CA2260119A1 - Amplified sensor arrays - Google Patents

Amplified sensor arrays

Info

Publication number
CA2260119A1
CA2260119A1 CA002260119A CA2260119A CA2260119A1 CA 2260119 A1 CA2260119 A1 CA 2260119A1 CA 002260119 A CA002260119 A CA 002260119A CA 2260119 A CA2260119 A CA 2260119A CA 2260119 A1 CA2260119 A1 CA 2260119A1
Authority
CA
Canada
Prior art keywords
amplifiers
distribution
coupler
buses
return
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002260119A
Other languages
French (fr)
Other versions
CA2260119C (en
Inventor
Craig W. Hodgson
Jefferson L. Wagener
Michel J. F. Digonnet
H. John Shaw
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leland Stanford Junior University
Original Assignee
Craig W. Hodgson
Jefferson L. Wagener
Michel J. F. Digonnet
H. John Shaw
The Board Of Trustees Of The Leland Stanford Junior University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Craig W. Hodgson, Jefferson L. Wagener, Michel J. F. Digonnet, H. John Shaw, The Board Of Trustees Of The Leland Stanford Junior University filed Critical Craig W. Hodgson
Publication of CA2260119A1 publication Critical patent/CA2260119A1/en
Application granted granted Critical
Publication of CA2260119C publication Critical patent/CA2260119C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J5/00Details relating to vessels or to leading-in conductors common to two or more basic types of discharge tubes or lamps
    • H01J5/02Vessels; Containers; Shields associated therewith; Vacuum locks
    • H01J5/16Optical or photographic arrangements structurally combined with the vessel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/2933Signal power control considering the whole optical path
    • H04B10/2939Network aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35383Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/004Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors

Abstract

The present invention significantly improves the signal to noise ratio (SNR) in a passive optical array comprising sensors (110) located in rungs between a distribution bus (100) and a return bus (120).
Erbium-doped optical fiber amplifiers (130, 132) are included in the buses proximate to each rung coupling to offset the coupler splitting losses. The gains of the amplifiers are selected to offset losses due to the couplings. The overall SNR can be maintained without significant degradation even for large numbers of sensors. In one aspect of the present invention, the amplifiers are located along the distribution and return buses directly after the couplers (140, 142), except for the last coupler. In a second aspect, the amplifiers are located directly before each coupler. The optical amplifiers preferably are made of short lengths of erbium-doped fiber spliced into the distribution and return buses.
CA002260119A 1996-07-12 1997-07-10 Amplified sensor arrays Expired - Lifetime CA2260119C (en)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US2169996P 1996-07-12 1996-07-12
US60/021,699 1996-07-12
US3480497P 1997-01-02 1997-01-02
US60/034,804 1997-01-02
US3611497P 1997-01-17 1997-01-17
US60/036,114 1997-01-17
US08/814,548 US5866898A (en) 1996-07-12 1997-03-11 Time domain multiplexed amplified sensor array with improved signal to noise ratios
US08/814,548 1997-03-11
PCT/US1997/011906 WO1998002898A1 (en) 1996-07-12 1997-07-10 Amplified sensor arrays

Publications (2)

Publication Number Publication Date
CA2260119A1 true CA2260119A1 (en) 1998-01-22
CA2260119C CA2260119C (en) 2006-05-30

Family

ID=27487031

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002260119A Expired - Lifetime CA2260119C (en) 1996-07-12 1997-07-10 Amplified sensor arrays

Country Status (11)

Country Link
US (4) US5866898A (en)
EP (1) EP0910863B1 (en)
JP (1) JP4112012B2 (en)
KR (1) KR100471336B1 (en)
AU (1) AU717505B2 (en)
CA (1) CA2260119C (en)
DE (1) DE69725145T2 (en)
IL (1) IL128004A (en)
NO (1) NO317569B1 (en)
TW (1) TW383523B (en)
WO (1) WO1998002898A1 (en)

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5866898A (en) 1996-07-12 1999-02-02 The Board Of Trustees Of The Leland Stanford Junior University Time domain multiplexed amplified sensor array with improved signal to noise ratios
US6200309B1 (en) * 1997-02-13 2001-03-13 Mcdonnell Douglas Corporation Photodynamic therapy system and method using a phased array raman laser amplifier
US5898801A (en) * 1998-01-29 1999-04-27 Lockheed Martin Corporation Optical transport system
US6097486A (en) * 1998-04-03 2000-08-01 The Board Of Trustees Of The Leland Stanford Junior University Fiber optic acoustic sensor array based on Sagnac interferometer
US6667935B2 (en) 1998-04-03 2003-12-23 The Board Of Trustees Of The Leland Stanford Junior University Apparatus and method for processing optical signals from two delay coils to increase the dynamic range of a sagnac-based fiber optic sensor array
US6278657B1 (en) 1998-04-03 2001-08-21 The Board Of Trustees Of The Leland Stanford Junior University Folded sagnac sensor array
US6034924A (en) * 1998-04-03 2000-03-07 The Board Of Trustees Of The Leland Stanford Junior Univerisity Folded sagnac sensor array
US6678211B2 (en) 1998-04-03 2004-01-13 The Board Of Trustees Of The Leland Stanford Junior University Amplified tree structure technology for fiber optic sensor arrays
US6249622B1 (en) 1998-06-26 2001-06-19 Litton Systems, Inc. Architecture for large optical fiber array using standard 1×2 couplers
US6711359B1 (en) * 1999-03-10 2004-03-23 Tyco Telecommunications (Us) Inc. Optical fiber communication system employing doped optical fiber and Raman amplification
US6507679B1 (en) * 1999-05-13 2003-01-14 Litton Systems, Inc. Long distance, all-optical telemetry for fiber optic sensor using remote optically pumped EDFAs
US6282334B1 (en) * 1999-05-13 2001-08-28 Litton Systems, Inc. Large scale WDM/TDM sensor array employing erbium-doped fiber amplifiers
US6728165B1 (en) 1999-10-29 2004-04-27 Litton Systems, Inc. Acoustic sensing system for downhole seismic applications utilizing an array of fiber optic sensors
CA2320453A1 (en) * 1999-10-29 2001-04-29 Litton Systems, Inc. Acoustic sensing system for downhole seismic applications utilizing an array of fiber optic sensors
US6724319B1 (en) 1999-10-29 2004-04-20 Litton Systems, Inc. Acoustic sensing system for downhole seismic applications utilizing an array of fiber optic sensors
US6269198B1 (en) 1999-10-29 2001-07-31 Litton Systems, Inc. Acoustic sensing system for downhole seismic applications utilizing an array of fiber optic sensors
US6746066B2 (en) * 2000-02-22 2004-06-08 Harry F. Reed Truck bed extension
WO2002005461A2 (en) 2000-07-10 2002-01-17 Mpb Technologies Inc. Cascaded pumping system for distributed raman amplification in optical fiber telecommunication systems
US20020101874A1 (en) * 2000-11-21 2002-08-01 Whittaker G. Allan Physical layer transparent transport information encapsulation methods and systems
US20030035205A1 (en) * 2001-08-20 2003-02-20 Zisk Edward J. Fiber optic sensor signal amplifier
US6771865B2 (en) * 2002-03-20 2004-08-03 Corning Incorporated Low bend loss optical fiber and components made therefrom
US7085497B2 (en) * 2002-04-03 2006-08-01 Lockheed Martin Corporation Vehicular communication system
FR2839796B1 (en) * 2002-05-15 2004-11-26 Ermme SYNCHRONOUS MULTI-CHANNEL ACQUISITION SYSTEM FOR MEASURING PHYSICAL QUANTITIES, ACQUISITION MODULE USED AND METHOD IMPLEMENTED IN SUCH A SYSTEM
US6995899B2 (en) * 2002-06-27 2006-02-07 Baker Hughes Incorporated Fiber optic amplifier for oilfield applications
US6850461B2 (en) * 2002-07-18 2005-02-01 Pgs Americas, Inc. Fiber-optic seismic array telemetry, system, and method
GB2417627B (en) * 2002-07-18 2006-07-19 Pgs Americas Inc Fiber-optic seismic array telemetry system, and method
US20040046109A1 (en) * 2002-09-05 2004-03-11 Chen Peter C. Method and apparatus for high speed interrogation of fiber optic detector arrays
US20040076434A1 (en) * 2002-09-27 2004-04-22 Whittaker G. Allan Optical distribution network for RF and other analog signals
WO2004093351A2 (en) * 2003-03-31 2004-10-28 Lockheed Martin Corporation Optical network interface systems and devices
US7379236B2 (en) * 2003-07-04 2008-05-27 Nippon Telegraph And Telephone Corporation Optical fiber communication system using remote pumping
US6827597B1 (en) 2003-11-20 2004-12-07 Pgs Americas, Inc. Combined electrical and optical cable connector particularly suited for marine seismic sensor streamers
DE102004047745A1 (en) * 2004-09-30 2006-04-27 Siemens Ag Determination of amplified spontaneous emission in an optical fiber amplifier
JP4290128B2 (en) * 2005-02-25 2009-07-01 キヤノン株式会社 Sensor
US7310464B2 (en) * 2005-06-21 2007-12-18 Litton Systems, Inc. Multi-wavelength optical source
FR2889305B1 (en) * 2005-07-28 2007-10-19 Sercel Sa FIBER OPTIC INTERFEROMETER NETWORK
GB0606010D0 (en) * 2006-03-25 2006-05-03 Qinetiq Ltd Fibre-Optic Sensor Array
GB2449941B (en) * 2007-06-08 2011-11-02 Stingray Geophysical Ltd Seismic cable structure
JP4724798B2 (en) * 2007-06-25 2011-07-13 独立行政法人海洋研究開発機構 Optical fiber wide area sensor system
US7622706B2 (en) 2008-01-18 2009-11-24 Pgs Geophysical As Sensor cable and multiplexed telemetry system for seismic cables having redundant/reversible optical connections
US20100013663A1 (en) 2008-07-16 2010-01-21 Halliburton Energy Services, Inc. Downhole Telemetry System Using an Optically Transmissive Fluid Media and Method for Use of Same
US9784642B2 (en) * 2008-09-23 2017-10-10 Onesubsea Ip Uk Limited Redundant optical fiber system and method for remotely monitoring the condition of a pipeline
GB2478915B (en) * 2010-03-22 2012-11-07 Stingray Geophysical Ltd Sensor array
US9335224B2 (en) * 2010-08-13 2016-05-10 Qorex Llc High temperature fiber optic turnaround
US9059799B2 (en) * 2011-04-21 2015-06-16 Futurewei Technologies, Inc. Apparatus and method to calculate a noise figure of an optical amplifier for wavelength channels in a partial-fill scenario to account for channel loading
US9234790B2 (en) 2012-03-19 2016-01-12 The Board Of Trustees Of The Leland Stanford Junior University Apparatus and methods utilizing optical sensors operating in the reflection mode
GB2500717A (en) * 2012-03-30 2013-10-02 Stingray Geophysical Ltd Optical sensing system with amplification
DE102013212665B4 (en) 2013-06-28 2015-06-25 Laser Zentrum Hannover E.V. Method for laser drilling or laser cutting a workpiece
DE102015209261A1 (en) * 2015-05-21 2016-11-24 Robert Bosch Gmbh Method for laser drilling or laser cutting a workpiece and system for laser drilling or laser cutting
US20180045542A1 (en) * 2015-06-22 2018-02-15 Omnisens Sa A method for reducing noise in measurements taken by a distributed sensor
CN105258781B (en) * 2015-09-24 2018-11-16 中国石油天然气股份有限公司 A kind of fiber-optic vibration detection system and fiber-optic vibration detection method
KR102271034B1 (en) * 2016-03-10 2021-07-02 한국전자통신연구원 Laser radar system
GB201700266D0 (en) 2017-01-06 2017-02-22 Silixa Ltd Method and apparatus for optical sensing
DE102017116943B4 (en) 2017-07-26 2019-04-11 Laser Zentrum Hannover E.V. Method for laser drilling or laser cutting a workpiece
RU2701182C1 (en) * 2019-03-18 2019-09-25 Общество С Ограниченной Ответственностью "Киплайн" Sensitive element polling device
RU192122U1 (en) * 2019-03-28 2019-09-04 Общество С Ограниченной Ответственностью "Киплайн" Sensor interrogator
RU192121U1 (en) * 2019-03-28 2019-09-04 Общество С Ограниченной Ответственностью "Киплайн" Sensor interrogator
US11193801B2 (en) * 2019-05-22 2021-12-07 Nec Corporation Amplifier dynamics compensation for brillouin optical time-domain reflectometry
WO2021001710A1 (en) * 2019-07-02 2021-01-07 Technology Innovation Momentum Fund (Israel) Limited Partnership Interrogation of arrays of equally spaced weak reflectors in optical fibers
CN111044138A (en) * 2019-12-26 2020-04-21 北京航天控制仪器研究所 Time-division wavelength-division hybrid multiplexing array system of fiber laser hydrophone
CN115987399B (en) * 2023-03-20 2023-08-11 北京神州普惠科技股份有限公司 Optical fiber hydrophone transmission system and optical signal transmission method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4768850A (en) * 1984-06-20 1988-09-06 The Board Of Trustees Of The Leland Stanford Junior University Cascaded fiber optic lattice filter
US4928004A (en) * 1988-06-20 1990-05-22 Center For Innovative Technology Method and apparatus for sensing strain
US5173743A (en) * 1991-05-28 1992-12-22 Litton Systems, Inc. Fiber optical time-division-multiplexed unbalanced pulsed interferometer with polarization fading compensation
US5534993A (en) * 1994-06-15 1996-07-09 United Technologies Corporation Dual-wavelength frequency-chirped microwave AMCW ladar system
US5866898A (en) * 1996-07-12 1999-02-02 The Board Of Trustees Of The Leland Stanford Junior University Time domain multiplexed amplified sensor array with improved signal to noise ratios

Also Published As

Publication number Publication date
KR100471336B1 (en) 2005-03-07
US5866898A (en) 1999-02-02
CA2260119C (en) 2006-05-30
AU717505B2 (en) 2000-03-30
US6365891B1 (en) 2002-04-02
JP2002509606A (en) 2002-03-26
AU3795397A (en) 1998-02-09
EP0910863A1 (en) 1999-04-28
US6040571A (en) 2000-03-21
EP0910863B1 (en) 2003-09-24
IL128004A (en) 2002-04-21
IL128004A0 (en) 1999-11-30
JP4112012B2 (en) 2008-07-02
EP0910863A4 (en) 2001-01-17
NO317569B1 (en) 2004-11-15
NO990103D0 (en) 1999-01-11
US6084233A (en) 2000-07-04
DE69725145D1 (en) 2003-10-30
NO990103L (en) 1999-03-09
WO1998002898A1 (en) 1998-01-22
TW383523B (en) 2000-03-01
DE69725145T2 (en) 2004-08-05
KR20000023748A (en) 2000-04-25

Similar Documents

Publication Publication Date Title
CA2260119A1 (en) Amplified sensor arrays
CA2020759A1 (en) Erbium-doped fiber amplifier coupling device
US20050226614A1 (en) Optical amplifying and repeating method and optical amplifying and repeating system
WO2001078263A3 (en) Broadband amplifier and communication system
EP0732819A3 (en) Chromatic dispersion compensator and chromatic dispersion compensating optical communication system
CA2185289A1 (en) Optical Network
CA2388247A1 (en) Optical transmission systems including optical amplifiers and methods of use therein
NO991026D0 (en) System for detecting transverse optical fiber deformation
DE69800019D1 (en) Low loss optical fiber coupler
CA2369729A1 (en) Large scale wdm/tdm sensor array employing erbium-doped fiber amplifiers
CA2224851A1 (en) Optical arrangement for amplifying wdm signals
TR199600548A2 (en) Fiber optic connector.
AR003567A1 (en) ARRANGEMENT AND METHOD FOR MONITORING A FIBER OPTIC CABLE
HK1058438A1 (en) Optical protection method and system
CA2267781A1 (en) Path to provide otdr measurements of an optical transmission system that includes optical isolators
DE60039088D1 (en) Fiber optic transmission system with Nd-doped fiber amplifier in 1400 nm window
WO2002050966A3 (en) Device for pumping a fiber amplifier
JPH0611622A (en) Optical fiber type demultiplexer/multiplexer
AU641225B2 (en) Optical communication system with fibre optic amplifier
CA2182384A1 (en) Optical time domain reflectometry
GB2315939B (en) Erbium doped optical fibre amplifier
EP0818895A3 (en) Optically amplifying transmission system
CA2123757A1 (en) Method for making optical waveguide couplers with low wavelength sensitivity and couplers thereby produced
DE69104738D1 (en) Dual core active fiber as an optical broadband signal amplifier.
WO2001076350A3 (en) Broadband amplifier and communication system

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20170710