CA2313860A1 - Initiation of an analytical measurement - Google Patents

Initiation of an analytical measurement Download PDF

Info

Publication number
CA2313860A1
CA2313860A1 CA002313860A CA2313860A CA2313860A1 CA 2313860 A1 CA2313860 A1 CA 2313860A1 CA 002313860 A CA002313860 A CA 002313860A CA 2313860 A CA2313860 A CA 2313860A CA 2313860 A1 CA2313860 A1 CA 2313860A1
Authority
CA
Canada
Prior art keywords
sample
measurement
meter
physical property
analyte concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002313860A
Other languages
French (fr)
Inventor
Robert Justice Shartle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LifeScan Inc
Original Assignee
LifeScan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LifeScan Inc filed Critical LifeScan Inc
Publication of CA2313860A1 publication Critical patent/CA2313860A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • G01N33/4905Determining clotting time of blood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5302Apparatus specially adapted for immunological test procedures
    • G01N33/5304Reaction vessels, e.g. agglutination plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54386Analytical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54386Analytical elements
    • G01N33/54387Immunochromatographic test strips
    • G01N33/54388Immunochromatographic test strips based on lateral flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/558Immunoassay; Biospecific binding assay; Materials therefor using diffusion or migration of antigen or antibody
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0621Control of the sequence of chambers filled or emptied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0681Filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0822Slides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0825Test strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/087Multiple sequential chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0481Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure squeezing of channels or chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0688Valves, specific forms thereof surface tension valves, capillary stop, capillary break
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/745Assays involving non-enzymic blood coagulation factors
    • G01N2333/7454Tissue factor (tissue thromboplastin, Factor III)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/948Hydrolases (3) acting on peptide bonds (3.4)
    • G01N2333/95Proteinases, i.e. endopeptidases (3.4.21-3.4.99)
    • G01N2333/964Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue
    • G01N2333/96425Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue from mammals
    • G01N2333/96427Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue from mammals in general
    • G01N2333/9643Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue from mammals in general with EC number
    • G01N2333/96433Serine endopeptidases (3.4.21)
    • G01N2333/96441Serine endopeptidases (3.4.21) with definite EC number
    • G01N2333/96447Factor VII (3.4.21.21)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/10Composition for standardization, calibration, simulation, stabilization, preparation or preservation; processes of use in preparation for chemical testing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • Y10T436/117497Automated chemical analysis with a continuously flowing sample or carrier stream

Abstract

A distinctive optical signature permits a fluidic medical diagnostic device to measure an analyte concentration or a property of whole blood, particularly the coagulation time, only after first insuring that a whole blood sample has been introduced into the device.
A suitable device has at one end a sample port for introducing a sample and at the other end a bladder for drawing the sample to a measurement area. By requiring a meter, used in conjunction with the device, to first detect the distinctive optical signature, a sample is drawn to the measurement area only if it is whole blood.
In that case, a channel carries the sample from the sample port to the measurement area, and a stop junction, between the measurement area and bladder, halts the sample flow. The meter measures a physical property of the blood sample - typically, optical transmittance - after it has interacted with a reagent in the measurement area.

Description

t t - 1 .-Initiation of an Analytical Measurement in Blood CROSS-REFERENCE TO PRIOR PROVISIONAL APPLICATION
This appl_icatian claims the benefit of U.S. Provisional s Application No. 60/093,4271, filed July 20, 1998 Background of the Invention io 1. Field of the Invention This invention relates to a fluidic medical diagnostic device for measuring the concentration of an analyte in or a property of a biological fluid; more :~5 particularly, to a method for initiating such a measurement when the fluid exhibits certain characteristics.
2. Description of the Related Art A variety of medical diagnastic procedures involve tests on biological fluids, such as blood, urine, or saliva, and are based on a change in a physical characteristic of such a fluid or an element of the fluid, 2s such as blood serum. The characteristic can be an electrical, magnetic, fluidic, or optical property. When an optical property is monitored, these procedures may make use of a transparent or translucent device to contain the biologi~~al fluid and a reagent. A change in light 3o absorption of the fluid can be related to an analyte r - 2 _ _.
concentration in, or property of, the fluid. Typically, a light source is located adjacent to one surface of the device and a detector is adjacent to the opposite surface.
The detector measures light transmitted through a fluid s sample. Alternatively, the light source and detector can be on the name side of the device, in which case the detector measures light scattered and/or reflected by the sample. Finally, a reflector may be located at or adjacent to the opposite surface. A device of this latter type, in which light is first transmitted through the sample area, then reflected through a second time, is called a "transflectance" device. References to "light"
throughout this specification and~the appended claims should be understood to include the infrared and ultraviolet spectra, as well as the visible. References to "absorption" are meant to refer to the reduction in intensity as a light beam passes through a medium; thus, it encompa:~ses both "true" absorption and scattering.
An ex~~nple of a transparent test device is described 2o in Wells et al. W094/02850, published on February 3, 1994.
Their device comprises a sealed housing, which is transpareni~ or translucent, impervious, and rigid or semi-rigid. An assay material is contained within the housing, together with one or more assay reagents at predetermined 2s sites. ThE~ housing is opened and the sample introduced just before conducting the assay. The combination of assay reagents and analyte in the sample results in a change in optica:L properties, such as color, of selected reagents at. the end of the assay. The results can be read 3o visually or with an optical insr_rument.
- 3 -.
U.S. Patent 3,620,676, issued on November 16, 1971 to Davis, discloses a colorimetric indicator for liquids.
The indicator includes a "half-bulb cavity", which is compressible. The bulb is compressed and released. to form a suction that draws fluid from a source, through a half-tubular cavity that has an indicator imprinted on its wall. The only controls on fluid flow into the indicator are how much the bulb is compressed and how long the indicator inlet is immersed in the source, while the bulb io is released.
U.S. Patent 3,640,267, issued on February 8, 1972 to Hurtig et al., discloses a container for collecting samples of body fluid that includes a chamber that has resilient, collapsible walls. The walls are squeezed ~s before the container inlet is placed into the fluid being collected. When released, the walls are restored to their uncollapsed condition, drawing fluid into and through the inlet. As with the Davis device, discussed above, control of fluid flow into the indicator is very limited.
2o U.S. Patent. 4,088,448, issued on May 9, 1978 to Lilja et al., discloses a cuvette, which permits optical analysis of a sample mixed with a reagent. The reagent is coated on the walls of a cavity, which is then filled with a liquid sample. The sample mixes with the reagent to 25 cause an optically-detectable change.
A number of patents, discussed below, disclose devices for diluting and/or analyzing biological fluid samples. These devices include valve-like designs to control the flow of the sample.

