spherical powder for 12.7 mm cartridge with armor-piercing incendiary bullet

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE567878C (en) * 1930-06-26 1933-01-18 Du Pont Process for the production of smokeless, muzzle-fire-free nitrocellulose powder
US2027114A (en) * 1932-03-12 1936-01-07 Western Cartridge Co Manufacture of smokeless powders
DE1099418B (en) * 1959-03-06 1961-02-09 Olin Mathieson Process for the production of powder kernels
DE1203652B (en) * 1964-02-18 1965-10-21 Wolff & Co Ag Process for the production of gelatinized nitrocellulose
GB1093544A (en) * 1966-05-13 1967-12-06 Du Pont Explosive
US3734793A (en) * 1971-12-29 1973-05-22 Lory Ind Inc Nitrocellulose combustible composition having salt of polyethylenimine as oxidizer
US5218166A (en) * 1991-09-20 1993-06-08 Mei Corporation Modified nitrocellulose based propellant composition
DE29501100U1 (en) * 1995-01-24 1996-05-30 Hagedorn Ag Plasticized cellulose nitrate

Also Published As

Publication number Publication date
WO1999059939A2 (en) 1999-11-25
WO1999059939A3 (en) 2000-01-27
EP1077910A2 (en) 2001-02-28
AU5769199A (en) 1999-12-06
AU756188B2 (en) 2003-01-09

Similar Documents

Publication Publication Date Title
US5074938A (en) Low pressure exponent propellants containing boron
US6059906A (en) Methods for preparing age-stabilized propellant compositions
US4014720A (en) Flexible explosive composition comprising particulate RDX, HMX, or PETN and a high viscosity introcellulose binder plasticized with TEGDN
US4298411A (en) Crosslinked smokeless propellants
US4462848A (en) Slurry casting method for double base propellants
AU756188B2 (en) Dinitrotoluene (DNT)-free single base propellant
US6726788B2 (en) Preparation of strengthened ammonium nitrate propellants
US4570540A (en) LOVA Type black powder propellant surrogate
US3943017A (en) Explosive composition comprising HMX, RDX, or PETN and a high viscosity nitrocellulose binder plasticized with TMETN
DE3744680C2 (en) High-energy materials and their use
US3473982A (en) Nitrocellulose explosive containing a charcoal binder-oxidizer mixture
US5798481A (en) High energy TNAZ, nitrocellulose gun propellant
US3878003A (en) Composite double base propellant with HMX oxidizer
GB2038796A (en) Multi-base propellants
KR102614737B1 (en) Compositions for single base propellant powders for ammunition and ammunition provided with such compositions
US5174837A (en) Temperature-resistant, fragmentable propellent charges
CA2045926C (en) Extrudable gun propellant composition
JP3367192B2 (en) Propellant composition
CA1154260A (en) Slurry cast double base propellants
US3708359A (en) Hydrazinium nitroformate propellant with saturated polymeric hydrocarbon binder
JP5987446B2 (en) Triple base propellant composition
IL160122A (en) High performance plastic bonded explosive and method for its preparation
EP0656332A1 (en) Percussion primer for small arms, process for its preparation and its use
US3718719A (en) Method of making a cool burning gun propellant
US1792516A (en) Nitrocellulose propellent explosive

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued