CA2308505A1 - Methods and apparatus for non-uniform rotation distortion detection in an intravascular ultrasound imaging system - Google Patents

Methods and apparatus for non-uniform rotation distortion detection in an intravascular ultrasound imaging system Download PDF

Info

Publication number
CA2308505A1
CA2308505A1 CA002308505A CA2308505A CA2308505A1 CA 2308505 A1 CA2308505 A1 CA 2308505A1 CA 002308505 A CA002308505 A CA 002308505A CA 2308505 A CA2308505 A CA 2308505A CA 2308505 A1 CA2308505 A1 CA 2308505A1
Authority
CA
Canada
Prior art keywords
transducer
successive
window
vectors
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002308505A
Other languages
French (fr)
Other versions
CA2308505C (en
Inventor
Tat-Jin Teo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Ltd Barbados
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2308505A1 publication Critical patent/CA2308505A1/en
Application granted granted Critical
Publication of CA2308505C publication Critical patent/CA2308505C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/481Diagnostic techniques involving the use of contrast agent, e.g. microbubbles introduced into the bloodstream
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4461Features of the scanning mechanism, e.g. for moving the transducer within the housing of the probe
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8934Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration
    • G01S15/8938Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration using transducers mounted for mechanical movement in two dimensions
    • G01S15/894Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration using transducers mounted for mechanical movement in two dimensions by rotation about a single axis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/5205Means for monitoring or calibrating

Abstract

The present invention provides a method, and apparatus for nonuniform rotation in an improved manner without using beacons which may create shadowing of tissue behind the beacons or other undesired artifacts in the image. In the specific embodiments, the present invention provides a particularly simple, and useful solution for addressing the problem of nonuniform rotation distortion in the intravascular ultrasound imaging in systems which use mechanical scanning. In the specific embodiments, the present invention utilizes correlation of received signals in, and image vector from, reverberating ultrasound in a bubbly liquid flushed catheter (13) to determine nonuniform rotation of the transducer (22) within the catheter (13). In other words, the present invention utilizes correlation of imaging vectors within a blood speckle region, gives a particular beam width of ultrasound energy from a transducer (22) to determine nonuniform rotation of the transducer (22).

Claims (21)

