CA2316223A1 - Hydrophilic coating for an intracorporeal medical device - Google Patents

Hydrophilic coating for an intracorporeal medical device Download PDF

Info

Publication number
CA2316223A1
CA2316223A1 CA002316223A CA2316223A CA2316223A1 CA 2316223 A1 CA2316223 A1 CA 2316223A1 CA 002316223 A CA002316223 A CA 002316223A CA 2316223 A CA2316223 A CA 2316223A CA 2316223 A1 CA2316223 A1 CA 2316223A1
Authority
CA
Canada
Prior art keywords
alkyl
compound
halo
hydroxy
cycloalkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002316223A
Other languages
French (fr)
Inventor
Eugene T. Michal
Christopher J. Buchko
Stephen J. Bigus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Abbott Cardiovascular Systems Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2316223A1 publication Critical patent/CA2316223A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/04Macromolecular materials
    • A61L29/044Proteins; Polypeptides; Degradation products thereof
    • A61L29/048Other specific proteins or polypeptides not covered by A61L29/045 - A61L29/047
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/08Materials for coatings
    • A61L29/085Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/043Proteins; Polypeptides; Degradation products thereof
    • A61L31/047Other specific proteins or polypeptides not covered by A61L31/044 - A61L31/046
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2420/00Materials or methods for coatings medical devices
    • A61L2420/02Methods for coating medical devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2420/00Materials or methods for coatings medical devices
    • A61L2420/08Coatings comprising two or more layers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • A61M2025/0056Catheters; Hollow probes characterised by structural features provided with an antibacterial agent, e.g. by coating, residing in the polymer matrix or releasing an agent out of a reservoir

Abstract

It has been discovered that compositions which are blends or mixtures including a monomeric fatty acid component can serve as stable lubricity additives in distillate fuels, including gasoline. The compositions may include saturated or unsaturated, monomeric fatty acids having from 12 to 22 carbon atoms; a synthetic monomeric acid having from 12 to 40 carbon atoms; and saturated or unsaturated, oligomeric fatty acids having from 24 to 66 carbon atoms. Where a saturated monomeric fatty acid is used, a hindered and/or tertiary amine may be present as a stabilizer.

Description

HETEROCYCLIC TOPOISOMERASE POISONS
Ba , gromd of the Invention DNA-topoisomerases are enzymes present in the nuclei of cells where they catalyze the breaking and rejoining of DNA strands, controlling the topological state of DNA. Recent studies also suggest that topoisomerases are involved in regulating template supercoiling during RNA transcription. There are two major classes of mammalian topoisomerases. DNA-topoisomerase-I
catalyzes changes in the topological state of duplex DNA by performing transient single-strand breakage-union cycles. In contrast, mammalian topoisomerase II alters the topology of DNA by causing a transient enzyme bridged double-strand break, followed by strand passing and resealing.
Mammalian topoisomerase II has been further classified as Type II a and Type II
(3. The antitumor activity associated with agents which are topoisomerase poisons is associated with their ability to stabilize the enzyme-DNA cleavable complex. This drug-induced stabilization of the enzyme-DNA cleavable complex effectively converts the enzyme into a cellular poison.
Several antitumor agents in clinical use have potent activity as mammalian topoisomerase II poisons. These include adriamycin, actinomycin D, daunomycin, VP-16, and VM-26 (teniposide or epipodophyllotoxin).
In contrast to the number of clinical and experimental drugs which act as topoisomerase II poisons, there are currently only a limited number of agents which have been identified as topoisomerase I poisons. Camptothecin and its structurally-related analogs are among the most extensively studied topoisomerase I poisons. Recently, bi- and terbenzimidazoles (Chen et al., Cancer Res. 1993, 53, 1332-1335; Sun et al., J. Med. Chem. 1995, 38, 3638-3644; Kim et al., J. Med. Chem. 1996, 39, 992-998), certain benzo[c]phenanthridine and protoberberine alkaloids and their synthetic analogs (Makhey et al., Med. Chem. Res. 1995, S, 1-12; Janin et al., J. Med. Chem 1975, 18, 708-713; Makhey et al., Bioorg. & Med Chem. 1996, 4, 781-791), as well as the fungal metabolites, bulgarein (Fujii et al., J. Biol. Chem. 1993, 268, 131b0-13165) and saintopin (Yamashita et al., Biochemistry 1991, 30, 5838-5845) and indolocarbazoles (Yamashita et al., Biochemistry 1992, 31, 12069-12075) have been identified as topoisomerase I poisons.
Presently, a need exists for novel anti-cancer agents, for anti-cancer agents that exhibit improved activity, and for anti-cancer agents that exhibit fewer side-effects or improved selectivity compared to existing agents.
The present invention provides compounds that exhibit inhibitory activity against topoisomerase I, and compounds that are effective cytotoxic agents against cancer cells, including drug-resistant cancer cells.
Accordingly there is provided a compound of the invention which is a compound of formula I:
(I) wherein R, and R2 are each independently hydrogen, (C,-C6)alkyl, (C3-C~cycloalkyl, (C,-C~alkoxy, vitro, hydroxy, halo(C,-C6)alkyl, trifluoromethoxy, halo, (C3-C~cycloalkyl(C,-C6)alkyl, (C,-C6)alkanoyl, hydroxy(C,-C6)alkyl, (C,-C6)alkoxycarbonyl, (C,-C6)alkylthio, (CZ
C6)alkanoyloxy, aryl or heteroaryl; or R, and RZ taken together are methylenedioxy; or R, and RZ taken together are benzo; wherein any aryl, heteroaryl, or benzo may optionally be substituted by l, 2, or 3 substituents independently selected from the group consisting of (C,-C6)alkyl, (C3-Cbkycloalkyl, (C,-C6)alkoxy, vitro, hydroxy, halo(C,-C6)alkyl, trifluoromethoxy, (C3-C6)cycloalkyl(C,-C6)alkyl, (C,-C6)alkanoyl, hydroxy(C,-C6)alkyl, (C,-C6)alkoxycarbonyl, (C,-C6)alkylthio, (CZ-C6)alkanoyioxy, and halo;

R3 is hydrogen, (C,-C6)alkyl, (C3-C6)cycloalkyl, (C,-C6)alkoxy, vitro, hydroxy, halo(C,-C6)alkyl, trifluoromethoxy, (C3-C6)cycloalkyl(C,-C6)alkyl, (C,-C6)alkanoyl, hydroxy(C,-C6)alkyl, (C,-C6)alkoxycarbonyl, (C,-C6)alkylthio, (CZ-C6)alkanoyloxy, or halo; and R4 and RS taken together are a 3, 4, or 5 membered saturated or unsaturated chain comprising members selected from the group consisting of non-peroxide oxygen, sulfur, N(X), and carbon, optionally substituted by oxo;
wherein each X is independently absent or is H, O, (C,-C4)alkyl, phenyl or benzyl; and wherein at least one (e.g. 1 or 2) of said chain members is an N-H
group;
or a pharmaceutically acceptable salt thereof;
provided R4 and Rs taken together are not -N(H)-C(H~N-.
Preferrably, any carbon of R4 and R3 is saturated (-CHZ-) or unsaturated (=CH-).
The invention also provides a pharmaceutical composition comprising a compound of formula I, or a pharmaceutically acceptable salt thereof, in combination with a pharmaceutically acceptable diluent or carrier.
The invention also provides a therapeutic method comprising inhibiting cancer cells by administering to a mammal (e.g. a human) in need of such therapy, an amount of a compound of formula I, or a pharmaceutically acceptable salt thereof, effective to inhibit said cancer cells.
The invention also provides a method comprising inhibiting cancer cells by contacting said cancer cells in vitro or in vivo with an amount of a compound of formula I, or a pharmaceutically acceptable salt thereof, effective to inhibit said cancer cells, i.e. to inhibit their activity, such as their ability to divide, migrate, or proliferate.
The invention also provides a compound of formula I for use in medical therapy (preferably for use in treating cancer, e.g. solid tumors), as well as the use of a compound of formula I for the manufacture of a medicament useful for the treatment of cancer, e.g. solid tumors.
The invention also provides processes and novel intermediates disclosed herein which are useful for preparing compounds of the invention.

Some of the compounds of formula I are useful to prepare other compounds of formula I.
FIG. 1 Illustrates the synthesis of compounds of the invention (2 and 3) and the synthesis of compound 4.
FIG. 2 Shows the structure of compound 5.
The following definitions are used, unless otherwise described:
halo is fluoro, chloro, bromo, or iodo. Alkyl, alkoxy, etc. denote both straight and branched groups; but reference to an individual radical such as "propyl"
embraces only the straight chain radical, a branched chain isomer such as "isopropyl" being specifically referred to. Aryl denotes a phenyl radical or an ortho-fused bicyclic carbocyclic radical having about nine to ten ring atoms in which at least one ring is aromatic. Heteroaryl encompasses a radical attached via a ring carbon of a monocyclic aromatic ring containing five or six ring atoms consisting of carbon and one to four heteroatoms each selected from the group consisting of non-peroxide oxygen, sulfur, and N(Y) wherein Y is absent or is H, O, {C,-C,)alkyl, phenyl or benzyl, as well as a radical of an ortho-fused bicyclic heterocycle of about eight to ten ring atoms derived therefrom, particularly a bent-derivative or one derived by fusing a propylene, trimethylene, or tetramethylene diradical thereto.
It will be appreciated by those skilled in the art that compounds of the invention having a chiral center may exist in and be isolated in optically active and racemic forms. Some compounds may exhibit polymorphism. It is to be understood that the present invention encompasses any racemic, optically-active, polymoiphic, or stereoisomeric form, or mixtures thereof, of a compound of the invention, which possess the useful properties described herein, it being well known in the art how to prepare optically active forms (for example, by resolution of the racemic form by recrystallization techniques, by synthesis from optically-active starting materials, by chiral synthesis, or by chromatographic separation using a chiral stationary phase) and how to determine topoisomerase poisoning activity or cytotoxic activity using the standard tests described herein, or using other similar tests which are well known in the art.

Specific and preferred values listed below 'for radicals, substituents, and ranges; are for illustration only; they do not exclude other defined values or other values within defined ranges for the radicals and substituents Specifically, (C,-C6)alkyl can be methyl, ethyl, propyl; isopropyl, butyl, iso-butyl, sec-butyl, pentyl, 3-pentyl, or hexyl; (C3-C6)cycloalkyl can be cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl; (C3 C6)cycloalkyl(C,-C6)alkyl can be cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, cyclohexylmethyl, 2-cyclopropylethyl, 2-cyclobutylethyl, 2-cyclopentylethyl, or 2-cyclohexylethyl; (C,-C6)alkoxy can be methoxy, ethoxy, propoxy, isopropoxy, butoxy, iso-butoxy, sec-butoxy, pentoxy, 3-pentoxy, or hexyloxy;(C,-C6)alkanoyl can be acetyl, propanoyl or butanoyl; halo(C,-C6)alkyl can be iodomethyl, bromomethyl, chloromethyl, fluoromethyl, trifluoromethyl, 2-chloroethyl, 2-fluoroethyl, 2,2,2-trifluoroethyl, or pentafluoroethyl;
hydroxy(C,-Cb)alkyl can be hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 1-hydroxypropyl, 2-hydroxypropyl, 3-hydroxypropyl, 1-hydroxybutyl, 4-hydroxybutyl, 1-hydroxypentyl, 5-hydroxypentyl, 1-hydroxyhexyl, or 6-hydroxyhexyl; (C,-C6)alkoxycarbonyl can be methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, pentoxycarbonyl, or hexyloxycarbonyl; {C,-C6)alkylthio can be methylthio, ethylthio, propylthio, isopropylthio, butylthio, isobutylthio, pentylthio, or hexylthio; (C2-C6)alkanoyloxy can be acetoxy, propanoyloxy, butanoyloxy, isobutanoyloxy, pentanoyloxy, or hexanoyloxy; aryl can be phenyl, indenyl, or naphthyl; and heteroaryl can be furyl, imidazoiyl, triazolyl, triazinyl, oxazoyl, isoxazoyl, thiazolyl, isothiazoyl, pyrazolyl, pyrrolyl, pyrazinyl, tetrazolyl, pyridyl, (or its N
oxide), thienyl, pyrimidinyl (or its N-oxide), indolyl, isoquinolyl (or its N
oxide) or quinolyl (or its N-oxide).
A specific value for R, is hydrogen, halo, aryl or heteroaryl;
wherein any aryl or hetemaryl may optionally be substituted by 1, 2, or 3 substituents independently selected from the group consisting of (C,-C6)alkyl, (C3-C6}cycloalkyl, (C,-Cb)alkoxy, nitro, hydroxy, halo(C,-C6)alkyl, trifluoromethoxy, and halo.

A specific value for R~ is hydrogen, halo, aryl or heteroaryl;
wherein any aryl or heteroaryl may optionally be substituted by 1, 2, or 3 substituents independently selected from the group consisting of {C,-C6)alkyl, (C3-C6)cycloalkyl, (C,-C6)alkoxy, vitro, hydroxy, halo(C,-C6)alkyl, trifluoromethoxy, (C3-C6)cycloalkyl(C,-C6)alkyl, (C,-C6)alkanoyl, hydroxy(C,-C6)alkyl, (C,-C6)alkoxycarbonyl, (C,-C6)alkylthio, (CZ C6)alkanoyloxy, and halo.
Specifically, R, and R2 taken together can be methylenedioxy.
Specifically, R, and RZ taken together can be benzo, which benzo may optionally be substituted by 1, 2, or 3 substituents independently selected from the group consisting of (C,-C6)alkyl, (C3-C6)cycloalkyl, (C,-C6)alkoxy, vitro, hydroxy, halo(C,-C6)alkyl, trifluoromethoxy, (C3-C6)cycloalkyl(C,-C6)alkyl, (C,-C6)alkanoyl, hydroxy(C,-C6)alkyl, (C,-C6)alkoxycarbonyl, (C,-C6)alkylthio, (CZ C6)alkanoyloxy, and halo.
A specific value for R3 is hydrogen. Another specific value for R3 is (C,-C6)alkoxy, vitro, hydroxy, halo(C,-C6)alkyl, trifluoromethoxy, (C,-C6)alkanoyl, hydroxy(C,-C6)alkyl, (C,-C6)alkoxycarbonyl, (C,-C6)alkylthio, (CZ-C6)alkanoyloxy, or halo.
Specifically, R4 and RS taken together can be -N(H)-N=N-, -N(H)-N(H)-CHZ-, -N(H)-N(H)-CH2-CHI-, -N(H)-CHZ-N(H)-, -N(H)-CH=CH-, -N(H)-CHZ-CHZ-, -N(H)-CHZ-CHZ-CHZ-, -N(H)-CHZ-CHZ-CHZ-CHZ-, -N(H)-CHZ CHZ-N(H)-, -N(H)-CH,-CH2-O-, -N(H)-CHZ-CHZ S-, -N(H)-CHZ-CHZ-CH2-N(H)-, -N(H)-CH2-CHZ-CHI-O-, -N(H)-CHI-CHZ-CHZ-S-, -N(H)-CHZ-CH2-N(H)-CHZ-, -N(H)-CH2-CHZ-O-CHZ , -N(H)-CHZ-CHZ S-CHZ , -N(H)-C(=O)-C(-0)-CHZ-, -N(H)-C(-0)-C(-0)-N(H)-, -N(H)-C(-0)-C(~)-O-, -N(H)-C(=O)-C(=O)-S-, -N(H)-C(=O)-CHz-CHi , -N(H)-CHZ-N(H)-C(~)-, -CHZ-S-CHZ-N(H)-, -CHZ-N(H)-CHZ-S-, -CHz N(H)-CHZ , -CHZ-CHZ-N(H)-CHZ , -CHZ-CHZ CHZ-N(H)-CHz-, -CHZ-N(H)-CHZ-CHZ-O-, or -CHZ-N(H)-CHZ-CHZ-S-.
More specifically, R4 'and Rs taken together can be -N(H)-N=N-, -N(H)-CHZ-N(H)-, -N(H)-CH=CH-, -N(H)-CHZ-CHZ-, -N(H)-CHZ-CHZ-CHZ-, -N(H)-CHZ-CH2 CHZ-CHZ-, -N(H)-CHZ-CHZ-N(H)-, -N(H)-CHZ CHZ-O-, -N(H)-CHZ-CHZ-S-, -N(H)-CH2-CHZ-CHZ-N(H)-, -N(H)-CHZ-CHZ-CHZ-O-, -N(H)-CHZ CHZ-CHZ-S-, or -N(H)-C(=O)-C(~)-N(H)-.

Preferably, R4 and RS taken together are -N(H)-N=N-, -N(H)-C(=O)-C{=O)-N(H)-, -N(H)-CH=CH-, -N(H)-CHZ-CHz-, -N(H)-CHZ-CH; CHz-, or -N(H)-CHz-CHZ-N(H)-. More preferably, R4 and RS
taken together are -N(H)-N=N- or -N(H)-C(=O)-C(=O)-N(H)-.
A preferred group of compounds of formula I are compounds wherein R, and RZ are not both hydrogen.
Another preferred group of compounds of formula I are compounds wherein R, and RZ are each independently halo (e.g. bromo).
A preferred compound of formula I is a compound of formula III:

Rz ~ I N / ~ N
R~ N
N ~I

(III) wherein R,-R5 have any of the values defined herein for a compound of formula I.
Processes for preparing compounds of formula I are illustrated by the following procedures in which the meanings of the generic radicals are as given above unless otherwise qualified.
A compound of formula I wherein R4 and R5 taken together are -N(H)-N=N- can be prepared from a corresponding intermediate of formula II
(II) by treatment with NaNOz under acidic conditions. Suitable conditions for performing such a transformation are described in Example 1.
A compound of formula I wherein R4 and Rs taken together are -N{H)-C(=O)-C(=O)-N(H)- can be prepared from a corresponding compound of WO 99/3382.1 PCTNS98/27822 formula II by treatment with oxalic acid under acidic conditions. Suitable conditions for performing such a transformation are described in Example 2.
An intermediate useful for preparing a compound of formula I is an intermediate of formula II.
In cases where compounds are sufficiently basic or acidic to form stable nontoxic acid or base salts, administration of the compounds as salts may be appropriate. Examples of pharmaceutically acceptable salts are organic acid addition salts formed with acids which form a physiological acceptable anion;
for example, tosylate, methanesulfonate, acetate, citrate, malonate, tartarate, succinate, benzoate, ascorbate, a-ketoglutarate, and a-glycerophosphate.
Suitable inorganic salts may also be formed, including hydrochloride, sulfate, nitrate, bicarbonate, and carbonate salts.
Pharmaceutically acceptable salts may be obtained using standard procedures well known in the art, for example by reacting a sufficiently basic compound such as an amine with a suitable acid affording a physiologically acceptable anion. Alkali metal (for example, sodium, potassium or lithium) or alkaline earth metal (for example, calcium) salts of carboxylic acids can also be made.
The compounds of formula I can be formulated as pharmaceutical compositions and administered to a mammalian host, such as a human patient in a variety of forms adapted to the chosen route of administration, i.e., orally or parenterally, by intravenous, intramuscular, topical or subcutaneous routes.
Thus, the present compounds may be systemically administered, e.g., orally, in combination with a pharmaceutically acceptable vehicle such as an inert diluent or an assimilable edible carrier. They may be enclosed in hard or soft shell gelatin capsules, may be compressed into tablets, or may be incorporated directly with the food of the patient's diet. For oral therapeutic administration, the active compound may be combined with one or more excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like. Such compositions and preparations should contain at least 0.1 % of active compound. The percentage of the compositions and preparations may, of course, be varied and may conveniently be between about 2 to about 60% of the weight of a given unit dosage form. The amount of active compound in such therapeutically useful compositions is such that an effective dosage level will be obtained.
The tablets, troches, pills, capsules, and the like may also contain the following: binders such as gum tragacanth, acacia, corn starch or gelatin;
excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid and the like; a lubricant such as magnesium stearate; and a sweetening agent such as sucrose, fivctose, lactose or aspartame or a flavoring agent such as peppermint, oil of wintergreen, or cherry flavoring may be added. When the unit dosage form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier, such as a vegetable oil or a polyethylene glycol. Various other materials may be present as coatings or to otherwise modify the physical form of the solid unit dosage foam. For instance, tablets, pills, or capsules may be coated with gelatin, wax, shellac ar sugar and the like. A syrup or elixir may contain the active compound, sucrose or fructose as a sweetening agent, methyl and propylparabens as preservatives, a dye and flavoring such as cherry or orange flavor. Of course, any material used in preparing any unit dosage foam should be pharmaceutically acceptable and substantially non-toxic in the amounts employed. In addition; the active compound may be incorporated into sustained-release preparations and devices.
The active compound may also be administered intravenously or intraperitoneally by infusion or injection. Solutions of the active compound or its salts can be prepared in water, optionally mixed with a nontoxic surfactant.
Dispersions can also be prepared in glycerol, liquid polyethylene glycols, triacetin, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.
The pharmaceutical dosage forms suitable for injection or infusion can include sterile aqueous solutions or dispersions or sterile powders comprising the active ingredient which are adapted for the extemporaneous preparation of sterile injectable or infusible solutions or dispersions, optionally encapsulated in liposomes. In all cases, the ultimate dosage form should be sterile, fluid and stable under the conditions of manufacture and storage. The liquid carrier or vehicle can be a solvent or liquid dispersion medium comprising, for example, water, ethanol, a polyol (for example, glycerol, propylene glycol, liquid polyethylene glycols, and the like), vegetable oils, nontoxic glyceryl esters, and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the formation of liposomes, by the maintenance 5 of the required particle size in the case of dispersions or by the use of surfactants.
The prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, buffers or sodium chloride.
10 Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.
Sterile injectable solutions are prepared by incorporating the active compound in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filter sterilization. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and the freeze drying techniques, which yield a powder of the active ingredient plus any additional desired ingredient present in the previously sterile-filtered solutions.
For topical administration, the present compounds may be applied in pure form, i.e., when they are liquids. However, it will generally be desirable to administer them to the skin as compositions or formulations, in combination with a dermatologically acceptable carrier, which may be a solid or a liquid.
Useful solid carriers include finely divided solids such as talc, clay, microcrystalline cellulose, silica, alumina and the like. Useful liquid carriers include water, aleohols or glycols or water-alcohol/glycol blends, in which the present compounds can be dissolved or dispersed at effective levels, optionally with the aid of non-toxic surfactants. Adjuvants such as fragrances and additional antimicrobial agents can be added to optimize the properties for a given use. The resultant liquid compositions can be applied from absorbent pads, used to impregnate bandages and other dressings, or sprayed onto the affected area using pump-type or aerosol sprayers.

Thickeners such as synthetic polymers, fatty acids, fatty acid salts and esters, fatty alcohols, modified celluloses or modified mineral materials can also be employed with liquid carriers to form spreadable pastes, gels, ointments, soaps, and the like, for application directly to the skin of the user.
Examples of useful dermatological compositions which can be used to deliver the compounds of formula I to the skin are known to the art;
for example, see Jacquet et al. (IJ.S. Pat. No. 4,608,392), Geria (U.S. Pat. No.
4,992,478), Smith et al. (U.S. Pat. No. 4,559,157) and Wortzman (U.S. Pat. No.
4,820,508).
Useful dosages of the compounds of formula I can be determined by comparing their in vitro activity, and in vivo activity in animal models.
Methods for the extrapolation of effective dosages in mice, and other animals, to humans are known to the art; for example, see U.S. Pat. No. 4,938,949.
Generally, the concentration of the compounds) of formula I in a liquid composition, such as a lotion, will be from about 0.1-25 wt-%, preferably from about 0.5-10 wt-%. The concentration in a semi-solid or solid composition such as a gel or a powder will be about 0.1-5 wt-%, preferably about 0.5-2.5 wt%.
The amount of the compound, or an active salt or derivative thereof, required for use in treatment will vary not only with the particular salt selected but also with the route of administration, the nature of the condition being treated and the age and condition of the patient and will be ultimately at the discretion of the attendant physician or clinician.
In general, however, a suitable dose will be in the range of from about 0.5 to about 100 mg/kg, e.g., from about 10 to about 75 mg/kg of body weight per day, such as 3 to about 50 mg per kilogram body weight of the recipient per day, preferably in the range of 6 to 90 mg/kg/day, most preferably in the range of 15 to 60 mglkg/day.
The compound is conveniently administered in unit dosage form;
for example, containing 5 to 1000 mg, conveniently 10 to 750 mg, most conveniently, 50 to 500 mg of active ingredient per unit dosage form.
Ideally, the active ingredient should be administered to achieve peak plasma concentrations of the active compound of from about 0.5 to about WO 99/33824 PC'f/US98/27822 75 pM, preferably, about 1 to 50 pM, most preferably, about 2 to about 30 ~M.
This may be achieved, for example, by the intravenous injection of a 0.05 to 5%
solution of the active ingredient, optionally in saline, or orally administered as a bolus containing about 1-100 mg of the active ingredient. Desirable blood levels may be maintained by continuous infusion to provide about 0.01-5.0 mg/kg/hr or by intermittent infusions containing about 0.4-15 mg/kg of the active ingredient(s).
The desired dose may conveniently be presented in a single dose or as divided doses administered at appropriate intervals, for example, as two, three, four or more sub-doses per day. The sub-dose itself may be further divided, e.g., into a number of discrete loosely spaced administrations; such as multiple inhalations from an insufflator or by application of a plurality of drops into the eye.
The ability of a compound of the invention to effect topoisomerase I mediated DNA cleavage can be determined using pharmacological models that are well known to the art, for example, using a model like Test A described below.
Test A. Topoisomerase I cleavage assay.
Representative compounds of the invention were evaluated in a cleavage assay using recombinant topoisomerases I. This assay was preformed as described by B. Gatto et al. Cancer Res., 1996, 56, 2795-2800. Human topoisomerase I was isolated as a recombinant fusion protein using a T7 expression system. Plasmid YEpG was purified by the alkali lysis method followed by phenol deproteination and CsCI/ethidium isopycnic centrifugation as described by Maniatis, T.; Fritsch, E. F.; Sambrook, J. Molecular Cloning, a Laboratory Manual; Cold Spring Harbor Laboratory: Cold Spring Harbor, NY
1982; pp 149-185. The end-labeling of the plasmid was accomplished by digestion with a restriction enzyme followed by end-filling with Klenow polymerase as previously described by Liu, L. F.; Rowe, T. C.; Yang, L.;
Tewey, K. M.; Chen, G. L. "Cleavage of DNA by mammalian topoisomerase II," J. Biol.
Chem. 1983,158, 15365. ICso values were calculated after 4 days of continuous drug exposure. Topoisomerase I cleavage values are reported as REC, Relative Effective Concentration (i.e., concentrations relative to compound 5, whose value is arbitrarily assumed as 1) that is able to produce the same cleavage on the plasmid DNA in the presence of human topoisomerase I.
The cytotoxic effects of a compound of the invention can be determined using pharmacological models that are well known to the art, for example, using a model like Test B described below.
Test B. Cytotoxicity assay.
Cytotoxicity was determined using the MTT-microtiter plate tetrazolinium cytotoxicity assay (MTA) (See Chen A.Y. et al. Cancer Res. 1993, 53, 1332; Mosmann, T. J., J. Immunol. Methods 1983, 65, 55; and Carmichael, J.
et al. Cancer Res. 1987, 47, 936). The human lymphoblast RPMI 8402 and its camptothecin-resistant variant cell line, CPT-KS were provided by Dr. Toshiwo Andoh (Aachi Cancer Center Research Institute, Nagoya, Japan) (see Andoh, T.;
Okada, K. "Drug resistance mechanisms of topoisomerase I drugs," Adv. in Pharmacology 1994, 29B, 93. The cytotoxicity assay was performed using 96-well microtiter plates. Cells were grown in suspension at 37 °C in 5%
COZ and maintained by regular passage in RPMI medium supplemented with 10% heat-inactivated fetal bovine serum, L-glutamine (2 mM), penicillin (100 U/mL), and streptomycin (0.1 mg/mL). For determination of ICso, cells were exposed continuously with varying concentrations of drug and MTT assays were performed at the end of the fourth day.
Data from Test A and Test B is shown in Table 1 for representative compounds of the invention.
Table 1. Pharmacological Activity of Compounds of the Invention Cytotoxicity ICso (pM) Compound DNA clea a RPMI CPT-KS
a 5 1 0.09 0.70 2 1 0.47 _ 0.47 3 1 2.3 21 4 - 20 >20 Topo I-mediated b Compounds of formula I are potent topoisomerase I poisons.
Additionally, compounds of formula I exhibit cytotoxic activity against RPMI
8402 cancer cells and camptothecin resistant CPT-KS cells. Accordingly, compounds of formula I are useful as cytotoxic agents, for the treatment of S cancers, and in particular, solid mammalian tumors or hematologic malignancies.
Compounds of the invention are also useful as pharmacological tools for in vitro and in vivo study of topoisomerase function and activity.
Comparison of the data for compounds 2 and 3 with the data for compound 4 suggests that topoisomerase poisoning activity and cytotoxic activity improve when R4 and RS taken together are a chain comprising a H
bonding functionality (e.g. N-H). Thus, the invention provides compounds of formula I wherein R4 and Rs taken together are a chain that comprises at least one N-H group.
As used herein, the term "solid mammalian tumors" includes cancers 1 S of the head and neck, lung, mesothelioma, mediastinum, esophagus, stomach, pancreas, hepatobiliary system, small intestine, colon, rectum, anus, kidney, ureter, bladder, prostate, urethra, penis, testis, gynecological organs, ovarian, breast, endocrine system, skin central nervous system; sarcomas of the soft tissue and bone; and melanoma of cutaneous and intraocular origin. The term "hematological malignancies" includes childhood leukemia and lymphomas, Hodgkin's disease, lymphomas of lymphocytic and cutaneous origin, acute and chronic leukemia, plasma cell neoplasm and cancers associated with AIDS. The preferred mammalian species for treatment are humans and domesticated animals.
2S The invention will now be illustrated by the following non-limiting Examples, wherein unless otherwise stated: melting points were determined with a Thomas-Hoover Unimelt capillary melting point apparatus; column chromatography refers to hash chromatography conducted on SiliTech 32-63 pm, (ICN Biomedicals, Eschwegge, Ger.) using the solvent systems indicated;
infrared spectral data (IR) were obtained on a Perkin-Elmer 1600 Fourier transform spectrophotometer and are reported in cm''; proton ('H NMR) and carbon (~;C NMR) nuclear magnetic resonance were recorded on a Varian Gemini-200 Fourier Transform spectrometer; NMR spectra (200 MHZ ~H and SO

WO 99/33824 PCT/US98/Z7$22 MHZ'3C) were recorded in the deuterated solvent indicated with chemical shifts reported in 8 units downfield from tetramethylsilane (TMS); coupling constants are reported in hertz (Hz); mass spectra were obtained from Washington University Resource for Biomedical and Bio-organic Mass Spectrometry within 5 the Department of Chemistry at Washington University, St. Louis, MO; and combustion analyses were performed by Atlantic Microlabs, Inc., Norcross, GA, and were within t 0.4% of the theoretical value.
Fxarn lie 1__ 5-Phenyl-2'-(benzotriazol-5-yl)-bibenzimidazole (2).
10 5-Phenyl-2-[2'-(3,4-aminophenyl)benzimidazol-5'yl]benzimidazole (1), (58 mg, 0.14 mmol) was dissolved in O.IN HCI. This solution was placed in an ice bath and while maintaining a reaction temperature below 10 ° C. NaNOz ( 10.2 mg) in 5 mL water was added dropwise. The reaction mixture was stirred for I S minutes, neutralized with O.1N KOH, 15 extracted with ethyl acetate, and the resulting material was purified by chromatography, with 10% methanol:ethyl acetate as the eluent to give the title compound as a dark brown solid which had to be immediately stored in an amber vial because of its light sensitivity; 42 mg (71 %); mp >280 °C; IR (KBr) 3385, 3128, 3056, 1626, 1431, 1287; UV (MeOH) 340, 245, 230 nm (log E = 4.59, 4.59, 4.59); 'H NMR (DMSO-d6 + 3 drops of CF3COOH) 8 7.47-7.61 (m, 3H), 7.79-8.07 (m, 6H), 8.15-8.19 (m, 2H), 8.40 (d, 1 H, .l--9.0), 8.63 (s, 1 H), 8.67 (s, 1 H); '3C NMR (DMSO-d6 + 3 drops of CF3COOH) S 107.4, 111.7, 114.1, 114.6, 115.9, 116.3, 117.8, 122.3, 123.2, 125.5, 125.6, 126.6, 128.0, 129.2, 129.5, 131.9, 133.2, 134.7, 138.7, 139.8, 141.4, 147.1, 150.7, 154.3; HRMS (FAB) calcd for C26H,7N7 (MH+) 428.1624, found 428.1622.
The intermediate 5-Phenyl-2-[2'-(3,4-aminophenyl)benzimidazol-5'yl]benzimidazole was prepared as follows.
a. 5-Phenyl-2-[2'-(3,4-aminophenyl)benzimidazol-5'yl]benzimidazole.
A solution of 5-phenyl-2-[2'-(3,4-dinitrophenyl)benzimidazol-5'yl]benz-imidazole (75 mg, 0.16 mmol) in ethyl acetate (50 mL) was reduced by hydrogenation over 10% Pd/C ( 15 mg) for 90 minutes. The resulting solution was passed through a bed of Celite and the ethyl acetate was removed to give the diamine 1, which was used without further purification.
The starting 5-phenyl-2-[2'-(3,4-dinitrophenyl)benzimidazol-5'yl]benz-imidazole can be prepared as described by J.S. Kim et al. J.
Med. Chem. 1997, 40, 2818-2824.
Examyle.2. S-Phenyl-2'-(quinoxaline-6-yl~bibenzimidazole (3).
Diamine 1 (55 mg, 0.13 mmol) was dissolved in water (4 mL) and heated to 70 °C. Glyoxal2NaHS03 (50 mg, 0.13 mmol) was dissolved in hot water (80 °C, 3 mL) and added to the diamine slowly { as described by Jones, R.
G.; McLaughlin, K. C. 2,3-Pyrazinedicarboxylic acid. Org. synth. 1950, 30, 86).
After 15 minutes, the reaction mixture was cooled to room temperature and NazC03 was added. Extraction with ether followed by chromatographic separation with 10% methanol:ethyl acetate as the eluent gave the title compound as a yellow solid; 38 mg (67%); mp 235 °C; IR (KBr) 3385, 3169, 1624, 1554, 1431, 1297; UV (MeOH) 360, 255, 220 nm (log a = 4.52, 4.65, 4.59); 'H NMR (DMSO-d6 + 3 drops of CF3COOH) 8 7.46-7.61 (m, 3H), 7.80 (d, 2H, J--8.0), 7.89-8.26 (m, SH), 8.36 (d, 1H, J--9.0), 8.69-8.78 (m, 2H), 9.04-9.10 (m, 3H); '3C NMR (DMSO-d6 + 3 drops of CF3COOH) 8 111.7, 114.6, 116.5, 116.6, 117.9, 123.5, 123.9, 125.6, 127.5, 128.1, 128.2, 128.3, 128.6, 130.6, 131.6, 132.9, 138.9, 139.1, 139.7, 142.5, 143.7, 143.8, 147.3, 150.5, 153.1; HRMS (FAB) calcd for C2gH~9N6 (MH+) 439.1671, found 439.1677.
E~cam~. 5-Phenyl-2'-(quinoxalinedione-6-yl) bibenzimidazole (4).
Diamine 1 (40 mg, 0.096 mmol) and oxalic acid (20 mg, 0.22 mmol) in 4 N HCl were refluxed overnight (as described by Ohmori, J. Et al, J. Med Chem. 1996, 39, 1331-1338). Upon standing at room temperature, the title compound precipitated from the reaction mixture as a brownish solid; 15 mg (33%); mp > 280 °C; IR (KBr) 3339, 3217, 2845, 1623, 1578, 1506, 1469, 1272;
'H NMR (DMSO-d6) b 6.96 (d, 1H, J--9.0), 7.41-7.60 (m, 4H), 7.77-8.00 (m, 7H), 8.32 (d, IH,.I=9.0), 8.57 (s, 1H);'3C NMR (DMSO-d6+ 3 drops of CF3COOH) 8 106.5, 107.4, 111.7, 114.1, 114.7, 115.2, 116.7, 119.5, 122.3, 124.7, 125.7, 127.5, 128.2, 129.4, 131.9, 133.2, 138.8, 139.7, 139.8, 149.7, 152.7, 158.2; HRMS (FAB) calcd for C28H,9N6O2 {MH+) 471.1569, found 471.1584.
F.xamnle 4. The following illustrate representative pharmaceutical dosage forms, containing a compound of formula I ('Compound X'), for therapeutic or prophylactic use in humans.
( 'Compound X' 100.0 1 S Lactose 77.5 Povidone 15.0 Croscarmellose sodium 12.0 Microcrystalline cellulose92.5 Magnesium stearate 300.0 (u1 T~ ablet 2 mgLtablet 'Compound X' 20.0 Microcrystalline cellulose410.0 Starch 50.0 Sodium starch glycolate 15.0 Magnesium stearate 5~

500.0 (~L),~ysule 'Compound X' 10.0 Colloidal silicon dioxide1.5 Lactose 465.5 Pregelatinized starch 120.0 Magnesium stearate 600.0 (iv)~gection 1 ~,l~g mll mgLml 'Compound X' (free acid form) 1.0 Dibasic sodium phosphate 12.0 Monobasic sodium phosphate 0.7 Sodium chloride 4.5 1.0 N Sodium hydroxide solution (pH adjustment to 7.0-7.5) q.s.
Water for injection q.s. ad 1 mL
(ya~leect~ ion 2 (, m /mllmg(m1 'Compound X' (free acid form)10.0 Monobasic sodium phosphate 0.3 Dibasic sodium phosphate 1.1 Polyethylene glycol 400 200.0 O1 N Sodium hydroxide solution (pH adjustment to 7.0-7.5) q.s.

Water for injection q.s. ad 1 mL

(~--A~.~1 I S 'Compound X' 20.0 Oleic acid 10.0 Trichloromonofluoromethane 5,000.0 Dichlorodifluoromethane 10,000.0 Dichlorotetrafluoroethane 5,000.0 The above formulations may be obtained by conventional procedures well lrnown in the pharmaceutical art.
The invention has been described with reference to various specific and preferred embodiments and techniques. However, it should be understood that many variations and modifications may be made while remaining within the spirit and scope of the invention.

Claims (22)

What is claimed is:
1. A compound of formula I:
wherein R1 and R2 are each independently hydrogen, (C1-C6)alkyl, (C3-C6)cycloalkyl, (C1-C6)alkoxy, nitro, hydroxy, halo(C1-C6)alkyl, trifluoromethoxy, halo, (C3-C6)cycloalkyl(C1-C6)alkyl, (C1-C6)alkanoyl, hydroxy(C1-C6)alkyl, (C1-C6)alkoxycarbonyl, (C1-C6)alkylthio, (C2-C6)alkanoyloxy, aryl or heteroaryl; or R1 and R2 taken together are methylenedioxy; or R1 and R2 taken together are benzo; wherein any aryl, heteroaryl, or benzo may optionally be substituted by 1, 2, or 3 substitutents independently selected from the group consisting of (C1-C6)alkyl, (C3-C6)cycloalkyl, (C1-C6)alkoxy, nitro, hydroxy, halo(C1-C6)alkyl, trifluoromethoxy, (C3-C6)cycloalkyl(C1-C6)alkyl, (C1-C6)alkanoyl, hydroxy(C1-C6) alkyl, (C1-C6)alkoxycarbonyl, (C1-C6)alkylthio, (C2-C6)alkanoyloxy, and halo;
R3 is hydrogen, (C1-C6)alkyl, (C3-C6)cycloalkyl, (C1-C6)alkoxy, nitro, hydroxy, halo(C1-C6)alkyl, trifluoromethoxy, (C3-C6)cycloalkyl(C1-C6)alkyl, (C1-C6)alkanoyl, hydroxy(C1-C6)alkyl, (C1-C6)alkoxycarbonyl, (C1-C6)alkylthio, (C2-C6)alkanoyloxy, or halo; and R4 and R5 taken together are a 3, 4, or 5 membered saturated or unsaturated chain comprising members selected from the group consisting of non-peroxide oxygen, sulfur, N(X), and carbon, optionally substituted by oxo;
wherein each X is independently absent or is H, O, (C1-C4)alkyl, phenyl or benzyl; and wherein at least one (e.g. 1 or 2) of said chain members is an N-H
group; or a pharmaceutically acceptable salt thereof;

