CA2292505C - Electrodes for the measurement of analytes in small sample volumes - Google Patents

Electrodes for the measurement of analytes in small sample volumes Download PDF

Info

Publication number
CA2292505C
CA2292505C CA002292505A CA2292505A CA2292505C CA 2292505 C CA2292505 C CA 2292505C CA 002292505 A CA002292505 A CA 002292505A CA 2292505 A CA2292505 A CA 2292505A CA 2292505 C CA2292505 C CA 2292505C
Authority
CA
Canada
Prior art keywords
mesh
analyte
conductive layer
reagent
conducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002292505A
Other languages
French (fr)
Other versions
CA2292505A1 (en
Inventor
Stephen Charles Williams
Bernadette Yon-Hin
Neil Blair
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cambridge Sensors Ltd
Original Assignee
Cambridge Sensors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cambridge Sensors Ltd filed Critical Cambridge Sensors Ltd
Publication of CA2292505A1 publication Critical patent/CA2292505A1/en
Application granted granted Critical
Publication of CA2292505C publication Critical patent/CA2292505C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3272Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels

Abstract

A device for use in the electrochemical analysis of an analyte in a liquid sample, comprises: a non-conducting substrate (1); a conductive layer, deposited on the substrate, in two parts (2a, 2b), defining a non-conducting gap (8) therebetween; an analyte-specific reagent (5) coated on the conductive layer, on one side of the gap; a reference electrode (3) on the conductive layer, on the other side of the gap; a spacer layer (4) deposited over the conductive layer; a monofilament mesh (6) coated with a surfactant or chaotropic agent, the mesh being laid over the reagent, the reference electrode and the spacer layer; and a second non-conductive layer (7), adhered to the mesh layer, but not coextensive therewith, thereby providing a sample application area (9) on the mesh.

Description

ELECTRODES FOR THE MEASUREMENT OF ANALYTES IN SMALL
SAMPLE VOLUMES
Field of the Invention This invention relates to electrode devices which are capable of accepting small volumes of samples, and to their use in a test method for the detection and quantification of a test species present in a small sample volume.
Background of the Invention Many devices have been disclosed, that are capable of accepting small volumes of sample material, and that allow analytes present in the sample to be interrogated, either by optical or electrical analytical processes. In particular, the use and construction of sample chambers capable of filling by capillary action has been described in both the patent and scientific literature. See, for example, EP-A-0170375 and US-A-5141868.
Such known devices may comprise electrodes deposited on a non-conducting substrate, coated with a reagent system specific for the analyte of interest and housed within a cavity whose dimensions are sufficiently small to allow introduction of a sample by capillary action. The sample is retained in close proximity to the electrodes, and the electrodes are configured in such a way as to facilitate the measurement of specific electrical properties of the sample.
Such devices suffer from numerous drawbacks, in particular the need to control the dimensions of the cavity within very tightly defined limits. Exceeding these manufacturing tolerances will prevent the sample from entering the cavity by capillary action.
Further, when viscous sample fluids such as blood are introduced into the cavity, the chamber will fill with sample relatively slowly, thus delaying the time taken to complete the analysis. Variations in sample viscosity and thus sample surface tension characteristics result in variations of the fill time; this not only compromises the overall analysis time but, more importantly, leads to imprecision in the analytical result, since the time over which the sample is exposed to the analyte-specific reagent is subject to variation.
WO-A-9730344 discloses an electrode device which includes a polyester mesh adapted to guide the sample to the reference electrode. This device requires that the reagent includes a filler having both hydrophobic and hydrophilic surface regions, in order to avoid problems associated with variations in sample handling and to be independent of the haemocrit of the sample, for glucose testing.
According to the Invention According to the present invention, a device which is capable of electrochemical measurement of the levels of analytes present in a small fluid sample volume, comprises a conductive layer coated with an analyte-specific reagent and deposited on a non-conducting substrate, a spacer layer deposited onto the non-conducting substrate by thick film printing, a monofilament mesh material coated with a surfactant and/or a chaotropic reagent, the mesh being overlaid onto the space layer, and a second non-conductive substrate adhered to the mesh layer. The device is thus multilayer in construction, and comprises two surfaces separated by a printed spacer layer and forming a cavity or area which is open at one end for the introduction of sample. This cavity or area is filled with a mesh material that extends beyond the second substrate and forms a sample application area.
A device according to the present invention may be produced and used by the steps of (a) depositing a conducting layer of carbon and graphite, in a polymer binder, on a fi-rst non-conducting substrate;
(b) depositing a second conducting layer consisting of silver/silver chloride to function as a reference/counter electrode, adjacent to but not continuous with the first conducting layer;
(c) coating the surface of the first conductive layer with a reagent or mixtures of reagents which react specifically with an analyte or analytes in a sample material;
(d) forming a spacer layer by thick film printing on top of the first non-conducting substrate and on top of the first conducting layer, in order to leave a portion of each of the first and second conducting layers exposed;
(e) locating a coated mesh material on top of the spacer layer and permanently securing it to the spacer layer;
(f) locating a second non-conducting substrate on top of the mesh material and permanently securing it in such a way as to leave an extended area of mesh exposed;
(g) applying a sample to the extended mesh area in order to fill or flood the device sensing area, by wetting of the mesh with sample; and (h) quantifying the analyte in the sample by reaction with the reagent on the first conducting layer.
The electrode device allows the application of a small volume of sample (typically less than 2 L) to the mesh extension. This is followed by flooding of the device sensing area with sample, bringing it into intimate contact with the measuring electrodes. The cavity may be filled either by placing a drop of sample liquid on top of the exposed mesh at the edge of the cavity or by contacting the edge of the cavity with the sample.
Description of the Invention The accompanying drawings are provided for the purpose of illustration only. In the drawings:
Fig. 1A is a schematic side view of a sensor dev-ice embodying the present invention; and Fig. 1B is a plan view of part of the embodiment shown in Fig. 1A.
In more detail, the drawings show a non-conducting sheet 1 and, deposited thereon, a conducting electrode in two parts 2a,2b. The part 2a carries a reference/counter electrode 3, and the part 2b carries a reagent layer 5.
The parts 2a, 2b also carry a spacer layer 4 (this and other components described below are not shown in Fig. 1B, which is provided merely to show the electrical configuration). A mesh material 6 is laid over the electrode 3, the spacer 4 and the reagent layer 5. A tape 7 is provided over the mesh material 6.
A device sensing area 8 is defined between the respective parts of the conductive layer and thus between the reagent and the reference electrode. The mesh material is not coextensive with the tape 7, thereby defining a sample application area 9. In use, sample applied to area 9 is carried by the mesh 6, so that it floods areas 3, 5 and 8. The presence of an analyte in the sample can now be determined electrochemically.
Description of the Invention The mesh material is interposed between the spacer layer (on the first substrate) and the second substrate, and functions to reduce the surface tension and/or viscosity of the sample, by virtue of the wetting agent coated onto its surface. Application of sample to the extended portion of the mesh, results in dissolution of the mesh coating material into the sample, reducing sample surface tension and allowing sample to flow into the device cavity. Sample will not enter the device cavity in the absence of a wetting reagent coated onto the mesh.
Alternatively, in complex samples such as blood, where the measurement of a specific analyte is adversely affected by the presence of whole cells, for example by poisoning an electrode surface, the mesh may be coated with an agent which lyses the cells on contact; this has the added advantage of reducing sample viscosity at the same time, whilst removing the whole cell interference.
The system may be deposited as a single electrode, a micro-electrode or as a microelectrode array. The electrode may be used in conjunction with reference/counter electrodes deposited on the same substrate.

The non-conducting substrate material may be a sheet of, for example, polyester, polycarbonate, polyvinyl chloride, high density polypropylene or low density polypropylene. In a preferred embodiment, a polyester 5 sheet material is heat-stabilised prior to application of the conducting layers, to confer dimensional stability on the polyester material prior to processing.
The conducting layer preferably contains graphite, carbon and a polymer binder. For example, the graphite component has an average particle size of up to 20 m, e.g.
1-20 m, a typical surface area of up 50 mZ/g, e.g. 1-50 m2/g. It is inherently conductive; it may be derived from either natural sources or produced synthetically. The carbon component preferably has an average particle size less than 1 m, e.g. 5-70 nm, and a typical surface area of less than 150 mZ/g. Like the graphite component, it is also inherently conductive.
The polymer binder may be either thermoset or thermoplastic. It may be derived from any of diverse polymer families, including vinyl chloride, vinyl acetate, vinyl alcohol (and copolymers of vinyl chloride, acetate and alcohol), hydrocarbons, ethyl and methyl celluloses, epoxys, polyesters, alkyds and polymers containing functional reactive groups such as carboxyl, hydroxyl, amine, thiol, ester, epoxide and amide groups, which enable the polymer to be cross-linked.
The conducting electrode material may be deposited on the non-conducting substrate by a conventional printing process, e.g. thick f ilm printing (also known as screen printing), lithography, letterpress printing, vapour deposition, spray coating, ink jet printing, laser jet printing, roller coating or vacuum deposition. Following deposition of the conductive electrode material, the polymer binder may be stabilised or cured by a number of conventional processes, including forced air drying, forced air drying at elevated temperatures, infra-red irradiation, ultraviolet irradiation, ion beam irradiation or gamma irradiation. All of these processes result to varying degrees in the cross-linking of individual molecules of the polymer binder. The use of ultraviolet radiation requires the inclusion of a photo-sensitising reagent in the conductive electrode material, to initiate the polymer cross-linking reaction.
The reagent located on top of the first conductive layer is characterised in that it contains all the components in a solid state necessary for measuring the concentration of analyte in a sample. Such components include enzymes, enzyme cofactors, coenzymes, co-substrates, antibodies or other analyte-bindirlg partners, DNA or RNA, redox partners, buffers, ionophores and salts.
The reagent may also support matrices, binders and stabilisers for the other components. For example, suitable matrices include particles of graphite, carbon, silica, glass, latex or polyvinyl chloride. Suitable binders include polyvinyl alcohol, polyvinyl acetate, polyvinyl pyrrolidine, proteins, cellulose and cellulose acetate. Suitable stabilisers include alcohols, esters, proteins, protein hydrolysates and both simple and complex carbohydrates.
The reagent may comprise a number of individually applied layers, each containing specific components. Its composition is such that it undergoes at least partial dissolution when contacted by the fluid sample.
The reagent may be deposited on the first conducting layer by a conventional deposition process, e.g. thick film printing (also known as screen printing), lithography, letter press printing, vapour deposition, spray coating, ink jet printing, laser jet printing, roller coating or vacuum deposition. Combinations of these deposition processes may be used to construct a multilayer. Following deposition of the reagent (or after deposition of each individual layer), the layer may be stabilised or cured by a number of conventional processes, including those described above, in order to achieve cross-linking of individual molecules of the polymer binder.
The spacer layer may be deposited on the first non-conducting substrate by conventional thick film deposition, and may be stabilised or cured by a number of conventional processes, including those described above, in order to cross-link individual molecules of the polymer binder. The thickness of the spacer layer may be controlled by means of a number of parameters, including printing conditions (pressure, speed, screen tension and emulsion thickness) and ink properties such as solids content and viscosity.
The mesh layer is preferably a synthetic, monofilament, woven material. It may be made from polyester or nylon. The mesh is coated with a surfactant material, a detergent or wetting or lysing agent. Examples include fluorosurfactants, non-ionic surf actants, ionic surfactants, zwitterionic surfactants, saponin and sodium cholate.
Electrodes of the invention have several desirable characteristics. For example, the devices require a very small volume, typically less than 2 L, of sample such as whole blood, plasma, serum, interstitial fluid, sweat or saliva. When the sample fills the sample cavity, a very thin film of sample is spread across the surface of the deposited reagent, maximising contact with the reagent, and enabling reagent to be dissolved in the sample rapidly.
This allows rapid attainment of the steady state.
In a preferred embodiment of the device, the cavity is positioned at the end of edge of the device. This device may be readily filled with sample by contacting the edge of the test strip with the sample. in another preferred embodiment, the cavity may be positioned 0-2 mm from the edge of the device, thus exposing an area of the test strip which may be scraped along a surface (such as a punctured area of skin), in order to collect the sample.
Electrodes of the invention may be used for the analysis of analytes/species which can be directly oxidised or reduced by the removal or addition of electrons at an electrode; analytes/species which can be readily converted, by an enzyme or a series of enzymes, to a product which can be directly oxidised or reduced by the removal or addition of electrons at an electrode; analytes/species which can be converted to a product by an enzyme, with the concomitant oxidation or reduction of an enzyme cofactor, wherein the cofactor may then be directly oxidised or reduced by the addition/removal of electrons; and analytes/species which can be converted to a product by an enzyme which is in intimate contact with the electrode surface, such that the enzyme is able to pass or receive electrons directly from the electrode. The novel device is particularly suitable for use as a glucose sensor. In this case, the reagent is preferably glucose dehydrogenase; this can provide a glucose reading that is substantially independent of the haemocrit of the sample.
The following Example illustrates the invention.
Example A conductive ink material is printed onto a non-conducting polyester sheet material (125 m thick) by a screen printing process. The conductive ink material consists of a mixture of graphite particles (average particle size 1 m, with a surface area of 15 mZ/g), conductive carbon particles (average particle size 40 nm, surface area 100 m2/g), and a vinyl chloride/acetate copolymer binder in an organic solvent. After deposition of the conductive ink, solvents are removed in a forced air oven, whilst the application of elevated temperature initiates the chemical cross-linking of polymer binder by the bifunctional amine.
A silver/silver chloride, screen-printed reference/counter electrode is located adjacent to the conductive carbon layer on the polyester support. A spacer layer is then screen-printed in such a way as to leave part of the conductive carbon electrode and all of the reference/counter electrode exposed.
A multilayer reagent mixture, specific for the measurement of glucose, is prepared. It comprises 2,6-dichlorophenolindophenol, Nile Blue, Medola Blue or any other suitable mediator for the enzyme cofactor NADH, deposited onto the exposed conductive carbon/graphite layer from aqueous solution by pipetting, and dried to leave a film of mediator coated onto the conductive carbon/graphite layer. A second layer is deposited by thick film printing, consisting of a mixture of graphite, NAD+, buffer salts, surfactants, stabilisers and rheology modifiers. This is then dried. A third layer is deposited by pipetting, consisting of an aqueous solution of glucose dehydrogenase (NAD-dependent), buffer salts and stabilisers. That is then also dried.
A surfactant-coated monofilament mesh material is located on top of the spacer layer and secured by thick film deposition of a second spacer layer. A second non-conducting layer, comprising a 75 m thick polyester tape material coated on one side with a pressure-sensitive adhesive, is positioned on top of the monofilament mesh in such a way as to leave an extended area of the mesh exposed. The exposed area acts as a sample application zone.
When a suitable potential difference is applied between the conductive carbon and the silver chloride reference electrodes, the electrode device can be used for the measurement of glucose in a sample of blood, using standard electrochemical techniques such as chronoamperometry. Glucose is converted to gluconolactone, with concomitant conversion of NAD' to NADH by the action of the NAD+-dependent glucose dehydrogenase, and NADH is reoxidised to NAD+ by the mediator compound. The mediator compound is in turn reoxidised at the electrode surface, and the current produced is proportional to the concentration of glucose in the sample.

Claims (11)

WHAT IS CLAIMED IS:
1. A device for use in the electrochemical analysis of an analyte in a liquid sample, which comprises:
a non-conducting substrate;
a discontinuous conductive layer deposited on adjacent first and second portions, respectively, of the non-conducting substrate and defining a non-conducting gap between the first and second portions;
an analyte-specific reagent coated on the conductive layer on the first portion;
a reference electrode on the conductive layer on the second portion;
a spacer layer deposited over the conductive layer;
a monofilament mesh coated with a surfactant or chaotropic agent, the mesh being laid over the analyte-specific reagent, the reference electrode and the spacer layer; and a non-conductive layer, adhered to and covering the mesh, said non-conducting layer having an exterior edge such that the non-conducting layer is not co-extensive with the mesh, thereby providing an exposed portion of the mesh at one exterior edge of the mesh.
2. A device according to claim 1, wherein the reagent is free of filler having both hydrophobic and hydrophilic surface regions.
3. A device according to claim 2, wherein the analyte is glucose and the reagent is glucose dehydrogenase.
4. A device according to claim 2, wherein the mesh is additionally coated with a cell lytic agent.
5. A device according to claim 2, wherein the conductive layer comprises graphite particles, carbon particles and a polymer binder, wherein the graphite particles have an average particle size of 1-20 µm and a surface area of 1-50 m2 /g, and the carbon particles have an average size of 5-70 nm and a surface area of less than 150 m2 /g.
6. A method for the electrochemical analysis of an analyte in a liquid sample, which comprises applying the sample to the application area on a device according to claim 2, and quantifying the analyte by reaction with the reagent.
7. A device according to claim 1, wherein the analyte is glucose and the reagent is glucose dehydrogenase.
8. A device according to claim 1, wherein the mesh is additionally coated with a cell lytic agent.
9. A device according to claim 1, wherein the conductive layer comprises graphite particles, carbon particles and a polymer binder, wherein the graphite particles have an average particle size of 1-20 µm and a surface area of 1-50 m2 /g, and the carbon particles have an average size of 5-70 nm and a surface area of less than 150 m2 /g.
10. A method for the electrochemical analysis of an analyte in a liquid sample, which comprises applying the sample to the application area on a device according to claim 1, and quantifying the analyte by reaction with the reagent.
11. A device for use in the electrochemical analysis of an analyte in a liquid sample, which comprises:
a non-conducting substrate;

a first and a second conductive layer deposited on first and second portions, respectively, of the non-conducting substrate and defining a non-conducting gap between the first and second conductive layers;
an analyte-specific reagent coated on the first conductive layer;
a reference electrode on the second conductive layer;
a spacer layer deposited over a portion of both the first and second conductive layers;
a monofilament mesh coated with a surfactant or chaotropic agent, the mesh being laid over the analyte-specific reagent, the reference electrode and the spacer layer; and a non-conductive layer, adhered to and covering the mesh, said non-conducting layer having an exterior edge such that the non-conducting layer is not co-extensive with the mesh, thereby providing an exposed edge portion of the mesh at one exterior edge of the mesh.
CA002292505A 1997-06-04 1998-06-03 Electrodes for the measurement of analytes in small sample volumes Expired - Fee Related CA2292505C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB9711395.5A GB9711395D0 (en) 1997-06-04 1997-06-04 Improvements to electrodes for the measurement of analytes in small samples
GB9711395.5 1997-06-04
PCT/GB1998/001624 WO1998055856A1 (en) 1997-06-04 1998-06-03 Electrodes for the measurement of analytes in small sample volumes

Publications (2)

Publication Number Publication Date
CA2292505A1 CA2292505A1 (en) 1998-12-10
CA2292505C true CA2292505C (en) 2007-05-15

Family

ID=10813465

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002292505A Expired - Fee Related CA2292505C (en) 1997-06-04 1998-06-03 Electrodes for the measurement of analytes in small sample volumes

Country Status (10)

Country Link
US (1) US6436256B1 (en)
EP (1) EP0986748B1 (en)
JP (1) JP4073969B2 (en)
AT (1) ATE340997T1 (en)
CA (1) CA2292505C (en)
DE (1) DE69836016T2 (en)
DK (1) DK0986748T3 (en)
ES (1) ES2273420T3 (en)
GB (1) GB9711395D0 (en)
WO (1) WO1998055856A1 (en)

Families Citing this family (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050287035A1 (en) * 1997-06-04 2005-12-29 Bernadette Yon-Hin Electrode strips for testing small volumes
US6036924A (en) 1997-12-04 2000-03-14 Hewlett-Packard Company Cassette of lancet cartridges for sampling blood
US6391005B1 (en) 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US6662439B1 (en) 1999-10-04 2003-12-16 Roche Diagnostics Corporation Laser defined features for patterned laminates and electrodes
US7073246B2 (en) 1999-10-04 2006-07-11 Roche Diagnostics Operations, Inc. Method of making a biosensor
US20050103624A1 (en) 1999-10-04 2005-05-19 Bhullar Raghbir S. Biosensor and method of making
US6780296B1 (en) 1999-12-23 2004-08-24 Roche Diagnostics Corporation Thermally conductive sensor
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US7043050B2 (en) * 2001-05-02 2006-05-09 Microsoft Corporation Software anti-piracy systems and methods utilizing certificates with digital content
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
AU2002344825A1 (en) 2001-06-12 2002-12-23 Pelikan Technologies, Inc. Method and apparatus for improving success rate of blood yield from a fingerstick
WO2002100254A2 (en) 2001-06-12 2002-12-19 Pelikan Technologies, Inc. Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US7025774B2 (en) 2001-06-12 2006-04-11 Pelikan Technologies, Inc. Tissue penetration device
ES2352998T3 (en) 2001-06-12 2011-02-24 Pelikan Technologies Inc. LANCETA ELECTRIC ACTUATOR.
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
CA2448902C (en) 2001-06-12 2010-09-07 Pelikan Technologies, Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
CA2448905C (en) 2001-06-12 2010-09-07 Pelikan Technologies, Inc. Blood sampling apparatus and method
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
KR100426638B1 (en) * 2001-07-07 2004-04-08 주식회사 인포피아 Glucose strip sensor and glucose measurement method by the strip sensor
US6767441B1 (en) 2001-07-31 2004-07-27 Nova Biomedical Corporation Biosensor with peroxidase enzyme
US6814844B2 (en) 2001-08-29 2004-11-09 Roche Diagnostics Corporation Biosensor with code pattern
US6997343B2 (en) * 2001-11-14 2006-02-14 Hypoguard Limited Sensor dispensing device
US20030111357A1 (en) * 2001-12-13 2003-06-19 Black Murdo M. Test meter calibration
US20030169426A1 (en) * 2002-03-08 2003-09-11 Peterson Timothy A. Test member orientation
US7717863B2 (en) 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7648468B2 (en) 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7232451B2 (en) 2002-04-19 2007-06-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7297122B2 (en) 2002-04-19 2007-11-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8360992B2 (en) 2002-04-19 2013-01-29 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7229458B2 (en) 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7175642B2 (en) 2002-04-19 2007-02-13 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8372016B2 (en) 2002-04-19 2013-02-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling and analyte sensing
US7291117B2 (en) 2002-04-19 2007-11-06 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US7491178B2 (en) 2002-04-19 2009-02-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7713214B2 (en) 2002-04-19 2010-05-11 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with optical analyte sensing
US7371247B2 (en) 2002-04-19 2008-05-13 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7331931B2 (en) 2002-04-19 2008-02-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
AU2003245808A1 (en) * 2002-04-22 2003-11-03 Bcs Bio- Und Chemosensoren Gmbh Device for retaining samples for biodetectors
US6946299B2 (en) 2002-04-25 2005-09-20 Home Diagnostics, Inc. Systems and methods for blood glucose sensing
US20080112852A1 (en) * 2002-04-25 2008-05-15 Neel Gary T Test Strips and System for Measuring Analyte Levels in a Fluid Sample
US6964871B2 (en) * 2002-04-25 2005-11-15 Home Diagnostics, Inc. Systems and methods for blood glucose sensing
US6743635B2 (en) 2002-04-25 2004-06-01 Home Diagnostics, Inc. System and methods for blood glucose sensing
US7250095B2 (en) * 2002-07-11 2007-07-31 Hypoguard Limited Enzyme electrodes and method of manufacture
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
US7264139B2 (en) * 2003-01-14 2007-09-04 Hypoguard Limited Sensor dispensing device
EP2238892A3 (en) 2003-05-30 2011-02-09 Pelikan Technologies Inc. Apparatus for body fluid sampling
US7311812B2 (en) 2003-05-30 2007-12-25 Abbott Laboratories Biosensor
US7850621B2 (en) 2003-06-06 2010-12-14 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
WO2006001797A1 (en) 2004-06-14 2006-01-05 Pelikan Technologies, Inc. Low pain penetrating
CN1846131B (en) 2003-06-20 2012-01-18 霍夫曼-拉罗奇有限公司 Method and reagent for producing narrow, homogenous reagent strips
GB0322099D0 (en) * 2003-09-20 2003-10-22 Cambridge Sensors Ltd Method for the reduction of Haematocrit effect on test strips and biosensors
WO2005033659A2 (en) 2003-09-29 2005-04-14 Pelikan Technologies, Inc. Method and apparatus for an improved sample capture device
WO2005037095A1 (en) 2003-10-14 2005-04-28 Pelikan Technologies, Inc. Method and apparatus for a variable user interface
US8668656B2 (en) 2003-12-31 2014-03-11 Sanofi-Aventis Deutschland Gmbh Method and apparatus for improving fluidic flow and sample capture
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
GB0400394D0 (en) * 2004-01-09 2004-02-11 Hypoguard Ltd Biosensor and method of manufacture
US20050150762A1 (en) * 2004-01-09 2005-07-14 Butters Colin W. Biosensor and method of manufacture
EP1751546A2 (en) 2004-05-20 2007-02-14 Albatros Technologies GmbH & Co. KG Printable hydrogel for biosensors
WO2005120365A1 (en) 2004-06-03 2005-12-22 Pelikan Technologies, Inc. Method and apparatus for a fluid sampling device
US9775553B2 (en) 2004-06-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
JP2006156943A (en) * 2004-09-28 2006-06-15 Seiko Epson Corp Wiring pattern forming method, wiring pattern, and electronic equipment
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
GB0511270D0 (en) 2005-06-03 2005-07-13 Hypoguard Ltd Test system
US7695600B2 (en) 2005-06-03 2010-04-13 Hypoguard Limited Test system
US7922883B2 (en) 2005-06-08 2011-04-12 Abbott Laboratories Biosensors and methods of using the same
US7905999B2 (en) * 2005-06-08 2011-03-15 Abbott Laboratories Biosensor strips and methods of preparing same
EP1924848A2 (en) * 2005-08-16 2008-05-28 Home Diagnostics, Inc. Method for test strip manufacturing and analysis
US7811430B2 (en) 2006-02-28 2010-10-12 Abbott Diabetes Care Inc. Biosensors and methods of making
US7465597B2 (en) 2006-06-29 2008-12-16 Home Diagnostics, Inc. Method of manufacturing a diagnostic test strip
US20080237040A1 (en) * 2007-03-27 2008-10-02 Paul Wessel Test strip and monitoring device
US8008037B2 (en) 2008-03-27 2011-08-30 Roche Diagnostics Operations, Inc. Matrix composition with alkylphenazine quaternary salt and a nitrosoaniline
US9386944B2 (en) 2008-04-11 2016-07-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte detecting device
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
GB2518165B (en) * 2013-09-11 2016-04-27 Cilag Gmbh Int Electrochemical-based analytical test strip with ultra-thin discontinuous metal layer
US10598624B2 (en) 2014-10-23 2020-03-24 Abbott Diabetes Care Inc. Electrodes having at least one sensing structure and methods for making and using the same
JP2018017593A (en) * 2016-07-27 2018-02-01 シスメックス株式会社 Electrode, method for manufacturing the electrode, enzyme sensor, glucose sensor, and measuring device for measuring components in living body
CN111316096B (en) * 2017-02-08 2023-08-11 Essenlix公司 Biological/chemical material extraction and assay

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58211648A (en) * 1982-06-02 1983-12-09 Fuji Photo Film Co Ltd Ion activity measuring apparatus
US5682884A (en) * 1983-05-05 1997-11-04 Medisense, Inc. Strip electrode with screen printing
AU581669B2 (en) 1984-06-13 1989-03-02 Applied Research Systems Ars Holding N.V. Photometric instruments, their use in methods of optical analysis, and ancillary devices therefor
US5141868A (en) 1984-06-13 1992-08-25 Internationale Octrooi Maatschappij "Octropa" Bv Device for use in chemical test procedures
JPS6262259A (en) * 1985-09-11 1987-03-18 Fuji Photo Film Co Ltd Ion activity measuring apparatus and measuring method using the same
KR900005223B1 (en) * 1986-12-11 1990-07-21 가부시끼가이샤 호리바 세이사꾸쇼 Method of measuring ion-concentration and the like and a calibrating sheet as well as a calibrating method of measuring device used therein
GB8817421D0 (en) * 1988-07-21 1988-08-24 Medisense Inc Bioelectrochemical electrodes
FR2673289B1 (en) 1991-02-21 1994-06-17 Asulab Sa SENSOR FOR MEASURING THE QUANTITY OF A COMPONENT IN SOLUTION.
US5789154A (en) * 1993-10-12 1998-08-04 Cornell Research Foundation, Inc. Liposome-enhanced immunoassay and test device
US5429735A (en) 1994-06-27 1995-07-04 Miles Inc. Method of making and amperometric electrodes
US5494562A (en) * 1994-06-27 1996-02-27 Ciba Corning Diagnostics Corp. Electrochemical sensors
US5628890A (en) 1995-09-27 1997-05-13 Medisense, Inc. Electrochemical sensor
US5708247A (en) 1996-02-14 1998-01-13 Selfcare, Inc. Disposable glucose test strips, and methods and compositions for making same

Also Published As

Publication number Publication date
DE69836016T2 (en) 2007-01-18
ES2273420T3 (en) 2007-05-01
JP2002502500A (en) 2002-01-22
EP0986748A1 (en) 2000-03-22
CA2292505A1 (en) 1998-12-10
DK0986748T3 (en) 2007-01-15
EP0986748B1 (en) 2006-09-27
US6436256B1 (en) 2002-08-20
WO1998055856A1 (en) 1998-12-10
JP4073969B2 (en) 2008-04-09
ATE340997T1 (en) 2006-10-15
DE69836016D1 (en) 2006-11-09
GB9711395D0 (en) 1997-07-30

Similar Documents

Publication Publication Date Title
CA2292505C (en) Electrodes for the measurement of analytes in small sample volumes
US8354012B2 (en) Electrochemical cell
US6939450B2 (en) Device having a flow channel
JP4879459B2 (en) Electrochemical biosensor strip for analysis of liquid samples
US7138041B2 (en) Electrochemical biosensor by screen printing and method of fabricating same
RU2297696C2 (en) Electrochemical cell
US20050067277A1 (en) Low volume electrochemical biosensor
AU743832B2 (en) Electrochemical sensor having equalized electrode areas
HK1049513A1 (en) Repetitive potential step method for amperometric detection
JP2005513500A (en) Micro band electrode
US20050287035A1 (en) Electrode strips for testing small volumes
RU2598162C1 (en) Electrochemical sensors and method for production thereof
TW200422610A (en) Electrochemical sensor with a function of sample pre-treatment
AU7996798A (en) Automatic analysing apparatus

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20140603