CA2258283A1 - Freezing and thawing bag, mold, apparatus and method - Google Patents

Freezing and thawing bag, mold, apparatus and method Download PDF

Info

Publication number
CA2258283A1
CA2258283A1 CA 2258283 CA2258283A CA2258283A1 CA 2258283 A1 CA2258283 A1 CA 2258283A1 CA 2258283 CA2258283 CA 2258283 CA 2258283 A CA2258283 A CA 2258283A CA 2258283 A1 CA2258283 A1 CA 2258283A1
Authority
CA
Canada
Prior art keywords
mold
bag
compartments
wall
portal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA 2258283
Other languages
French (fr)
Inventor
Philip H. Coelho
Pablo Rubinstein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thermogenesis Corp
New York Blood Center Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=24690139&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CA2258283(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Publication of CA2258283A1 publication Critical patent/CA2258283A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/05Containers specially adapted for medical or pharmaceutical purposes for collecting, storing or administering blood, plasma or medical fluids ; Infusion or perfusion containers
    • A61J1/10Bag-type containers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/02Blood transfusion apparatus
    • A61M1/0272Apparatus for treatment of blood or blood constituents prior to or for conservation, e.g. freezing, drying or centrifuging
    • A61M1/0277Frames constraining or supporting bags, e.g. during freezing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/04Dielectric heating, e.g. high-frequency welding, i.e. radio frequency welding of plastic materials having dielectric properties, e.g. PVC
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/131Single flanged joints, i.e. one of the parts to be joined being rigid and flanged in the joint area
    • B29C66/1312Single flange to flange joints, the parts to be joined being rigid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/532Joining single elements to the wall of tubular articles, hollow articles or bars
    • B29C66/5326Joining single elements to the wall of tubular articles, hollow articles or bars said single elements being substantially flat
    • B29C66/53261Enclosing tubular articles between substantially flat elements
    • B29C66/53262Enclosing spouts between the walls of bags, e.g. of medical bags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • B29C66/543Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles joining more than two hollow-preforms to form said hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7394General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/22Construction of moulds; Filling devices for moulds
    • F25C1/24Construction of moulds; Filling devices for moulds for refrigerators, e.g. freezing trays
    • F25C1/243Moulds made of plastics e.g. silicone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/05Containers specially adapted for medical or pharmaceutical purposes for collecting, storing or administering blood, plasma or medical fluids ; Infusion or perfusion containers
    • A61J1/10Bag-type containers
    • A61J1/12Bag-type containers with means for holding samples of contents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • B29C66/83221Joining or pressing tools reciprocating along one axis cooperating reciprocating tools, each tool reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7148Blood bags, medical bags

Abstract

A bag (10), method of manufacture and process are disclosed for the cryopreservation of thermolabile substances. The bag is characterized as having substantially uniform thickness throughout its length and height. The bag features a radiused peripheral edge wall (4) for stress relief and to provide the constant cross section. A peripheral flashing circumscribes the radiused edge wall and provides a suitable purchase area for sealing, so that the thus formed bag is less susceptible to fracture particularly when exposed to cryogenic temperatures. The uniform thickness of the bag promulgates uniform heat transfer to and from the contents of the bag in relation to any surrounding medium at a different temperature. The bag affords more space for efficient storage and reduces heat invasion into the contents of the bag when a plurality of bags are placed, with their larger planar surfaces, in contact with each other.

Description

CA 022~8283 1998-12-23 W O 97149959 P ~ ~US97t10110 FREEZING AND THAWING BAG, MOLD, APPARATUS AND METHOD
Technical Field The following invention relates to an apparatus for forming flexible bags, a method for forming the flexible bag and the bag itself. More specifically, the following invention relates to bags to contain thermolabile and /or cellular biological substances and formed such that they can withstand stresses at extremely cold, cryogenic temperatures, reduce heat invasion from a higher ambient temperature into a plurality of such bags placed together, reduce storage space required for a plurality of such bags, and provide a thin and substantially constant cross-section for the bag so that the rate of heat transfer into and out of the bag is substantially homogenous throughout the contents of the bag thereby providing animproved means of protecting the viability of living cells durin~ freezing and thawing.
Background Art Preservation of blood, cellular biological substances, tissue and other thermolabile products frequently involves product maintenance at extremely cold temperatures. Cellular biological substances are the fundamental, structural andfunctional unit of living organisms. Thermolabile substances are those substances which are easily altered or decomposed by heat. One economical mode for containment involves the use of encapsulating plastic since plastic is relatively inexpensive and lends itself to mass production techniques. However, many plastics suffer from brittleness at extremely low cryogenic temperatures and seams are sometimes susceptible to fracture.
In addition, bags that are formed either by folding over a planar material and seaming along peripheries or layering two planar materials and seaming along theperipheries have a generally ovoid shape when filled with a liquid. This is because the cross-sectional area adjacent either the fold or the seam has an area of decreasing cross-sectional width as it tapers from the center. While for many applications, this type of narrowing is unobjectionable, for certain biological fluids such as white stem cells, a bag having non-uniform thickness along its cross-section may impair theintegrity of the biological product, particularly during temperature changes. One reason for quality loss during a change in temperature may involve the differential thermal gradient within the thermolabile or cellular substance caused by variations in thickness induced by the geometric shape of the bag itself. Stated alternatively, the center portion of the bag is thicker than the edges.

.

CA 022~8283 1998-12-23 WO 97/49g59 PCTrUS97tlOllO
A corollary to the above-enunciated problem entails the fact that the prior art bags, with their thic~cer center portions, also provides a non-planar surface onopposing sides of the bag. This results in a "high spot" which also makes uniform temperature alteration of the contents difficult especially when heat exchange is attempted by contact with a substantially planar surface that provides the heat gradient. Because the bag has a high area, uniform contact along the entire cross-section of the surface will have been precluded.
Figure 8 reflects prior art bag structure and highlights the inherent problems associated therewith. The radio frequency seam S is thinner than the non-seamed plastic forming the bag and has its weakest point W at an edge of the seal closest to the interior I. When the product P begins to freeze, the product freezes first at the thinnest part of the bag, i.e. at edge E. Freezing proceeds inwardly, from the outside in, until an unfrozen core C exists. As the core C freezes, it expands and generates forces F which collimate and focus on the edge E because of the geometrical configuration of the bag. The force F frequently causes bag rupture at the weakest point W because the wedging force appearing at edge E tries to separate the seamwith a turning moment M. Recall the bag material tends to become brittle at low temperatures, exacerbating this problem.
Figure 13 reveals a further site of prior art bag weakness. When an access port tube T is to be fitted to the bag, two horseshoe-shaped RF horns H close on the plastic membrane around the tube T and then the membrane at the seal area S.
This causes another weakened area W where bag failures commonly occur.
Disclosure of Invention The instant invention addresses all of the difficulties noted hereinabove.
One manifestation of the problems solved includes the formation of peripheral seams circumscribing the bag which are appreciably stronger than prior art seam structures. Preferably, the bag is formed from two symmetrical sections, each vacuum formed to provide a major wall flanked by a radiused end wall section andcircumscribed by a peripheral flange. It is contemplated in one form of the invention that two half portions defining a plane of symmetry are thus formed and adhered together so that the peripheral flanges are in mating registry and sealed such as by means of adhesive, ultrasonic, R.F. welding or other means. The increased surface area of the peripheral seam flange coupled with the radiused end wall interposed between the seam flange and the major wall of the bag dissipate forces which in prior art bags could have lent themselves to rupture at the seamarea.

... . . . .

CA 022~8283 1998-12-23 W O g7/499S9 PCTAUS97110110 By vacuum forming the two halves, the contour of the side wall can be carefully controlled to make them substantially planar. Thus, when the two halves are united, a container having substantially uniform cross-section substantiallyalong the entire extent will have been provided. This geometry encourages uniform thawing, freezing and imperviousness to the stresses that attend the seams and the radiused end wall at cryogenic temperatures. This geometry also providesspace efficient storage and reduced heat invasion from a warmer ambient medium when the plurality of bags are placed with their planar surfaces in contact with each other.
IndustT;~l Applicability The industrial applicability of this invention shall be demonstrated through discussion of the following objects of the invention.
Accordingly, it is an object of the present invention to provide a useful and novel ba~ for containing thermolabile or live cell products, a method for makingsame and an apparatus associated with the formation of the bag.
A further object of the present invention is to provide a devicc as characterized above in which the seams associated therewith have greater strength to improve the integrity of the bag.
A further object of the present invention is to provide a device as characterized above in which the major surfaces of the bag are closely spaced, parallel and substantially planar thereby increasing the likelihood that heat transfer along those planar surfaces will more uniformly alter the temperature profile of the contents within the bag.
A further object of the present invention is to provide a device as characterized above which lends itself to mass production techniques, is extremely safe to use and is durable in construction.
A further object of the present invention is to provide a device as characterized above which is substantially rectangular so as to allow the device to be stacked side by side and end to end with minimal wasted space thereby achieving space efficient storage at low temperatures which results in a reduced operating cost.
A further object of the present invention is to provide a device as characterized above which has two parallel planar surfaces which make up a high percentage of the total exterior surface of the container such that when two or more such containers, lowered to subzero temperatures, are placed in contact with each other along these large planar surfaces, the percentage of the total surface area of the combined containers available to absorb heat from a surrounding warmer medium is substantially reduced.

......... .

CA 022~8283 1998-12-23 W O 97/499S9 PCT~US97/10110 Viewed from a first vantage point, it is an object of the present invention to provide a bag comprising, in combination: a first bag portion having a substantially planar outer wall, a radiused edge wall circumscribing the planar outer wall andperipheral flashing circumscribing the radiused edge wall, a second bag portion sealed to the peripheral flashing and overlying the planar outer wall of the first bag portion such that the planar outer wall is spaced from the second bag portion by a dimension at least equal to a radius of the radiused edge wall.
Viewed from a second vantage point, it is an object of the present invention to provide a method for forming a bag, the steps including: forming a first moldhaving a recess including a planar surface, a radiused periphery circumscribing the planar surface and a peripheral ledge circumscribing the radiused periphery and oriented parallel to the planar surface, placing a blank of sheet material over the first mold, and causing the blank to conform to the mold, removing the formed sheet and enclosing the bag.
Viewed from a third vantage point, it is an object of the present invention to provide a bag formed by: deforming a first sheet of material to have a planar outer wall, a radiused edge wall circumscribing the outer wall and peripheral flashingcircumscribing the edge wall oriented parallel to the outer wall and defining a pocket, sealing the pocket with a second sheet of material.
Viewed from a fourth vantage point, it is an object of the present invention to provide a mold for forming bags comprising, in combination: a recess including a planar surface, a radiused periphery circumscribing the planar surface and a peripheral ledge circumscribing the radiused periphery and oriented parallel to the planar surface, means for receiving a blank of sheet material over the recess and lapped atop the peripheral ledge, and means for conforming the sheet material blank to a contour of the mold.
These and other objects will be made manifest when considering the following detailed specification when taken in conjunction with the appended drawing figures.
Brief Description of Drawin~s Figure 1 is a perspective view of a female mold according to the present invention.
Figure 2 is a side view of one type of bag that can be formed from the mold of figure 1.
Figure 3 is a perspective view of figure 2.
Figure 4 is an end view of figure 2.
Figure 5 is an alternate to figure 4.

. . , . . . ... ~ . . .

CA 022~8283 1998-12-23 W O 97~499S9 PCT~US97110110 Figures 6~A-C) are perspective views of a first bag portion (6A), a second bag portion (6B) and the two portions placed in mating registry (6C).
Figure 7 is a perspective view of a mold plug.
Figure 8 reflects prior art bag structure and forces generated in prior art bags.
Figure 9 is a perspective view of an alternative to figures 2 through 5.
Figure 10 is a front view of figure 9.
Figure 11 is a top view of figure 10.
Figure 12 is an end view of figure 10.
Figure 13 reflects prior art technology in anchoring a port tube into a figure 8type prior art bag.
Figure 14 reflects sealing structure and methodology for a port tube communicating through the bag according to one form of the present invention.
Figure 15 depicts the improvement over figure 8.
Best Mode(s) for Carryin~ Out the Invention Referring to the drawings, wherein like reference numerals denote like parts throughout the various drawing figures, reference numeral 10 is directed to the bag according to the present invention.
In its essence, the bag is formed from a first half and a second half. Preferably each half includes a planar outer wall and a peripherally disposed radiused edgewall that terminates in peripheral flashing, the flashing oriented parallel to and spaced from the planar outer wall by the dimension of the radius. In a preferredform, each half forming the bag is a symmetrical mirror image of the other so that the overall thickness of the bag is twice the radius of either half. In another form of the invention, however, the bag can be formed as having a first half as above-described and a second half as a planar back wall overlying a recess formed by the first half and adhered to the first half by the peripheral flashing.
More particularly, the bag as shown in figures 2 through 4 include a planar outer wall 2 which terminates in a peripherally disposed edge wall 4 having a constant radius of curvature and terminating in a peripheral flashing 6 orientedsubstantially parallel to the planar outer wall 2. Thus, the peripheral flashing 6 is spaced from the planar outer wall 2 by the radius defining the radiused edge wall 4 and defining the recess therein.
Figure 2 further reflects an inlet tube 121 formed with a series of necked-down constrictions 123 along its length. This tube 121 can store samples of th~
contents of the bag 1() where each sample 125a, 125b, 125c, etc. can be sequestered from adjacent samples by sealing at the nearest constriction 123.

CA 022~8283 1998-12-23 P~T/US 9 7 / 1 ~ llQ

Figure 5 shows the version where the second half is formed from a planar sheet 8 with the first half as described for figures 2 through 4. In all embodiments, access is provided to an interior of the bag by way of at least one portal 12.
Figure 2 and figure 3 each show three portals 12 allowing communication 5 with the interior of the bag 10. The portal is formed concurrently with the first and second halves when the embodiment of figures 2 through 4 are to be made. The portal 12 will appear on only one half of the bag in the figure 5 embodiment. Figure 2 and figure 3 also reflect a sealed area 14 which defines an area of demarcation between a first compartment 16 and a second compartment 18 for the bag 10.
1 0 Although illustrative, other compartments could be provided. The compartments 16 and 18 can be placed in fluid communication by means of a passageway 20 extending at both an upper and lower extremity of the sealed portion 14. Each passageway 20 can be subsequently heat sealed.
Typically, once the bag has been filled, the bag is massaged to urge the lS contents into both compartments 16 and 18. Further, the bag is manipulated toassure the segments in areas 125a, 125b, 125c, etc. are filled. Then a heat sealer can close passageways 20 (at 21) and at each constriction 123. This is desirable because once the bag is stored at cryogenic temperatures, it is preferred to n inimize temperature spikes. Accordingly, a cutout 15 can appear along a central portion of 2 0 sealed portion 14 so that a minimum amount of time is required to sever compartment 18 from 16. Conversely, no compartments are also contemplated as part of the invention. Please see the bag 10' of figures 9 through 12 where like parts share like numerals.
~ 'j Figure 1 reflects a complementally formed female mold for allowing one half 25 of the bag to be formed. As shown in figure 1, the female mold 30 includes a contour complemental to the bag so that the bag is a true reflection of the mold.
More specifically, the planar outer wall 2 of bag 10 has its corresponding part in mold 30 as planar surface 32. Similarly, the radiused edge wall 4 of bag 10 finds its counterpart with radiused edge wall 34. Likewise, the peripheral flashing 6 finds its 30 counterpart at the flashing support 36. In like manner, the access portals 12 are formed by portal recesses 42.
Figure 6(A-C) shows first and second bag portion halves (6A, B, respectively) and assemblage (6C) of the two halves. Alternatively, figures 6A and 6B could illustrate male mold halves over which planar blanks of plastic are draped and then 35 deformed, for example, under heat and/or pressure. In such a case, the outer wall 2 of the bag portions are formed by mold wall 72. Radiused edge 4 is formed with edge 74. Access portals 12 are formed via projections 82. Partition 14 finds its counterpart in mold form 84 forming two compartments defined by 86 and 88.

AME~ED ~ItE~T
.

CA 022~8283 1998-12-23 W O 97/49g59 PCTAUS97/10110 -7-Figure 14 reflects structure and methodology for placing a port tube 90 into a portal 12, as shown in figure 6C. One peripheral flange 6 is sealed to the other using a complemental RF die 101 which circumscribes the compartment(s) 16 (18, etc.).
Where the die 101 contacts the portal 12, the die has a corresponding arcuate portion 103. Because the plastic which formed the portal was deformed as set forth in figure 1 (or 6), the plastic has uniform thickness throughout and particularly regarding the correct tubular shape. This results in a thicker and stronger sealing - joining area, especially as compared with figure 13. As the plastic is heated and cooled both during fabrication and use, it will have been stress relieved.
Figure 7 shows a plug 57 to be received with the port tube 90 and with portal 12. The preform 57 comprises an inner first rod 53 and second concentric cylinder 55, connected by an annular top wall 51. Central to annular top wall 51 is a bore 59 extending partially into rod 53. The outer cylinder 55 is shorter than the inner rod 53.
The passageway 20 (figure 2) that allows communication between a first compartment and a second compartment 18 includes a relief area defining passageway 40 (figure 1) so that the first compartment forming recess 46 can communicate with the second compartment forming recess 48. A partition 49 constitutes the zone of demarcation between the adjacent compartments.
In fabrication, a sheet of plastic material overlies the mold 30 and the planar material is forced within the contour defined by the mold 30. This can be done by positive pressure on the side of the sheet of material opposite from the mold or it can be formed by vents V forming a vacuum within the mold cavity to draw the plastic down. The forming process can be coupled with heat and pressure and the plastics can be formed from a family of plastics characterized by their ability to deform and retain in memory their deformed state caused by the application of heat and or pressure.
Where the figure 5 bag is to be used, a substantially planar blank of plastic isplaced in overlying registry with respect to the one preformed half defined by one planar outer wall, radiused edge wall and peripheral flashing and is adhered thereto by means of adhesive, ultrasonic welding or other fastening techniques.
Preferably, however, a second mold having mirror symmetry to the figure 1 mold (as in figures 6A, B) allows a second half to be formed which is the mirrorimage of the first half. Thus, the peripheral flange defined by the peripheral flashing 6 is placed in overlying registry, aligning both halves (as shown in figure 6C) and then a welding technique can be used as mentioned above.
The radiused edge wall includes the advantages illustrated in figure 15. First, the planar outer wall does not have any high spots and therefore presents a W O 971499S9 PCTrUS97/10110 substantially uniform thickness along the entire length of the bag. In addition, the radiused edge wall minimizes the existence of stress areas by dissipating focusing forces so that failure of the bag at the seam site will have been made much lesslikely. Finally, the peripheral flashing provides an improved purchase area for causing two halves of the bag to be united since there is an abundance of material easily accessible for adherence either by an adhesive or by welding technology, Having thus described the invention, it should be apparent that numerous structural modifications and adaptations may be resorted to without departing from the scope and fair meaning of the instant invention as set forth hereinabove and as described hereinbelow by the claims.

.. . . ., . . . _ . _

Claims

Claims I Claim:
Claim 1 - A bag comprising, in combination:
a first bag portion having a substantially planar outer wall, a radiused edge wall circumscribing said planar outer wall and peripheral flashing circumscribing said radiused edge wall, a second bag portion sealed to said peripheral flashing and overlying said planar outer wall of said first bag portion such that said planar outer wall is spaced from said second bag portion by a dimension at least equal to a radius of said radiused edge wall.
Claim 2 - The bag of claim 1 wherein said bag contains thermolabile substances.
Claim 3 - The bag of claim 1 wherein said bag contains cellular biological substances.
Claim 4 - The bag of claim 1 wherein an interior of said bag communicates with an exterior by means of a portal.
Claim 5 - The bag of claim 4 wherein said portal extends through said flashing.
Claim 6 - The bag of claim 5 wherein a partition is provided within said bag defining an area of demarcation in said bag including at least two compartments separated one from the other by said partition.
Claim 7 - The bag of claim 6 wherein a second portal is provided such that one portal communicates with said first compartment and another portal communicates with said second compartment.
Claim 8 The bag of claim 7 wherein said compartments communicate with each other by a passageway.
Claim 9 - The bag of claim 8 wherein said passageway includes means to prevent through communication therebetween.
Claim 10 - The bag of claim 9 wherein said bag second portion is symmetrical to said first portion.
Claim 11 - The bag of claim 1 wherein said bag second portion is symmetrical to said first portion.
Claim 12 - The bag of claim 11 wherein an interior of said bag communicates with an exterior by means of a portal.
Claim 13 - The bag of claim 12 wherein said portal extends through said flashing.

Claim 14 - The bag of claim 13 wherein a partition is provided within said bag defining an area of demarcation in said bag including at least two compartments separated one from the other by said partition.
Claim 15 - The bag of claim 14 wherein a second portal is provided such that one portal communicates with said first compartment and another portal communicates with said second compartment.
Claim 16 - The bag of claim 15 wherein said compartments communicate with each other by a passageway.
Claim 17 - The bag of claim 16 wherein said passageway includes means to prevent through communication therebetween.
Claim 18 - The bag of claim 17 wherein said passageway has walls formed from material which can be fused to provide sealing.
Claim 19 - A method for forming a bag, the steps including:
forming a first mold having a recess including a planar surface, a radiused periphery circumscribing said planar surface and a peripheral ledge circumscribing said radiused periphery and oriented parallel to said planar surface, placing a blank of sheet material over said first mold, and causing the blank to conform to the mold, removing the formed sheet and enclosing the bag.
Claim 20 - The method of claim 19 including containing within said bag thermolabile substances.
Claim 21 - The method of claim 19 including containing within said bag cellular biological substances.
Claim 22 - The method of claim 19 wherein enclosing the bag is performed by forming a second mold having a mirror image of the first mold and placing a blank of sheet material over said second mold causing the blank to conform to the mold and forming the bag by registering the formed sheet from the first mold andformed sheet from the second mold together.
Claim 23 - The method of claim 22 including forming a plurality of portals passing into an interior of the bag by providing a portal shaped recess on both the first mold and the second mold.
Claim 24 - The method of claim 23 including providing a partition in the mold so that at least two compartments are defined within the mold so that each formed sheet when united will define two compartments in the bag.
Claim 25 - The method of claim 24 including providing a passageway between the two compartments by providing an access in the mold adjacent the partition, bridging the partition and allowing communication between the first and second compartment.

Claim 26 - The method of claim 25 including providing portals for all compartments.
Claim 27 - The method of claim 26 including sealing the peripheral flashing of each formed sheet by adhering the peripheral flashing causing molecular excursions between the two formed sheets.
Claim 28 - A bag formed by:
deforming a first sheet of material to have a planar outer wall, a radiused edge wall circumscribing said outer wall and peripheral flashing circumscribing said edge wall oriented parallel to said outer wall and defining a pocket, sealing the pocket with a second sheet of material.
Claim 29 - The bag of claim 28 wherein said bag contains thermolabile substances. -Claim 30 - The bag of claim 28 wherein said bag contains cellular biological substances.
Claim 31 - The method of claim 28 wherein enclosing the bag is performed by forming a second mold having a mirror image of the first mold and placing a blank of sheet material over said second mold causing the blank to conform to the mold and forming the bag by registering the formed sheet from the first mold andformed sheet from the second mold together.
Claim 32 - The method of claim 31 including forming a plurality of portals passing into an interior of the bag by providing a portal shaped recess on both the first mold and the second mold.
Claim 33 - The method of claim 32 including providing a partition in the mold so that at least two compartments are defined within the mold so that each formed sheet when united will define two compartments in the bag.
Claim 34 - The method of claim 33 including providing a passageway between the two compartments by providing an access in the mold adjacent the partition, bridging the partition and allowing communication between the first and second compartment.
Claim 35 - The method of claim 34 including providing portals for all compartments.
Claim 36 - The method of claim 35 including sealing the peripheral flashing of each formed sheet by adhering the peripheral flashing causing molecular excursions between the two formed sheets.
Claim 37 - A mold for forming bags comprising, in combination:

a recess including a planar surface, a radiused periphery circumscribing said planar surface and a peripheral support circumscribing said radiused periphery and oriented parallel to said planar surface, and means for conforming a sheet material blank to a contour of the mold.
Claim 38 - The mold of claim 37 including a relief area to define an access portal into the mold cavity for providing a portal into the formed bag.
Claim 39 - The mold of claim 38 including a partition interposed within a portion of the mold dividing the mold into at least two compartments.
Claim 40 - The mold of claim 39 including providing an access passageway between the first and second compartments and passing through the partition.
Claim 41 - The mold of claim 40 including a portal located addressing each of the compartments.
Claim 42 - The mold of claim 41 including a second mold having a mirror symmetry with the first mold so that the bag formed thereby has a thickness twice the radius of one mold.
Claim 45 - A method of reducing breakage in plastic containers made from two plastic co-planar sheets sealed at the periphery and into which access ports are incorporated comprising:
vacuum forming a shape into each of the co-planar sheets such that a recess is formed defined by a planar wall, and a transition from the planar wall to a peripheral ledge with a radius extending between the ledge and the planar wall whereby the formed planar sheetsare of substantially uniform thickness throughout and relieved of stress.
Claim 46 - The mold of claim 41 including a second mold having a planar wall so that the bag formed thereby has one planar side.
Claim 47 - The mold of claim 42 wherein said means for conforming the sheet material blank to a contour of the mold includes at least one vent on the mold for vacuum forming said blank of sheet material within the mold.
Claim 48 - The mold of claim 47 wherein the second of said two compartments is larger than the first said compartment.
Claim 49 - The mold of claim 48 further comprising a plurality of portals located addressing said larger compartment.
Claim 50 - The mold of claim 49 wherein said portals formed are substantially cylindrical bores.
Claim 51 - The mold of claim 50 wherein the mold is rigid.
Claim 52 - The mold of claim 42 wherein said means for conforming the sheet material blank to a contour of the mold includes positive pressure means on the side of the sheet material opposite the mold.

Claim 53 - The mold of claim 52 further comprising a heating means to aid in contouring the blank to the mold.
Claim 54 - The mold of claim 51 wherein said relief area is located along one edge of said radiused periphery.
Claim 55 - The mold of claim 54 wherein said plurality of portals comprises three portals within said second larger compartment and one portal in said firstcompartment.
Claim 56 - A mold for forming bags, comprising, in combination:
a planar surface;
a peripheral support spaced from said planar surface; and a curved wall having a slope which changes along its entire extent when viewed in cross section extending from said planar surface to said peripheral support.
Claim 57 - The mold of claim 56 including at least one partition extending perpendicularly from said planar surface and dividing the mold into at least twocompartments.
Claim 58 - The mold of claim 57 including an access passageway between each said compartment and passing through each said partition.
Claim 59 - The mold of claim 58 wherein said access passageway includes two channels, one remote from the other.
Claim 60 - The mold of claim 59 including at least one relief area defining an access portal in at least one compartment of the mold.
Claim 61 - The mold of claim 60 wherein the mold includes two compartments.
Claim 62 - The mold of claim 61 wherein one of said two compartments is larger than the other said compartment.
Claim 63 - The mold of claim 62 wherein the larger said compartment includes at least two relief areas defining access portals.
Claim 64 - The mold of claim 63 wherein said smaller compartment includes at least one relief area defining an access portal.
Claim 65 - The mold of claim 64 further comprising means for conforming a sheet material blank to a contour of the mold.
Claim 66 - The mold of claim 60 further comprising a second mold complemental to said first mold for forming a complete bag.
Claim 67- A bag mold, comprising, in combination:
a planar surface;
a peripheral support spaced from said planar surface connected by a wall; and at least one relief area defining an access portal projecting from said wall.
Claim 68 - The bag mold of claim 67 wherein said wall has a slope which changes along its entire extent when viewed in cross-section extending from saidplanar surface to said peripheral support.
Claim 69 - The bag mold of claim 68 including at least one partition extending perpendicularly from said planar surface and dividing the mold into atleast two compartments.
Claim 70 - The bag mold of claim 69 including an access passageway between each said compartment and passing through each said partition.
Claim 71 - The bag mold of claim 70 wherein said access passageway includes two channels per partition, one remote from the other.
Claim 72 - The bag mold of claim 71 wherein the compartments are not of equal size.
Claim 73 - The bag mold of claim 72 wherein a larger compartment includes at least two relief areas defining access portals.
Claim 74 - The bag mold of claim 73 wherein a smaller compartment includes at least one relief area defining an access portal.
Claim 75 - The bag mold of claim 74 further comprising means for conforming a sheet material blank to a contour of the mold.
Claim 76 - The bag mold of claim 75 wherein said sheet material is comprised of a plastic material.
CA 2258283 1996-06-25 1997-06-24 Freezing and thawing bag, mold, apparatus and method Abandoned CA2258283A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/670,368 US6146124A (en) 1996-06-25 1996-06-25 Freezing and thawing bag, mold, apparatus and method
US08/670,368 1996-06-25

Publications (1)

Publication Number Publication Date
CA2258283A1 true CA2258283A1 (en) 1997-12-31

Family

ID=24690139

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2258283 Abandoned CA2258283A1 (en) 1996-06-25 1997-06-24 Freezing and thawing bag, mold, apparatus and method

Country Status (8)

Country Link
US (2) US6146124A (en)
EP (1) EP0946225B1 (en)
JP (2) JP4317265B2 (en)
AT (1) ATE270909T1 (en)
AU (1) AU3483097A (en)
CA (1) CA2258283A1 (en)
DE (1) DE69729879T2 (en)
WO (1) WO1997049959A2 (en)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999058094A2 (en) * 1998-05-11 1999-11-18 Cobe Laboratories, Inc. Apparatus and method for blood component sampling
US20020069649A1 (en) * 2000-12-08 2002-06-13 Ardais Corporation Container for cryopreserved material
US20040262318A1 (en) * 2000-12-08 2004-12-30 Ardais Corporation Container, method and system for cryptopreserved material
US6684646B2 (en) 2001-05-22 2004-02-03 Integrated Biosystems, Inc. Systems and methods for freezing, storing and thawing biopharmaceutical material
US6945056B2 (en) * 2001-11-01 2005-09-20 Integrated Biosystems, Inc. Systems and methods for freezing, mixing and thawing biopharmaceutical material
US6698213B2 (en) * 2001-05-22 2004-03-02 Integrated Biosystems, Inc. Systems and methods for freezing and storing biopharmaceutical material
DE10151343A1 (en) * 2001-10-22 2003-05-08 Vita 34 Ag Bag system for the cryopreservation of body fluids
US7104074B2 (en) 2001-11-01 2006-09-12 Integrated Biosystems, Inc. Systems and methods for freezing, storing, transporting and thawing biopharmaceutical material
US20040254560A1 (en) * 2003-06-11 2004-12-16 Coelho Philip H. Rupture resistant blow molded freezer bag for containing blood products
US20050287512A1 (en) * 2004-06-23 2005-12-29 Cullis Herbert M Specimen storing device and method
US8028532B2 (en) 2006-03-06 2011-10-04 Sartorius Stedim North America Inc. Systems and methods for freezing, storing and thawing biopharmaceutical materials
US20100281886A1 (en) * 2006-09-11 2010-11-11 Core Dynamics Limited Systems, devices and methods for freezing and thawing biological materials
US8177123B2 (en) * 2008-09-24 2012-05-15 Sartorius Stedim North America Inc. Systems and methods for freezing, storing and thawing biopharmaceutical materials
US9301520B2 (en) 2007-12-21 2016-04-05 Sartorius Stedim North America Inc. Systems and methods for freezing, storing and thawing biopharmaceutical materials
US20090238939A1 (en) * 2008-03-18 2009-09-24 Itzel Machado Defrosting device
TWI481534B (en) * 2008-05-16 2015-04-21 Biosafe Sa Manufacture of bags for containing biological specimens
FR2931838B1 (en) 2008-06-02 2010-06-11 Millipore Corp INSTALLATION FOR TREATING A BIOLOGICAL LIQUID.
US8177072B2 (en) * 2008-12-04 2012-05-15 Thermogenesis Corp. Apparatus and method for separating and isolating components of a biological fluid
FR2940145B1 (en) * 2008-12-24 2011-03-25 Millipore Corp TROLLEY AND INSTALLATION FOR TREATING A BIOLOGICAL LIQUID
FR2941385B1 (en) 2009-01-23 2011-04-01 Millipore Corp METHOD FOR PROVIDING A CIRCUIT FOR BIOLOGICAL LIQUID AND CIRCUIT OBTAINED
WO2010122542A1 (en) * 2009-04-20 2010-10-28 Fuil Technologies Limited A container for storing a flowable bodily material, and a method for storing a flowable bodily material
FR2955119B1 (en) 2010-01-13 2012-12-28 Millipore Corp CIRCUIT FOR BIOLOGICAL LIQUID
FR2960795B1 (en) 2010-06-08 2012-07-27 Millipore Corp DEVICE FOR A PLANT FOR TREATING BIOLOGICAL LIQUID
FR2960794B1 (en) 2010-06-08 2012-07-27 Millipore Corp DEVICE FOR A PLANT FOR TREATING BIOLOGICAL LIQUID
FR2960796B1 (en) 2010-06-08 2014-01-24 Millipore Corp DEVICE FOR A PLANT FOR TREATING BIOLOGICAL LIQUID
FR2961713B1 (en) 2010-06-23 2012-08-10 Millipore Corp POCKET FOR CIRCUIT OF A BIOLOGICAL LIQUID TREATMENT FACILITY
FR2961711B1 (en) 2010-06-23 2012-08-17 Millipore Corp POCKET FOR CIRCUIT OF A BIOLOGICAL LIQUID TREATMENT FACILITY
WO2012003185A1 (en) * 2010-07-01 2012-01-05 Millipore Corporation Rigid disposable flow path
FR2963573B1 (en) 2010-08-03 2012-08-31 Millipore Corp PUMPING TROLLEY FOR A BIOLOGICAL LIQUID TREATMENT FACILITY
DE202010012728U1 (en) 2010-09-22 2011-11-29 Deutsche Gesellschaft für Humanplasma mbH Blood plasma collection bottle
FR2973396B1 (en) 2011-03-28 2013-05-10 Millipore Corp FACILITY FOR TREATING BIOLOGICAL LIQUID
JP6157050B2 (en) * 2011-06-22 2017-07-05 株式会社ジェイ・エム・エス Cell cryopreservation container
FR2977451B1 (en) 2011-07-08 2013-08-16 Maco Pharma Sa KIT FOR CONSERVATION OF A BIOLOGICAL PRODUCT COMPRISING A THREE-DIMENSIONAL POCKET AND AN ADAPTED THREE-DIMENSIONAL ENVELOPE
US9427512B2 (en) 2012-06-08 2016-08-30 Pall Corporation Filter device
US9421317B2 (en) 2012-06-08 2016-08-23 Pall Corporation Cell harvesting device and system
FR2993572B1 (en) 2012-07-23 2016-04-15 Emd Millipore Corp CIRCUIT FOR BIOLOGICAL LIQUID COMPRISING A PINCH VALVE
JP6286939B2 (en) * 2013-08-26 2018-03-07 株式会社ジェイ・エム・エス Cell cryopreservation container
US9346571B2 (en) 2013-10-31 2016-05-24 Pall Corporation Multi-chamber freezing bag
WO2015147077A1 (en) * 2014-03-28 2015-10-01 北海道公立大学法人札幌医科大学 Method for manufacturing cell filling container, container for cell filling, and sealing device
US20180343852A1 (en) * 2015-05-12 2018-12-06 Thermogenesis Corp. Cryogenic storage bag
WO2017145704A1 (en) * 2016-02-25 2017-08-31 テルモ株式会社 Medical bag unit and manufacturing method thereof
AU2019252550A1 (en) * 2018-04-11 2020-11-19 Biolife Solutions, Inc. Systems and methods for cryostorage bag protection
US20210244019A1 (en) * 2018-04-20 2021-08-12 Astero Bio Corporation Multi-Functional Cryogenic Storage Vessel
EP3784037A1 (en) * 2018-04-24 2021-03-03 W.L. Gore & Associates, Inc. Flexible container for storage and transport of biopharmaceuticals
JP7396084B2 (en) 2020-02-05 2023-12-12 株式会社ジェイ・エム・エス cell storage container

Family Cites Families (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA455916A (en) * 1949-04-12 The Seamless Rubber Company Method of making rubber gloves
US699778A (en) 1902-01-17 1902-05-13 Hubbard H Upham Water-bag.
US1374088A (en) 1920-04-19 1921-04-05 William H Miller Water-bottle
US3545671A (en) * 1967-02-14 1970-12-08 Eugene Ross Lab Inc Apparatus for and method of collecting,storing,separating and dispensing blood and blood components
SE332508B (en) * 1967-09-25 1971-02-08 Rigello Pak Ab
US3576650A (en) * 1968-01-18 1971-04-27 Union Carbide Corp Cryogenic plastic film package
DE1913463A1 (en) * 1968-04-01 1969-11-13 Goodyear Tire & Rubber Composite structure
US3654012A (en) * 1970-02-04 1972-04-04 Uniroyal Inc Method of making a composite plastic article of manufacture
US3727788A (en) 1970-12-09 1973-04-17 Medical Dev Corp Fluid container structure having mutually cooperable port connections
US3755040A (en) * 1971-04-15 1973-08-28 Goodyear Tire & Rubber Container for liquid hydrocarbons
US3968829A (en) * 1971-06-25 1976-07-13 Kabushiki Kaisha Akita Molding apparatus with shielding mold member
US3861977A (en) * 1972-11-21 1975-01-21 Rudkin Wiley Corp Process for vacuum bag molding
US3999930A (en) * 1973-03-02 1976-12-28 Telbizoff Louis E Mold assembly for forming and curing flexible seals
CH582101A5 (en) * 1973-07-30 1976-11-30 Hirmann Georg Components stored separately in compartmented bag - before mixing by folding bag to close connecting passage
US4105730A (en) * 1976-01-12 1978-08-08 Baxter Travenol Laboratories, Inc. Method of making a flexible, collapsible container for liquids with improved tail seal
US4131200A (en) * 1976-07-06 1978-12-26 Union Carbide Corporation Thermoplastic blood bag
DE7621615U1 (en) * 1976-07-08 1977-02-03 Biotest-Serum-Institut Gmbh, 6000 Frankfurt BAG FOR CONTAINING BLOOD AND BLOOD COMPONENTS
SE7706109L (en) * 1976-12-10 1978-06-11 Multivac Haggenmueller Kg SET AND DEVICE FOR MOLDING PLASTIC FOILS
JPS5841862B2 (en) * 1977-01-08 1983-09-14 テルモ株式会社 medical equipment
US4152184A (en) * 1977-02-18 1979-05-01 Baxter Travenol Laboratories, Inc. Method of manufacturing a blood bag for use in a test for neutrophil marrow reserves
USRE31135E (en) 1977-07-22 1983-02-01 Baxter Travenol Laboratories, Inc. Flexible collapsible containers, and method of molding
US4191231A (en) * 1977-07-22 1980-03-04 Baxter Travenol Laboratories, Inc. Flexible collapsible containers, and method of molding
US4116338A (en) 1977-09-30 1978-09-26 Sherwood Medical Industries Inc. Package for sterile article
US4244364A (en) 1979-02-23 1981-01-13 Harold Grushkin Combination intra-veinous flow-meter and low level fluid mechanism
US4253458A (en) 1979-03-08 1981-03-03 Baxter Travenol Laboratories, Inc. Method and apparatus for collecting blood plasma
DE8007086U1 (en) * 1980-03-14 1982-03-18 Multivac Sepp Haggenmüller KG, 8941 Wolfertschwenden DEVICE FOR MOLDING CONTAINERS FROM A FILM
SE448518B (en) * 1981-02-16 1987-03-02 Gambro Dialysatoren FLOW ROOM FOR BLOOD OR SIMILAR VENTURES
JPS5883966A (en) * 1981-11-13 1983-05-19 テルモ株式会社 Blood circuit for membrane type artificial lung
FI71102C (en) 1982-02-25 1986-11-24 Fluilogic Systems Oy REAGENSFOERPACKNING
JPS58165867A (en) * 1982-03-26 1983-09-30 テルモ株式会社 Medical bag and production thereof
US4467588A (en) * 1982-04-06 1984-08-28 Baxter Travenol Laboratories, Inc. Separated packaging and sterile processing for liquid-powder mixing
US4484920A (en) * 1982-04-06 1984-11-27 Baxter Travenol Laboratories, Inc. Container for mixing a liquid and a solid
US4482585A (en) * 1982-06-11 1984-11-13 Toppan Printing Co., Ltd. Container resistant to extremely low temperatures
US4588401A (en) * 1982-06-29 1986-05-13 E. I. Du Pont De Nemours And Company Platelet storage container
US4505708A (en) 1982-09-27 1985-03-19 Baxter Travenol Laboratories, Inc. Blood component storage container and method utilizing a polyvinyl chloride plastic formulation free or essentially free of leachable materials
US4670013A (en) 1982-12-27 1987-06-02 Miles Laboratories, Inc. Container for blood and blood components
JPS59197256A (en) * 1983-04-25 1984-11-08 テルモ株式会社 Medical bag and production thereof
US4550825A (en) 1983-07-27 1985-11-05 The West Company Multicompartment medicament container
US4469227A (en) * 1983-08-17 1984-09-04 Clifford Faust Package for cryogenically frozen liquids
EP0145825A1 (en) * 1983-09-08 1985-06-26 Fiab System Ab Arrangement for infusion bags
JPS6133661A (en) * 1984-02-02 1986-02-17 テルモ株式会社 Medical instrument
ATE80548T1 (en) * 1985-06-14 1992-10-15 Shinsozai Sogo Kenkyusho Kk MEDICAL LIQUID CONTAINER AND ITS MANUFACTURE.
US4591357A (en) * 1985-09-27 1986-05-27 Sneider Vincent R Container for drug isolation, storage and subsequent mixing
US4630448A (en) 1985-10-25 1986-12-23 Baxter Travenol Laboratories, Inc. Container for storing solid living tissue portions
US4613640A (en) * 1985-11-13 1986-09-23 Medical Research Associates, Ltd. #2 Transparent thermoplastic elastomeric compositions and articles produced therefrom
US5066290A (en) * 1986-02-07 1991-11-19 Baxter International Inc. Sterilizable multi-layer plastic materials for medical containers and the like
US5114421A (en) 1986-09-22 1992-05-19 Polak Robert B Medicament container/dispenser assembly
US4915847A (en) 1987-08-04 1990-04-10 Baxter International Inc. Cryoglobulin separation
US5226564A (en) * 1986-11-28 1993-07-13 E. R. Squibb & Sons, Inc. Manufacture of bags
US4820297A (en) 1986-12-12 1989-04-11 Baxter International Inc. Fluid delivery system with integrally formed sample cell
GB2199500A (en) * 1987-01-12 1988-07-13 Craig Med Prod Ltd Bags for containing liquids
CH686778A5 (en) 1987-05-29 1996-06-28 Vifor Medical Ag Container for separate storage of active compounds and their subsequent mixing.
US5192553A (en) 1987-11-12 1993-03-09 Biocyte Corporation Isolation and preservation of fetal and neonatal hematopoietic stem and progenitor cells of the blood and methods of therapeutic use
US5004681B1 (en) 1987-11-12 2000-04-11 Biocyte Corp Preservation of fetal and neonatal hematopoietic stem and progenitor cells of the blood
US5198175A (en) * 1987-12-15 1993-03-30 Toyo Seikan Kaisha Ltd. Process for producing deep-drawn plastic container
CA1335167C (en) 1988-01-25 1995-04-11 Steven C. Jepson Pre-slit injection site and associated cannula
US5411499A (en) 1988-01-25 1995-05-02 Baxter International Inc. Needleless vial access device
US5108532A (en) * 1988-02-02 1992-04-28 Northrop Corporation Method and apparatus for shaping, forming, consolidating and co-consolidating thermoplastic or thermosetting composite products
US4910147A (en) 1988-09-21 1990-03-20 Baxter International Inc. Cell culture media flexible container
US4994021A (en) 1988-11-15 1991-02-19 Baxter International Inc. Apparatus and method for collecting and freezing blood plasma
DE3904080A1 (en) * 1989-02-11 1990-08-16 Schiwa Gmbh CONTAINABLE CONTAINER FOR ACQUIRING LIQUID SUBSTANCES
US4943222A (en) * 1989-04-17 1990-07-24 Shell Oil Company Apparatus for forming preformed material
JPH03197031A (en) * 1989-12-27 1991-08-28 Mitsui Petrochem Ind Ltd Preparation of container for transfusion
US5055198A (en) 1990-03-07 1991-10-08 Shettigar U Ramakrishna Autologous blood recovery membrane system and method
ES2044683T3 (en) 1990-03-21 1994-01-01 Unilever Nv BAGS AND PACKAGING PROCEDURE.
US5045076A (en) 1990-03-26 1991-09-03 Pam Pierce Disposable insulated surgical basins
US5364385A (en) * 1990-05-09 1994-11-15 Lifesource Advanced Blood Bank Systems, Inc. Storage bag for blood and blood components
US5018622A (en) * 1990-06-27 1991-05-28 P.T.P. Industries Battery display package
US5038938A (en) 1990-06-28 1991-08-13 Ddj Enterprises, Inc. Disposable sanitary arthorcentesis reservoir
SE9002468D0 (en) * 1990-07-19 1990-07-19 Kabivitrum Ab A DEVICE AND METHOD FOR DOSING A LIQUID PRODUCT
US5460625A (en) 1990-07-31 1995-10-24 Baxter International Inc. Cryogenic resistant coextruded tubing
US5154716A (en) 1990-11-06 1992-10-13 Miles Inc. Bottom blood bag separation system
DE69117009T2 (en) * 1990-11-06 1996-07-25 Mayer Oskar Foods Food packaging with divided rigid base shell
US5176258A (en) * 1991-04-03 1993-01-05 Linvatec Corporation Sealed package and method for sealing products in a package
US5257983A (en) 1991-04-12 1993-11-02 Cryopharm Corporation Blood bag for lyophilization
US5356373A (en) 1991-11-15 1994-10-18 Miles Inc. Method and apparatus for autologous transfusions in premature infants
US5300059A (en) * 1991-11-19 1994-04-05 Hydro Slip Technologies Inc. Bloodbag and method of making same
US5163554A (en) 1992-01-10 1992-11-17 Merit Medical Systems, Inc. System and method for packaging coils of tubing
TW265263B (en) * 1993-01-19 1995-12-11 Baxter Int
US5485919A (en) * 1993-02-22 1996-01-23 Nantucket Industries, Inc. Clamshell package and packaging system
US5348549A (en) 1993-03-29 1994-09-20 Brown Daniel R Fluid tight medical apparatus disposal receptacle
US5439100A (en) * 1993-05-04 1995-08-08 The Dial Corp. Packaging system for dispensing cartridge for volatiles
US5509898A (en) * 1993-05-10 1996-04-23 Material Engineering Technology Laboratory, Inc. Container for therapeutic use
US5379895A (en) * 1993-09-13 1995-01-10 Minnesota Mining And Manufacturing Company Package for surgical device
US5591337A (en) * 1993-09-14 1997-01-07 Baxter International Inc. Apparatus for filtering leukocytes from blood cells
US5423794A (en) 1993-09-28 1995-06-13 Abbott Laboratories Intravenous container with siphoning port
US5527272A (en) 1994-02-14 1996-06-18 Fresenius Usa, Inc. Bacteriocidal dialysis collection bag and method
US5545370A (en) * 1994-04-11 1996-08-13 Plastofilm Industries, Inc. Process for producing thermoformed article employing selective cooling
US5474169A (en) * 1994-04-18 1995-12-12 Bauman; Robert C. Disposable contact lens storage container
US5486390A (en) * 1994-04-25 1996-01-23 Mobil Oil Corporation Recyclable blister package
US5477660A (en) * 1994-11-01 1995-12-26 Multivac Sepp Haggenmuller Kg Process and apparatus for maximizing vacuum packaging machine cycle rate
US5638686A (en) * 1995-02-23 1997-06-17 Thermogenesis Corporation Method and apparatus for cryogenic storage of thermolabile products
US5637330A (en) * 1995-06-07 1997-06-10 Samsonite Corporation Apparatus for differential pressure forming shells for hard sided luggage containers
US6213334B1 (en) * 1996-09-05 2001-04-10 Baxter International Inc Flexible, three-dimensional containers and methods for making them

Also Published As

Publication number Publication date
DE69729879D1 (en) 2004-08-19
JP2001517103A (en) 2001-10-02
JP4317265B2 (en) 2009-08-19
EP0946225A2 (en) 1999-10-06
ATE270909T1 (en) 2004-07-15
AU3483097A (en) 1998-01-14
EP0946225A4 (en) 2001-10-24
DE69729879T2 (en) 2005-07-14
WO1997049959A3 (en) 1998-03-19
WO1997049959A2 (en) 1997-12-31
JP2009082732A (en) 2009-04-23
US6146124A (en) 2000-11-14
US6232115B1 (en) 2001-05-15
EP0946225B1 (en) 2004-07-14
JP4768800B2 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
CA2258283A1 (en) Freezing and thawing bag, mold, apparatus and method
WO1997049959A9 (en) Freezing and thawing bag, mold, apparatus and method
US6808675B1 (en) Freezing and thawing bag, mold, apparatus and method
EP1663355B1 (en) Flexible container with a flexible port and method for making the same
US8287680B2 (en) Manufacture of bags for containing biological specimens
AU678537B2 (en) Medical container port
US8668681B2 (en) Multi-chamber container
JP2001524426A (en) Flexible container molded by heat and pressure and method of making same
EP0691825A1 (en) Sterile formed, filled and sealed flexible container
JPH01317733A (en) Bottomed cylindrical molded product, mold and method for preparing the same
US20070257039A1 (en) Container for preserving blood products at cryogenic temperatures
JP2021521945A (en) Multi-function cryogenic storage container
CN205411667U (en) Integrated into one piece combined cover
CN205411664U (en) Integrated into one piece combined cover
JPH049651B2 (en)
JP2012197091A (en) Sealing method, and method for manufacturing medical container
CN205411665U (en) Integrated into one piece combined cover
CN205411668U (en) Integrated into one piece combined cover
JP4105003B2 (en) Mouth member for medical container, medical container and manufacturing method thereof
CN205729790U (en) A kind of one-body molded composite cover
JP2965810B2 (en) Medical bag and method for manufacturing medical bag
JPH07155363A (en) Vessel for medical treatment and metal mold
JPH03131260A (en) Medical liquid container and its preparation
JP3308591B2 (en) Extruded tube container and manufacturing method thereof
JPH06114942A (en) Transfusion vessel and manufacture thereof

Legal Events

Date Code Title Description
FZDE Discontinued