1. A method for detecting non-uniform rotation distortion in an intravascular ultrasound blood vessel image, said method comprising the steps of:
providing a catheter probe within a blood vessel, said catheter probe having a sheath and a transducer substantially centrally located within said sheath, wherein said transducer is mechanically controlled and said catheter probe including a bubbly liquid between said sheath and said transducer;
emitting an ultrasonic beam to produce echoes reflected from said bubbly liquid and said sheath to obtain a given image vector;
sampling said echoes in a plurality of time windows for said given image vector;
correlating said sampled echoes in said plurality of time windows to determine existence of non-uniform rotational speed of said transducer.
2. The method of claim 1 further comprising the step of quantifying the non-uniform rotational speed of said transducer to compensate therefor.
3. The method of claim 2 wherein said bubbly liquid includes micro-bubbles having a diameter from about 1-10 µm.
4. The method of claim 1 wherein a time to between a beginning of successive windows in said plurality is greater than the time t s = (2 r s)/c between said ultrasonic beam being emitted by said transducer and a first echo received by said transducer.
5. The method of claim 4 wherein a slow down in the rotational speed of said transducer has occurred if a first correlation coefficient between a first window and a second window is less than a second correlation coefficient between said second window and a third window, and an increase in the rotational speed of said transducer has occurred if the first correlation coefficient between the first window and the second window is greater than the second correlation coefficient between said second window and the third window.
6. Apparatus for detecting non-uniform rotation distortion in an intravascular ultrasound blood vessel image, said apparatus comprising:
a catheter for use within a blood vessel, said catheter including:
a sheath, a bubbly liquid within said catheter between said transducer and said sheath, and a transducer mechanically rotated within said catheter, wherein said transducer emits an ultrasonic beam and receives echoes of said ultrasonic beam from micro-bubbles in said bubbly liquid and said sheath; and an image processor capable of being coupled to said transducer, said image processor including computer-readable program code fixed on tangible computer-readable medium for storing said computer-readable program, said computer-readable medium coupled to be read by said image processor, wherein said computer-readable program code performs correlation on a plurality of segments in an image vector from said echoes ultrasonic beam to detect the non-uniformity of rotation of said transducer.
7. The apparatus of claim 6 wherein said bubbly liquid includes micro-bubbles having a diameter from about 1-10 µm.
8. The apparatus of claim 6 wherein a time t o between a beginning of successive windows in said plurality is greater than the time t s = (2 r s)/c between said ultrasonic beam being emitted by said transducer and a first echo received by said transducer.
9. The method of claim 8 wherein a slow down in the rotational speed of said transducer has occurred if a first correlation coefficient between a first window and a second window is less than a second correlation coefficient between said second window and a third window, and an increase in the rotational speed of said transducer has occurred if the first correlation coefficient between the first window and the second window is greater than the second correlation coefficient between said second window and the third window.
10. A method for detecting non-uniform rotation distortion in an intravascular ultrasound blood vessel image, said method comprising the steps of:
providing a catheter probe within a blood vessel, said catheter probe having a transducer substantially centrally located therein, wherein said transducer is mechanically controlled;
emitting a plurality of ultrasonic beams to produce echoes reflected from a blood region within said blood vessel to obtain a plurality of successive image vectors;
sampling said echoes at a predetermined range (r p) for each of said successive image vectors, wherein r p for each of said successive image vectors is located within said blood region;
obtaining correlation coefficients for said sampled echoes at r p between each of said successive image vectors to determine changes in a rotational speed of said transducer.
11. The method of claim 10 wherein said obtaining step includes determining from a decrease in correlation coefficients that said rotational speed of said transducer has increased or determining from an increase in correlation coefficients that said rotational speed of said transducer has decreased.
12. The method of claim 10 wherein said predetermined range r p is selected to lie beyond the far-field of said transducer.
13. The method of claim 11 wherein said sampling step further includes sampling said echoes at a plurality of predetermined ranges for each of said successive image vectors, wherein said predetermined range r p is one of said plurality and a second predetermined range r p2 is another one of said plurality, wherein r p2 is selected to be within said blood region at a greater distance from said transducer than said r p, and wherein said obtaining step further includes obtaining correlation coefficients for said sampled echoes at r p2.
14. The method of claim 13 wherein said predetermined range r p and said second predetermined range r p2 are each selected to lie beyond the far-field of said transducer.
15. The method of claim 14 wherein a beamwidth measured in angle of said ultrasonic beams remains constant at each of the predetermined ranges r p and r p2.
16. The method of claim 15 wherein the correlation coefficients at both r p1 and r p2 between successive vectors should be substantially the same when said successive vectors maintain about the same angular separation.
17. The method of claim 15 wherein said successive vectors have increased their angular separation when the correlation coefficients at both r p and r p2 between successive vectors respectively decrease, and wherein said successive vectors have decreased their angular separation when the correlation coefficients at both r p and r p2 between successive vectors respectively increase.
18. The method of claim 14 wherein a beamwidth measured in angle of said ultrasonic beams increases from said predetermined range r p to said second predetermined range r p2.
19. The method of claim 18 wherein said successive vectors have increased their angular separation when the correlation coefficients at both r p and r p2 between successive vectors respectively decrease, and wherein said successive vectors have decreased their angular separation when the correlation coefficients at both r p and r p2 between successive vectors respectively increase.
20. Apparatus for detecting non-uniform rotation distortion in an intravascular ultrasound blood vessel image, said apparatus comprising:
a catheter for use within a blood vessel, said catheter including:
a sheath, and a transducer mechanically rotated within said catheter, wherein said transducer emits a plurality of ultrasonic beams to produce echoes reflected from a blood region within said blood vessel to obtain a plurality of successive image vectors; and an image processor capable of being coupled to said transducer, said image processor including computer-readable program code fixed on tangible computer-readable medium for storing said computer-readable program, said computer-readable medium coupled to be read by said image processor, wherein said computer-readable program code samples said echoes at a predetermined range (r p) for each of said successive image vectors, wherein r p for each of said successive image vectors is located within said blood region, and wherein said computer-readable program code also obtains correlation coefficients for said sampled echoes at r p between each of said successive image vectors to determine changes in a rotational speed of said transducer.
21. The apparatus of claim 20 wherein said computer-readable program code determines from a decrease in correlation coefficients that said rotational speed of said transducer has increased and/or determines from an increase in correlation coefficients that said rotational speed of said transducer has decreased.
CA2308505A 1997-11-25 1998-11-24 Methods and apparatus for non-uniform rotation distortion detection in an intravascular ultrasound imaging system Expired - Fee Related CA2308505C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/977,543 1997-11-25
US08/977,543 US5921934A (en) 1997-11-25 1997-11-25 Methods and apparatus for non-uniform rotation distortion detection in an intravascular ultrasound imaging system
PCT/IB1998/002126 WO1999026541A1 (en) 1997-11-25 1998-11-24 Methods and apparatus for non-uniform rotation distorsion detection in an intravascular ultrasound imaging system

Publications (2)

Publication Number Publication Date
CA2308505A1 true CA2308505A1 (en) 1999-06-03
CA2308505C CA2308505C (en) 2011-08-02

Family

ID=25525252

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2308505A Expired - Fee Related CA2308505C (en) 1997-11-25 1998-11-24 Methods and apparatus for non-uniform rotation distortion detection in an intravascular ultrasound imaging system

Country Status (8)

Country Link
US (3) US5921934A (en)
EP (1) EP1033937B1 (en)
JP (2) JP4307711B2 (en)
AU (1) AU1573699A (en)
CA (1) CA2308505C (en)
DE (1) DE69831418T2 (en)
ES (1) ES2246544T3 (en)
WO (1) WO1999026541A1 (en)

Families Citing this family (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6095976A (en) * 1997-06-19 2000-08-01 Medinol Ltd. Method for enhancing an image derived from reflected ultrasound signals produced by an ultrasound transmitter and detector inserted in a bodily lumen
US6585763B1 (en) 1997-10-14 2003-07-01 Vascusense, Inc. Implantable therapeutic device and method
US5921934A (en) 1997-11-25 1999-07-13 Scimed Life Systems, Inc. Methods and apparatus for non-uniform rotation distortion detection in an intravascular ultrasound imaging system
JP3871456B2 (en) * 1998-12-10 2007-01-24 シスメックス株式会社 Particle image analyzer
US6233476B1 (en) * 1999-05-18 2001-05-15 Mediguide Ltd. Medical positioning system
US9572519B2 (en) 1999-05-18 2017-02-21 Mediguide Ltd. Method and apparatus for invasive device tracking using organ timing signal generated from MPS sensors
US8366769B2 (en) 2000-06-01 2013-02-05 Edwards Lifesciences Corporation Low-profile, pivotable heart valve sewing ring
US6409758B2 (en) 2000-07-27 2002-06-25 Edwards Lifesciences Corporation Heart valve holder for constricting the valve commissures and methods of use
US6450964B1 (en) * 2000-09-05 2002-09-17 Advanced Cardiovascular Systems, Inc. Imaging apparatus and method
US6416492B1 (en) 2000-09-28 2002-07-09 Scimed Life Systems, Inc. Radiation delivery system utilizing intravascular ultrasound
US7935145B2 (en) 2001-05-17 2011-05-03 Edwards Lifesciences Corporation Annuloplasty ring for ischemic mitral valve insuffuciency
ITMI20011012A1 (en) 2001-05-17 2002-11-17 Ottavio Alfieri ANNULAR PROSTHESIS FOR MITRAL VALVE
US6908482B2 (en) 2001-08-28 2005-06-21 Edwards Lifesciences Corporation Three-dimensional annuloplasty ring and template
US7201771B2 (en) 2001-12-27 2007-04-10 Arbor Surgical Technologies, Inc. Bioprosthetic heart valve
US7024025B2 (en) * 2002-02-05 2006-04-04 Scimed Life Systems, Inc. Nonuniform Rotational Distortion (NURD) reduction
JP4018450B2 (en) * 2002-05-27 2007-12-05 キヤノン株式会社 Document management system, document management apparatus, authentication method, computer readable program, and storage medium
US7959674B2 (en) 2002-07-16 2011-06-14 Medtronic, Inc. Suture locking assembly and method of use
US7775977B2 (en) * 2002-09-27 2010-08-17 Olympus Corporation Ultrasonic tomographic diagnostic apparatus
US8551162B2 (en) 2002-12-20 2013-10-08 Medtronic, Inc. Biologically implantable prosthesis
US7909766B2 (en) * 2003-05-21 2011-03-22 Scimed Life Systems, Inc. Systems and methods for improving the imaging resolution of an imaging transducer
US8021421B2 (en) 2003-08-22 2011-09-20 Medtronic, Inc. Prosthesis heart valve fixturing device
US7556647B2 (en) 2003-10-08 2009-07-07 Arbor Surgical Technologies, Inc. Attachment device and methods of using the same
US7871435B2 (en) 2004-01-23 2011-01-18 Edwards Lifesciences Corporation Anatomically approximate prosthetic mitral heart valve
US8574257B2 (en) 2005-02-10 2013-11-05 Edwards Lifesciences Corporation System, device, and method for providing access in a cardiovascular environment
CN101137329A (en) * 2005-03-11 2008-03-05 皇家飞利浦电子股份有限公司 Microbubble generating technique for phase aberration correction
US7513909B2 (en) 2005-04-08 2009-04-07 Arbor Surgical Technologies, Inc. Two-piece prosthetic valves with snap-in connection and methods for use
CN101180010B (en) 2005-05-24 2010-12-01 爱德华兹生命科学公司 Rapid deployment prosthetic heart valve
WO2006130505A2 (en) 2005-05-27 2006-12-07 Arbor Surgical Technologies, Inc. Gasket with collar for prosthetic heart valves and methods for using them
US8685083B2 (en) * 2005-06-27 2014-04-01 Edwards Lifesciences Corporation Apparatus, system, and method for treatment of posterior leaflet prolapse
US7776084B2 (en) 2005-07-13 2010-08-17 Edwards Lifesciences Corporation Prosthetic mitral heart valve having a contoured sewing ring
US8047996B2 (en) * 2005-10-31 2011-11-01 Volcano Corporation System and method for reducing angular geometric distortion in an imaging device
EP1968492A2 (en) * 2005-12-15 2008-09-17 Georgia Technology Research Corporation Systems and methods to control the dimension of a heart valve
US9125742B2 (en) * 2005-12-15 2015-09-08 Georgia Tech Research Foundation Papillary muscle position control devices, systems, and methods
EP1959867A2 (en) * 2005-12-15 2008-08-27 Georgia Technology Research Corporation Systems and methods for enabling heart valve replacement
US7967857B2 (en) 2006-01-27 2011-06-28 Medtronic, Inc. Gasket with spring collar for prosthetic heart valves and methods for making and using them
US7785286B2 (en) * 2006-03-30 2010-08-31 Volcano Corporation Method and system for imaging, diagnosing, and/or treating an area of interest in a patient's body
WO2007130881A2 (en) 2006-04-29 2007-11-15 Arbor Surgical Technologies, Inc. Multiple component prosthetic heart valve assemblies and apparatus and methods for delivering them
US8021161B2 (en) 2006-05-01 2011-09-20 Edwards Lifesciences Corporation Simulated heart valve root for training and testing
US8142495B2 (en) * 2006-05-15 2012-03-27 Edwards Lifesciences Ag System and a method for altering the geometry of the heart
US7612773B2 (en) * 2006-05-22 2009-11-03 Magnin Paul A Apparatus and method for rendering for display forward-looking image data
US20080287801A1 (en) * 2006-08-14 2008-11-20 Novelis, Inc. Imaging device, imaging system, and methods of imaging
US20080123911A1 (en) * 2006-09-26 2008-05-29 Duc Lam Systems and Methods for Restoring a Medical Image Affected by Nonuniform Rotational Distortion
US7647831B2 (en) * 2006-10-20 2010-01-19 Cardiomems, Inc. Method for measuring pressure inside an anatomical fluid system
EP2109419B1 (en) * 2007-02-09 2017-01-04 Edwards Lifesciences Corporation Progressively sized annuloplasty rings
WO2014002095A2 (en) 2012-06-26 2014-01-03 Sync-Rx, Ltd. Flow-related image processing in luminal organs
US9375164B2 (en) 2007-03-08 2016-06-28 Sync-Rx, Ltd. Co-use of endoluminal data and extraluminal imaging
US11064964B2 (en) 2007-03-08 2021-07-20 Sync-Rx, Ltd Determining a characteristic of a lumen by measuring velocity of a contrast agent
US9968256B2 (en) 2007-03-08 2018-05-15 Sync-Rx Ltd. Automatic identification of a tool
US10716528B2 (en) 2007-03-08 2020-07-21 Sync-Rx, Ltd. Automatic display of previously-acquired endoluminal images
WO2012176191A1 (en) 2011-06-23 2012-12-27 Sync-Rx, Ltd. Luminal background cleaning
US8781193B2 (en) 2007-03-08 2014-07-15 Sync-Rx, Ltd. Automatic quantitative vessel analysis
US11197651B2 (en) 2007-03-08 2021-12-14 Sync-Rx, Ltd. Identification and presentation of device-to-vessel relative motion
JP5639764B2 (en) 2007-03-08 2014-12-10 シンク−アールエックス,リミティド Imaging and tools for use with moving organs
US9629571B2 (en) 2007-03-08 2017-04-25 Sync-Rx, Ltd. Co-use of endoluminal data and extraluminal imaging
US8377117B2 (en) 2007-09-07 2013-02-19 Edwards Lifesciences Corporation Active holder for annuloplasty ring delivery
WO2009137403A1 (en) 2008-05-05 2009-11-12 Boston Scientific Scimed, Inc. Shielding for intravascular ultrasound imaging systems and methods of making and using
US8197413B2 (en) * 2008-06-06 2012-06-12 Boston Scientific Scimed, Inc. Transducers, devices and systems containing the transducers, and methods of manufacture
ES2450391T3 (en) 2008-06-19 2014-03-24 Sync-Rx, Ltd. Progressive progress of a medical instrument
US11064903B2 (en) 2008-11-18 2021-07-20 Sync-Rx, Ltd Apparatus and methods for mapping a sequence of images to a roadmap image
US8855744B2 (en) 2008-11-18 2014-10-07 Sync-Rx, Ltd. Displaying a device within an endoluminal image stack
US10362962B2 (en) 2008-11-18 2019-07-30 Synx-Rx, Ltd. Accounting for skipped imaging locations during movement of an endoluminal imaging probe
US9144394B2 (en) 2008-11-18 2015-09-29 Sync-Rx, Ltd. Apparatus and methods for determining a plurality of local calibration factors for an image
US9095313B2 (en) 2008-11-18 2015-08-04 Sync-Rx, Ltd. Accounting for non-uniform longitudinal motion during movement of an endoluminal imaging probe
US9974509B2 (en) 2008-11-18 2018-05-22 Sync-Rx Ltd. Image super enhancement
US9101286B2 (en) 2008-11-18 2015-08-11 Sync-Rx, Ltd. Apparatus and methods for determining a dimension of a portion of a stack of endoluminal data points
CN102223910B (en) 2008-11-25 2014-05-07 爱德华兹生命科学公司 Apparatus for in situ expansion of prosthetic device
US8308798B2 (en) 2008-12-19 2012-11-13 Edwards Lifesciences Corporation Quick-connect prosthetic heart valve and methods
US9980818B2 (en) 2009-03-31 2018-05-29 Edwards Lifesciences Corporation Prosthetic heart valve system with positioning markers
JP5390942B2 (en) * 2009-06-03 2014-01-15 富士フイルム株式会社 Ultrasonic diagnostic apparatus and signal processing program
US8348998B2 (en) 2009-06-26 2013-01-08 Edwards Lifesciences Corporation Unitary quick connect prosthetic heart valve and deployment system and methods
US20110118590A1 (en) * 2009-11-18 2011-05-19 Siemens Medical Solutions Usa, Inc. System For Continuous Cardiac Imaging And Mapping
JP5757687B2 (en) * 2010-02-09 2015-07-29 シャープ株式会社 Light emitting device, surface light source device, liquid crystal display device, and method for manufacturing light emitting device
JP2011224346A (en) * 2010-03-31 2011-11-10 Toshiba Corp Ultrasound diagnosis apparatus, image processing apparatus, and image processing method
WO2011143238A2 (en) 2010-05-10 2011-11-17 Edwards Lifesciences Corporation Prosthetic heart valve
US9554901B2 (en) 2010-05-12 2017-01-31 Edwards Lifesciences Corporation Low gradient prosthetic heart valve
JP2012030053A (en) * 2010-06-30 2012-02-16 Toshiba Corp Ultrasound diagnosis apparatus, image processing apparatus and image processing method
BR112013004115B1 (en) 2010-08-24 2021-01-05 Edwards Lifesciences Corporation annuloplasty ring
US9125741B2 (en) 2010-09-10 2015-09-08 Edwards Lifesciences Corporation Systems and methods for ensuring safe and rapid deployment of prosthetic heart valves
US9370418B2 (en) 2010-09-10 2016-06-21 Edwards Lifesciences Corporation Rapidly deployable surgical heart valves
US8641757B2 (en) 2010-09-10 2014-02-04 Edwards Lifesciences Corporation Systems for rapidly deploying surgical heart valves
US8845720B2 (en) 2010-09-27 2014-09-30 Edwards Lifesciences Corporation Prosthetic heart valve frame with flexible commissures
US8956299B2 (en) * 2010-10-28 2015-02-17 Boston Scientific Scimed, Inc. Systems and methods for reducing non-uniform rotation distortion in ultrasound images
WO2012071110A1 (en) * 2010-11-24 2012-05-31 Boston Scientific Scimed, Inc. Systems and methods for detecting and displaying body lumen bifurcations
US8932350B2 (en) 2010-11-30 2015-01-13 Edwards Lifesciences Corporation Reduced dehiscence annuloplasty ring
EP2671093B1 (en) * 2011-01-31 2019-01-16 Sunnybrook Health Sciences Centre Ultrasonic probe with ultrasonic transducers addressable on common electrical channel
US8801617B2 (en) * 2011-03-22 2014-08-12 Boston Scientific Scimed Inc. Far-field and near-field ultrasound imaging device
US11213393B2 (en) 2011-04-01 2022-01-04 Edwards Lifesciences Corporation Compressible heart valve annulus sizing templates
US8945209B2 (en) 2011-05-20 2015-02-03 Edwards Lifesciences Corporation Encapsulated heart valve
US9345574B2 (en) 2011-12-09 2016-05-24 Edwards Lifesciences Corporation Force-based heart valve sizer
US9277996B2 (en) 2011-12-09 2016-03-08 Edwards Lifesciences Corporation Force-based heart valve sizer
US9078747B2 (en) 2011-12-21 2015-07-14 Edwards Lifesciences Corporation Anchoring device for replacing or repairing a heart valve
US9687346B2 (en) 2013-03-14 2017-06-27 Edwards Lifesciences Corporation Multi-stranded heat set annuloplasty rings
US11007058B2 (en) 2013-03-15 2021-05-18 Edwards Lifesciences Corporation Valved aortic conduits
CN105142574B (en) 2013-03-15 2017-12-01 爱德华兹生命科学公司 Band valve sustainer pipeline
US9468527B2 (en) 2013-06-12 2016-10-18 Edwards Lifesciences Corporation Cardiac implant with integrated suture fasteners
US9919137B2 (en) 2013-08-28 2018-03-20 Edwards Lifesciences Corporation Integrated balloon catheter inflation system
CA2910602C (en) 2013-09-20 2020-03-10 Edwards Lifesciences Corporation Heart valves with increased effective orifice area
US20150122687A1 (en) 2013-11-06 2015-05-07 Edwards Lifesciences Corporation Bioprosthetic heart valves having adaptive seals to minimize paravalvular leakage
CA2948279A1 (en) * 2014-02-05 2015-08-13 Verathon Inc. Ultrasonic data collection
US9549816B2 (en) 2014-04-03 2017-01-24 Edwards Lifesciences Corporation Method for manufacturing high durability heart valve
US9585752B2 (en) 2014-04-30 2017-03-07 Edwards Lifesciences Corporation Holder and deployment system for surgical heart valves
CA2914094C (en) 2014-06-20 2021-01-05 Edwards Lifesciences Corporation Surgical heart valves identifiable post-implant
USD867594S1 (en) 2015-06-19 2019-11-19 Edwards Lifesciences Corporation Prosthetic heart valve
US10314707B2 (en) 2015-06-09 2019-06-11 Edwards Lifesciences, Llc Asymmetric mitral annuloplasty band
WO2017004374A1 (en) 2015-07-02 2017-01-05 Edwards Lifesciences Corporation Integrated hybrid heart valves
WO2017004369A1 (en) 2015-07-02 2017-01-05 Edwards Lifesciences Corporation Hybrid heart valves adapted for post-implant expansion
CA2995855C (en) 2015-09-02 2024-01-30 Edwards Lifesciences Corporation Spacer for securing a transcatheter valve to a bioprosthetic cardiac structure
US10080653B2 (en) 2015-09-10 2018-09-25 Edwards Lifesciences Corporation Limited expansion heart valve
CA2994309A1 (en) * 2015-10-30 2017-05-04 Georgia Tech Research Corporation Foldable 2-d cmut-on-cmos arrays
US11372103B2 (en) 2016-03-01 2022-06-28 B-K Medical Aps Ultrasound imaging with multiple single-element transducers and ultrasound signal propagation correction using delay and sum beamforming based on a cross-correlation function
US10667904B2 (en) 2016-03-08 2020-06-02 Edwards Lifesciences Corporation Valve implant with integrated sensor and transmitter
US10456245B2 (en) 2016-05-16 2019-10-29 Edwards Lifesciences Corporation System and method for applying material to a stent
USD846122S1 (en) 2016-12-16 2019-04-16 Edwards Lifesciences Corporation Heart valve sizer
US10463485B2 (en) 2017-04-06 2019-11-05 Edwards Lifesciences Corporation Prosthetic valve holders with automatic deploying mechanisms
CN110662511B (en) 2017-04-28 2022-03-29 爱德华兹生命科学公司 Prosthetic heart valve with collapsible retainer
CA3065329A1 (en) 2017-06-21 2018-12-27 Edwards Lifesciences Corporation Dual-wireform limited expansion heart valves
US11337805B2 (en) 2018-01-23 2022-05-24 Edwards Lifesciences Corporation Prosthetic valve holders, systems, and methods
USD908874S1 (en) 2018-07-11 2021-01-26 Edwards Lifesciences Corporation Collapsible heart valve sizer
CN112437651B (en) 2018-07-30 2024-01-16 爱德华兹生命科学公司 Minimally Invasive Low Strain Annuloplasty Ring
EP4076284A1 (en) 2019-12-16 2022-10-26 Edwards Lifesciences Corporation Valve holder assembly with suture looping protection
CN111671468B (en) * 2020-05-28 2023-04-28 苏州博动戎影医疗科技有限公司 Asynchronous focusing dynamic compensation method for intravascular ultrasound single-array element transducer

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5115814A (en) * 1989-08-18 1992-05-26 Intertherapy, Inc. Intravascular ultrasonic imaging probe and methods of using same
US5438997A (en) * 1991-03-13 1995-08-08 Sieben; Wayne Intravascular imaging apparatus and methods for use and manufacture
US5377682A (en) * 1991-09-05 1995-01-03 Matsushita Electric Industrial Co., Ltd. Ultrasonic probe for transmission and reception of ultrasonic wave and ultrasonic diagnostic apparatus including ultrasonic probe
US5713363A (en) * 1991-11-08 1998-02-03 Mayo Foundation For Medical Education And Research Ultrasound catheter and method for imaging and hemodynamic monitoring
US5302372A (en) * 1992-07-27 1994-04-12 National Science Council Method to opacify left ventricle in echocardiography
JPH0780645A (en) * 1993-09-08 1995-03-28 Fanuc Ltd Cooling method of welding sensor
US5363850A (en) * 1994-01-26 1994-11-15 Cardiovascular Imaging Systems, Inc. Method for recognition and reduction of blood speckle in blood vessel imaging system
NO943269D0 (en) * 1994-09-02 1994-09-02 Vingmed Sound As Method for analyzing and measuring ultrasound signals
US5443457A (en) * 1994-02-24 1995-08-22 Cardiovascular Imaging Systems, Incorporated Tracking tip for a short lumen rapid exchange catheter
US5485845A (en) * 1995-05-04 1996-01-23 Hewlett Packard Company Rotary encoder for intravascular ultrasound catheter
US5921934A (en) 1997-11-25 1999-07-13 Scimed Life Systems, Inc. Methods and apparatus for non-uniform rotation distortion detection in an intravascular ultrasound imaging system

Also Published As

Publication number Publication date
JP4393570B2 (en) 2010-01-06
CA2308505C (en) 2011-08-02
US6120455A (en) 2000-09-19
DE69831418D1 (en) 2005-10-06
EP1033937A1 (en) 2000-09-13
EP1033937B1 (en) 2005-08-31
JP2001523510A (en) 2001-11-27
AU1573699A (en) 1999-06-15
US6267727B1 (en) 2001-07-31
ES2246544T3 (en) 2006-02-16
WO1999026541A1 (en) 1999-06-03
JP4307711B2 (en) 2009-08-05
JP2009066430A (en) 2009-04-02
US5921934A (en) 1999-07-13
DE69831418T2 (en) 2006-06-22
EP1033937A4 (en) 2004-07-07

Similar Documents

Publication Publication Date Title
CA2308505A1 (en) Methods and apparatus for non-uniform rotation distortion detection in an intravascular ultrasound imaging system
JP4717995B2 (en) Numerical optimization method of ultrasonic beam path
US5655535A (en) 3-Dimensional compound ultrasound field of view
US5456257A (en) Ultrasonic detection of contrast agents
US6071240A (en) Method and apparatus for coherence imaging
AU760693B2 (en) Method for producing a 3D image
US6193665B1 (en) Doppler angle unfolding in ultrasound color flow and Doppler
EP0952462A2 (en) Method and apparatus for improving visualization of biopsy needle in ultrasound imaging
CN109077754B (en) Method and equipment for measuring tissue mechanical characteristic parameters
EP0210624A2 (en) High resolution multiline ultrasonic beamformer
US6267725B1 (en) Individual channel analog wall filtering to improve flow sensitivity in ultrasound imaging
EP0146073B1 (en) Ultrasonic diagnosing apparatus
EP0155630B1 (en) Ultrasonic measurement method, and apparatus therefor
JP2005534455A (en) Apparatus and method for measuring elasticity of human or animal organs
JPH0467149B2 (en)
Finet et al. Artifacts in intravascular ultrasound imaging: analyses and implications
US20210033440A1 (en) Ultrasonic system for detecting fluid flow in an environment
US4313444A (en) Method and apparatus for ultrasonic Doppler detection
JP2000197636A (en) Ultrasonic color flow image using plural algorithms
US7128712B2 (en) Adaptive ultrasound imaging system
US20110245676A1 (en) Method and apparatus for ultrasound signal acquisition and processing
JP2004528921A (en) Coherent reflector detection in noisy ultrasound data
US11129598B2 (en) Calibration for ARFI imaging
JPH069563B2 (en) Ultrasonic diagnostic equipment
JPH0479941A (en) Method for correcting phase error

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20121126