i , U.S. Patent 4,426,451, issued on January 17, 1984 to Columbus, discloses a multi-zone fluidic device that has pressure-actuatable means for controlling the flow of fluid between the zones. His device makes use of pressure balances on a liquid meniscus at the interface between a first zone and a second zone that has a different cross section. When both the first and second zones are at atmospheric pressure, surface tension creates a back pressure that stops the liquid meniscus from proceeding 1o from the first zone to the second. The configuration of this interface or "stop junction" is such that the liquid flows into the second zone only upon application of an externally generated pressure to the liquid in the first zone that is suff-_icient to push the meniscus into the ~5 second zone.
U.S. Latent 4,868,129, issued on September 19, 1989 to Gibbons et al., discloses that the back pressure in a stop junction can be overcome by hydrostatic pressure.on the liquid in the first zone, for example by having a 2o column of fluid in the first zone.
U.S. 1?atent 5,230,866, issued on July 27, 1993 to Shartle et al., discloses a fluidic device with multiple stop junctions in which the surface tension-induced back pressure at. the stop junction is augmented; for example, 25 by trapping and compressing gas in the second zone. The compressed gas can then be vented before applying additional hydrostatic pressure to the first zone to cause fluid to flow into the second zone. By varying the back pressure of- multiple stop junctions in parallel, "rupture r , junctions" can be formed, having lower maximum back pressure.
U.S. Fratent 5,472,603, issued on December 5, 1995 to Schembri (see also U.S. Patent 5.,627,041), discloses using centrifugal force to overcome the back pressure in a stop junction. (nlhen flow stops, the first zone is at atmospheric pressure plus a cent.rifugally generated pressure that is less than the pressure required to overcome the back pressure. The second zone is at atmospheric pressure. To resume flow, additional centrifugal pressure is applied to the first zone, overcoming the meniscus back pressure. The second zone remains at atmospheric pressure.
European Patent Application EP 0 803 288, of Naka et is al., published on October 29, 1997, discloses a device and method for .analyzing a sample that includes drawing the sample into the device by suction, then reacting the sample with a reagent in an analytical section. Analysis is done by optical or electrochemical means. In alternate 2o embodiments, there are multiple analytical sections and/or a bypass channel. The flow among these sections is balanced without using stop junctions.
U.S. Patent 5,700,695, issued on December 23, 1997 to Yassinzadeh et al., discloses an apparatus for collecting 25 and manipulating a biological fluid that uses a "thermal pressure chamber" to provide the driving force for moving the sample through the apparatus.
U.S. Patent 5,736,404, issued on April 7, 1998, to Yassinzadeh et al., discloses a method for determining the 3v coagulation time of a blood sample that involves causing an end of the sample to oscillate within a passageway.
The oscillating motion is caused by alternately increasing and decreasing the pressure on the sample.
EP 0 922 954 A2 discloses a method for recognizing s the presence of sample fluid on a test strip by monitoring the first and second derivatives of a parameter, such as reflectance from a mixture of the fluid and a reagent.
Summary of the Invention ~. o The present invention provides a method for initiating the measurement of an analyte concentration or property of a biological fluid that exhibits a "rouleaux"
realignment. "Rouleaux formation" refers to the stacking is of red blood cells, which permits a distinctive optical signature for such a fluid, typically whole blood. The method comprises a) ' providing a meter that measures the analyte concentration or a physical property of a blood 2o sample on a fluidic diagnostic device, b) inserting into the meter the device, comprising (i) a sample port for introducing a sample of the biological fluid into the device, 25 (ii) a measurement area, in which the analyt:e concentration or physical property is measured, (:iii) a channel, having a first end and a sect>nd end, to provide a fl.uidic path from the _ ') ._ sample port at the first end to the measurement area, c) applying the biological fluid sample to the sample port, s d) illuminating the sample port and monitoring the light scattered from the sample over a predetermined period of time, and e) measuring the analyte concentration or physical property only if, during that time period, the to scattered .light has first increased abruptly, then decreased, whereby the meter will make the measurement only if the biological fluid is whole blood.
.In another embodiment, the method of the present invention validates a measurement of an analyte s concentration or property of a biological fluid only if it comprisE~s whole blood. The method comprises <i) providing a meter that measures the analyte concentration or physical property of a blood sample on a fluidic diagnostic device, 2o b) inserting into t:he meter the device, comprising (i) a sample port for introducing a samples of the biological fluid into the device, (ii) a measurement area, in which the s analys=e concentration or physical property is measm_-ed, (iii) a channel, having a first end and a second end, to provide a fluidic path from the samples port at the first end to the measurement .io area, c) applying the biological fluid sample to the sample port, d) illuminating the sample port and monitoring the light scattered from the sample over a predetermined period of time, e) measuring the analyte concentration or physical property, and f) validating the measurement only if, to during that time period, the scattered light has first increased .abruptly, then decreased, whereby the meter will validate the measurement only if the biological fluid is whole blood.
In yet another embodiment, the present invention i5 comprises a method for initiating a measurement of analyte concentration or a physical property of a biological fluid comprising a) providing a meter that measures the analyte concentration or physical property of a blood 2o sample on a fluidic diagnostic device, lb) inserting into t:he meter the device, comprising (i) a transparent sample port for introducing a sample of the biological fluid into zs the d~=vice, (ii) a measurement area, in which the analyte concentration or physical property is measured, (iii) a channel, having a first end and 3o a second end, to provide a fluidic path from the _ g _.
sample port at the first end to the measurement area c.) applying the biological fluid sample to the sample port, d) illuminating the sample port and monitoring the light transmitted through the sample over a predeterrnined period of time, and E') measuring the analyte concentration or physical property only if, during that time period, the 1o transmitted light has first decreased abruptly, then increased, whereby the meter will make the measurement only if the biological fluid is whole blood.
The method of the present invention has broad application to various devices for measuring analyte u5 concentrations and properties of blood, but it is particularly well adapted for measuring prothrombin time (PT time) of whole blood. In that case, the measurement area has a composition that catalyzes the blood clotting cascade.
:20 Brief Description of the Drawings Fig. 1 is a plan view of a device that is suitable for use in the present invention.
z5 Fig. 2. is an exploded view of the device of Fig. 1.
Fig. 3 is a perspective view of the device of Fig. 1.
Fig. 9 is a schematic of a meter for use in the method of this invention.
Fig. 9A depicts an alternative embodiment of an 3o element of the meter of Fig. 4.

- 1~ -Fig. 5 is a graph of curves that identify a fluid as being, or not being, whole blood.
Fig. 6 is a graph of data that is used to determine PT time, using the meter of Fig. 4.
Fig. 7 is a plan view of an alternative embodiment of the device of Fig. 1.
Figs. 7A, 7B, and 7C depict a time sequence during which a sarnple is admitted to the device of Fig. 7.
Fig. .B is a schematic of a device that includes 1o multiple mE~asurement areas and a bypass channel.
Detailed Description of the Invention This :invention relates a method of initiating a ~5 measurement: in a fluidic device for analyzing certain biological fluids, particularly,. whole blood. The device is generally of the type that, in combination with an appropriate' meter, relates a physical parameter of blood, or an element of the blood, to an analyte concentration in ao the blood or to a property of the blood. Although a variety of physical parameters -- e.g.,:electrical, magnetic, f:luidic, or optical - can form the basis for the measurement:, a change in optica7_ parameters is a preferred basis, and the details that follow refer to an optical 25 device. Similarly, the method c:an be adapted to a variety of device designs, including devices that involve capillary fill; however, we provide details for a particularly suitable device that includes a sample application area; a bladder, to create a suction force to :3o draw the blood sample into the device; a measurement area, in which the sample may undergo a change in an optical parameter, such as light scattering; and a stop junction to precisely stop flow after filling the measurement area.
(Adapting the present method to other devices and for other measurements involves only routine experimentation.) Preferably, the device is substantially transparent over the measurement area, so that the area can be illuminated. by a light source on one side and the transmitted light. measured on the opposite side. The uo measurement on the sample may be of a parameter that is not changing, but. typically the sample undergoes a change in the measurement area, and the change in transmitted light is a measure of the analyte or fluid property of interest. Alternatively, light that is scattered from a :~5 fluid sample or light that passes through the sample and is reflected back through a second time (by a reflector on that opposite side) can be detected by a detector on the same side as the light source.
This type of device is suitable for a variety of 2o analytical tests of blood, such as determining biochemical or hematological characteristics, or measuring the concentration of proteins, hormones, carbohydrates, lipids, drugs, toxins, gases, electrolytes, etc. The procedures for performing these tests have been described 5 in the literature. Among the tests, and where they are described, are the following:
(1) C'hromogenic Factor XI7:a Assay (and other clotting factors as well): Rand, M.D. et al., E3lood, 88, 3432 (1996).

(2) Factor X Assay: Bick, R.L. Disorders of Thrombosis and Hemostasis: Clinical and Laboratory Practice. Chicago, ASCP Press, 1992.

(3) DRVVT (Dilute Russells Viper Venom Test):

Exner, T. et al., Blood Coag. Fibrinol., 1, 259 (1990).

(4) Immunanephelometric and Immunoturbidimetric Assays for Proteins: Whicher, J.T., CRC Crit.

Rev. Clin Lab Sci. 18:213 (1983).

(5) TPA Assay: Mann, K.G., et al., Blood, 76, 755, (1990).; and Hartshorn, J.N. et al., Blood, 78, 833 (1991).
(6) APTT (Activated Partial Thromboplastin Time Assay): Proctor, R.R. and Rapaport, S.I. Amer.

J. Clin. Path, 36, 21.2 (1961); Brandt, J.T.
and Triplett, D.A. Amer. J. Clin. Path., 76, 530 (1981); and Kelsey, P.R. Thromb. Haemost. 52, 172 (1984).
(7) HbAlc Assay (Glycosyl.ated Hemoglobin Assay):

Nicol, D.J. et al., C'lin. Chem. 29, 1694 (1983).
(8) Total Hemoglobin: Schneck et al., Clinical Chem., 32/33, 526 (1986); and U.S. Patent 4,088,448.
(9) Factor Xa: Vinazzer, H., Proc. Symp. Dtsch.

Ges. K.lin. Chem., 203 (1977), ed. By Witt, I
(10) Colorimetric Assay for Nitric Oxide:

Schmidt, H.H., et al., Biochemica, 2, 22 (1995).

The present method is particularly well suited for use in a dE=_vice for measuring blood-clotting time -"prothromb.in time" or "PT time"
- and details regarding - 13 - w such a device appear below. The modifications needed to adapt the method and device for applications such as those listed above require no more than routine experimentation.
Fig. 1 is a plan view of a device 10, suitable for use in the method of the present invention. Fig. 2 is an exploded view and Fig. 3 a perspective view of the device.
Sample is applied to sample port 12 after bladder 14 has been compressed. Clearly, the region of layer 26 and/or layer 28 that adjoins the cutout for bladder 14 must be 1o resilient, to permit bladder 14 to be compressed.
Polyester of about 0.1 mm thickness has suitable resilience and springiness. Preferably, top layer 26 has a thickness of about 0.125 mm, bottom layer 28 about 0.100 mm. When tlhe bladder is released, suction draws sample through channel 16 to measurement area 18, which preferably contains a reagent 20. In order to ensure that measurement area 18 can be filled with sample, the volume of bladder 14 is preferably at least about equal to the combined volume of channel 16 and measurement area 18. If 2o measurement area 18 is to be illuminated from below, layer 28 must be transparent where it adjoins measurement area 18. For a PT test, reagent 20 contains thromboplastin that is free of bulking reagents normally found in lyophilized reagents.
As shown in Figs. 1, 2, and 3, stop junction 22 adjoins bladder 14 and measurement area 18; however, a continuation of channel 16 may be on either or both sides of stop junction 22, separating the stop junction from measurement area 18 and/or bladder 14. When the sample 3o reaches stop -junction 22, sample flow stops. For PT

measurements, it is important to stop the flow of sample as it reaches that point to permit reproducible rouleaux formation, which is an important step in monitoring blood clotting u:~ing the method described here. Note that rouleaux formation is reversible, and the rouleaux formed earlier, in the sample port, are eliminated as the blood travels through channel 16. The principle of operation of stop junctions is described in II. S. Patent 5,230,866, incorporated herein by reference..
to As shown in Fig. 2, all the above elements are formed by cutouts in intermediate layer 24, sandwiched between top layer 26 and bottom layer 28. Preferably, layer 24 is double-sided adhesive tape. Stop junction 22 is formed by an additional cutout in layer 26 and/or 28, aligned with the cutout in layer 24 and sealed with sealing layer 30 and/or 32. Preferably, as shown, the stop junction comprises cutouts in both layer~~ 26 and 28, with sealing layers 30 a.nd 32. Each cutout f:or stop junction 22 is at least as wide as channel 16. A1_so shown in Fig. 2 is an zo optional filter 12A to cover sample port 12. The filter may separate out red blood cells from a whole blood sample and/or may contain a reagent to interact with the blood to provide additional information. For reasons that will become clear below, the red blood cells must be visible z5 from "below," so that the membrane must be transparent if it filters out red cells. Optional reflector 18A may be on, or adjacent t.o, a surface of layer 26 and positioned over measurement area 18. If the reflector is present, the device becomes a transflectance device.

The method of using the strip of Figs. 1, 2, and 3 can be understood with reference to a schematic of the elements of a meter shown in Fig. 4. The first step the user performs is to turn on the meter, thereby energizing strip dete~~tor 40, sample detector 42, measurement system 44, and optional heater 46. The second step is to insert the strip. Preferably, the strip is not transparent over at least a part of its area, so that an inserted strip will block the illumination by LED 40a of detector 40b.
(More preferably, the intermediate layer is formed of a non-transparent material, so that background light does not enter measurement system 44.) Detector 40b thereby senses that a strip has been inserted and triggers bladder actuator 4f3 to compress bladder 14. A meter display 50 then direc is the user to apply <~ sample to sample port 12 as the third and last step the user must perform to initiate the measurement sequence.
It is important for the proper operation of the , device to :sense that an "appropriate" sample (i.e., whole zo blood) has been applied. Thus, the meter must not report a measurement: if something other r_han a whole blood sample causes a change :in the light der_ected by detector 42b.
Such a change could result from the strip being~moved, an object (e.c~., a finger) being brought near the sample zs port, or, even, blood serum being applied to sample port 12. Each of these events could cause an erroneous result.
To avoid this,type of error, a preferred method of the present invention involves illurninating sample port 12 with LED 42a and measuring diffusely reflected (i.e., 30 "scattered") light with detector 42b, positioned normal to - 16 - ..
the plane of strip 10. If a whole blood sample has been applied to sample port 12, the signal detected by 42b increases abruptly, because of scattering in the blood sample, then decreases, because the red cells begin to stack up :like coins (rouleaux formation).
Fig. 5 depicts, as a function of time (t), this abrupt increase of scattered light intensity (I), followed by a decrease, which characterizes a blood sample - curve A. Also :shown - curve B - is the dissimilar curve that characterizes a sample that is not whole blood.
In an alternative embodiment, shown in Fig. 4A, transmitt<~d light is measured, instead of scattered light.
In that case, the phenomenon of rouleaux formation causes the signa:l detected to decrease abruptly, then increase ( i . a . , thE~ inverse of curve A) .
The detector system 42 is programmed to first require the type of signal shown in Fig. 5 for whole blood, (curve A or its :inverse, as the case may be), then cause actuator 48 to relf~ase bladder 14 to admit sample into channel 16.
2o This, of course, requires a delay (preferably, at least about fivf~ seconds) as compared with simply admitting the sample without first determining whether it is whole blood. However, the delay in releasing bladder 14 does not substantially affect the readings described below.
-Releasing bladder 14 causes suction in channel 16 that draws sample through measurement area 18 to stop junction 22. Light from LED 44a passes through measurement area 18, and do=tector 44b monitors the light transmitted through the sample as it is clotting. When there are 3o multiple measurement areas, measurement system 44 includes an LED/det~sctor pair (like 44a and 44b) for each measurement area. Analysis of the transmitted light as a function o:E time (as described below) permits a calculation of the PT time, which is displayed on the meter disp:Lay 50. Preferably, sample temperature is maintained at about 37°C by heater 46.
In an alternative embodiment, bladder 14 is released in any cas<s, but the analyte concentration/physical property measurement is only validated if the sample 1o signature is detected by detector 42. If the signature is not detectE~d, the user sees an error signal on display 50.
Fig. 6 depicts a typical ~~clot signature" curve in which the current from detector 44b is plotted as a function o1. time. Blood is first detected in the measurement area by 44b at time 1. In the time interval A, between points 1 and 2, the blood fills the measurement area. The reduction in current during that time interval is due to :Light scattered by red cells and is thus an approximatE: measure of the hematocrit. At point 2, sample 2o has filled the measurement area and is at rest, its movement h<iving been stopped by the stop junction.
Rouleaux formation then allows increasing light transmission through the sample (and less scattering) in the time interval between points 2 and 3. At point 3, clot formation ends rouleaux formation and transmission through the sample reaches a maximum. The PT time can be calculated from the interval B between points 1 and 3 or between 2 <~nd 3. Thereafter, blood changes state from liquid to a semi-solid gel, with a corresponding reduction 3o in light transmission. The reduction in current C between the maximum 3 and endpoint 4 correlates with fibrinogen in the sample.
The device pictured in Fig. 2 and described above is preferably formed by laminating thermoplastic sheets 26 and 28 to a thermoplastic intermediate layer 24 that has adhesive o:n both of its surfaces. The cutouts that form the elements shown in Fig. 1 may be formed, for example, by laser- or die-cutting of layers 24, 26, and 28.
Alternatively, the device can be formed of molded plastic.
1o Preferably, the surface of sheet 28 is hydrophilic. (Film 9962, available from 3M, St. Paul, MN.) However, the surfaces do not need to be hydrophilic, because the sample fluid will fill the device without capillary forces.
Thus, sheets 26 and 28 may be untreated polyester or other i5 thermoplastic sheet, well known in the art. Similarly, since gravity is not involved in filling, the device can be used in any orientation. Unlike capillary fill devices that have vent holes through which sample could leak, the present device vents through the sample port before sample 2o is applied, which means that the part of the strip that is first inserted into the meter i:~ without an opening, reducing the risk of contamination.
Fig. 7 is a plan view of another ernbodimen't of a device thalt is suitable for use with the method of the 25 present invention, in which the device includes a bypass channel 52 that connects channel 16 with bladder 14. The function and operation of the bypass channel can be understood by referring to Figs. 7A, 7B, and 7C, which depict a time sequence during which a sample is drawn into 3o device 10 Eor the measurement.

Fig. 7A depicts the situation after a user has applied a sample to the strip, while bladder 14 is compressed. This can be accomplished by applying one or more drops of blood. The sample remains there while the meter dete~_mines whether the sample comprises whole blood.
If so, the bladder is decompressed.
Fig. '7B depicts the situation after the bladder is decompressed. The resulting reduced pressure in the inlet channel 16 draws the sample initially into the measurement 1o area 18. NJhen the sample reaches stop junction 22, the sample encounters a back pressure that causes it to stop and causes additional sample to be drawn into the bypass channel.
Fig. ;~C depicts the situation when a reading is taken. Sample is at rest in measurement area 18. Sample also fills some, or (as shown) all, of channel 16.
Fig. Et depicts a preferred embodiment of a device suitable for use with the present method. It is a multi-channel device that includes bypass channel 152. Bypass zo channel 152 serves a purpose in this device that is analogous to that. served by bypass channel 52 in the device of Fig. 7, which was described above. Measurement area 118 contains thromboplastin. Preferably, measurement areas 218 and 318 contain controls, more preferably, the controls described below. Area 218 contains no thromboplastin, bovine eluate, and recombinant Factor VIIa. The composition is selected to normalize the clotting time of a blood sample by counteracting the effect of an anticoagulant, such as warfarin. Measurement area 318 contains thromboplastin and bovine eluate alone, to partially overcome the effect of an anticoagulent.
Thus, three measurements are made on the strip. PT time of the sample, the measurement of primary interest, is measured on area 118. However, that measurement is validated only when measurements on areas 218 and 318 yield results within a predetermined range. If either or both of these control measurements are outside the range, then a retE~st is indicated. Extended stop junction 122 stops flow in all three measurement areas.
io The following examples demonstrate devices suitable for use in the method of the present invention, but are not intendE~d to be in any way limiting.
Example 1 A strip that is suitable for use in the method of this invention is made by first passing a double-sided adhesive tape'(RX 675SLT, available from Scapa Tapes, Windsor, CT) sandwiched between two release liners into a zo laminating and rotary die-cutting converting system. The pattern shown in Fig. 7, with the exception of the stop junction, is cut through the top release liner and tape, but not through the bottom release liner, which is then removed as waste, along with the cutouts from the tape.
2s Polyester film treated to be hydrophilic (3M9962, available from 3M, St. Paul, MN) is laminated to the exposed bottom side of the tape. Reagent (thromboplastin, available From Ortho Clinical Diagnostics, Raritan, NJ) is then printed onto the reagent area (18) of the polyester ao film by bubble jet printing, using printing heads 51612A, from Hewlett Packard, Corvallis, OR. A sample port is cut in untreated polyester film (AR1235, available from Adhesives Research, Glen Rock, PA) and then laminated, in register, to the top of the double-sided tape (after removing t:he release layer). A die then cuts the stop junction through the three layers of the sandwich.
Finally, strips of single-sided adhesive tape (MSX4841, available from 3M, St. Paul, MN) are applied to the outside of the polyester layers to seal the stop junction.
Example 2 A procedure that is similar to the one described in Example 1 is followed to make a strip of the type depicted in Fig. 8. Reagent that is bubble-jet printed onto areas 118P, 218P, and 318P is, respectively, thromboplastin;
thrombopla;stin, bovine eluate, .and recombinant Factor VIIa; and thromboplastin and bovine eluate alone. The bovine eluate (plasma barium citrate bovine eluate) is 2o available from Haemotologic Technologies, Burlington, VT;
and recombinant Factor VIIa from American Diagnostica, Greenwich, Ct.
Measurements made on a whole blood sample using the strip of this Example yield a curve of the type shown in Fig. 6 for each of the measurement areas. The data from the curves for the controls (measurement areas 218P and 318P) are used to qualify the data from the curve for measurement area 118P. As a result, the PT time can be determined more reliably than can be done with a strip 3o having a single measurement area.

The invention having been fully described, it will be apparent to one of ordinary skill in the art that many modifications and changes may be made to it without departing from the spirit and scope of the present invention.

Claims (5)

1. A method for initiating a measurement of analyte concentration or a physical property of a biological fluid comprising a) providing a meter that measures the analyte concentration or physical property of a blood sample on a fluidic diagnostic device, b) inserting into the meter the device, comprising (i) a sample port for introducing a sample of the biological fluid into the device, (ii) a measurement area, in which the analyte concentration or physical property is measured , (iii) a channel, having a first end and a second end, to provide a fluidic path from the sample port at the first end to the measurement area, c) applying the biological fluid sample to the sample port, d) illuminating the sample port and monitoring the light scattered from the sample over a predetermined period of time, and e) measuring the analyte concentration or physical property only if, during that time period, the scattered light has first increased abruptly, then decreased, whereby the meter will make the measurement only if the biological fluid is whole blood.
2. The method of claim 1 in which the predetermined time is at least about five seconds.
3. A method for validating a measurement of analyte concentration or a physical property of a biological fluid comprising a) providing a meter that measures the analyte concentration or physical property of a blood sample on a fluidic diagnostic device, b) inserting into the meter the device, comprising (i) a sample port for introducing a sample of the biological fluid into the device, (ii) a measurement area, in which the analyte concentration or physical property is measured, (iii) a channel, having a first end and a second end, to provide a fluidic path from the sample port at the first end to the measurement area, c) applying the biological fluid sample to the sample port, d) illuminating the sample port and monitoring the light scattered from the sample over a predetermined period of time, e) measuring the analyte concentration or physical property, and f) validating the measurement only if, during that, time period, the scattered light has first increased abruptly, then decreased, whereby the meter will validate the measurement only if the biological fluid is whole blood.
4. A method for ,initiating a measurement of analyte concentration or a physical property of a biological fluid comprising a) providing a meter that measures the analyte concentration or physical property of a blood sample on a fluidic diagnostic device, b) inserting into the meter the device, comprising (i) a transparent sample port for introducing a sample of the biological fluid into the device, (ii) a measurement area, in which the analyte concentration or physical property is measured, (iii) a channel, having a first end and a second end, to provide a fluidic path from the sample port at the first end to the measurement area c) applying the biological fluid sample to the sample port, d) illuminating the sample port and monitoring the light transmitted through the sample over a predetermined period of time, and e) measuring the analyte concentration or physical property only if, during that time period, the light has first decreased abruptly, then increased, whereby the meter will make the measurement only if the biological fluid is whole blood.
5. The method of claim 4 in which the predetermined time is at least about five seconds.
CA002313860A 1999-07-16 2000-07-11 Initiation of an analytical measurement Abandoned CA2313860A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/354,995 1999-07-16
US09/354,995 US6084660A (en) 1998-07-20 1999-07-16 Initiation of an analytical measurement in blood

Publications (1)

Publication Number Publication Date
CA2313860A1 true CA2313860A1 (en) 2001-01-16

Family

ID=23395823

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002313860A Abandoned CA2313860A1 (en) 1999-07-16 2000-07-11 Initiation of an analytical measurement

Country Status (12)

Country Link
US (1) US6084660A (en)
EP (1) EP1069427B1 (en)
JP (1) JP2001041957A (en)
KR (1) KR20010049419A (en)
CN (1) CN1143130C (en)
AT (1) ATE322009T1 (en)
CA (1) CA2313860A1 (en)
DE (1) DE60026933T2 (en)
ES (1) ES2261151T3 (en)
HK (1) HK1032821A1 (en)
IL (1) IL136102A (en)
TW (1) TW472147B (en)

Families Citing this family (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7473401B1 (en) * 1997-12-04 2009-01-06 Mds Analytical Technologies (Us) Inc. Fluidic extraction of microdissected samples
US6391005B1 (en) 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US6830934B1 (en) * 1999-06-15 2004-12-14 Lifescan, Inc. Microdroplet dispensing for a medical diagnostic device
US6521182B1 (en) * 1998-07-20 2003-02-18 Lifescan, Inc. Fluidic device for medical diagnostics
US20030235920A1 (en) * 2000-02-28 2003-12-25 James Wyatt Diagnostic device and method
AU3609900A (en) * 1999-03-02 2000-09-21 Qualigen, Inc. Methods and apparatus for separation of biological fluids
DE19926931A1 (en) * 1999-06-14 2000-12-21 Roche Diagnostics Gmbh Method and device for checking the liquid absorption of a test layer of an analysis element
DE19952215C2 (en) * 1999-10-29 2001-10-31 Roche Diagnostics Gmbh Test element analysis system
US6458326B1 (en) 1999-11-24 2002-10-01 Home Diagnostics, Inc. Protective test strip platform
US6908593B1 (en) * 2000-03-31 2005-06-21 Lifescan, Inc. Capillary flow control in a fluidic diagnostic device
US7776273B2 (en) * 2000-04-26 2010-08-17 Life Technologies Corporation Laser capture microdissection (LCM) extraction device and device carrier, and method for post-LCM fluid processing
JP2004505274A (en) * 2000-07-31 2004-02-19 ライフスキャン・インコーポレイテッド Method and apparatus for detecting that a fluid is present on a test strip
US6652814B1 (en) * 2000-08-11 2003-11-25 Lifescan, Inc. Strip holder for use in a test strip meter
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US7144495B2 (en) * 2000-12-13 2006-12-05 Lifescan, Inc. Electrochemical test strip with an integrated micro-needle and associated methods
US6620310B1 (en) 2000-12-13 2003-09-16 Lifescan, Inc. Electrochemical coagulation assay and device
US6562625B2 (en) 2001-02-28 2003-05-13 Home Diagnostics, Inc. Distinguishing test types through spectral analysis
US6541266B2 (en) 2001-02-28 2003-04-01 Home Diagnostics, Inc. Method for determining concentration of an analyte in a test strip
US6525330B2 (en) 2001-02-28 2003-02-25 Home Diagnostics, Inc. Method of strip insertion detection
US6572745B2 (en) * 2001-03-23 2003-06-03 Virotek, L.L.C. Electrochemical sensor and method thereof
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US7033371B2 (en) 2001-06-12 2006-04-25 Pelikan Technologies, Inc. Electric lancet actuator
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7344507B2 (en) 2002-04-19 2008-03-18 Pelikan Technologies, Inc. Method and apparatus for lancet actuation
US7025774B2 (en) 2001-06-12 2006-04-11 Pelikan Technologies, Inc. Tissue penetration device
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
EP1404233B1 (en) 2001-06-12 2009-12-02 Pelikan Technologies Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
WO2002100254A2 (en) 2001-06-12 2002-12-19 Pelikan Technologies, Inc. Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US6678542B2 (en) 2001-08-16 2004-01-13 Optiscan Biomedical Corp. Calibrator configured for use with noninvasive analyte-concentration monitor and employing traditional measurements
FR2829286B1 (en) * 2001-09-03 2008-04-04 Ge Med Sys Global Tech Co Llc DEVICE AND METHOD FOR TRANSMITTING X-RAYS
US6989891B2 (en) 2001-11-08 2006-01-24 Optiscan Biomedical Corporation Device and method for in vitro determination of analyte concentrations within body fluids
US7050157B2 (en) * 2001-11-08 2006-05-23 Optiscan Biomedical Corp. Reagent-less whole-blood glucose meter
US7061593B2 (en) 2001-11-08 2006-06-13 Optiscan Biomedical Corp. Device and method for in vitro determination of analyte concentrations within body fluids
US6673617B2 (en) * 2002-03-14 2004-01-06 Lifescan, Inc. Test strip qualification system
US6682933B2 (en) * 2002-03-14 2004-01-27 Lifescan, Inc. Test strip qualification system
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US7229458B2 (en) 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7297122B2 (en) 2002-04-19 2007-11-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7892185B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US8360992B2 (en) 2002-04-19 2013-01-29 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7331931B2 (en) 2002-04-19 2008-02-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US7232451B2 (en) 2002-04-19 2007-06-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7713214B2 (en) 2002-04-19 2010-05-11 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with optical analyte sensing
US7491178B2 (en) 2002-04-19 2009-02-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
DE10220296A1 (en) * 2002-05-07 2003-11-20 Roche Diagnostics Gmbh Device for sampling liquid samples
US6780645B2 (en) 2002-08-21 2004-08-24 Lifescan, Inc. Diagnostic kit with a memory storing test strip calibration codes and related methods
US7010432B2 (en) * 2002-08-30 2006-03-07 Lifescan, Inc. Method and system for determining the acceptability of signal data collected from a prothrombin time test strip
US7126676B2 (en) * 2002-11-07 2006-10-24 Frank Anthony Greco Spectral analysis of light scattered from clotting blood
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
US20040132168A1 (en) * 2003-01-06 2004-07-08 Peter Rule Sample element for reagentless whole blood glucose meter
US6983177B2 (en) * 2003-01-06 2006-01-03 Optiscan Biomedical Corporation Layered spectroscopic sample element with microporous membrane
US20040131088A1 (en) * 2003-01-08 2004-07-08 Adtran, Inc. Shared T1/E1 signaling bit processor
AU2004230531A1 (en) * 2003-04-15 2004-10-28 Optiscan Biomedical Corporation Sample element qualification
US20050106749A1 (en) * 2003-04-15 2005-05-19 Braig James R. Sample element for use in material analysis
DE602004028463D1 (en) 2003-05-30 2010-09-16 Pelikan Technologies Inc METHOD AND DEVICE FOR INJECTING LIQUID
US7850621B2 (en) 2003-06-06 2010-12-14 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
WO2006001797A1 (en) 2004-06-14 2006-01-05 Pelikan Technologies, Inc. Low pain penetrating
US8282576B2 (en) 2003-09-29 2012-10-09 Sanofi-Aventis Deutschland Gmbh Method and apparatus for an improved sample capture device
DE10346863A1 (en) * 2003-10-09 2005-05-04 Roche Diagnostics Gmbh On-board control for analysis elements
EP1680014A4 (en) 2003-10-14 2009-01-21 Pelikan Technologies Inc Method and apparatus for a variable user interface
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
EP1706026B1 (en) 2003-12-31 2017-03-01 Sanofi-Aventis Deutschland GmbH Method and apparatus for improving fluidic flow and sample capture
US7629165B2 (en) * 2004-01-22 2009-12-08 Qualigen, Inc Diagnostic device and method
US7588724B2 (en) * 2004-03-05 2009-09-15 Bayer Healthcare Llc Mechanical device for mixing a fluid sample with a treatment solution
CN1981186B (en) * 2004-05-04 2012-06-20 拜耳医药保健有限公司 Mechanical cartridge with test strip fluid control features for use in a fluid analyte meter
WO2005111580A1 (en) * 2004-05-07 2005-11-24 Optiscan Biomedical Corporation Sample element with fringing-reduction capabilities
EP1751546A2 (en) 2004-05-20 2007-02-14 Albatros Technologies GmbH &amp; Co. KG Printable hydrogel for biosensors
US9775553B2 (en) 2004-06-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
EP1765194A4 (en) 2004-06-03 2010-09-29 Pelikan Technologies Inc Method and apparatus for a fluid sampling device
US20060002817A1 (en) * 2004-06-30 2006-01-05 Sebastian Bohm Flow modulation devices
US20060000709A1 (en) * 2004-06-30 2006-01-05 Sebastian Bohm Methods for modulation of flow in a flow pathway
US8343074B2 (en) * 2004-06-30 2013-01-01 Lifescan Scotland Limited Fluid handling devices
US20060001551A1 (en) * 2004-06-30 2006-01-05 Ulrich Kraft Analyte monitoring system with wireless alarm
US7309550B2 (en) * 2004-09-20 2007-12-18 Chemence, Inc. Photosensitive composition with low yellowing under UV-light and sunlight exposure
EP1827693B1 (en) * 2004-12-09 2010-03-24 Scandinavian Micro Biodevices ApS A micro fluidic device and methods for producing a micro fluidic device
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
US20100089529A1 (en) * 2005-01-12 2010-04-15 Inverness Medical Switzerland Gmbh Microfluidic devices and production methods therefor
US20060216209A1 (en) * 2005-02-14 2006-09-28 Braig James R Analyte detection system with distributed sensing
US20060189925A1 (en) * 2005-02-14 2006-08-24 Gable Jennifer H Methods and apparatus for extracting and analyzing a component of a bodily fluid
US9561001B2 (en) 2005-10-06 2017-02-07 Optiscan Biomedical Corporation Fluid handling cassette system for body fluid analyzer
SE530244C2 (en) * 2006-05-05 2008-04-08 Hemocue Ab Method and system for quantitative hemoglobin determination
US7771655B2 (en) * 2006-07-12 2010-08-10 Bayer Healthcare Llc Mechanical device for mixing a fluid sample with a treatment solution
US8877484B2 (en) * 2007-01-10 2014-11-04 Scandinavian Micro Biodevices Aps Microfluidic device and a microfluidic system and a method of performing a test
WO2009126900A1 (en) 2008-04-11 2009-10-15 Pelikan Technologies, Inc. Method and apparatus for analyte detecting device
US8063236B2 (en) * 2008-05-08 2011-11-22 University Of Florida Research Foundation, Inc. Method for transferring N-atoms from metal complexes to organic and inorganic substrates
US20100028207A1 (en) * 2008-07-16 2010-02-04 International Technidyne Corporation Cuvette-based apparatus for blood coagulation measurement and testing
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
US8731638B2 (en) 2009-07-20 2014-05-20 Optiscan Biomedical Corporation Adjustable connector and dead space reduction
US9554742B2 (en) 2009-07-20 2017-01-31 Optiscan Biomedical Corporation Fluid analysis system
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
WO2011156522A1 (en) 2010-06-09 2011-12-15 Optiscan Biomedical Corporation Measuring analytes in a fluid sample drawn from a patient
CN103140755B (en) 2010-07-22 2016-03-16 哈希公司 For the lab on A Chip of alkalinity analyzing
JP5806884B2 (en) * 2010-09-24 2015-11-10 株式会社堀場製作所 Whole blood immunoassay device and whole blood immunoassay method
CN102539792B (en) * 2010-12-31 2014-08-13 深圳迈瑞生物医疗电子股份有限公司 Blood sample absorption detection method and device and blood treating device
KR101275742B1 (en) * 2011-06-23 2013-06-17 주식회사 아이센스 Cell for Optical Analyzing Test
WO2013006716A1 (en) 2011-07-06 2013-01-10 Optiscan Biomedical Corporation Sample cell for fluid analysis system
JP2014525569A (en) * 2011-08-30 2014-09-29 ザ・ロイヤル・インスティテューション・フォア・ザ・アドバンスメント・オブ・ラーニング/マクギル・ユニヴァーシティ Method and system for a pre-programmed self-output microfluidic circuit
CN103091287B (en) * 2011-10-31 2015-04-01 深圳迈瑞生物医疗电子股份有限公司 Self-diagnosis method for measure result of blood analyzer, and device thereof
CN103383391B (en) * 2012-05-04 2015-07-08 北京尚位非凡医药科技有限公司 Detection apparatus for blood clotting time
US9180449B2 (en) 2012-06-12 2015-11-10 Hach Company Mobile water analysis
USD768872S1 (en) 2012-12-12 2016-10-11 Hach Company Cuvette for a water analysis instrument
EP2936117B1 (en) * 2012-12-19 2020-11-25 The General Hospital Corporation Optical blood-coagulation sensor
JP6285691B2 (en) * 2013-11-01 2018-02-28 浜松ホトニクス株式会社 Method for evaluating the activity of neutrophil cells
WO2015095239A1 (en) 2013-12-18 2015-06-25 Optiscan Biomedical Corporation Systems and methods for detecting leaks
JP6782296B2 (en) * 2015-06-20 2020-11-11 キャピテイナー アーベー Plasma separation microfluidic device
US11198123B2 (en) * 2018-06-29 2021-12-14 Abbott Point Of Care Inc. Cartridge device with bypass channel for mitigating drift of fluid samples