provided R4 and R5 taken together are not -N(H)-C(H)=N-.
2. The compound of claim 1 wherein R1 is hydrogen, halo, aryl or heteroaryl; wherein any aryl or heteroaryl may optionally be substituted by 1, 2, or 3 substitutents independently selected from the group consisting of (C1-C6)alkyl, (C3-C6)cycloalkyl, (C1-C6)alkoxy, nitro, hydroxy, halo(C1-C6)alkyl, trifluoromethoxy, and halo.
3. The compound of claim 1 wherein R2 is hydrogen, halo, aryl or heteroaryl; wherein any aryl or heteroaryl may optionally be substituted by 1, 2, or 3 substitutents independently selected from the group consisting of (C1-C6)alkyl, (C3-C6)cycloalkyl, (C1-C6)alkoxy, nitro, hydroxy, halo(C1-C6)alkyl, trifluoromethoxy, (C3-C6)cycloalkyl(C1-C6)alkyl, (C1-C6)alkanoyl, hydroxy(C1-C6) alkyl, (C1-C6)alkoxycarbonyl, (C1-C6)alkylthio, (C2-C6)alkanoyloxy, and halo.
4. The compound of claim 1 wherein R1 and R2 taken together are methylenedioxy.
5. The compound of claim 1 wherein R1 and R2 taken together are benzo, which benzo is optionally substituted by 1, 2, or 3 substitutents independently selected from the group consisting of (C1-C6)alkyl, (C3-C6)cycloalkyl, (C1-C6)alkoxy, nitro, hydroxy, halo(C1-C6)alkyl, trifluoromethoxy, (C3-C6)cycloalkyl(C1-C6)alkyl, (C1-C6)alkanoyl, hydroxy(C1-C6)alkyl, (C1-C6)alkoxycarbonyl, (C1-C6)alkylthio, (C2-C6)alkanoyloxy, and halo.
6. The compound of claim 1 wherein R3 is hydrogen.
7. The compound of claim 1 wherein R3 is (C1-C6)alkoxy, nitro, hydroxy, halo(C1-C6)alkyl, trifluoromethoxy, (C1-C6)alkanoyl, hydroxy(C1-C6)alkyl, (C1-C6)alkoxycarbonyl, (C1-C6)alkylthio, (C2-C6)alkanoyloxy, or halo.
8. The compound of claim 1 wherein R4 and R5 taken together are -N(H)-N=N-, -N(H)-N(H)-CH2-, -N(H)-N(H)-CH2-CH2-, -N(H)-CH2-N(H)-, -N(H)-CH=CH-, -N(H)-CH2-CH2-, -N(H)-CH2-CH2-CH2-, -N(H)-CH2-CH2-CH2-CH2-, -N(H)-CH2-CH2-N(H)-, -N(H)-CH2-CH2 O-, -N(H)-CH2-CH2-S-, -N(H)-CH2-CH2-CH2-N(H)-, -N(H)-CH2-CH2-CH2-O-, -N(H)-CH2-CH2-CH2-S-, -N(H)-CH2-CH2-N(H)-CH2-, -N(H)-CH2-CH2-O-CH2-, -N(H)-CH2-CH2-S-CH2-, -N(H)-C(=O)-C(=O)-CH2-, -N(H)-C(=O)-C(=O)-N(H)-, -N(H)-C(=O)-C(=O)-O-, -N(H)-C(=O)-C(=O)-S-, -N(H)-C(=O)-CH2-CH2-, -N(H)-CH2-N(H)-C(=O)-, -CH2-S-CH2-N(H)-, -CH2-N(H)-CH2-S-, -CH2-N(H)-CH2-, -CH2-CH2-N(H)-CH2-, -CH2-CH2-CH2-N(H)-CH2-, -CH2-N(H)-CH2-CH2-O-, or -CH2-N(H)-CH2-CH2-S-.
9. The compound of claim 1 wherein R4 and R5 taken together are -N(H)-N=N-, -N(H)-CH2-N(H)-, -N(H)-CH=CH-, -N(H)-CH2-CH2-, -N(H)-CH2-CH2-CH2-, -N(H)-CH2-CH2-CH2-CH2-, -N(H)-CH2-CH2-N(H)-, -N(H)-CH2-CH2-O-, -N(H)-CH2-CH2-S-, -N(H)-CH2-CH2-CH2-N(H)-, -N(H)-CH2-CH2-CH2-O-, -N(H)-CH2-CH2-CH2-S-, or -N(H)-C(=O)-C(=O)-N(H)-.
10. The compound of claim 1 wherein R4 and R5 taken together are -N(H)-N=N-, -N(H)-C(=O)-C(=O)-N(H)-, -N(H)-CH=CH-, -N(H)-CH2-CH2-, -N(H)-CH2-CH2-CH2-, or -N(H)-CH2-CH2-N(H)-.
11. The compound of claim 1 wherein R4 and R5 taken together are -N(H)-N=N- or -N(H)-C(=O)-C(=O)-N(H)-.
12. The compound of claim 1 wherein R1 and R2 are not both hydrogen.
13. The compound of claim 1 wherein R1 and R2 are each independently halo.
14. The compound of claim 1 wherein R1 and R2 are each bromo.
15. A pharmaceutical composition comprising a compound of any one of claims 1-14, in combination with a pharmaceutically acceptable diluent or carrier.
16. A therapeutic method comprising inhibiting cancer cells by administering to a mammal in need of such therapy, an amount of a compound of claim 1, effective to inhibit said cancer cells.
17. A method comprising inhibiting cancer cells by contacting said cancer cells with an effective amount of a compound of claim 1.
18. A compound of any one of claims 1-14 for use in medical therapy.
19. The compound of claim 18 wherein the medical therapy is treating cancer.
20. The compound of claim 19 wherein the cancer is a solid tumor.
21. The use of a compound of any one of claims 1-14 for the manufacture of a medicament useful for the treatment of cancer.
22. The use of claim 21 wherein the cancer is a solid tumor.
CA002316223A 1998-01-30 1999-01-29 Hydrophilic coating for an intracorporeal medical device Abandoned CA2316223A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/016,694 US6221425B1 (en) 1998-01-30 1998-01-30 Lubricious hydrophilic coating for an intracorporeal medical device
US09/016,694 1998-01-30
PCT/US1999/001919 WO1999038546A1 (en) 1998-01-30 1999-01-29 Hydrophilic coating for an intracorporeal medical device

Publications (1)

Publication Number Publication Date
CA2316223A1 true CA2316223A1 (en) 1999-08-05

Family

ID=21778447

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002316223A Abandoned CA2316223A1 (en) 1998-01-30 1999-01-29 Hydrophilic coating for an intracorporeal medical device

Country Status (8)

Country Link
US (3) US6221425B1 (en)
EP (1) EP1051208B1 (en)
JP (1) JP2002501788A (en)
AT (1) ATE330646T1 (en)
AU (2) AU2019299A (en)
CA (1) CA2316223A1 (en)
DE (1) DE69932034T2 (en)
WO (2) WO1999038545A1 (en)

Families Citing this family (340)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6774278B1 (en) * 1995-06-07 2004-08-10 Cook Incorporated Coated implantable medical device
US7282220B1 (en) * 1996-11-05 2007-10-16 Hsing-Wen Sung Genipin-crosslinked gelatin microspheres as drug carrier
ES2179646T3 (en) 1998-04-27 2003-01-16 Surmodics Inc COATING THAT RELEASES A BIOACTIVE AGENT.
US7662409B2 (en) 1998-09-25 2010-02-16 Gel-Del Technologies, Inc. Protein matrix materials, devices and methods of making and using thereof
US20040043068A1 (en) * 1998-09-29 2004-03-04 Eugene Tedeschi Uses for medical devices having a lubricious, nitric oxide-releasing coating
US6955661B1 (en) 1999-01-25 2005-10-18 Atrium Medical Corporation Expandable fluoropolymer device for delivery of therapeutic agents and method of making
US7947015B2 (en) * 1999-01-25 2011-05-24 Atrium Medical Corporation Application of a therapeutic substance to a tissue location using an expandable medical device
US8506519B2 (en) 1999-02-16 2013-08-13 Flowcardia, Inc. Pre-shaped therapeutic catheter
US6855123B2 (en) 2002-08-02 2005-02-15 Flow Cardia, Inc. Therapeutic ultrasound system
US6258121B1 (en) * 1999-07-02 2001-07-10 Scimed Life Systems, Inc. Stent coating
US6790228B2 (en) * 1999-12-23 2004-09-14 Advanced Cardiovascular Systems, Inc. Coating for implantable devices and a method of forming the same
US20070032853A1 (en) 2002-03-27 2007-02-08 Hossainy Syed F 40-O-(2-hydroxy)ethyl-rapamycin coated stent
US6358557B1 (en) * 1999-09-10 2002-03-19 Sts Biopolymers, Inc. Graft polymerization of substrate surfaces
US6458867B1 (en) 1999-09-28 2002-10-01 Scimed Life Systems, Inc. Hydrophilic lubricant coatings for medical devices
EP1104681A1 (en) * 1999-12-03 2001-06-06 Biomat B.V. Wire, tube or catheter with hydrophilic coating
JP5000826B2 (en) * 2000-01-24 2012-08-15 バイオコンパテイブルズ・ユーケイ・リミテツド Coated implant
SE0000363A0 (en) * 2000-02-04 2001-08-05 Zoucas Kirurgkonsult Ab Coated medical device
JP2003533468A (en) * 2000-02-28 2003-11-11 ゲル−デル テクノロジーズ,インコーポレイティド Protein matrix materials, production and their production and use
US7220276B1 (en) * 2000-03-06 2007-05-22 Surmodics, Inc. Endovascular graft coatings
AU2001247425A1 (en) 2000-04-10 2001-10-23 Advanced Cardiovascular Systems Inc. Selectively coated stent delivery system and method of manufacture thereof
US6673385B1 (en) 2000-05-31 2004-01-06 Advanced Cardiovascular Systems, Inc. Methods for polymeric coatings stents
US7682648B1 (en) 2000-05-31 2010-03-23 Advanced Cardiovascular Systems, Inc. Methods for forming polymeric coatings on stents
US6695817B1 (en) 2000-07-11 2004-02-24 Icu Medical, Inc. Medical valve with positive flow characteristics
US6451003B1 (en) * 2000-08-16 2002-09-17 Biolink Corporation Method and apparatus for overcoming infection in a tissue pocket surrounding an implanted device
US6706274B2 (en) * 2001-01-18 2004-03-16 Scimed Life Systems, Inc. Differential delivery of nitric oxide
ATE281849T1 (en) * 2001-02-28 2004-11-15 Uroteq Inc METHOD FOR PRODUCING ANTIMICROBIAL POLYMER SURFACES
US20020163504A1 (en) * 2001-03-13 2002-11-07 Pallakoff Matthew G. Hand-held device that supports fast text typing
DE10115740A1 (en) 2001-03-26 2002-10-02 Ulrich Speck Preparation for restenosis prophylaxis
US20020161376A1 (en) * 2001-04-27 2002-10-31 Barry James J. Method and system for delivery of coated implants
US6673453B2 (en) * 2001-06-12 2004-01-06 Biocoat Incorporated Coatings appropriate for medical devices
US6702744B2 (en) 2001-06-20 2004-03-09 Advanced Cardiovascular Systems, Inc. Agents that stimulate therapeutic angiogenesis and techniques and devices that enable their delivery
US8741378B1 (en) 2001-06-27 2014-06-03 Advanced Cardiovascular Systems, Inc. Methods of coating an implantable device
SE523216C2 (en) * 2001-07-27 2004-04-06 Zoucas Kirurgkonsult Ab heparin stent
US7682669B1 (en) * 2001-07-30 2010-03-23 Advanced Cardiovascular Systems, Inc. Methods for covalently immobilizing anti-thrombogenic material into a coating on a medical device
CA2455923A1 (en) * 2001-07-30 2003-10-09 Sts Biopolymers, Inc. Graft polymer matrices
US7135189B2 (en) 2001-08-23 2006-11-14 Boston Scientific Scimed, Inc. Compositions and techniques for localized therapy
US20030060873A1 (en) * 2001-09-19 2003-03-27 Nanomedical Technologies, Inc. Metallic structures incorporating bioactive materials and methods for creating the same
US7776379B2 (en) * 2001-09-19 2010-08-17 Medlogics Device Corporation Metallic structures incorporating bioactive materials and methods for creating the same
EP1429689A4 (en) * 2001-09-24 2006-03-08 Medtronic Ave Inc Rational drug therapy device and methods
JP2005518827A (en) * 2001-10-05 2005-06-30 サーモディクス,インコーポレイテッド Particle fixing coating and use thereof
US20030077310A1 (en) * 2001-10-22 2003-04-24 Chandrashekhar Pathak Stent coatings containing HMG-CoA reductase inhibitors
US20040143180A1 (en) * 2001-11-27 2004-07-22 Sheng-Ping Zhong Medical devices visible under magnetic resonance imaging
US8608661B1 (en) 2001-11-30 2013-12-17 Advanced Cardiovascular Systems, Inc. Method for intravascular delivery of a treatment agent beyond a blood vessel wall
US20030109865A1 (en) * 2001-12-12 2003-06-12 Megadyne Medical Products, Inc. Utilization of a multi-character material in a surface coating of an electrosurgical instrument
FR2833961B1 (en) * 2001-12-20 2004-04-02 Virsol PROCESS FOR THE PREPARATION OF CROSSLINKED POLY (ETHYLENE OXIDE) FILMS
US7348055B2 (en) * 2001-12-21 2008-03-25 Surmodics, Inc. Reagent and method for providing coatings on surfaces
US20030118658A1 (en) * 2001-12-21 2003-06-26 Trogolo Jeffrey A. High aspect ratio encapsulated inorganic antimicrobial additive for controlled release
US7357949B2 (en) * 2001-12-21 2008-04-15 Agion Technologies Inc. Encapsulated inorganic antimicrobial additive for controlled release
US20050008839A1 (en) * 2002-01-30 2005-01-13 Cramer Ronald Dean Method for hydrophilizing materials using hydrophilic polymeric materials with discrete charges
US8728510B1 (en) * 2002-03-15 2014-05-20 Advanced Cardiovascular Systems, Inc. Biocompatible carrier containing a bioadhesive material
US7387836B2 (en) * 2002-04-17 2008-06-17 Genzyme Corporation Aziridine compounds and their use in medical devices
US7008979B2 (en) * 2002-04-30 2006-03-07 Hydromer, Inc. Coating composition for multiple hydrophilic applications
US20040267355A1 (en) * 2002-04-30 2004-12-30 Neal Scott Mechanical apparatus and method for dilating and delivering a therapeutic agent to a site of treatment
US7097850B2 (en) * 2002-06-18 2006-08-29 Surmodics, Inc. Bioactive agent release coating and controlled humidity method
US8506617B1 (en) 2002-06-21 2013-08-13 Advanced Cardiovascular Systems, Inc. Micronized peptide coated stent
US7361368B2 (en) 2002-06-28 2008-04-22 Advanced Cardiovascular Systems, Inc. Device and method for combining a treatment agent and a gel
EP1521603B1 (en) * 2002-07-12 2011-01-19 Cook Incorporated Coated medical device
US8133236B2 (en) 2006-11-07 2012-03-13 Flowcardia, Inc. Ultrasound catheter having protective feature against breakage
US9955994B2 (en) 2002-08-02 2018-05-01 Flowcardia, Inc. Ultrasound catheter having protective feature against breakage
US7335180B2 (en) 2003-11-24 2008-02-26 Flowcardia, Inc. Steerable ultrasound catheter
US7604608B2 (en) 2003-01-14 2009-10-20 Flowcardia, Inc. Ultrasound catheter and methods for making and using same
US7220233B2 (en) 2003-04-08 2007-05-22 Flowcardia, Inc. Ultrasound catheter devices and methods
US7137963B2 (en) 2002-08-26 2006-11-21 Flowcardia, Inc. Ultrasound catheter for disrupting blood vessel obstructions
US6942677B2 (en) 2003-02-26 2005-09-13 Flowcardia, Inc. Ultrasound catheter apparatus
US20030039697A1 (en) * 2002-09-12 2003-02-27 Yi-Ju Zhao Matrices containing nitric oxide donors and reducing agents and their use
DE10244847A1 (en) 2002-09-20 2004-04-01 Ulrich Prof. Dr. Speck Medical device for drug delivery
US20040057983A1 (en) 2002-09-25 2004-03-25 David Schmidt Biomolecular wearable apparatus
US20060100695A1 (en) * 2002-09-27 2006-05-11 Peacock James C Iii Implantable stent with modified ends
US6770729B2 (en) * 2002-09-30 2004-08-03 Medtronic Minimed, Inc. Polymer compositions containing bioactive agents and methods for their use
WO2004043507A1 (en) * 2002-11-07 2004-05-27 Carbon Medical Technologies, Inc. Biocompatible medical device coatings
ES2420914T3 (en) 2002-11-13 2013-08-27 Genzyme Corporation Antisense modulation of apolipoprotein B expression
CA2505801A1 (en) 2002-11-13 2004-05-27 Rosanne Crooke Antisense modulation of apolipoprotein b expression
US20040111144A1 (en) * 2002-12-06 2004-06-10 Lawin Laurie R. Barriers for polymeric coatings
US7758880B2 (en) 2002-12-11 2010-07-20 Advanced Cardiovascular Systems, Inc. Biocompatible polyacrylate compositions for medical applications
US7776926B1 (en) 2002-12-11 2010-08-17 Advanced Cardiovascular Systems, Inc. Biocompatible coating for implantable medical devices
US7264859B2 (en) * 2002-12-19 2007-09-04 Kimberly-Clark Worldwide, Inc. Lubricious coating for medical devices
US7220491B2 (en) * 2002-12-19 2007-05-22 Kimberly-Clark Worldwide, Inc. Lubricious coating for medical devices
US7628859B1 (en) * 2002-12-27 2009-12-08 Advanced Cardiovascular Systems, Inc. Mounting assembly for a stent and a method of using the same to coat a stent
US20040236415A1 (en) * 2003-01-02 2004-11-25 Richard Thomas Medical devices having drug releasing polymer reservoirs
US20060135940A1 (en) * 2003-01-06 2006-06-22 The Trustees Of Columbia Programmed pulsed infusion methods and devices
US20060047261A1 (en) * 2004-06-28 2006-03-02 Shailendra Joshi Intra-arterial catheter for drug delivery
US6742952B1 (en) 2003-02-28 2004-06-01 Bic Corporation Transparent or translucent tubular structure
EP2918296A1 (en) 2003-02-28 2015-09-16 Biointeractions Ltd. Polymeric network system for medical devices and methods of use
JP4614630B2 (en) * 2003-03-31 2011-01-19 有限会社筑波物質情報研究所 Functional polymer compound and biosensor using the same
US20050164951A1 (en) * 2003-04-03 2005-07-28 The Regents Of The University Of California Inhibitors for the soluble epoxide hydrolase
AU2004228028B2 (en) * 2003-04-03 2009-12-10 The Regents Of The University Of California Improved inhibitors for the soluble epoxide hydrolase
US20040243224A1 (en) * 2003-04-03 2004-12-02 Medtronic Vascular, Inc. Methods and compositions for inhibiting narrowing in mammalian vascular pathways
US7641643B2 (en) 2003-04-15 2010-01-05 Abbott Cardiovascular Systems Inc. Methods and compositions to treat myocardial conditions
US8038991B1 (en) 2003-04-15 2011-10-18 Abbott Cardiovascular Systems Inc. High-viscosity hyaluronic acid compositions to treat myocardial conditions
US8821473B2 (en) 2003-04-15 2014-09-02 Abbott Cardiovascular Systems Inc. Methods and compositions to treat myocardial conditions
US20040215313A1 (en) * 2003-04-22 2004-10-28 Peiwen Cheng Stent with sandwich type coating
AU2004237774B2 (en) 2003-05-02 2009-09-10 Surmodics, Inc. Implantable controlled release bioactive agent delivery device
US8246974B2 (en) 2003-05-02 2012-08-21 Surmodics, Inc. Medical devices and methods for producing the same
US6923996B2 (en) 2003-05-06 2005-08-02 Scimed Life Systems, Inc. Processes for producing polymer coatings for release of therapeutic agent
US7279174B2 (en) 2003-05-08 2007-10-09 Advanced Cardiovascular Systems, Inc. Stent coatings comprising hydrophilic additives
US8465537B2 (en) 2003-06-17 2013-06-18 Gel-Del Technologies, Inc. Encapsulated or coated stent systems
US20050118344A1 (en) 2003-12-01 2005-06-02 Pacetti Stephen D. Temperature controlled crimping
US7318945B2 (en) * 2003-07-09 2008-01-15 Medtronic Vascular, Inc. Laminated drug-polymer coated stent having dipped layers
US20050124896A1 (en) * 2003-08-25 2005-06-09 Jacob Richter Method for protecting implantable sensors and protected implantable sensors
DE60312326T2 (en) * 2003-09-03 2007-11-08 Research In Motion Ltd., Waterloo Methods and apparatus for displaying a home network name
US8021331B2 (en) * 2003-09-15 2011-09-20 Atrium Medical Corporation Method of coating a folded medical device
WO2005027994A2 (en) * 2003-09-15 2005-03-31 Atrium Medical Corporation Application of a therapeutic substance to a tissue location using a porous medical device
EP1663343B8 (en) * 2003-09-15 2019-12-04 Atrium Medical Corporation Application of a therapeutic substance to a tissue location using an expandable medical device
US7758510B2 (en) 2003-09-19 2010-07-20 Flowcardia, Inc. Connector for securing ultrasound catheter to transducer
US7953499B2 (en) * 2003-09-30 2011-05-31 Cardiac Pacemakers, Inc. Drug-eluting electrode
EP1675908B1 (en) * 2003-10-07 2008-12-17 Coloplast A/S Composition useful as an adhesive ans use of such a composition
US7208172B2 (en) * 2003-11-03 2007-04-24 Medlogics Device Corporation Metallic composite coating for delivery of therapeutic agents from the surface of implantable devices
CN1878579A (en) * 2003-11-07 2006-12-13 拜克技术有限公司 Method for preparing drug eluting medical devices and medical devices obtained therefrom
US9114198B2 (en) 2003-11-19 2015-08-25 Advanced Cardiovascular Systems, Inc. Biologically beneficial coatings for implantable devices containing fluorinated polymers and methods for fabricating the same
EP1687043A2 (en) * 2003-11-20 2006-08-09 Angiotech International Ag Electrical devices and anti-scarring agents
JP2007512102A (en) 2003-11-20 2007-05-17 ザ ヘンリー エム. ジャクソン ファウンデーション フォー ザ アドヴァンスメント オブ ミリタリー メディシン, インク. Portable manual pump for fluid suction
US20060085062A1 (en) * 2003-11-28 2006-04-20 Medlogics Device Corporation Implantable stent with endothelialization factor
US20050119723A1 (en) * 2003-11-28 2005-06-02 Medlogics Device Corporation Medical device with porous surface containing bioerodable bioactive composites and related methods
US20050149174A1 (en) * 2003-12-18 2005-07-07 Medtronic Vascular, Inc. Medical devices to treat or inhibit restenosis
US20050154455A1 (en) * 2003-12-18 2005-07-14 Medtronic Vascular, Inc. Medical devices to treat or inhibit restenosis
US20050154451A1 (en) * 2003-12-18 2005-07-14 Medtronic Vascular, Inc. Medical devices to treat or inhibit restenosis
US20050152942A1 (en) * 2003-12-23 2005-07-14 Medtronic Vascular, Inc. Medical devices to treat or inhibit restenosis
US20050152943A1 (en) * 2003-12-23 2005-07-14 Medtronic Vascular, Inc. Medical devices to treat or inhibit restenosis
EP1696977A2 (en) * 2003-12-23 2006-09-06 Advanced Medical Optics, Inc. Lubricious, biocompatible coatings for medical devices
US20050152940A1 (en) * 2003-12-23 2005-07-14 Medtronic Vascular, Inc. Medical devices to treat or inhibit restenosis
US20050154452A1 (en) * 2003-12-23 2005-07-14 Medtronic Vascular, Inc. Medical devices to treat or inhibit restenosis
JP2007517550A (en) * 2004-01-02 2007-07-05 アドヴァンスド カーディオヴァスキュラー システムズ, インコーポレイテッド Medical device coated with high density lipoprotein
US20050159809A1 (en) * 2004-01-21 2005-07-21 Medtronic Vascular, Inc. Implantable medical devices for treating or preventing restenosis
US20050165452A1 (en) * 2004-01-28 2005-07-28 Medtronic, Inc. Antithrombogenic medical device
US7534495B2 (en) * 2004-01-29 2009-05-19 Boston Scientific Scimed, Inc. Lubricious composition
US20050197691A1 (en) * 2004-02-18 2005-09-08 Medtronic Vascular, Inc. Medical devices to treat or inhibit restenosis
US8137397B2 (en) * 2004-02-26 2012-03-20 Boston Scientific Scimed, Inc. Medical devices
US7840263B2 (en) 2004-02-27 2010-11-23 Cardiac Pacemakers, Inc. Method and apparatus for device controlled gene expression
US20090018092A1 (en) 2004-03-16 2009-01-15 The Regents Of The University Of California Reducing Nephropathy with Inhibitors of Soluble Epoxide Hydrolase and Epoxyeicosanoids
WO2005097673A1 (en) * 2004-03-30 2005-10-20 Toyo Advanced Technologies Co., Ltd. Method for treating surface of base, surface-treated base, material for medical use and instrument for medical use
US8043631B2 (en) * 2004-04-02 2011-10-25 Au Jessie L S Tumor targeting drug-loaded particles
US8293890B2 (en) 2004-04-30 2012-10-23 Advanced Cardiovascular Systems, Inc. Hyaluronic acid based copolymers
EP1746943A1 (en) * 2004-05-06 2007-01-31 Boston Scientific Limited Variable size retrieval basket
US7758572B2 (en) * 2004-05-20 2010-07-20 Boston Scientific Scimed, Inc. Medical devices and methods including cooling balloons having nanotubes
US20050261762A1 (en) * 2004-05-21 2005-11-24 Medtronic Vascular, Inc. Medical devices to prevent or inhibit restenosis
US9561309B2 (en) 2004-05-27 2017-02-07 Advanced Cardiovascular Systems, Inc. Antifouling heparin coatings
US7764995B2 (en) 2004-06-07 2010-07-27 Cardiac Pacemakers, Inc. Method and apparatus to modulate cellular regeneration post myocardial infarct
US7563780B1 (en) 2004-06-18 2009-07-21 Advanced Cardiovascular Systems, Inc. Heparin prodrugs and drug delivery stents formed therefrom
US7595355B2 (en) * 2004-06-24 2009-09-29 Agion Technologies, Inc. Antimicrobial coating for erosive environments
US7494665B1 (en) 2004-07-30 2009-02-24 Advanced Cardiovascular Systems, Inc. Polymers containing siloxane monomers
US7540852B2 (en) 2004-08-26 2009-06-02 Flowcardia, Inc. Ultrasound catheter devices and methods
US20060062822A1 (en) * 2004-09-21 2006-03-23 Medtronic Vascular, Inc. Medical devices to treat or inhibit restenosis
US7776380B2 (en) * 2004-09-22 2010-08-17 Volcano Corporation Method of making catheters with additives consolidated into polymer wall
US9000040B2 (en) 2004-09-28 2015-04-07 Atrium Medical Corporation Cross-linked fatty acid-based biomaterials
US9012506B2 (en) 2004-09-28 2015-04-21 Atrium Medical Corporation Cross-linked fatty acid-based biomaterials
US8858978B2 (en) 2004-09-28 2014-10-14 Atrium Medical Corporation Heat cured gel and method of making
US8337475B2 (en) 2004-10-12 2012-12-25 C. R. Bard, Inc. Corporeal drainage system
US20060083770A1 (en) * 2004-10-15 2006-04-20 Specialty Coating Systems, Inc. Medical devices and methods of preparation and use
US7662910B2 (en) 2004-10-20 2010-02-16 The Regents Of The University Of California Inhibitors for the soluble epoxide hydrolase
US20060088571A1 (en) * 2004-10-21 2006-04-27 Medtronic Vascular, Inc. Biocompatible and hemocompatible polymer compositions
US8603634B2 (en) 2004-10-27 2013-12-10 Abbott Cardiovascular Systems Inc. End-capped poly(ester amide) copolymers
ATE542564T1 (en) 2004-11-05 2012-02-15 Icu Medical Inc MEDICAL CONNECTOR WITH HIGH FLOW CHARACTERISTICS
WO2006056482A1 (en) 2004-11-29 2006-06-01 Dsm Ip Assets B.V. Method for reducing the amount of migrateables of polymer coatings
US8874204B2 (en) 2004-12-20 2014-10-28 Cardiac Pacemakers, Inc. Implantable medical devices comprising isolated extracellular matrix
US7981065B2 (en) 2004-12-20 2011-07-19 Cardiac Pacemakers, Inc. Lead electrode incorporating extracellular matrix
US8060219B2 (en) 2004-12-20 2011-11-15 Cardiac Pacemakers, Inc. Epicardial patch including isolated extracellular matrix with pacing electrodes
US7604818B2 (en) 2004-12-22 2009-10-20 Advanced Cardiovascular Systems, Inc. Polymers of fluorinated monomers and hydrocarbon monomers
US8221343B2 (en) 2005-01-20 2012-07-17 Flowcardia, Inc. Vibrational catheter devices and methods for making same
EP1853328A2 (en) * 2005-02-23 2007-11-14 SurModics, Inc. Implantable medical articles having laminin coatings and methods of use
US7527604B2 (en) * 2005-03-09 2009-05-05 Boston Scientific Scimed, Inc. Rotatable multi-port therapeutic delivery device
US8303972B2 (en) 2005-04-19 2012-11-06 Advanced Cardiovascular Systems, Inc. Hydrogel bioscaffoldings and biomedical device coatings
US8828433B2 (en) 2005-04-19 2014-09-09 Advanced Cardiovascular Systems, Inc. Hydrogel bioscaffoldings and biomedical device coatings
US20080125745A1 (en) 2005-04-19 2008-05-29 Shubhayu Basu Methods and compositions for treating post-cardial infarction damage
US8187621B2 (en) 2005-04-19 2012-05-29 Advanced Cardiovascular Systems, Inc. Methods and compositions for treating post-myocardial infarction damage
US9539410B2 (en) 2005-04-19 2017-01-10 Abbott Cardiovascular Systems Inc. Methods and compositions for treating post-cardial infarction damage
JP2008541950A (en) * 2005-06-02 2008-11-27 サーモディクス,インコーポレイティド Hydrophilic polymer coating for medical products
US20060282114A1 (en) * 2005-06-09 2006-12-14 Medtronic Vascular, Inc. Embolic protection apparatus with vasodilator coating
DE102005033520B4 (en) * 2005-07-14 2007-12-20 Schwan-Stabilo Cosmetics Gmbh & Co. Kg Preparation, in particular cosmetic preparation, process for their preparation and their use
AU2006270221B2 (en) 2005-07-15 2012-01-19 Micell Technologies, Inc. Polymer coatings containing drug powder of controlled morphology
US11147902B2 (en) * 2005-07-20 2021-10-19 Surmodics, Inc. Polymeric coatings and methods for cell attachment
US20070027530A1 (en) * 2005-07-26 2007-02-01 Medtronic Vascular, Inc. Intraluminal device, catheter assembly, and method of use thereof
BRPI0503201B8 (en) * 2005-07-28 2021-05-25 Sci Tech Produtos Medicos Ltda stents coated with hydrophilic polymer blends, eluting nitric oxide and s-nitrosothiols
US9101949B2 (en) 2005-08-04 2015-08-11 Eilaz Babaev Ultrasonic atomization and/or seperation system
US7896539B2 (en) 2005-08-16 2011-03-01 Bacoustics, Llc Ultrasound apparatus and methods for mixing liquids and coating stents
WO2007024649A2 (en) * 2005-08-19 2007-03-01 X-Cell Medical Incorporated Methods of treating and preventing acute myocardial infarction
US8343473B2 (en) 2005-08-24 2013-01-01 Purdue Research Foundation Hydrophilized antimicrobial polymers
US20070048249A1 (en) 2005-08-24 2007-03-01 Purdue Research Foundation Hydrophilized bactericidal polymers
US20070067020A1 (en) * 2005-09-22 2007-03-22 Medtronic Vasular, Inc. Intraluminal stent, delivery system, and a method of treating a vascular condition
US8177772B2 (en) 2005-09-26 2012-05-15 C. R. Bard, Inc. Catheter connection systems
US9427423B2 (en) 2009-03-10 2016-08-30 Atrium Medical Corporation Fatty-acid based particles
US9278161B2 (en) 2005-09-28 2016-03-08 Atrium Medical Corporation Tissue-separating fatty acid adhesion barrier
DK1957130T3 (en) * 2005-12-09 2010-11-22 Dsm Ip Assets Bv Hydrophilic coating comprising a polyelectrolyte
US20070148390A1 (en) * 2005-12-27 2007-06-28 Specialty Coating Systems, Inc. Fluorinated coatings
ES2612188T3 (en) 2006-02-01 2017-05-12 Hollister Incorporated Methods of applying a hydrophilic coating to a substrate and substrates having a hydrophilic coating
TW200808723A (en) * 2006-03-13 2008-02-16 Univ California Conformationally restricted urea inhibitors of soluble epoxide hydrolase
US20070231361A1 (en) * 2006-03-28 2007-10-04 Medtronic Vascular, Inc. Use of Fatty Acids to Inhibit the Growth of Aneurysms
US9282984B2 (en) 2006-04-05 2016-03-15 Flowcardia, Inc. Therapeutic ultrasound system
US9561351B2 (en) 2006-05-31 2017-02-07 Advanced Cardiovascular Systems, Inc. Drug delivery spiral coil construct
US9028859B2 (en) 2006-07-07 2015-05-12 Advanced Cardiovascular Systems, Inc. Phase-separated block copolymer coatings for implantable medical devices
US7732190B2 (en) 2006-07-31 2010-06-08 Advanced Cardiovascular Systems, Inc. Modified two-component gelation systems, methods of use and methods of manufacture
US9242005B1 (en) 2006-08-21 2016-01-26 Abbott Cardiovascular Systems Inc. Pro-healing agent formulation compositions, methods and treatments
US20080057298A1 (en) * 2006-08-29 2008-03-06 Surmodics, Inc. Low friction particulate coatings
WO2008031601A1 (en) * 2006-09-13 2008-03-20 Dsm Ip Assets B.V. Antimicrobial hydrophilic coating comprising metallic silver particles
EP2059272B1 (en) * 2006-09-13 2018-02-28 DSM IP Assets B.V. Coating formulation for medical coating
WO2008052140A2 (en) 2006-10-25 2008-05-02 Icu Medical, Inc. Medical connector
US8246643B2 (en) 2006-11-07 2012-08-21 Flowcardia, Inc. Ultrasound catheter having improved distal end
US9005672B2 (en) 2006-11-17 2015-04-14 Abbott Cardiovascular Systems Inc. Methods of modifying myocardial infarction expansion
US8741326B2 (en) 2006-11-17 2014-06-03 Abbott Cardiovascular Systems Inc. Modified two-component gelation systems, methods of use and methods of manufacture
US8414525B2 (en) 2006-11-20 2013-04-09 Lutonix, Inc. Drug releasing coatings for medical devices
US8414526B2 (en) 2006-11-20 2013-04-09 Lutonix, Inc. Medical device rapid drug releasing coatings comprising oils, fatty acids, and/or lipids
US8414910B2 (en) 2006-11-20 2013-04-09 Lutonix, Inc. Drug releasing coatings for medical devices
US8998846B2 (en) 2006-11-20 2015-04-07 Lutonix, Inc. Drug releasing coatings for balloon catheters
US9700704B2 (en) 2006-11-20 2017-07-11 Lutonix, Inc. Drug releasing coatings for balloon catheters
US20080276935A1 (en) 2006-11-20 2008-11-13 Lixiao Wang Treatment of asthma and chronic obstructive pulmonary disease with anti-proliferate and anti-inflammatory drugs
US8425459B2 (en) 2006-11-20 2013-04-23 Lutonix, Inc. Medical device rapid drug releasing coatings comprising a therapeutic agent and a contrast agent
US9737640B2 (en) 2006-11-20 2017-08-22 Lutonix, Inc. Drug releasing coatings for medical devices
US20080175887A1 (en) 2006-11-20 2008-07-24 Lixiao Wang Treatment of Asthma and Chronic Obstructive Pulmonary Disease With Anti-proliferate and Anti-inflammatory Drugs
US8192760B2 (en) 2006-12-04 2012-06-05 Abbott Cardiovascular Systems Inc. Methods and compositions for treating tissue using silk proteins
US20080140022A1 (en) * 2006-12-08 2008-06-12 Warsaw Orthopedic, Inc. Coated Cannula with Protective Tip for Insertion Into a Patient
US20080181928A1 (en) * 2006-12-22 2008-07-31 Miv Therapeutics, Inc. Coatings for implantable medical devices for liposome delivery
US8273402B2 (en) * 2007-02-26 2012-09-25 Medtronic Vascular, Inc. Drug coated stent with magnesium topcoat
ES2387699T3 (en) * 2007-02-28 2012-09-28 Dsm Ip Assets B.V. Hydrophilic coating
JP5587612B2 (en) * 2007-02-28 2014-09-10 ディーエスエム アイピー アセッツ ビー.ブイ. Hydrophilic coating
US20080294237A1 (en) * 2007-04-04 2008-11-27 Jack Fa-De Chu Inflatable devices and methods to protect aneurysmal wall
US9056155B1 (en) 2007-05-29 2015-06-16 Abbott Cardiovascular Systems Inc. Coatings having an elastic primer layer
US8133553B2 (en) 2007-06-18 2012-03-13 Zimmer, Inc. Process for forming a ceramic layer
US8309521B2 (en) 2007-06-19 2012-11-13 Zimmer, Inc. Spacer with a coating thereon for use with an implant device
US7780095B2 (en) 2007-07-13 2010-08-24 Bacoustics, Llc Ultrasound pumping apparatus
US7753285B2 (en) 2007-07-13 2010-07-13 Bacoustics, Llc Echoing ultrasound atomization and/or mixing system
US8617114B2 (en) * 2007-07-13 2013-12-31 Abbott Cardiovascular Systems Inc. Drug coated balloon catheter
US8690823B2 (en) * 2007-07-13 2014-04-08 Abbott Cardiovascular Systems Inc. Drug coated balloon catheter
US8128599B2 (en) * 2007-07-20 2012-03-06 Tyco Healthcare Group Lp Lubricious coatings
WO2009020960A1 (en) 2007-08-06 2009-02-12 The Regents Of The University Of California Preparation of novel 1,3-substituted ureas as inhibitors of soluble epoxide hydrolase
US20090041923A1 (en) * 2007-08-06 2009-02-12 Abbott Cardiovascular Systems Inc. Medical device having a lubricious coating with a hydrophilic compound in an interlocking network
CA2599082A1 (en) * 2007-08-27 2009-02-27 Ping I. Lee Supramacromolecular polymer complexes providing controlled nitric oxide release for healing wounds
US8445217B2 (en) 2007-09-20 2013-05-21 Vanderbilt University Free solution measurement of molecular interactions by backscattering interferometry
US8608049B2 (en) 2007-10-10 2013-12-17 Zimmer, Inc. Method for bonding a tantalum structure to a cobalt-alloy substrate
US8216629B2 (en) * 2007-10-29 2012-07-10 Advanced Vision Science, Inc. Lubricious intraocular lens insertion device
US8361052B2 (en) 2007-10-30 2013-01-29 Uti Limited Partnership Method and system for sustained-release of sclerosing agent
US8512731B2 (en) * 2007-11-13 2013-08-20 Medtronic Minimed, Inc. Antimicrobial coatings for medical devices and methods for making and using them
DE102007055692A1 (en) * 2007-12-03 2009-06-04 Wacker Chemie Ag Radically crosslinkable polymer compositions containing epoxy-functional copolymers
WO2009076372A2 (en) 2007-12-10 2009-06-18 Molecular Sensing, Inc. Temperature-stable interferometer
US20090157047A1 (en) * 2007-12-13 2009-06-18 Boston Scientific Scimed, Inc. Medical device coatings and methods of forming such coatings
WO2009086483A2 (en) 2007-12-26 2009-07-09 Gel-Del Technologies, Inc. Biocompatible protein particles, particle devices and methods thereof
US8378011B2 (en) * 2007-12-27 2013-02-19 Boston Scientific Scimed, Inc. Enhanced durability of hydrophilic coatings
US20110059874A1 (en) * 2008-03-12 2011-03-10 Marnix Rooijmans Hydrophilic coating
EP2103318A1 (en) 2008-03-20 2009-09-23 Bayer MaterialScience AG Medical devices with hydrophilic coatings
EP2103317A1 (en) 2008-03-20 2009-09-23 Bayer MaterialScience AG Medical devices with hydrophilic coatings
EP2110147B1 (en) * 2008-04-17 2011-10-26 Astra Tech AB Improved medical device with hydrophilic coating
EP2285443B1 (en) * 2008-05-01 2016-11-23 Bayer Intellectual Property GmbH Catheter balloon drug adherence techniques and methods
US8602961B2 (en) 2008-05-15 2013-12-10 Lifewave Products Llc Apparatus and method of stimulating elevation of glutathione levels in a subject
DE102008025614A1 (en) * 2008-05-28 2009-12-03 Bayer Materialscience Ag Hydrophilic polyurethane coatings
US20110076712A1 (en) * 2008-06-13 2011-03-31 Xy, Llc. Lubricious microfludic flow path system
CH699079A1 (en) * 2008-07-04 2010-01-15 Arik Zucker Arrangement consisting of a stent and a package.
US20100048758A1 (en) * 2008-08-22 2010-02-25 Boston Scientific Scimed, Inc. Lubricious coating composition for devices
DK2331156T3 (en) 2008-09-04 2012-05-29 Bayer Materialscience Ag TCD-based hydrophilic polyurethane solutions
WO2010039247A2 (en) * 2008-10-03 2010-04-08 Molecular Sensing, Inc. Substrates with surfaces modified with peg
DE102008054482A1 (en) 2008-12-10 2010-06-17 Wacker Chemie Ag Graft copolymers and their use as low-profile additives
MX2011007349A (en) * 2009-01-09 2011-08-03 Dsm Ip Assets Bv Primer for coating coiled wires.
US20100188665A1 (en) * 2009-01-12 2010-07-29 Molecular Sensing, Inc. Methods and systems for interferometric analysis
WO2010080710A2 (en) * 2009-01-12 2010-07-15 Molecular Sensing, Inc. Sample collection and measurement in a single container by back scattering interferometry
US20100209475A1 (en) * 2009-02-19 2010-08-19 Biomet Manufacturing Corp. Medical implants having a drug delivery coating
US8454579B2 (en) 2009-03-25 2013-06-04 Icu Medical, Inc. Medical connector with automatic valves and volume regulator
JP5532665B2 (en) * 2009-04-20 2014-06-25 株式会社カネカ Stent delivery system
US20100268191A1 (en) * 2009-04-21 2010-10-21 Medtronic Vascular, Inc. Drug Delivery Catheter using Frangible Microcapsules and Delivery Method
US8450118B2 (en) 2009-05-04 2013-05-28 Molecular Sensing, Inc. Method for detecting binding interactions between membrane proteins and analytes in a homogenous assay
US8226566B2 (en) 2009-06-12 2012-07-24 Flowcardia, Inc. Device and method for vascular re-entry
US20110038910A1 (en) 2009-08-11 2011-02-17 Atrium Medical Corporation Anti-infective antimicrobial-containing biomaterials
EP2501431B1 (en) * 2009-11-19 2020-01-08 Wellinq Medical B.V. Narrow profile composition-releasing expandable medical balloon catheter
US8287890B2 (en) * 2009-12-15 2012-10-16 C.R. Bard, Inc. Hydrophilic coating
EP2528604B1 (en) 2010-01-29 2017-11-22 The Regents of the University of California Acyl piperidine inhibitors of soluble epoxide hydrolase
EP2531140B1 (en) * 2010-02-02 2017-11-01 Micell Technologies, Inc. Stent and stent delivery system with improved deliverability
USD644731S1 (en) 2010-03-23 2011-09-06 Icu Medical, Inc. Medical connector
US8685433B2 (en) 2010-03-31 2014-04-01 Abbott Cardiovascular Systems Inc. Absorbable coating for implantable device
JP2013526298A (en) * 2010-05-07 2013-06-24 ケアフュージョン2200、インコーポレイテッド Catheter allowing variable doses of active agent
US8758306B2 (en) 2010-05-17 2014-06-24 Icu Medical, Inc. Medical connectors and methods of use
US9638632B2 (en) 2010-06-11 2017-05-02 Vanderbilt University Multiplexed interferometric detection system and method
US8957125B2 (en) 2010-06-16 2015-02-17 Dsm Ip Assets B.V. Coating formulation for preparing a hydrophilic coating
EP2593141B1 (en) 2010-07-16 2018-07-04 Atrium Medical Corporation Composition and methods for altering the rate of hydrolysis of cured oil-based materials
US8541498B2 (en) 2010-09-08 2013-09-24 Biointeractions Ltd. Lubricious coatings for medical devices
US9327101B2 (en) 2010-09-17 2016-05-03 Abbott Cardiovascular Systems Inc. Length and diameter adjustable balloon catheter
WO2012037510A1 (en) 2010-09-17 2012-03-22 Abbott Cardiovascular Systems Inc. Length and diameter adjustable balloon catheter
EP2675274B1 (en) 2011-02-14 2017-05-03 The Regents of The University of California SORAFENIB DERIVATIVES AS sEH INHIBITORS
US9562853B2 (en) 2011-02-22 2017-02-07 Vanderbilt University Nonaqueous backscattering interferometric methods
US8931637B2 (en) * 2011-05-04 2015-01-13 Cook Medical Technologies Llc Medical lumen access device assembly including medical lumen access device holder and method of use
US20130085451A1 (en) * 2011-09-29 2013-04-04 Tyco Healthcare Group Lp Plasma-treated dialysis catheter cuff
US9603615B2 (en) 2012-01-18 2017-03-28 C.R. Bard, Inc. Vascular re-entry device
CN104185661B (en) 2012-01-18 2016-08-17 苏尔莫迪克斯公司 The lubricity medical treatment device coating of low microgranule
CN104093708B (en) 2012-02-01 2016-11-09 加利福尼亚大学董事会 The acylpiperidine inhibitor of soluble epoxide hydrolase
US8545951B2 (en) 2012-02-29 2013-10-01 Kimberly-Clark Worldwide, Inc. Endotracheal tubes and other polymer substrates including an anti-fouling treatment
RU2482883C1 (en) * 2012-03-12 2013-05-27 Федеральное государственное бюджетное учреждение науки Институт высокомолекулярных соединений Российской академии наук Method for preparing fibre polymeric composites with antimicrobial activity
US9849005B2 (en) * 2012-04-16 2017-12-26 Biotronik Ag Implant and method for manufacturing same
US20130304180A1 (en) 2012-05-09 2013-11-14 Michael L. Green Catheter having dual balloon hydraulic actuator
US9271855B2 (en) 2012-05-09 2016-03-01 Abbott Cardiovascular Systems Inc. Catheter having hydraulic actuator with tandem chambers
US9011513B2 (en) 2012-05-09 2015-04-21 Abbott Cardiovascular Systems Inc. Catheter having hydraulic actuator
US9273949B2 (en) 2012-05-11 2016-03-01 Vanderbilt University Backscattering interferometric methods
US9827401B2 (en) 2012-06-01 2017-11-28 Surmodics, Inc. Apparatus and methods for coating medical devices
JP6549482B2 (en) 2012-06-01 2019-07-24 サーモディクス,インコーポレイテッド Device and method for coating a balloon catheter
US9867880B2 (en) 2012-06-13 2018-01-16 Atrium Medical Corporation Cured oil-hydrogel biomaterial compositions for controlled drug delivery
US8684963B2 (en) 2012-07-05 2014-04-01 Abbott Cardiovascular Systems Inc. Catheter with a dual lumen monolithic shaft
EP2879596A2 (en) 2012-08-02 2015-06-10 Flowcardia, Inc. Ultrasound catheter system
US20140220331A1 (en) 2013-02-02 2014-08-07 Cosilion LLC Antimicrobial compositions
US9623216B2 (en) 2013-03-12 2017-04-18 Abbott Cardiovascular Systems Inc. Length and diameter adjustable balloon catheter for drug delivery
US9326875B2 (en) 2013-03-13 2016-05-03 Abbott Cardiovascular Systems Inc. Catheter having a movable tubular structure and method of making
US10531971B2 (en) 2013-03-12 2020-01-14 Abbott Cardiovascular System Inc. Balloon catheter having hydraulic actuator
US9283101B2 (en) 2013-03-12 2016-03-15 Abbott Cardiovascular Systems Inc. Catheter having hydraulic actuator and locking system
WO2014143197A1 (en) 2013-03-12 2014-09-18 Abbott Cardiovascular Systems Inc. Catheter having movable tubular structure and proximal stopper
JP6172779B2 (en) 2013-03-12 2017-08-02 アボット カーディオバスキュラー システムズ インコーポレイテッド Catheter with hydraulic actuator and locking system
US10420662B2 (en) 2013-03-12 2019-09-24 Abbott Cardiovascular Systems Inc. Catheter having movable tubular structure and proximal stopper
EP2914325A1 (en) 2013-03-14 2015-09-09 Abbott Cardiovascular Systems Inc. Stiffness adjustable catheter
CN105246537A (en) 2013-03-15 2016-01-13 雅培心血管系统有限公司 Length adjustable balloon catheter for multiple indications
CN103212112B (en) * 2013-05-06 2015-10-07 中国热带农业科学院南亚热带作物研究所 A kind of containing Natural cinnamyl aldehyde anti-inflammation lubricating type catheter and preparation method thereof
EP2996629B1 (en) 2013-05-15 2021-09-22 Micell Technologies, Inc. Bioabsorbable biomedical implants
JP6034506B2 (en) * 2013-10-18 2016-11-30 住友ゴム工業株式会社 Surface-modified metal and method for modifying metal surface
CR20160134A (en) 2013-11-04 2016-08-05 Abbot Cardiovascular Systems Inc ADJUSTABLE LENGTH BALL CATETER
ES2941891T3 (en) 2013-12-11 2023-05-26 Icu Medical Inc Retention valve
MX2017002457A (en) * 2014-08-26 2017-05-19 Bard Inc C R Urinary catheter.
WO2016033424A1 (en) 2014-08-29 2016-03-03 Genzyme Corporation Methods for the prevention and treatment of major adverse cardiovascular events using compounds that modulate apolipoprotein b
US10124088B2 (en) 2014-09-29 2018-11-13 Surmodics, Inc. Lubricious medical device elements
USD786427S1 (en) 2014-12-03 2017-05-09 Icu Medical, Inc. Fluid manifold
USD793551S1 (en) 2014-12-03 2017-08-01 Icu Medical, Inc. Fluid manifold
JP6154370B2 (en) 2014-12-26 2017-06-28 住友ゴム工業株式会社 Surface-modified metal and method for modifying metal surface
JP2018506715A (en) 2015-01-23 2018-03-08 ヴァンダービルト ユニバーシティー Robust interferometer and method of use
CN107949403A (en) 2015-04-16 2018-04-20 好利司泰公司 Hydrophilic coating and forming method thereof
EP3294359B1 (en) * 2015-05-08 2019-09-11 Koninklijke Philips N.V. Hydrophilic coating for intravascular devices
JP6249987B2 (en) * 2015-05-13 2017-12-20 ルトニックス,インコーポレーテッド Drug release coating for medical devices
GB201509919D0 (en) * 2015-06-08 2015-07-22 Jmedtech Pte Ltd Coating
JP6753041B2 (en) 2015-08-27 2020-09-09 住友ゴム工業株式会社 Surface modification Metal and metal surface modification method
US11174447B2 (en) 2015-12-29 2021-11-16 Surmodics, Inc. Lubricious coatings with surface salt groups
US10342898B2 (en) 2015-12-29 2019-07-09 Surmodics, Inc. Lubricious coatings with surface salt groups
WO2017132483A1 (en) 2016-01-29 2017-08-03 Vanderbilt University Free-solution response function interferometry
CA3015481C (en) 2016-02-23 2021-05-04 Hollister Incorporated Medical device with hydrophilic coating
JP6776029B2 (en) * 2016-07-06 2020-10-28 テルモ株式会社 Medical equipment
EP3484535B1 (en) * 2016-07-14 2022-01-19 Hollister Incorporated Hygienic medical devices having hydrophilic coating and methods of forming the same
JP7066642B2 (en) 2016-07-18 2022-05-13 メリット・メディカル・システムズ・インコーポレイテッド Inflatable radial artery compression device
CN106334219A (en) * 2016-08-25 2017-01-18 百诺奥医学科技(苏州)有限公司 Hyaluronic acid modified hydrophilic lubricating coating, preparation method and applications thereof
US20180140321A1 (en) 2016-11-23 2018-05-24 C. R. Bard, Inc. Catheter With Retractable Sheath And Methods Thereof
US11596726B2 (en) 2016-12-17 2023-03-07 C.R. Bard, Inc. Ultrasound devices for removing clots from catheters and related methods
US10758256B2 (en) 2016-12-22 2020-09-01 C. R. Bard, Inc. Ultrasonic endovascular catheter
US10582983B2 (en) 2017-02-06 2020-03-10 C. R. Bard, Inc. Ultrasonic endovascular catheter with a controllable sheath
EP3629731A1 (en) 2017-05-27 2020-04-08 Poly Group LLC Dispersible antimicrobial complex and coatings therefrom
EP3638740A1 (en) 2017-06-16 2020-04-22 Poly Group LLC Polymeric antimicrobial surfactant
WO2019163764A1 (en) * 2018-02-20 2019-08-29 テルモ株式会社 Medical instrument
FR3085164B1 (en) * 2018-08-22 2021-02-26 Natvi LUBRICATION PROCESS
WO2020112816A1 (en) 2018-11-29 2020-06-04 Surmodics, Inc. Apparatus and methods for coating medical devices
US11819590B2 (en) 2019-05-13 2023-11-21 Surmodics, Inc. Apparatus and methods for coating medical devices
AU2020348451A1 (en) 2019-09-20 2022-04-21 Glyscend, Inc. Substituted phenyl boronic acid containing polymers and methods of use
CN113663130A (en) * 2020-05-13 2021-11-19 脉通医疗科技(嘉兴)有限公司 Artificial blood vessel and preparation method thereof
CN114177361A (en) * 2021-11-22 2022-03-15 禾木(中国)生物工程有限公司 Drug balloon and preparation method thereof
CN114891132A (en) * 2022-06-28 2022-08-12 矿冶科技集团有限公司 High-transparency cationic guar gum and preparation method and application thereof

Family Cites Families (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3695921A (en) 1970-09-09 1972-10-03 Nat Patent Dev Corp Method of coating a catheter
CS154977B1 (en) 1971-10-08 1974-04-30
US4055682A (en) 1971-11-19 1977-10-25 High Voltage Engineering Corporation Catheter and the method of making
AU494547B2 (en) 1972-07-10 1977-10-20 Johnson & Johnson Hydrophilic random interpolymer compositions and method for making same
US3886947A (en) 1973-04-13 1975-06-03 Meadox Medicals Inc Non-thrombogenic catheter
NL7707669A (en) 1977-07-08 1979-01-10 Akzo Nv METHOD OF COVERING A SUBSTRATE WITH A RADIATION HARDABLE COATING COMPOSITION.
US4100309A (en) 1977-08-08 1978-07-11 Biosearch Medical Products, Inc. Coated substrate having a low coefficient of friction hydrophilic coating and a method of making the same
CA1109580A (en) * 1977-11-03 1981-09-22 Kohtaro Nagasawa Radiation curable resin composition
SE448544B (en) 1979-12-05 1987-03-02 Kendall & Co WATER ABSORPTION COMPOSITION AND USE THEREOF AS A CARRIER FOR A MEDICINE
US4656252A (en) 1980-01-24 1987-04-07 Giese Roger W Amidobiotin compounds useful in a avidin-biotin multiple layering process
USRE31712E (en) * 1980-01-24 1984-10-23 Biochemical avidin-biotin multiple-layer system
US4282287A (en) 1980-01-24 1981-08-04 Giese Roger W Biochemical avidin-biotin multiple-layer system
IL63638A0 (en) * 1980-09-16 1981-11-30 Aligena Ag Semipermeable composite membranes,their manufacture and their use
US4530974A (en) 1981-03-19 1985-07-23 Board Of Regents, The University Of Texas System Nonthrombogenic articles having enhanced albumin affinity
US4373009A (en) 1981-05-18 1983-02-08 International Silicone Corporation Method of forming a hydrophilic coating on a substrate
US4500688A (en) 1982-04-20 1985-02-19 Petrarch Systems Inc. Curable silicone containing compositions and methods of making same
SE430695B (en) 1982-04-22 1983-12-05 Astra Meditec Ab PROCEDURE FOR THE PREPARATION OF A HYDROPHILIC COATING AND ACCORDING TO THE PROCEDURE OF MEDICAL ARTICLES
US4459326A (en) 1982-05-19 1984-07-10 Hillyard Enterprises, Inc. Coating of synthetic surfaces with water-based coatings
US4722906A (en) 1982-09-29 1988-02-02 Bio-Metric Systems, Inc. Binding reagents and methods
US4973493A (en) 1982-09-29 1990-11-27 Bio-Metric Systems, Inc. Method of improving the biocompatibility of solid surfaces
US5002582A (en) 1982-09-29 1991-03-26 Bio-Metric Systems, Inc. Preparation of polymeric surfaces via covalently attaching polymers
US4521564A (en) 1984-02-10 1985-06-04 Warner-Lambert Company Covalent bonded antithrombogenic polyurethane material
DE3582754D1 (en) 1984-06-04 1991-06-13 Terumo Corp MEDICAL TOOL AND PRODUCTION METHOD.
US5037677A (en) 1984-08-23 1991-08-06 Gregory Halpern Method of interlaminar grafting of coatings
US5023114A (en) 1984-08-23 1991-06-11 Gregory Halpern Method of hydrophilic coating of plastics
SE444950B (en) * 1984-09-28 1986-05-20 Ytkemiska Inst COVERED ARTICLE, PROCEDURES AND METHODS OF PRODUCING THEREOF AND USING THEREOF
GB2166977B (en) 1984-11-08 1988-04-20 Mitsubishi Monsanto Chem Medical material and process for its production
SE8504501D0 (en) 1985-09-30 1985-09-30 Astra Meditec Ab METHOD OF FORMING AN IMPROVED HYDROPHILIC COATING ON A POLYMER SURFACE
US4729914A (en) 1985-12-30 1988-03-08 Tyndale Plains-Hunter Ltd. Hydrophilic coating and substrate coated therewith
US5108923A (en) 1986-04-25 1992-04-28 Collaborative Research, Inc. Bioadhesives for cell and tissue adhesion
GB8611838D0 (en) 1986-05-15 1986-06-25 Yarsley Technical Centre Ltd Hydrophilic copolymers
US4979959A (en) 1986-10-17 1990-12-25 Bio-Metric Systems, Inc. Biocompatible coating for solid surfaces
US5263992A (en) 1986-10-17 1993-11-23 Bio-Metric Systems, Inc. Biocompatible device with covalently bonded biocompatible agent
US5100689A (en) 1987-04-10 1992-03-31 University Of Florida Surface modified surgical instruments, devices, implants, contact lenses and the like
US5094876A (en) 1987-04-10 1992-03-10 University Of Florida Surface modified surgical instruments, devices, implants, contact lenses and the like
US5290548A (en) 1987-04-10 1994-03-01 University Of Florida Surface modified ocular implants, surgical instruments, devices, prostheses, contact lenses and the like
US4870160A (en) 1987-08-19 1989-09-26 Regents Of The University Of Minnesota Polypeptides with laminin activity
US5294551A (en) 1987-08-25 1994-03-15 Regents Of The University Of Minnesota Cell culture substrate coated with polypeptides having fibronectin activity
US5116368A (en) 1987-08-25 1992-05-26 Regents Of The University Of Minnesota Polypeptides with fibronectin activity
US5171271A (en) 1987-08-25 1992-12-15 Regents Of The University Of Minnesota Polypeptides with fibronectin activity
US5147797A (en) 1987-08-25 1992-09-15 Regents Of The University Of Minnesota Polypeptides with fibronectin activity
US4876332A (en) 1987-10-08 1989-10-24 Regents Of The Univeristy Of Minnesota Polypeptides with type IV collagen activity
CA1312277C (en) 1987-12-18 1993-01-05 Richard C. Sutton Avidin- and biotin-immobilized reagents, analytical elements and methods of use
DE68927479T2 (en) 1988-05-02 1997-04-03 Phanos Tech Inc CONNECTIONS, COMPOSITIONS AND METHOD FOR BINDING ORGANIC AFFECTION SUBSTANCES TO SURFACE MEMBRANES OF BIOPARTICLES
US5167960A (en) 1988-08-03 1992-12-01 New England Deaconess Hospital Corporation Hirudin-coated biocompatible substance
EP0389632A4 (en) 1988-08-09 1990-12-27 Toray Industries, Inc. Slippery medical material and process for its production
US5840293A (en) 1988-11-16 1998-11-24 Advanced Polymer Systems, Inc. Ionic beads for controlled release and adsorption
US4978481A (en) * 1989-01-13 1990-12-18 Ciba-Geigy Corporation Process for the encapsulation of preformed substrates by graft copolymerization
US5091205A (en) 1989-01-17 1992-02-25 Union Carbide Chemicals & Plastics Technology Corporation Hydrophilic lubricious coatings
JP2927942B2 (en) 1989-01-27 1999-07-28 オーストラリアン メンブレイン アンド バイオテクノロジィ リサーチ インスティチュート Gating of receptor membranes and ionophores
US5389518A (en) 1989-02-03 1995-02-14 Commonwealth Scientific And Industrial Research Organisation Monoclonal antibodies directed against vitronectin and fibronectin, and uses thereof
US5328470A (en) 1989-03-31 1994-07-12 The Regents Of The University Of Michigan Treatment of diseases by site-specific instillation of cells or site-specific transformation of cells and kits therefor
US5698531A (en) 1989-03-31 1997-12-16 The Regents Of The University Of Michigan Treatment of diseases by site-specific instillation of cells or site-specific transformation of cells and kits therefor
US5041100A (en) 1989-04-28 1991-08-20 Cordis Corporation Catheter and hydrophilic, friction-reducing coating thereon
US5026607A (en) 1989-06-23 1991-06-25 C. R. Bard, Inc. Medical apparatus having protective, lubricious coating
US5272012A (en) 1989-06-23 1993-12-21 C. R. Bard, Inc. Medical apparatus having protective, lubricious coating
US5188959A (en) 1989-09-28 1993-02-23 Trustees Of Tufts College Extracellular matrix protein adherent t cells
US5278063A (en) 1989-09-28 1994-01-11 Board Of Regents The University Of Texas System Chemical modification of promote animal cell adhesion on surfaces
US5118779A (en) * 1989-10-10 1992-06-02 Polymedica Industries, Inc. Hydrophilic polyurethane elastomers
US5049403A (en) * 1989-10-12 1991-09-17 Horsk Hydro A.S. Process for the preparation of surface modified solid substrates
US5081031A (en) 1989-12-14 1992-01-14 Regents Of The University Of Minnesota Synthetic polypeptide with type iv collagen activity
US5152784A (en) 1989-12-14 1992-10-06 Regents Of The University Of Minnesota Prosthetic devices coated with a polypeptide with type IV collagen activity
US5135516A (en) 1989-12-15 1992-08-04 Boston Scientific Corporation Lubricious antithrombogenic catheters, guidewires and coatings
DK146790D0 (en) * 1990-06-15 1990-06-15 Meadox Surgimed As PROCEDURE FOR THE PREPARATION OF A FERTILIZER COATING COATING AND MEDICAL INSTRUMENT WITH COATING COATING
US5653974A (en) 1990-10-18 1997-08-05 Board Of Regents,The University Of Texas System Preparation and characterization of liposomal formulations of tumor necrosis factor
US5160790A (en) * 1990-11-01 1992-11-03 C. R. Bard, Inc. Lubricious hydrogel coatings
US5132108A (en) 1990-11-08 1992-07-21 Cordis Corporation Radiofrequency plasma treated polymeric surfaces having immobilized anti-thrombogenic agents
US5102420A (en) 1990-11-14 1992-04-07 Ethicon, Inc. Suture coated with a polyetheramide
US5295978A (en) 1990-12-28 1994-03-22 Union Carbide Chemicals & Plastics Technology Corporation Biocompatible hydrophilic complexes and process for preparation and use
JP2957021B2 (en) 1991-01-25 1999-10-04 テルモ株式会社 Medical material, medical device, and method of manufacturing medical material
EP0521605A3 (en) 1991-05-16 1993-03-10 Ioptex Research Inc. Biocompatible lubricious grafts
EP0558697A1 (en) 1991-06-28 1993-09-08 Massachusetts Institute Of Technology Localized oligonucleotide therapy
EP0605466B1 (en) 1991-08-23 2002-08-07 Board Of Regents Of The University Of Nebraska Method and compositions for cellular reprogramming
US5654284A (en) 1991-10-15 1997-08-05 Isis Pharmaceuticals, Inc. Oligonucleotides for modulating RAF kinase having phosphorothioate linkages of high chiral purity
US5661133B1 (en) 1991-11-12 1999-06-01 Univ Michigan Collateral blood vessel formation in cardiac muscle by injecting a dna sequence encoding an angiogenic protein
EP0572624A4 (en) 1991-12-18 1994-07-06 Scimed Life Systems Inc Lubricous polymer network
US5756476A (en) 1992-01-14 1998-05-26 The United States Of America As Represented By The Department Of Health And Human Services Inhibition of cell proliferation using antisense oligonucleotides
US5571166A (en) 1992-03-19 1996-11-05 Medtronic, Inc. Method of making an intraluminal stent
US5512474A (en) 1992-05-29 1996-04-30 Bsi Corporation Cell culture support containing a cell adhesion factor and a positively-charged molecule
DK172393B1 (en) 1992-06-10 1998-05-18 Maersk Medical As Process for producing an article having friction-reducing surface coating, coating material for use in the manufacture of such article, and using an osmolality-increasing compound in slurry or emulsified form in the coating material
US5383928A (en) 1992-06-10 1995-01-24 Emory University Stent sheath for local drug delivery
US5650447A (en) 1992-08-24 1997-07-22 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Nitric oxide-releasing polymers to treat restenosis and related disorders
US5656609A (en) 1992-09-24 1997-08-12 University Of Connecticut Method of enhancing and/or prolonging expression of gene introduced into a cell using colchicine
US5409731A (en) * 1992-10-08 1995-04-25 Tomei Sangyo Kabushiki Kaisha Method for imparting a hydrophilic nature to a contact lens
WO1994009128A1 (en) 1992-10-22 1994-04-28 Mallinckrodt Medical, Inc. Therapeutic treatment for inhibiting vascular restenosis
US5631237A (en) 1992-12-22 1997-05-20 Dzau; Victor J. Method for producing in vivo delivery of therapeutic agents via liposomes
US5350800A (en) 1993-01-19 1994-09-27 Medtronic, Inc. Method for improving the biocompatibility of solid surfaces
SE500964C2 (en) 1993-01-19 1994-10-10 Medicarb Ab Solid surface modified carrier wherein the modification is effected by a primer containing a polysaccharide and process for producing such a carrier
CA2114697C (en) 1993-02-08 2006-06-13 Kenichi Shimura Medical tool having lubricious surface in a wetted state and method for production thereof
US5709854A (en) 1993-04-30 1998-01-20 Massachusetts Institute Of Technology Tissue formation by injecting a cell-polymeric solution that gels in vivo
US5531715A (en) 1993-05-12 1996-07-02 Target Therapeutics, Inc. Lubricious catheters
NO931809L (en) * 1993-05-19 1994-11-21 Norsk Hydro As hemophilia
DE69407292T2 (en) 1993-06-30 1998-06-25 Genentech Inc METHOD FOR PRODUCING LIPOSOME
US5639872A (en) 1993-07-27 1997-06-17 Hybridon, Inc. Human VEGF-specific oligonucleotides
US5663450A (en) 1993-08-17 1997-09-02 Cv Therapeutics Macrophage lipid chemoattractant
AU680996B2 (en) 1993-12-17 1997-08-14 Novavax, Inc. Method of transmitting a biologically active material to a cell
US5470307A (en) 1994-03-16 1995-11-28 Lindall; Arnold W. Catheter system for controllably releasing a therapeutic agent at a remote tissue site
US5505713A (en) 1994-04-01 1996-04-09 Minimed Inc. Indwelling catheter with stable enzyme coating
CA2188563C (en) 1994-04-29 2005-08-02 Andrew W. Buirge Stent with collagen
US5656612A (en) 1994-05-31 1997-08-12 Isis Pharmaceuticals, Inc. Antisense oligonucleotide modulation of raf gene expression
US5681278A (en) 1994-06-23 1997-10-28 Cormedics Corp. Coronary vasculature treatment method
US5670558A (en) 1994-07-07 1997-09-23 Terumo Kabushiki Kaisha Medical instruments that exhibit surface lubricity when wetted
US5509899A (en) 1994-09-22 1996-04-23 Boston Scientific Corp. Medical device with lubricious coating
US5652225A (en) 1994-10-04 1997-07-29 St. Elizabeth's Medical Center Of Boston, Inc. Methods and products for nucleic acid delivery
US5643580A (en) 1994-10-17 1997-07-01 Surface Genesis, Inc. Biocompatible coating, medical device using the same and methods
US5519020A (en) 1994-10-28 1996-05-21 The University Of Akron Polymeric wound healing accelerators
US5656611A (en) 1994-11-18 1997-08-12 Supratek Pharma Inc. Polynucleotide compositions
US5665591A (en) 1994-12-06 1997-09-09 Trustees Of Boston University Regulation of smooth muscle cell proliferation
US5919570A (en) 1995-02-01 1999-07-06 Schneider Inc. Slippery, tenaciously adhering hydrogel coatings containing a polyurethane-urea polymer hydrogel commingled with a poly(N-vinylpyrrolidone) polymer hydrogel, coated polymer and metal substrate materials, and coated medical devices
US5660855A (en) 1995-02-10 1997-08-26 California Institute Of Technology Lipid constructs for targeting to vascular smooth muscle tissue
US5575818A (en) 1995-02-14 1996-11-19 Corvita Corporation Endovascular stent with locking ring
US5869127A (en) 1995-02-22 1999-02-09 Boston Scientific Corporation Method of providing a substrate with a bio-active/biocompatible coating
US5702754A (en) 1995-02-22 1997-12-30 Meadox Medicals, Inc. Method of providing a substrate with a hydrophilic coating and substrates, particularly medical devices, provided with such coatings
US5837313A (en) 1995-04-19 1998-11-17 Schneider (Usa) Inc Drug release stent coating process
US5665077A (en) 1995-04-24 1997-09-09 Nitrosci Pharmaceuticals Llc Nitric oxide-releasing nitroso compositions and methods and intravascular devices for using them to prevent restenosis
CA2178541C (en) 1995-06-07 2009-11-24 Neal E. Fearnot Implantable medical device
US5567828A (en) 1995-06-07 1996-10-22 Eli Lilly And Company Compounds and compositions with nitrogen-containing non-basic side
US5672638A (en) * 1995-08-22 1997-09-30 Medtronic, Inc. Biocompatability for solid surfaces
US5607475A (en) * 1995-08-22 1997-03-04 Medtronic, Inc. Biocompatible medical article and method
US5603991A (en) 1995-09-29 1997-02-18 Target Therapeutics, Inc. Method for coating catheter lumens
US5728420A (en) * 1996-08-09 1998-03-17 Medtronic, Inc. Oxidative method for attachment of glycoproteins to surfaces of medical devices
US5670161A (en) 1996-05-28 1997-09-23 Healy; Kevin E. Biodegradable stent
US5811151A (en) * 1996-05-31 1998-09-22 Medtronic, Inc. Method of modifying the surface of a medical device
US5916585A (en) 1996-06-03 1999-06-29 Gore Enterprise Holdings, Inc. Materials and method for the immobilization of bioactive species onto biodegradable polymers
US5800412A (en) 1996-10-10 1998-09-01 Sts Biopolymers, Inc. Hydrophilic coatings with hydrating agents

Also Published As

Publication number Publication date
DE69932034T2 (en) 2007-06-28
EP1051208B1 (en) 2006-06-21
ATE330646T1 (en) 2006-07-15
AU745979B2 (en) 2002-04-11
AU2019299A (en) 1999-08-16
EP1051208A1 (en) 2000-11-15
US6287285B1 (en) 2001-09-11
JP2002501788A (en) 2002-01-22
US20020002353A1 (en) 2002-01-03
US6656517B2 (en) 2003-12-02
WO1999038545A1 (en) 1999-08-05
US6221425B1 (en) 2001-04-24
AU2567799A (en) 1999-08-16
WO1999038546A1 (en) 1999-08-05
DE69932034D1 (en) 2006-08-03

Similar Documents

Publication Publication Date Title
CA2316223A1 (en) Hydrophilic coating for an intracorporeal medical device
US20080004280A1 (en) Heterocyclic topoisomerase poisons
US6992088B2 (en) Nitro and amino substituted heterocycles as topoisomerase I targeting agents
US20080045538A1 (en) Nitro and amino substituted topoisomerase agents
US20060058306A1 (en) Solubilized topoisomerase poison agents
US7049315B2 (en) Solubilized topoisomerase poisons
US6989387B2 (en) Nitro and amino substituted topoisomerase agents
US7517867B2 (en) Topoisomerase-targeting agents
US6740650B2 (en) Heterocyclic cytotoxic agents
WO2001032631A2 (en) Heterocyclic cytotoxic agents
US20050010046A1 (en) Topoisomerase poison agents
US6221892B1 (en) Heterocyclic topoisomerase poisons
MXPA00006499A (en) Heterocyclic topoisomerase poisons
CZ20002497A3 (en) Heterocyclic compounds
MXPA00007838A (en) Heterocyclic topoisomerase poisons

Legal Events

Date Code Title Description
FZDE Discontinued