CA2259766C - Positioning apparatus used in a cellular communication system and capable of carrying out a positioning with a high accuracy in urban area - Google Patents

Positioning apparatus used in a cellular communication system and capable of carrying out a positioning with a high accuracy in urban area Download PDF

Info

Publication number
CA2259766C
CA2259766C CA002259766A CA2259766A CA2259766C CA 2259766 C CA2259766 C CA 2259766C CA 002259766 A CA002259766 A CA 002259766A CA 2259766 A CA2259766 A CA 2259766A CA 2259766 C CA2259766 C CA 2259766C
Authority
CA
Canada
Prior art keywords
signals
portable terminal
base station
delay time
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002259766A
Other languages
French (fr)
Other versions
CA2259766A1 (en
Inventor
Yoshihiko Kuwahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of CA2259766A1 publication Critical patent/CA2259766A1/en
Application granted granted Critical
Publication of CA2259766C publication Critical patent/CA2259766C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/12Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves by co-ordinating position lines of different shape, e.g. hyperbolic, circular, elliptical or radial

Abstract

A positioning apparatus is provided in a cellular base station for positioning a portable terminal in a cell covered by the cellular base station. The positioning apparatus has a base position indicative of a position of the cellular base station on a map. The positioning apparatus comprises an array antenna for receiving a transmission signal transmitted by the portable terminal to output a plurality of reception signals. A receiver section translates the reception signals into a plurality of baseband signals to demodulate the baseband signals into a plurality of demodulated signals. An estimation section estimates incident direction and delay time of the transmission signal on the basis of the demodulated signals to output an estimation result indicative of the incident direction and the delay time. A position calculating means calculates a terminal position of the portable terminal on the map in accordance with the estimation result and the base position to output a terminal position signal indicative of the terminal position.

Description

POSITIONING APPARATUS USED IN A CELLULAR
COMMUNICATION SYSTEM AND CAPABLE OF CARRYING OUT
A POSITIONING WITH A HIGH ACCURACY IN URBAN AREA
Back~~round of the Invention:
This invention relates to a positioning apparatus (merely called a positioner hereinunder) and, more particularly, to a positioner in a cellular base station that positions a portable terminal in a service area (cell) covered by the cellular base station.
Various methods of connection are employed in mobile communication systems such as portable telephone systems.
Specifically, the methods of access can be generally classified into three methods, i.e., FDMA (frequency division multiple access) method, TDMA (time division multiple access) method and CDMA (code division multiple access) method. It has already been determined to use the CDMA method among those three methods for connection for IMT (international mobile telecommunication) 2000 which is the next generation portable telephone system because it employs a spread spectrum technique and therefore exhibits higher efficiency of frequency utilization compared to the TDMA method.
While there are many types of spread spectrum techniques (e.g., the direct spread (DS) method and frequency hopping (FH) method), this invention is applied to DS type spread spectrum communication (CDMA).
In such a CDMA type portable telephone system, it is desirable to position portable terminals. Such a need arises in consumer services and emergency car guiding systems. Consumer services are required by the IMT 2000 as an alternative to GPS navigation. Emergency call services are under evaluation and experiment in the United States as emergency car guiding systems.
Two methods described below have been used as systems for positioning portable terminals. One is a positioning system utilizing the GPS (global positioning system) method. In this positioning system, each portable terminal is equipped with a GPS receiver to allow the portable terminal to position itself, and the result of positioning at each portable terminal is transmitted to a base station to allow the base station to manage the information on the positions of the portable terminals.
The other is a positioning system utilizing a direction finder. In this positioning system, a plurality of base stations are provided with an azimuth detecting function, and a portable terminal is positioned based on a point at which azimuth lines defined by azimuth detection signals output by the base stations. The result of positioning may be transmitted from each base station to a portable terminal to allow the portable terminal to identify the position of itself.
However, the above-described positioning system utilizing the GPS method has problems as described below.
The first problem is that it is subjected to limitations during use in an urban area. The reason is that positioning requires reception signals from 3 or 4 GPS
satellites, and it is difficult to identify locations blocked by buildings, roadside trees and the like. The second problem is that positioning accuracy is low. The reason is that positioning signals from GPS satellites open to public use are intentionally manipulated to provide low positioning accuracy in favor of the national interest of the United States.
The above-described positioning system utilizing a direction finder has problems as described below. The first problem is that it can not be used in existing cell configurations for portable telephones. The reason is that the positioning based on the output of a plurality of direction finders requires sufficient overlaps between the cells. The second problem is that it is subjected to limitations during use in an urban area. The reason is that it is necessary to maintain line of site from plural base stations to portable terminal which is often difficult in an urban area.
Su_m~ary of the Invention' It is therefore an object of this invention to provide a positioning apparatus hardly affected to an urban area.
It is another object of this invention to provide a positioning apparatus capable of positioning portable terminals without changing cell configurations for portable telephones.
It is still another object of this invention to provide a positioning apparatus capable of carrying out a positioning with a high accuracy.
On describing the gist of this invention, it is possible to understand that a positioning apparatus is provided in a cellular base station for positioning a portable terminal in a cell covered by the cellular base station. The positioning apparatus has a base position indicative of a position of the cellular base station on a map.
In accordance with the present invention, there is provided a positioning apparatus provided in a cellular base station for positioning a portable terminal in a cell covered by said cellular base station, said positioning apparatus having a base position indicative of a position of said cellular base station on a map, comprising: an array antenna for receiving a transmission signal transmitted by said portable terminal to output a plurality of reception signals; receiver means for translating said reception signals into a plurality of baseband signals to demodulate said baseband signals into a plurality of demodulated signals; estimation means for estimating incident direction and delay time of said transmission signal on the basis of the said demodulated signals to output an estimation result indicative of said incident direction and said delay time;
position calculating means for calculating a terminal position of said portable terminal on said map in accordance with said estimation result and said base position to output a terminal position signal indicative of said terminal position; said portable terminal comprising transmitting means for transmitting a multiplexed spread spectrum signal as said transmission signal; and said receiver means comprising a plurality of receivers each of which has a plurality of matched filters 4a for separately demodulating said multiplexed spread spectrum signals.
In accordance with the present invention, there is further provided a positioning apparatus provided in a cellular base station for positioning a portable terminal in a cell covered by said cellular base station, said positioning apparatus having a base position indicative of a position of said cellular base station on a map, comprising:
an array antenna for receiving a transmission signal transmitted by said portable terminal to output a plurality of reception signals; receiver means for translating said reception signals into a plurality of baseband signals to demodulate said baseband signals into a plurality of demodulated signals; estimation means for estimating incident direction and delay time of said transmission signal on the basis of the said demodulated signals to output an estimation result indicative of said incident direction and said delay time, said estimation means comprising first means for translating said demodulated signals to digital signals, second means for estimating the incident direction and the delay time of said transmission signal in accordance with 2D (2 Dimensional) Unitary ESPRIT
(Estimation of Signal Parameters via Rotational Invariance Techniques), said second means further estimating a relative power of said transmission signal in accordance with 2D
Unitary ESPRIT; and third means for outputting said estimation result having said relative power together with said incident direction and said delay time; and position calculating means for calculating a terminal position of said portable terminal on said map in accordance with said estimation result and said base position to output a terminal position signal indicative of said terminal position.

4b In accordance with the present invention, there is further provided a positioning apparatus provided in a cellular base station for positioning a portable terminal in a cell covered by said cellular base station, said positioning apparatus having a base position indicative of a position of said cellular base station on a map, comprising:
an array antenna for receiving a transmission signal transmitted by said portable terminal to output a plurality of reception signals; receiver means for translating said reception signals into a plurality of baseband signals to demodulate said baseband signals into a plurality of demodulated signals; estimation means for estimating incident direction and delay time of said transmission signal on the basis of the said demodulated signals to output an estimation result indicative of said incident direction and said delay time; and position calculating means for calculating a terminal position of said portable terminal on said map in accordance with said estimation result and said base position to output a terminal position signal indicative of said terminal position said position calculating means comprising first means for determining an incident signal having a shortest delay time as a direct wave on the basis of said estimation result and second means for calculating said portable position on the basis of said direct wave and the said base position.
In accordance with the present invention, there is further provided a positioning apparatus provided in a cellular base station for positioning a portable terminal in a cell covered by said cellular base station, said positioning apparatus having a base position indicative of a position of said cellular base station on a map, comprising:
an array antenna for receiving a transmission signal transmitted by said portable terminal to output a plurality 4c of reception signals; receiver means for translating said reception signals into a plurality of baseband signals to demodulate said baseband signals into a plurality of demodulated signals; estimation means for estimating incident direction and delay time of said transmission signal on the basis of the said demodulated signals to output an estimation result indicative of said incident direction and said delay time; position calculating means for calculating a terminal position of said portable terminal on said map in accordance with said estimation result and said base position to output a terminal position signal indicative of said terminal position; transmitter means for transmitting said portable position signal as a position transmission signal; and an antenna for emitting the said position transmission signal into a subspace.
Brief Description of the Drawin s:
Fig. 1 is a block diagram of a cellular base station having a positioner according to a preferred embodiment of this invention along with a portable terminal;

Figs. 2A to 2C show a principle of generation of a synchronous signal using matched filters provided in receivers of the cellular base station illustrated in Fig.
1;
Fig. 3 is a flow chart of a first half of a procedure for estimating incident directions and delay times according to the 2D-Unitary ESPRIT method;
Fig. 4 is a flow chart of a second half of a procedure for estimating incident directions and delay times according to the 2D-Unitary ESPRIT method;
Fig. 5 is an illustration showing a method for spatial averaging according to the 2D-Unitary ESPRIT
method;
Fig. 6 is a block diagram showing processing steps according to the 2D-Unitary ESPRIT method;
Fig. 7 is a graph showing an example of the result of PDA estimation carried out according to the 2D-Unitary ESPRIT method; and Fig. 8 is a block diagram showing a configuration of a positioner illustrated in Fig. 1.
Description of the Preferred Embodiment:
Referring to Fig. 1, the illustrated cellular base station SB comprises an array antenna 101 having first through M-th antenna elements 101-1 through 101-M for receiving signals transmitted by the portable terminal PT, where M represents a positive integer which is not less than one. First through M-th receivers 102-1 through 102-M
is for translating signals from the respective antenna elements of the array antenna 101 into baseband signals.
First through M-th CDMA demodulators 103-1 through 103-M is for demodulating a transmission signal multiplexed using the CDMA (code division multiple access) method to output demodulated signals in a plurality of systems. A PDA (power delay angle) estimation circuit 104 is for estimating an incident direction, delay time, and relative power from demodulated signals in a plurality of systems and is for outputting the result of estimation indicating the incident direction, delay time, and relative power. A positioning circuit 105 is for positioning the portable terminal PT on the basis of the incident direction and delay time indicated by the result of estimation output by the PDA
estimation circuit 104 and is for outputting the result of position of the portable terminal PT. A transmitter 106 is for transmitting the result of positioning to the portable terminal PT through a transmission antenna 107. The combination of the receivers and CDMA demodulators is referred to as receiving device. Among the above-described components, the transmitter 106 and transmission antenna 107 may be a transmitter and a transmission antenna shared by cellular base stations SB.
Reviewing Fig. 1, the portable terminal PT transmits a spread spectrum signal which has been subjected to second order modulation using a predetermined second order modulation code. The cellular base station SB receives a multiplexed spread spectrum signal transmitted by a plurality of portable terminals PT in a service area (cell) covered by the cellular base station SB. As is well-known in this technical field, in order to demodulate a spread spectrum signal, it is necessary to capture the spread spectrum signal in synchronism therewith and to demodulate the synchronously captured spread spectrum signal using a second order modulation code assigned to the portable terminal PT.
Referring to Figs. 2A to 2C, description will be made as regards synchronous capture carried out with a matched filter provided at each receiving device. Fig. 2A
indicates an input signal input to the matched filter. Fig.
2B indicates the configuration of the matched filter. Fig.
2C indicates an output signal output by the matched filter.
As shown in Fig. 2B, the matched filter comprises a delay line 108, a plurality (seven in the illustrated example) of taps 109, a plurality (seven in the illustrated example) of weighting circuits 110, and an adder 111.
Time sequence signals with a period T having codes corresponding to coefficients set in the seven weighting circuits 110 (1, 1, 1, -1, -1, 1, -1 in the example in Fig.
2B) as shown Fig. 2A are input to the matched filter. In this case, as shown in Fig. 2C, auto-correlation is maximized to show a peak at timing when an input code agrees with a weighting code. Each of the CDMA
demodulators 103-1 through 103-M demodulates using such a peak as a synchronous pulse.
When the incident direction and delay time of a portable terminal PT is estimated from a plurality of demodulation signals received by the array antenna 101, consideration must be paid on multi-path signals produced by reflection and diffraction due to buildings and the like especially in an urban environment. Specifically, it is necessary to select a direct wave from among a plurality of incident signals having correlation with each other and to find the incident direction and delay time of the same.
Description will be made on a method for estimating the incident direction and delay time of a plurality of correlated incident signals with reference to Hideo Kikuchi, Nobuyoshi Kikuma and Naoki Inagaki, "Simultaneous Estimation of the Incident Direction and Propagation Delay time of a Multiple Wave using 2D-Unitary ESPRIT" Technical Report of IEICE, vol. 97-98, July 1997 (hereinafter referred to as article).
"2D-Unitary ESPRIT" is a method which was conceived to perform two-dimensional parameter estimation (direction/angular height, incident direction/delay time and the like) and which has the followings features.
(A) It requires no knowledge of the response (steering vector) of array elements at the antenna aperture.
(B) It does not require peak search based on the steering vector.
The relationship of rotational invariance in "2D-Unitary ESPRIT" is expressed by the following Equations (1) and ( 2 ) .
ta~~2 ~K~ld(wi ~ ~i ) = K~.~2d(N~i. ~i ) (1) ta~ 2 ~KVld(N~i~ vi) = Kv2d(wi~ vi) The definitions for the parameters used here are as follows. a i and U i are respectively expressed by Equations (3) and (4) .
~.i - 2~fpOd sin 8i (3) vi = -2~tOfii The symbols in the above Equations (3) and (4) are given by:
f0: carrier frequency;
0 d: element interval;
B i: incident direction of an i-th incident wave;
~ f: frequency sweep interval;
T i: delay time of an i-th incident wave.
Ku1 and Ku2 in Equation (1) are expressed by Equation 6.
KN~1 - IM ~ K1 (6) K~2 - IM ~ K2 where O represents a Kronecker operator.
K1 and K2 in the above Equation (6) are expressed by Equation ( 7 ) .

Kl = Re L QN_1 J2QNl K2 = Im[ QN_1 J2QN1 where Re[~] represents a real part and Im[~1 represents an imaginary part.
K v 1 and K v 2 in Equation (2) are expressed by Equation ( 8 ) .
Kv1 = K3 ~ IN
(8) K V2 - K4 ~ IN
K3 and K4 in the above Equation (8) are expressed by Equation (9) .
K3 _ Re LS2M_1J2S2M1 (9) K4 - Im[QM_1J2QM1 The suffixes M, N, IM, and IN in Equations (6) through (9) are given by:
M: The number of divisions of a frequency domain;
N: The number of array elements;
IM: M-dimensional order unit matrix;
IN: N-dimensional order unit matrix.
J2 in Equations (7) and (9) is expressed by Equation (11) .
J2: selection matrix from the second through M(N)-th rows having the following format.

J2 = , . (11) Q~I or QN in Equations ( 7 ) and ( 9 ) represents an unitary matrix. When M(N) is an even number (M(N)=2K), the unitary matrix is given by:

Q2K = ~ (12a) IIK - ] IIK
When M (N) is an odd number (M (N) =2K+1 ) , the unitary matrix is given by:

Q2K+1 = 1 OT ~ OT (12b) I IK 0 _ J I IK
where O, IK, T, and IIK in Equations 12a and 12b are as expressed by Equation (13).

IIK = . (13) where 0: 0 vector;
IK: K-dimensional unit matrix;
T: transpose of matrix.
Furthermore , d ( ~.l i , v i ) in Equations ( 1 ) and ( 2 ) is expressed by Equation (14).
d (N~i ~ ~i ) = vec (D (Ni ~ ~i ) ) (14) D ( a i , v i ) in Equation ( 14 ) is expressed by Equation (15).
D (l~i~ ~i) = dN(N~i) dM(~i) (15) dN ( a i) and dM ( v i) in Equation 15 are respectively expressed by Equations ( 16 ) and ( 17 ) .
dN(N~i) = QNaN (wi) (16) dM(vi) = S2MaM(~i) (17) aN ( ,u i ) in Equation ( 16 ) and aM ( v i ) in Equation (17) are respectively expressed by Equations (18) and (19) .
exp(7NlNi) aN (N~i) _ . (18) exp (7 NNN~l}
Equation (18) represents a steering vector of the incident direction.

exp(jMlvi) aM (vi) - . (19) exp(7MMvi) Equation (19) represents a steering vector of the delay time.
Mm (lSmsM) in Equation (19) and Nn (l~nSN) in Equation (18) are respectively expressed by Equations (20) and ( 21 ) .
Mm = m - M 2 1 (20) Nn - n _ N 2 1 (21) where vec(~) in Equation (14) is given by:
vec(~)=operator for translating an N X M-dimensional matrix into an NM-dimensional vector.
Figs. 3 and 4 show a procedure for estimating incident direction and delay time according to "2D-Unitary ESPRIT" having the relationship of rotational invariance expressed by Equations (1) and (2).
Acquired data are divided into a matrix as shown in Fig. 5 in order to perform spatial averaging of the same (step Sl) .
The complex matrix of the received data is translated into a vector as expressed by Equation (23) to generate a correlation matrix RS as expressed by Equation (24) (step S2) .
xnm - vec (Xnm~
R~ _ x~ x~ (24) This operation is carried out for each subarray.
Then, a spatial average process is carried out as expressed by Equation (25) (step S3) .
N-N+1M-M+1 RS - 1 ~ R~ (25) (N - N + 1) (M - M + 1) n=1 m=1 The correlation matrix RS is subjected to unitary translation as expressed by Equation (26) (step S4).
SZMNRSSZMN
QMN _ QM ~ QN (26) QMN = QM ~ QN
where O represents a Kronecker operator.
Subsequently, the real part of the correlation matrix is extracted by performing ensemble averaging of steps S1 through S4 as expressed by Equation (27) (step S5).
Ry = Re [ E [Q~ RS Q~~ 7 (27) Ry is factorized into eigenvalues (step S6) in order to obtain results defined by:
~i:eigenvalue (i=1, ..., NM) ei:eigen-vector corresponding to ~ i The eigenvalues are arranged in a descending order to estimate a wave number (L) as expressed by Equation (29) (step S7) .
~1z~,2z ... z~,L > ~,L+1 = ... _ ~,~ = a2 (29) A signal subspace ES as expressed by Equation (30) is formed (step S8) .
ES - [e1 e2~ ... ~ eLl A next matrix E a as expressed by Equation (31) is generated to find the incident direction in accordance with the TLS-ESPRIT method (step S9).
KN,1 ES
E~ _ (31) K x.12 E S
First, a next matrix E~ as expressed by Equation (32) is defined (step S10) .
EgY = [K~1 ES ~ K~2 ESl (32) Next, E~H ExY expressed by Equation (33) is calculated to factorize it into eigenvalues (step S11).
H
EXYEXY - (K~l ES)H [KE.ilES I K~2ES] = EAE (33) (K~y2 ES ) where l~=diag [ ~ 1, ~ 2 , . . . , ~ 2L] , ~ i represents eigenvalues ( ~ 1 ~ , . . . , ~ ~ 2L) , E= (e1 I e2 I . . . I e2z) , and ei represents eigen-vector corresponding to i The matrix E is factorized into four L X L
dimensional matrices as expressed by Equation (34) (step S12) .

E - (3 4) Then, a matrix ~,u as expressed by Equation (35) is calculated (step S13) .
-E12 [E22] 1 (35) A matrix ~ v is calculated in a manner similar to steps S9 to S13 (step S14). A matrix E is expressed by Equation (36) .
Ev - Kvl ES (36) Kv2 ES

Subsequently, a matrix (~ /.l + j ~ v ) is factorized into eigenvalues as expressed by Equation (37) (step S15).
(~~ + jtyv) = T-1{SZ~ + jSZv)T
where a term w a ( i) + j w v ( i ) diagonal to ( S~ /1 +
~ vj ) becomes the eigenvalue (i=1, ..., L). Furthermore, L column vectors of T-1 are eigen-vectors.
At step 516, the incident direction is given by:
~i = 2~tf0 Od sin 6i = 2 tan 1 w~,(i) -1 tan 1 w~(i.) 6i - sin ~ f0ed (38) At the step 516, the delay time is given by:
-2~tOfii - 2 tan 1 wv(i) tan 1 wy(i) (3 9) ~i =
~Of Finally, the signal power is calculated (step S17).
The Matrix for the signal power is expressed by Equation (40) .
P = T LAS - a2ILl TH (40) where AS is given by Equation (41) and IL is an L X
L-dimensional unit matrix.

AS = d iag [~,1~,2, ... ~ ~,Ll (411 where !1S represents eigenvalues for a signal.
A component diagonal to P is the signal power.
Fig. 6 shows the above-described processing steps according to the "2D-Unitary ESPRIT" method in the form of a simple block diagram. In Fig. 6, each of signals received by M antennas is subjected to Fourier transform and is supplied to a block for spatial average, unitary translation, and factorization into eigenvalues. The block for spatial average, unitary translation, and factorization into eigenvalues is a block that performs the processes at steps S1 to S6 in Fig. 3. The output of the block for spatial average, unitary translation, and factorization into eigenvalues is supplied to a block for forming a partial signal subspace which performs the processes at steps S7 and S8 in Fig. 3. The output of the block for forming a partial signal subspace is supplied to a block for processing according to the TLS ESPRIT method which performs the processes at steps S9 through S14 in Fig. 3.
Matrixes ~,Cl and ~ v outputted from the block for processing according to the TLS ESPRIT method are supplied to a block for factorizing ~ a + j'~I1~ y into eigenvalues, signal power, and matrix calculation where. By this block, the processes at steps S15 through S17 in Fig. 3 are performed to output the incident direction, delay time and relative power.

Fig. 7 shows examples of the delay time, incident direction, and relative power of reception signals propagated in a multiplex manner from one portable terminal PT and arriving at the base station SB according to the "2D-Unitary ESPRIT" method. The examples in Fig. 7 are examples of five reception signals propagated in a multiplex manner. The five reception signals are referred here as first through fifth reception signals which have respective increasing delay times.
The first reception signal is a signal with a delay time of 2u seconds in an incident direction of -60 degrees.
The second reception signal is a signal with a delay time of 4useconds in an incident direction of -40 degrees. The third reception signal is a signal with a delay time of 6u seconds in an incident direction of -20 degrees. The fourth reception signal is a signal with a delay time of 8,u seconds in an incident direction of 0 degree. The fifth reception signal is a signal with a delay time of 10 a seconds in an incident direction of 0 degree.
In the example shown in Fig. 7, the positioning circuit 105 determines the first reception signal in an incident direction of -60 degrees which arrives first as a direct wave and judges that the distance between the portable terminal PT and the cellular base station SB is 600 meters from the delay time of 2~,(seconds. The result of estimation of the incident direction and delay time is sent to an application system and also transmitted to the portable terminal PT as needed.

Referring to Fig. 8, description will be made as regards an example of the positioner. In Fig. 8, Parts having the same functions as those in Fig. 1 are indicated by like reference numbers. The illustrated positioner comprises an array antenna 101, a PDA estimation circuit 104, a positioning circuit 105, a transmitter 106, a transmission antenna 107, first through M-th receiving devices 112-1 to 112-M, a control circuit 113, a calibration signal generator 114 and a calibration signal switch 115.
The array antenna 101 is formed by first through M-th antenna elements 101-1 to 101-M. The array antenna 101 receives signals transmitted by a plurality of portable terminals and outputs them to the first through M-th receiving devices 112-1 to 112-M through the calibration signal switch 115. Since the first through M-th receiving devices 112-1 to 112-M have the same configuration, only the M-th receiving device 112-M is illustrated here. The M-th receiving device 112-M comprises a receiver (RCVR) 102-M, a plurality of weight setting circuits 116, a plurality of matched filters 117 and a multiplexes circuit (MPX) 118 .
The receiver 102-M translates a signal received by the M-th antenna element 101-M into a base band signal and phase detects to output an IQ-separated signal to the matched filters 117. The matched filters 117 and the weight setting circuit 116 are prepared in quantities corresponding to the expected maximum number of portable terminals. Weights associated with a demodulation code for each portable terminal are set by the control circuit 113 in the weight setting circuits 116, and the IQ-separated signal is demodulated by the matched filters 117.
Demodulated outputs corresponding to the number of portable terminals are multiplexed in time domain at the multiplexes circuit 118 and transmitted to the PDA estimation circuit 104. That is, the combination of the plurality of weight setting circuits 116, the plurality of matched filters 117 and the multiplexes circuit 118 corresponds to one CDMA
demodulator shown in Fig. 1.
The control circuit 113 sends the information of weights to the weight setting circuit 116 depending on the number of access from the portable terminals and controls the multiplexes circuit 118 to cause it to output demodulated signals in respective systems simultaneously at preset timing.
The PDA estimation circuit 104 uses the above-described "2D-Unitary ESPRIT" method to estimate the delay time and incident direction of each portable terminal and transmits the result of estimation to the positioning circuit 105. The positioning circuit 105 finds the positions of the portable terminals relative to the base station on the basis of the information indicative of the delay time and incident direction of each portable terminal.
The positioning circuit 105 supplies the application system and the transmitter 106 relative position information indicating such relative positions along with the information of the absolute position of the base station.
The transmitter 106 multiplexes the information on the position of each portable terminal according to the CDMA
method and transmits it to each portable terminal through an aerial by transmitting antenna 107.
The calibration signal generator 114 generates a calibration signal for calibrating the channel gain between the receiving systems and errors in the transmission phase throughout the frequency band. then calibration is carried out, the setting of the calibration signal switch 115 is changed in order to supply the calibration signal to the first through M-th receiving devices 112-1 to 112-M.
The embodiment having such a configuration makes it possible to position a plurality of portable terminals (mobile terminals) in a cell with a device in only one base station covering the cell. The result of positioning may be displayed on the mobile terminals to provide services that replace the existing GPS. The result of positioning may be informed to service systems at relevant organizations to allow various services, e.g., guidance of emergency vehicles.
Above-cited article A show that the accuracy of incident direction estimation is 0.5 degrees and the accuracy of delay time estimation is 0.1 nanosecond when there are two incident waves in directions different from each other by 25 degrees with a difference of 5 nanoseconds in delay time. For current cells for portable telephones which have a radius of about 1 Km, the accuracy of positioning is dominated by direction and is about 9 meters which is a preferable value compared to the accuracy of the positioning 20 to 200 meters of GPS.

As readily understood from the above-mentioned description, the direct wave and the multipath wave are separately identified so that the portable terminal is positioned on the base of the incident direction and delay time of the direct wave. Therefore, it is possible to prevent the position service of the portable terminal from limitation in an urban area.
Since the cellular base station estimates not only incident directions but also delay times, it is possible to use a cell configuration for portable telephones.
Furthermore, it is possible to provide the positioning service with the high accuracy inasmuch as no intentional manipulation is made to reduce accuracy in favor of the national interest of one country unlike the case of GPS.
While this invention has thus far been described in conjunction with the preferred embodiment thereof, it will readily be possible for those skilled in the art to put this invention into practice in various other manners.

Claims (5)

CLAIMS:
1. A positioning apparatus provided in a cellular base station for positioning a portable terminal in a cell covered by said cellular base station, said positioning apparatus having a base position indicative of a position of said cellular base station on a map, comprising:
an array antenna for receiving a transmission signal transmitted by said portable terminal to output a plurality of reception signals;
receiver means for translating said reception signals into a plurality of baseband signals to demodulate said baseband signals into a plurality of demodulated signals;
estimation means for estimating incident direction and delay time of said transmission signal on the basis of the said demodulated signals to output an estimation result indicative of said incident direction and said delay time;
position calculating means for calculating a terminal position of said portable terminal on said map in accordance with said estimation result and said base position to output a terminal position signal indicative of said terminal position;
said portable terminal comprising transmitting means for transmitting a multiplexed spread spectrum signal as said transmission signal; and said receiver means comprising a plurality of receivers each of which has a plurality of matched filters for separately demodulating said multiplexed spread spectrum signals.
2. A positioning apparatus provided in a cellular base station for positioning a portable terminal in a cell covered by said cellular base station, said positioning apparatus having a base position indicative of a position of said cellular base station on a map, comprising:

an array antenna for receiving a transmission signal transmitted by said portable terminal to output a plurality of reception signals;

receiver means for translating said reception signals into a plurality of baseband signals to demodulate said baseband signals into a plurality of demodulated signals;

estimation means for estimating incident direction and delay time of said transmission signal on the basis of the said demodulated signals to output an estimation result indicative of said incident direction and said delay time, said estimation means comprising first means for translating said demodulated signals to digital signals, second means for estimating the incident direction and the delay time of said transmission signal in accordance with 2D (2 Dimensional) Unitary ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques), said second means further estimating a relative power of said transmission signal in accordance with 2D Unitary ESPRIT; and third means for outputting said estimation result having said relative power together with said incident direction and said delay time; and position calculating means for calculating a terminal position of said portable terminal on said map in accordance with said estimation result and said base position to output a terminal position signal indicative of said terminal position.
3. A positioning apparatus provided in a cellular base station for positioning a portable terminal in a cell covered by said cellular base station, said positioning apparatus having a base position indicative of a position of said cellular base station on a map, comprising:

an array antenna for receiving a transmission signal transmitted by said portable terminal to output a plurality of reception signals;

receiver means for translating said reception signals into a plurality of baseband signals to demodulate said baseband signals into a plurality of demodulated signals;

estimation means for estimating incident direction and delay time of said transmission signal on the basis of the said demodulated signals to output an estimation result indicative of said incident direction and said delay time;
and position calculating means for calculating a terminal position of said portable terminal on said map in accordance with said estimation result and said base position to output a terminal position signal indicative of said terminal position said position calculating means comprising first means for determining an incident signal having a shortest delay time as a direct wave on the basis of said estimation result and second means for calculating said portable position on the basis of said direct wave and the said base position.
4. A positioning apparatus provided in a cellular base station for positioning a portable terminal in a cell covered by said cellular base station, said positioning apparatus having a base position indicative of a position of said cellular base station on a map, comprising:

an array antenna for receiving a transmission signal transmitted by said portable terminal to output a plurality of reception signals;

receiver means for translating said reception signals into a plurality of baseband signals to demodulate said baseband signals into a plurality of demodulated signals;

estimation means for estimating incident direction and delay time of said transmission signal on the basis of the said demodulated signals to output an estimation result indicative of said incident direction and said delay time;

position calculating means for calculating a terminal position of said portable terminal on said map in accordance with said estimation result and said base position to output a terminal position signal indicative of said terminal position;

transmitter means for transmitting said portable position signal as a position transmission signal; and an antenna for emitting the said position transmission signal into a subspace.
5. A positioning apparatus as claimed in claim 4, wherein said transmitter means produces a multiplexed signal having said position transmission signal.
CA002259766A 1998-01-21 1999-01-20 Positioning apparatus used in a cellular communication system and capable of carrying out a positioning with a high accuracy in urban area Expired - Lifetime CA2259766C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP009908/1998 1998-01-21
JP00990898A JP3156768B2 (en) 1998-01-21 1998-01-21 Cellular base station and position locating device mounted on it

Publications (2)

Publication Number Publication Date
CA2259766A1 CA2259766A1 (en) 1999-07-21
CA2259766C true CA2259766C (en) 2002-11-12

Family

ID=11733219

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002259766A Expired - Lifetime CA2259766C (en) 1998-01-21 1999-01-20 Positioning apparatus used in a cellular communication system and capable of carrying out a positioning with a high accuracy in urban area

Country Status (5)

Country Link
US (1) US6070079A (en)
EP (1) EP0932049A3 (en)
JP (1) JP3156768B2 (en)
AU (1) AU1318399A (en)
CA (1) CA2259766C (en)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19754031A1 (en) * 1997-12-05 1999-06-17 Siemens Ag Method and measuring arrangement for measuring the properties of radio channels
US6188356B1 (en) * 1998-05-12 2001-02-13 Advantest Corporation Radio monitoring method and apparatus
JPH11326480A (en) * 1998-05-13 1999-11-26 Advantest Corp Specific-regional radio wave visualizing method and its device
US6311043B1 (en) * 1998-10-27 2001-10-30 Siemens Aktiengesellschaft Method and measurement configuration for measuring the characteristics of radio channels
KR100487243B1 (en) * 1998-12-17 2005-08-31 삼성전자주식회사 Device and method for estimating the position of terminal in mobile communication system
US6603800B1 (en) * 1999-03-22 2003-08-05 Interdigital Technology Corporation CDMA location
JP2000295152A (en) * 1999-04-01 2000-10-20 Matsushita Electric Ind Co Ltd Radio communication system adopting array antenna
AU760936C (en) * 1999-05-14 2004-04-08 Auckland Uniservices Limited Improvements in and relating to position estimation systems
NO311279B1 (en) * 1999-10-22 2001-11-05 Radionor Comm As Method and apparatus for determining the position of a mobile communication device, as well as the method and system for open pricing and availability of mobile communication services
FI20000476A0 (en) 2000-03-01 2000-03-01 Nokia Networks Oy A method for improving radio communication performance
JP2001267990A (en) * 2000-03-21 2001-09-28 Matsushita Electric Ind Co Ltd Array antenna base station device
DE10032800A1 (en) * 2000-06-28 2002-01-31 Mannesmann Ag Procedure for the acquisition of traffic situation data
JP3487268B2 (en) * 2000-07-19 2004-01-13 日本電気株式会社 Cellular phone position measurement system
KR100434350B1 (en) * 2000-10-27 2004-06-04 엘지전자 주식회사 Method for controlling data of subscriber's location in Wireless Local Loop
US7181244B2 (en) * 2000-11-16 2007-02-20 Qualcomm, Incorporated Method and apparatus for using position location to direct narrow beam antennas
JP3461167B2 (en) 2001-02-07 2003-10-27 株式会社日立製作所 Position calculation method and position calculation device
JP4349758B2 (en) * 2001-03-27 2009-10-21 パイオニア株式会社 Positioning device
US6901264B2 (en) * 2001-04-25 2005-05-31 Makor Issues And Rights Ltd. Method and system for mobile station positioning in cellular communication networks
JP3717805B2 (en) * 2001-06-07 2005-11-16 三洋電機株式会社 Mobile communication terminal
US7647422B2 (en) * 2001-11-06 2010-01-12 Enterasys Networks, Inc. VPN failure recovery
EP1326201A1 (en) * 2001-12-31 2003-07-09 Flavio Di Capua Personal navigation system for the public transport network
US7606938B2 (en) * 2002-03-01 2009-10-20 Enterasys Networks, Inc. Verified device locations in a data network
GB0206766D0 (en) * 2002-03-22 2002-05-01 Koninkl Philips Electronics Nv Method of, and apparatus for, determining position
US7197082B2 (en) * 2003-03-20 2007-03-27 Lucent Technologies Inc. Linear transformation of symbols to at least partially compensate for correlation between antennas in space time block coded systems
US7130580B2 (en) * 2003-03-20 2006-10-31 Lucent Technologies Inc. Method of compensating for correlation between multiple antennas
US6985107B2 (en) * 2003-07-09 2006-01-10 Lotek Wireless, Inc. Random antenna array interferometer for radio location
US7609786B2 (en) 2004-01-28 2009-10-27 Qualcomm Incorporated Channel estimation for a communication system using spectral estimation
US7580403B2 (en) * 2004-02-26 2009-08-25 Enterasys Networks, Inc. Status transmission system and method
US20050195756A1 (en) * 2004-02-26 2005-09-08 Frattura David E. Status announcement system and method
WO2005091901A2 (en) * 2004-03-10 2005-10-06 Enterasys Networks, Inc. Dynamic network detection system and method
US7945945B2 (en) * 2004-08-06 2011-05-17 Enterasys Networks, Inc. System and method for address block enhanced dynamic network policy management
US7347628B2 (en) 2004-11-08 2008-03-25 Enterasys Networks, Inc. Optical interface identification system
JP4824016B2 (en) * 2005-03-15 2011-11-24 富士通株式会社 Communication apparatus and communication method
US8086232B2 (en) * 2005-06-28 2011-12-27 Enterasys Networks, Inc. Time synchronized wireless method and operations
WO2007118161A2 (en) * 2006-04-05 2007-10-18 Indiana University Research And Technology Corporation Wireless network radiolocation apparatuses, systems, and methods
US8004454B2 (en) * 2006-11-17 2011-08-23 Sony Ericsson Mobile Communications Ab Mobile electronic device equipped with radar
CN107431525B (en) * 2015-02-17 2020-07-28 三菱电机株式会社 Receiving apparatus and receiving method

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5373094A (en) * 1976-12-13 1978-06-29 Hitachi Denshi Ltd Wireless station locator
JPH05211469A (en) * 1992-01-30 1993-08-20 Nec Corp Position detection system for mobile body
US5929752A (en) * 1993-11-24 1999-07-27 Trimble Navigation Limited Clandestine missing vehicle location reporting using cellular channels
DE4408953C2 (en) * 1994-03-16 1996-04-04 Deutsche Telekom Mobil Method for determining the location of mobile stations and arrangement for carrying out the method
US5832389A (en) * 1994-03-24 1998-11-03 Ericsson Inc. Wideband digitization systems and methods for cellular radiotelephones
US5687196A (en) * 1994-09-30 1997-11-11 Harris Corporation Range and bearing tracking system with multipath rejection
JP3260991B2 (en) * 1994-12-22 2002-02-25 京セラ株式会社 Mobile Station Current Location Service Scheme for Cellular Telephone
JPH08271278A (en) * 1995-03-28 1996-10-18 Matsushita Electric Works Ltd Navigation apparatus
DE19511751C2 (en) * 1995-03-30 1998-07-09 Siemens Ag Process for the reconstruction of signals disturbed by multipath propagation
FI105515B (en) * 1995-05-24 2000-08-31 Nokia Networks Oy A method for accelerating handoff and a cellular radio system
US5873048A (en) * 1995-07-27 1999-02-16 Lucent Technologies Inc. Locator and method for a wireless communication system
US5918154A (en) * 1995-08-23 1999-06-29 Pcs Wireless, Inc. Communications systems employing antenna diversity
US5883598A (en) * 1995-12-15 1999-03-16 Signatron Technology Corporation Position location system and method
US5960355A (en) * 1996-02-16 1999-09-28 Telefonaktiebolaget Lm Ericsson Method and an arrangement relating to telecommunication systems
FR2748137B1 (en) * 1996-04-24 1998-07-03 Lewiner Jacques PROCESS FOR OPTIMIZING RADIO COMMUNICATION BETWEEN A FIXED BASE AND A MOBILE
FR2749733B1 (en) * 1996-06-07 1998-11-27 Thomson Csf METHOD AND DEVICE FOR MANAGING INTERCELLULAR COMMUNICATION TRANSFERS IN A CELLULAR RADIO COMMUNICATION SYSTEM
US5890067A (en) * 1996-06-26 1999-03-30 Bnr Inc. Multi-beam antenna arrays for base stations in which the channel follows the mobile unit
US5930243A (en) * 1996-10-11 1999-07-27 Arraycomm, Inc. Method and apparatus for estimating parameters of a communication system using antenna arrays and spatial processing
JP3384263B2 (en) * 1996-11-20 2003-03-10 日産自動車株式会社 Vehicle navigation system
JP3447507B2 (en) * 1997-03-27 2003-09-16 三菱電機株式会社 Wireless communication system
US5930717A (en) * 1997-07-30 1999-07-27 Ericsson Inc System and method using elliptical search area coverage in determining the location of a mobile terminal

Also Published As

Publication number Publication date
JPH11215543A (en) 1999-08-06
EP0932049A2 (en) 1999-07-28
JP3156768B2 (en) 2001-04-16
CA2259766A1 (en) 1999-07-21
US6070079A (en) 2000-05-30
AU1318399A (en) 2000-06-08
EP0932049A3 (en) 2000-12-27

Similar Documents

Publication Publication Date Title
CA2259766C (en) Positioning apparatus used in a cellular communication system and capable of carrying out a positioning with a high accuracy in urban area
Kennedy et al. Direction finding and" smart antennas" using software radio architectures
US6493380B1 (en) System and method for estimating signal time of arrival
Reine et al. Multidimensional high-resolution parameter estimation with applications to channel sounding
US6618010B2 (en) Passive tracking system and method
US5608410A (en) System for locating a source of bursty transmissions cross reference to related applications
KR100291022B1 (en) Method and system for predicting location of mobile station using angle of arrival
US7379757B2 (en) System and method for estimating the multi-path delays in a signal using a spatially blind antenna array
EP0937368B1 (en) Determination of terminal location in a radio system
US20040102157A1 (en) Wireless LAN with distributed access points for space management
US6459409B1 (en) Method and device for using array antenna to estimate location of source in near field
US20020176488A1 (en) Rake receiver for spread spectrum signal demodulation
WO1994027161A1 (en) System for locating a source of bursty transmissions
JP2000114849A (en) Incoming radio wave direction estimating antenna system
JP3600459B2 (en) Method and apparatus for estimating direction of arrival of radio wave
US6239746B1 (en) Radiogoniometry method and device co-operating in transmission
JP2003519995A (en) Method and system for comparing measured radio frequency signal propagation characteristics in a wireless communication system
GB2380881A (en) Estimating the angle of arrival at a mobile terminal
US6225948B1 (en) Method for direction estimation
AU731787B2 (en) Method for direction estimation
KR100622218B1 (en) Apparatus and method for location determination by single cell in mobile communication system
Fokin Channel Model for Location-Aware Beamforming in 5G Ultra-Dense mmWave Radio Access Network
US6353731B1 (en) Method and measurement configuration for measuring the characteristics of radio channels
WO1998008319A1 (en) Rake receiver for spread spectrum signal demodulation
WO1998008319A9 (en) Rake receiver for spread spectrum signal demodulation

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20190121

MKEX Expiry

Effective date: 20190121