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3620676A (en) * 1969-02-20 1971-11-16 Sterilizer Control Royalties A Disposable colorimetric indicator and sampling device for liquids
US3640267A (en) * 1969-12-15 1972-02-08 Damon Corp Clinical sample container
SE399768B (en) * 1975-09-29 1978-02-27 Lilja Jan E CYVETT FOR SAMPLING, MIXING OF, THE SAMPLE WITH A REAGENTS AND DIRECT PERFORMANCE OF, SPECIAL OPTICAL, ANALYSIS OF THE SAMPLE MIXED WITH THE REAGENTS
US4426451A (en) * 1981-01-28 1984-01-17 Eastman Kodak Company Multi-zoned reaction vessel having pressure-actuatable control means between zones
JPS62226057A (en) * 1986-03-28 1987-10-05 Minoru Tomita Method and apparatus for measuring agglutination of red blood cell for whole blood
US4849340A (en) * 1987-04-03 1989-07-18 Cardiovascular Diagnostics, Inc. Reaction system element and method for performing prothrombin time assay
US4868129A (en) * 1987-08-27 1989-09-19 Biotrack Inc. Apparatus and method for dilution and mixing of liquid samples
US5230866A (en) * 1991-03-01 1993-07-27 Biotrack, Inc. Capillary stop-flow junction having improved stability against accidental fluid flow
AU4047493A (en) * 1992-04-02 1993-11-08 Abaxis, Inc. Analytical rotor with dye mixing chamber
AU4681493A (en) * 1992-07-21 1994-02-14 Medix Biotech, Inc. Transparent assay test devices and methods
US5700695A (en) * 1994-06-30 1997-12-23 Zia Yassinzadeh Sample collection and manipulation method
US5627041A (en) * 1994-09-02 1997-05-06 Biometric Imaging, Inc. Disposable cartridge for an assay of a biological sample
US5508521A (en) * 1994-12-05 1996-04-16 Cardiovascular Diagnostics Inc. Method and apparatus for detecting liquid presence on a reflecting surface using modulated light
US5736404A (en) * 1995-12-27 1998-04-07 Zia Yassinzadeh Flow detection appartus and method
US6001307A (en) * 1996-04-26 1999-12-14 Kyoto Daiichi Kagaku Co., Ltd. Device for analyzing a sample
HU222809B1 (en) * 1997-10-03 2003-10-28 77 Elektronika Műszeripari Kft. Method and apparatus for detecting chemical component from sample mostly for detecting glucose content of blood from blood sample
US6069011A (en) * 1997-12-10 2000-05-30 Umm Electronics, Inc. Method for determining the application of a sample fluid on an analyte strip using first and second derivatives
US6521182B1 (en) * 1998-07-20 2003-02-18 Lifescan, Inc. Fluidic device for medical diagnostics

Also Published As

Publication number Publication date
EP1069427B1 (en) 2006-03-29
TW472147B (en) 2002-01-11
DE60026933T2 (en) 2006-11-23
EP1069427A2 (en) 2001-01-17
IL136102A0 (en) 2001-05-20
IL136102A (en) 2004-08-31
KR20010049419A (en) 2001-06-15
DE60026933D1 (en) 2006-05-18
ES2261151T3 (en) 2006-11-16
JP2001041957A (en) 2001-02-16
US6084660A (en) 2000-07-04
ATE322009T1 (en) 2006-04-15
EP1069427A3 (en) 2002-01-30
CN1143130C (en) 2004-03-24
CN1281146A (en) 2001-01-24
HK1032821A1 (en) 2001-08-03

Similar Documents

Publication Publication Date Title
US6084660A (en) Initiation of an analytical measurement in blood
US6521182B1 (en) Fluidic device for medical diagnostics
AU752645B2 (en) Fluidic device for medical diagnostics
AU2001280844B2 (en) Strip holder for use in a test strip meter
EP1311862B1 (en) Automatic meters including a gimbaled bladder actuator for use with test strips
AU2001280844A1 (en) Strip holder for use in a test strip meter
AU2001282985A1 (en) Gimbaled bladder actuator for use with test strips

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued