CA2246470C - Wireless lan with enhanced capture provision - Google Patents

Wireless lan with enhanced capture provision Download PDF

Info

Publication number
CA2246470C
CA2246470C CA002246470A CA2246470A CA2246470C CA 2246470 C CA2246470 C CA 2246470C CA 002246470 A CA002246470 A CA 002246470A CA 2246470 A CA2246470 A CA 2246470A CA 2246470 C CA2246470 C CA 2246470C
Authority
CA
Canada
Prior art keywords
message
receiver
carrier
detected
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002246470A
Other languages
French (fr)
Other versions
CA2246470A1 (en
Inventor
Jan Boer
Hendrik Van Bokhorst
Wilhelmus Josephus Diepstraten
Adriaan Kamerman
Rienk Mud
Hans Van Driest
Robert John Kopmeiners
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia of America Corp
Original Assignee
Lucent Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lucent Technologies Inc filed Critical Lucent Technologies Inc
Publication of CA2246470A1 publication Critical patent/CA2246470A1/en
Application granted granted Critical
Publication of CA2246470C publication Critical patent/CA2246470C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • H04W74/0816Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA carrier sensing with collision avoidance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Abstract

A receiver and a method for operating the receiver, for a station in a wireless local area network using a common wireless communication channel and employing a CSMA/CA (carrier sense multiple access with collision avoidance) protocol includes various modes. In normal mode, the receiver follows typical states in order to detect a message and demodulate data from the message properly. Meanwhile, a process implements a message-in-message (MIM) mode when an energy increase above a specified level is detected. While in the MIM mode, if a carrier is detected, the energy increase is caused by a new message; otherwise, the energy increase is caused by an interfering station. If the carrier is detected, the receiver begins retraining so that it can start receiving the new message as soon as the first message ends. If no carrier is detected, the receiver waits a specified time to detect a carrier or for the end of the first message, after which the receiver returns to the beginning of the normal mode. While in the normal mode, if a message is detected that is not addressed to the station, the receiver enters a hunt mode. While in the hunt mode, the receiver waits for the current message to finish. At the same time, a process implements retraining when both an energy increase above a specified level and a carrier are detected. If no carrier is detected within a specified time, or if the energy level decreases below the specified level, the receiver returns to the beginning of the normal mode.

Description

WIRELESS LAN WITH ENHANCED CAPTURE PROVISION
FIELD OF THE INVENTION
The invention pertains to the field of wireless local area networks (LANs), and in particular, to a wireless LAN with an enhanced retrain control function to enhance the capture provision of a station in receive mode.
BACKGROUND OF THE INVENTION
Wireless LANs are usually based on a medium access control (MAC) using a listen-before-talk scheme like carrier sense multiple access with collision avoidance (CSMA/CA) as described by the IEEE 802.11 standard, ANSI/IEEE Std 802.11, "Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications," 1999. Such a scheme allows a station to start a transmission when there is no transmission active that is being received above a certain threshold level.
The IEEE 802.11 standard for wireless LANs is a standard for systems that operate in the 2,400-2,483.5 MHz industrial, scientific and medical (ISM) band. The ISM
band is available worldwide and allows unlicensed operation for spread spectrum systems. IEEE 802.11 focuses on the MAC and physical layer (PHY) protocols for access point based networks and ad-hoc networks. IEEE 802.11 supports direct sequence spread spectrum (DSSS) with differential encoded BPSK and QPSK, frequency hopping spread spectrum (FHSS) with Gaussian FSK (CiFSK), and infrared with pulse position modulation (PPM).
The basic medium access behavior allows interoperability between compatible physical layer protocols through the use of both CSMA/CA and a random backoff time following a busy medium condition. In addition, all directed traffic uses immediate positive acknowledgment (ACK frame), where retransmission is scheduled by the sender if no ACK is received. The CSMA/CA protocol is designed to reduce the collision probability between multiple stations accessing the medium at the point where they would most likely occur. The highest probability of a collision occurs at the moment in time that is just after the medium becomes free following a busy medium, because multiple stations are waiting for the medium to become available. Therefore, a random backoff arrangement is used to resolve medium contention conflicts. Basic CSMA/CA
medium access control scheme behavior is shown in Fig. 1. IFS stands for Inter Frame Spacing.
However, the MAC cannot always prevent the occurrence of co-channel transmissions that overlap in time due to position dependent receive level variations or limited margins with respect to the carrier sense / defer threshold.
SUMMARY OF THE INVENTION
Briefly stated, a receiver for a station in a wireless local area network using a common wireless communication channel and employing a C.'SMA/CA (carrier sense multiple access with collision avoidance) protocol includes various modes. In normal mode, the receiver follows typical states in order to detect a message and demodulate data from the message properly. Meanwhile, a process implements a message-in-message (MIM) mode when an energy increase above a specified level is detected. While in the MIM mode, if a carrier is detected, the energy increase is caused by a new message;
otherwise, the energy increase is caused by an interfering station. If the carrier is detected, the receiver begins retraining so that it can start receiving the new message as soon as the first message ends. If no carrier is detected, the receiver waits a specified time to detect a carrier or for the end of the first message, after which the receiver returns to the beginning of the normal mode. While in the normal mode, if a message is detected that is not addressed to the station, the receiver enters a hunt mode. While in the hunt mode, the receiver waits for the current message to finish. At the same time, a process implements retraining when both an energy increase above a specified level and a carrier are detected. If no carrier is detected within a specified time, or if the energy level decreases below the specified level, the receiver returns to the beginning of the normal mode.
In accordance with one aspect of the present invention there is provided a method for operating a receiver of a station in a wireless local area network using a common 2a wireless communication channel and employing a CSMA/CA (carrier sense multiple access with collision avoidance) protocol, comprising the steps of: detecting a message;
determining when said message is addressed to said station; demodulating said message when said message is addressed to said station; detecting a first energy increase above a first specified level when said message is being demodulated; detecting a carrier upon detection of said first energy increase; retraining upon detection of said carrier; detecting a second energy increase above a second specified level; detecting said carrier when said second energy increase is detected; and retraining upon detection of said second energy increase and detection of said carrier, wherein there is no transmission of a collision detect signal either after detecting said first energy increase or after detecting said second energy increase.
In accordance with another aspect of the present invention there is provided a receiver for a station in a wireless local area network using a common wireless communication channel and employing a CSMA/CA (carrier sense multiple access with collision avoidance) protocol, comprising: first detecting means for detecting a message;
means for determining when said message is addressed to said station; means for demodulating said message when said message is addressed to said station;
second detecting means for detecting a first energy increase above a first specified level when said message is being demodulated; third detecting means for detecting a carrier upon detection of said first energy increase; first retraining means for retraining upon detection of said carrier; fourth detecting means for detecting a second energy increase above a second specified level; fifth detecting means for detecting said carrier when said second energy increase is detected; and second retraining means for retraining upon detection of said second energy increase and detection of said carrier, wherein the receiver does not include means for transmitting a collision detect signal after detecting either said first or said second increase in energy.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows basic CSMA/CA behavior of a transceiver in a wireless LAN.
Fig. 2 shows a variation of receive levels vs. distance characterized by exponential path loss for typical indoor environments.
Fig. 3A shows an illustration of medium reuse distanc°e.
Fig. 3B shows an illustration of worst case interference distance for cellular telephone systems.
Fig. 3C shows an illustration of worst case interference distance for a wireless LAN.
Fig. 4 shows a basic block diagram of a DSSS transceiver.
Fig. 5A shows a correlator output at a single symbol (solid line) and successive symbols (dashed line).
Fig. 5B shows a correlator output with desired signal contribution (solid line) and interferor signal contribution (dashed line).
Fig. SC shows a correlator output at a significant ch~.nnel degradation (solid line) and at an ideal channel (dashed line).
Fig. 6A shows receive levels (solid lines) around access points at positions 0 and 80 meters and stations at 20 meters from the access points and reference levels (dashed lines) for a 6 dB and a 10 dB margin with respect to the signal from the access points.
Fig. 6B shows receive levels (solid lines) around acc~;ss points at positions 0 and 40 meters and stations at 20 meters and 10 meters from the access points in the presence of a 10 dB wall loss.
Fig. 7 shows a receiver state machine according to an embodiment of the present invention.
Fig. 8 shows a slot diagram of a CDA (Carrier Detect Active) State of the receiver state machine of Fig. 7 when an AGC is not fully statled.
Fig. 9 shows a slat diagram of a MIM (Message in Message) State of the receiver state machine of Fig. '7.
Fig. 10 shows a slot diagram of a HUNT State of the receiver state machine of Fig. 7.
DESCRIPTION OF THE PREFERRED EMBODIMENT
The performance of transceiver systems is ncarmally characterized by limitations in relation to noise and to different kinds of interference, such as intersymbol interference (ISI), adjacent-channel interference, and co-channel interference. The noise limitation relates to the power budget parameters such as transmitter output power, antenna gain, isotropic loss, path loss including multipath fading, man-made noise, receiver degradation (noise factor and implementation loss) and the required SNR (signal to noise ratio) for the modulation in question. Intersymbol interference is caused by the impulse response of the air-channel and partially by imperfections in the transmitter and receiver circuitry (filtering). Adjacent-channel interference is related to filtering and channel shaping conditions such as the spectrum of modulated signal. At non-constant envelope modulation, sideband regeneration by non-linearity in the transmitter power amplifier occurs. Co-channel interference relates to medium reuse conditions. The capture effect properties in relation to the desired and unwanted signal are crucial for the medium reuse.
Indoor propagation is analyzed using path loss based on distance because of simplicity. However, fur cell planning and the installation of access points the ray tracing approach is very useful for the prediction of the path loss between access points. The formula below illustrates the various path loss contributions in an indoor environment. In addition to path loss caused by distance, large-scale variations and small-scale fluctuations occur in a multipath fading environment.
J
L:=1,~+l0yolog ~~ -+-l0ylog d +...+~N,FLF+~NWLw+gd 4~~ef dref .=o ;=o where Lo = antenna gain/loss (for dipole -2 dB), ~, _= wavelength, drcf =
reference distance from transmitter, d = transmitter-receiver distance, y~ = decay exponent below diet' (up to 5 or 10 meter yo = 2), y = decay exponent above dre,~, N,F = number of floors of the i'th category, L,F = loss due to i'th floor category, NEW number of walls of j'th category, LAW
= loss due to j'th wall category, and g = (linear) decay rate.
5 The second term of the above formula gives the isotropic loss with respect to the reference distance. At 2.4 GHz this loss with respect to 1 meter is 40 dB. The third term is the exponential path loss term; common decay exponents for indoor environments are 2 through 6, meaning 6 dB through 18 dB loss per distance doubling. The value of the decay exponent also depends on taking other loss terms into account. The fourth term characterizes loss by floors. The fifth term characterizes loss by walls. The sixth term gives a loss that is linear with respect to distance with common values for this indoor loss at from 0.2 - 0.6 dB/m in combination with the decay exponent equal to the decay exponent for free space propagation (y = 2).
Fig. 2 shows the variation of receive levels vs. distance, which is characterized by an exponential path loss for typical indoor environments such as an office, warehouse, or supermarket. The transmit power level here is 17 dB/m and the isotropic loss (with respect to 1 meter) is 40 dB.
Referring to Fig. 3A, an illustration of medium reuse distance is shown. Cells are shown as hexagons with a radius R. A distance D is the distance between the cell base stations being examined for interference. When neighbor cell systems use different channels, then network cell systems that are further away can reuse the same channel again as long as interference from the further away cell systems is limited.
If reuse of the same channel is allowed within another cell at distance D, then the co-channel reduction factor a = (D/R) is used as a key parameter dealing with co-channel interference.
Referring to Fig. 3B, a worst case interference distance for cellular telephone systems is shown. Separate channels are used for the uplink and downlink. The co-channel interference contributions from neighbor cells are permanently present. Since there are separate channels for the uplink and the downlink, the co-channel interference contributions are either all based on uplink or all based on downlink. For analog FM
cellular systems, it is usually assumed that the combined co-channel interference from six neighbor cells may not exceed a CSIR (co-channel signal to interference ratio) of 18 dB.
Furthermore, it is also usually assumed that the total of the six contributions corresponds to six times the average case contribution based on the co-channel reduction factor a = (D/R).
The MRE
(medium reuse efficiency) is defined as the cell area over the area assigned for a single channel. This implies that MRE = ~ D JZ where 6 ~-~ Jr >_ 10'.a based on a CSIR = 18 dB.
Significant differences exist between cellular telephone systems as discussed above and indoor wireless LANs. LAN considerations include requirements for throughput /
delay characteristics, packet error rate, and fairness. In addition, LANs are applied in an environment with burst-type traffic where one station gets the whole "bandwidth".
The number of installed access points for indoor wireless LANs has to be as low as possible to save infrastructure cost consistent with l;uaranteeing the required fairness and throughput / delay performance at peak-load. With indoor wireless LANs, only one channel is used for both uplink and downlink transmissions. This single channel structure, as well as the packet switching nature of this type of LAN, implies that the co-channel interference scenario is different from that of cellular telephone systems.
In particular, the difference between wireless LANs based on IEEE 802.11 DSSS
(direct sequence spread spectrum) and DS/CDMA (direct sequence / code division multiple access) systems is fundamental. With DS/CDMA systems, the different codes provide sufficient separation between individual links which share the same band as long as the receive levels don't diverge too much. With indoor wireless LANs, the maximum level of interference present during the transmission of a fr;~me is dominated by the interference from one neighbor cell station. Such a neighbor cell interference potentially is present for a short period, as occurs at the transmission of an acknowledgement frame (ACK).
The IEEE
802.11 CSMA/CA control technique does not apply .gin individual carrier sensing before an ACK is transmitted.
Refernng to Fig. 3C, the worst case interfc~.rence distance for wireless LANs is shown, assuming the same channel is used for the uplink and downlink. The worst case distance scenario, where one interferor dominates, gives a CSIR requirement with CS'IR=CD R R~r =~a_2)r which leads to an MRE (medium reuse efficiency) of MRE = 1 2 + CSIR'' The duration of a worst interference presence is less relevant, because when the received frame is mutilated, the number of erroneous bits does not matter. For transmitting data packets, the target FER (frame error rate) has to be better than 10-2 during transmission of 1 Kbyte packets. This FER requirement is in contrast to the requirement for cellular telephone systems where the BER (bit error rate) has to be better than 10-3.
For an IEEE
802.11 DSSS receiver, a detection margin with regard to noise corresponds to a BER better than 10-6. However, the capture effect properties of an IEEE 802.11 DSSS
receiver do not correspond to the detector margins used with respect 7:o noise.
The IEEE 802.1 I DSSS is based on the follo,ving 11-chip Barker sequence +1, -1, + 1, + 1, - 1, + 1, + 1, + 1, -1, -1, -1. Thi s sequence i s used as a PN
(pseudo-noise) code sequence and the symbol duration corresponds to the G~uration of the 11-chips.
The 11-chips spreading makes the occupied bandwidth larger. The DSSS spreading increases the effective bandwidth from 1 MHz to 11 MHz. At the same time, the 11-chips spreading g reduces the impact of rriultipath fading. With an indoor channel having a delay spread of 100 ns and selecting one out of two antennas, the fading margin required for an outage of 1 % is reduced to 4 dB, whereas the required fading margin would be 9 dB for a 1 MHz system.
Refernng to Fig. 4, a basic block diagram c~f a DSSS transceiver is shown. The transmitter section includes an encoder, a spreader, and a transmitter front-end. The receiver section includes a receiver front-end, a correxator, and a detector decoder.
Referring to Fig. 5A, the receiver correlator output spike waveform is shown for the ideal case, i.e., an air-channel with no degradation by filtering. The output at a single symbol is shown as a solid line. The output for successive symbols is shown as a dashed line.
Refernng to Fig. 5B, the receiver correlator output spike waveform is shown which demonstrates the presence of a co-channel interferor. The correlator output with the desired signal contribution is shown as a solid line, whereas the interferor signal contribution is shown with a dashed line. In the most likely case, the spike waveform contribution from the interferor falls between the spike-waveform peaks of the desired signal. A
clock drift of X ppm (i.e., the difference between the clocks in ~.he desired signal transmitter and the clocks in the interferor transmitter) corresponds to .~ shift-in-time of 5X ns for a typical packet transmission time of 5 ms. X has a maximum of a few tens (ppm) for low cost clock circuitry. Therefore, it is unlikely that the interferor spike-waveform peak will shift during a packet transmission time to a position-in-time with overlapping spike-waveform peaks.
Refernng to Fig. 5C, a degradation due to a ~~hannel which introduces delay spread is shown. The correlator output at significant channel degradation is shown as a solid line, whereas the correlator output of an ideal channel is shown as a dashed line.
An allowed margin with regard to the interferor level and clock drift decreases with an increase in delay spread. Imposing more severe requirements for the clock circuitry benefits the MRE
(medium reuse efficiency), since the probability of non-overlap for the peaks during the full reception of a frame increases. However, the most threatening situation is introduced by the acknowledgment mechanism. For transmission ~~f an acknowledgement frame (ACK), there is no individual carrier sensing applied, vaulting in increased risk of strong interference. The shift-in-time during the 250 p.s period during which an ACK
interferes is only 0.25X ns. This 0.25X ns shift-in-time is, for typical values of X (a few tens ppm), very small compared to the 1 p.s between two successive symbol-peaks in the spike-waveform.
IEEE 802.11 DSSS specifies twelve channel frequencies in the 2.4 GHz band.
However, there are only a few non-overlapping channels that can operate simultaneously without interfering each other. The allowed CSIR and ASIR (adjacent channel signal-to-interference ratio) depend on the particular transceiver implementation. In addition, the CRS (earner sense) function is important for proper CSMA/CA behavior. The medium busy (MBUSY) state occurs when the receive leve° is above the CRS
threshold. IEEE
802.11 DSSS describes an upper limit for the CRS threshold which is dependent on the applied transmit power. For a transmit power of 17 dBm (50 mW) or below, this threshold is -70 dBm. For higher transmit power, one of the lower (more sensitive) thresholds must be applied. U.S. Patent No. 5,553,316 (Power Control Method in a Wireless Communication System) details a method of determining a transmit power level and its associated CRS threshold level.
Referring to Figs. 6A-6B, receive levels for a scenario with an exponential path loss of y= 3.5 (10.5 dB/octave) for distances above 10 meters are shown. At a CRS
threshold of -75 dBm, the transmissions from the access point:; at 0 and 80 meters are received well by the stations within a 20 meter distance when the rf:quired CSIR is 10 dB or less. In Fig.
6A, an ACK is returned from the station at 20 meters towards the access point at 0 meters which does not disturb an ongoing transmission by the access point at 80 meters to the station at 60 meters in the neighbor cell.
More sensitive CRS thresholds can be applied for larger cell sizes adapted according to the exponential path loss which result in a figure with the same form as shown in Fig.

6A. So, too, less sensitive CRS thresholds can be applied for smaller cell sizes adapted . according to the exponential path loss which also result in a figure with the same form as shown in Fig. 6A. In Fig. 6B, a 10 dB wall loss is tsetween the two neighbor cells. In this situation, the ACK from the station at 30 meters towards the access point at 40 meters 5 disturbs the reception of the transmission from the access point at 0 meters by the station at meters.
The applied CRS threshold leads to a distinction between "sharing" and "reuse". All stations (and access points) around an actively transmitting station (or access point) measure the receive level of the DSSS signal. When the rec~:ive level is above the CRS
threshold, 10 such a station cannot start a transmission and has tc~ defer the packet transmission. Such deferments are not coupled to the cell boundaries. If we look at Fig. 6A, transmissions around the access points at 0 and 80 meters start independently for a cell size radius of 20 meters and a CSIR around 8 dB. At a smaller distance between the access points, the medium is shared frequently. In Fig. 6B, we see the: impact of disturbed symmetry, which 15 gives some risk of errors for stations at one edge oi' the cell around the access point at 0 meters.
The optimum CRS threshold is dependent on the target receive level at the edge of the cell, the required ('.SIR, and path loss conditions (path loss coefficient Y, multipath fading), packet traffic (type of offered load, mixture of packet sizes), and performance 20 criteria (throughput, tolerable transmission delay).
IEEE 802.11 DSSS specifies bit rates of 1 and 2 Mbits/s. The allowable SNR and CSIR values for reliable transmission of data packets are dependent on the bit rate. The transceiver performance with regard to SNR and CSIl2 are dependent on the implementation and presence of various signal processing functions such as differential or coherent detection, channel matched filtering, system noise, and processing accuracy.
When the transceiver implementation is based on enhanced sil;nal processing with phase correction and frequency offset compensation (coherent detection) and channel matched filtering, then the system degradation that occurs at indoor channels with typical delay spread can be approximated at 1-2 dB with respect to the theoretical BER vs. SNR curves.
For IEEE 802.1 l DSSS, we distinguish between two types of capture effects.
The required CSIR depends on which signal arrives first: the desired one or the interfering one.
A capture ratio (or CSIR) of 2 to 3 dB for the situation at which an interfering signal arnves during the desired transmission is feasible. If the desired signal arrives later than the interferon signal, a higher capture ratio is required to let the receiver retrain well.
As shown in Fig. 6A for a path loss coefficient y = 3.5, the combination of a transmit power level of 17 dBm and a CRS threshold of -75 dBm yields reliable operation at distances up to 20 meters for required CSIRs of 1c) dB or better (i.e., more robust), at distances up to 24 meters for CSIRs of 6 dB or better, and at distances up to 30 meters for ideal capture properties (CSIR = 0 dB). Referring momentarily to Fig. 5B, the arnval of an interferon which produces a spike-waveform peak that falls between successive spike-waveform peaks of the desired signal does not harm the desired signal reception as long as this interference signal strength meets the required CSIR. The transceiver design is optionally optimized for robustness against co-channel interference with regard to the desired signal spike-waveform tracking. Such a robustness is preferable in relation to interference by transmission of ACKs having a short duration and no individual CRS
function. In theory, the later arriving interferon could be even stronger.
IEEE 802.11 DSSS specifies BPSK and QPSk:. In addition, proprietary modes with M-PSK and QAM schemes can be applied that provide higher bit rates by encoding more bits per symbol. A transceiver implementation for such modulation schemes yields SNR
performance figures which are a few dB worse th<~n what the theoretical curves show.
Because of the nature e~f DSSS, these higher bit r,~tes also provide good capture effect properties in co-channel interference scenarios as des~.ribed above with respect to Figs. 6A-6B. An automatic rate selection scheme based on the reliability of the individual uplink and downlink can optionally be applied. An example of a basic rate adaptation scheme is that after unacknowledged packet transmissions, the rate falls back, and after a specified number (e.g., 10) of successive correctly acknowledged packet transmissions, the bit rate goes up.
The transmissions from the access point in the center of a cell to a station in the outer part are the most sensitive to co-channel interference from a neighbor cell. For path loss that corresponds fully to the exponential curves as in Fig. 6A, the applied CRS
threshold yields enclosed areas for which a certain CSIR is expected. In practice, the presence of multipath fading and hard walls disturb the ideal case curves.
When two access points don't receive each other above the CRS threshold, they are allowed to transmit at the same time. In this case, the required CSIRs that depend on the applied bit rates are very relevant. The occurrences of the various CSIR
situations depend on the network load in the neighbor cells. The capture effect robustness and the traffic process permit accommodation to the bit rate used for the uplink and downlink.
At lower loads in the neighbor cells, the highest bit rate can be used more often. At higher loads, the transmissions from the access point to stations at the outer part of the cells is often done at fallback rates due to the mutilation of transmissions by interference. In practice, the network load for LANs with modern client-server applications includes a majority of burst type traffic characterized by transmission bursts o~~er individual links with low activity during most of the time. Therefore, the higher bit rate is preferably used most of the time, while with high loads in the neighbor cells, as evoked by test applications, the system switches to lower rates in the outer part of the cell.
Only a few independent DSSS channels are available in the 2.4 GHz ISM band for simultaneous operation. Therefore, some strategy must be followed to obtain a good medium reuse figure per channel. Two such strategifa are (1) establishing a CRS threshold based on the cell size and required CSIR; and (2) using a fixed CRS threshold.
The MRE and required CSIR derived from th~~ formulas described above for indoor wireless LANs are optionally applied at a high density of access points and small cells.
However, such an application potentially implies a t:RS threshold that is above the IEEE

802.11 DSSS limit of -70 dBm or a transmit power level that is below 17 dBm, because otherwise the CRS threshold would be the limiting element. In a fully filled two-dimensional space (i.e., a large mufti-cell area), the bit rate of 2 Mbit/s and a minimum required CSIR of 3 dB result in a throughput density of 0.2 Mbit/s per cell per channel. An automatic rate selection scheme combined with additional bit rates of 3 or 4 Mbit/s produces higher rate operation in the inner cell part as well as during the period that no significant co-channel interference exists. Such an automatic rate selection allows a throughput density of 0.3 Mbit/s per cell per channel.
When a CRS threshold of -70 dBm and a tran~~mit power of 17 dBm are applied, the addition of more access points with smaller cells causes sharing between nearby neighbor cells defined as less than 60 meters at y = 3.5. Stations therefore associate with a closer access point, while the interference from further away cells becomes relatively lower (i.e., better actual CSIRs). Therefore, a higher bit rate can be used in the outer parts of a cell, but only a single transmission activity can exist within a radius of 60 meters (0.94 hectare).
A throughput density of 4 Mbit/s per hectare per channel is possible at the proprietary bit rates of 3 and 4 Mbit/s, in addition to the basic bit rates of 1 and 2 Mbit/s, when coupled with automatic rate selection. In practice, the presence of obstructions such as concrete walls and floors provides additional isolation.
Based on the above discussion, a CRS thres'nold based on both the target receive level at the cell edge and the required CSIR is preferable for optimum medium reuse in a typical indoor environment. The DSSS signal constellation provides very advantageous capture effect properties which can be exploited by a dedicated design with respect to ACKs in a neighbor cell. A high access point density is needed for realization of a high throughput density. An automatic rate selection can be combined with the application of proprietary bit rates of 3 and 4 Mbit/s as well as the basic 1 and 2 Mbit/s.
Automatic rate selection provides fall-forward when reliable connections exist and fall-back in the presence of strong co-channel interference. Automatic rate selection provides dynamic adaptation of bit rate to interference depending on positions and lo;id. Without the limitations prescribed by IEEE 802.11 for CRS threshold and transmit: power level, a contribution to the throughput density of 0.3 Mbit/s per cell for each available channel is possible in a large multi-cell environment.
For PCMCIA based wireless LAN cards, a t.~rpical transmit power level is 17 dBm.
At this transmit power level, IEEE 802.11 DSSS prescribes a CRS threshold of -70 dBm or lower. A throughput density up to 4 Mbit/s per hectare per channel is possible with these settings when coupled with a high density of access points. A lower CRS
threshold is preferable with a lower density of access points and cell sizes having a radius of more than 20 meters. This lower CRS threshold depends on the path loss coefficient and the required CSIRs for the supported bit rates.
Referring to Fig. 7, a state machine 10 defines how an embodiment of a receiver for a station on a wireless L.AN according to the present invention reacts to input data in normal receive mode, message in message mode, and message in a message hunt mode.
Detailed internal control signals are not given.
In normal receive mode ("Normal Mode"), when a first received transmission contains a matching destination address (contained in the MAC header field) signifying that the station is the intended recipient, or when the address of the received transmission has not been decoded, the receiving station continues with processing the communication until the communication is fully received or until a second received transmission exceeding a specified threshold level arrives. Upon arrival of the second transmission which exceeds the specified receive level increase threshold, the receiver transitions to the message in message mode ("MIM Mode"). The receiver is incapable of handling the first received transmission without bit errors during the arrival of the second received transmission.
When the first received transmission does not contain a matching destination address, the station watches for an increase of the receive level above the specified threshold level which indicates a potential message addressed to the station.
The receiver enters the message in message hunt mode ("HUNT Mode"). When such a receive level increase above the specified threshold occurs, the rec~:iver begins retraining to automatically focus on the strongest received transmission. This strongest received transmission is received correctly only if the minimum required capture ratio is met.
In Normal Mode., the receiver follows the typical states in order to demodulate the received data properly. Meanwhile, a process is witching the energy level indicator and triggers the MIM Mode when a jump in energy is deaected. In HUNT Mode, the receiver is in an idle state waiting for the current message to finish. At the same time, a process is watching the energy level indicator and triggers the. Hunt Mode Training State when an energy jump is detected.
The thresholds for receive level increase in MIM Mode and HUNT Mode are based on the capture properties of a receiving station. The threshold for a jump in the MIM Mode (MIMDLVL) is based on the capability of a receiver ~:o continue reliable data detection for a first transmission after being trained well, although a second transmission which starts later will interfere. The threshold for a jump in the HUNS' mode (HUNTDLVL) is based on the capability of a receiver to train well and make reliable data detection for a second starting transmission, even when a first started transmission, which is not relevant for the receiver in question, continues to be present and gives backgrc'und interference all the time.
The following is a description of the states CI)I, CDA, ASl, AS2, TRAIN, HEAD, DATA, WIFS, MIM, HUNT, HAS1, and HAS2 of state machine 10. A slot counter 'sc' (not shown) is maintained parallel to receiver state machine 10. The slot counter counts from 0 to 19 and is incremented once per symbol interval (one ps).
CDI (Carrier Detect Inactive) State In this state, the receiver is more or less idle. The carrier detector is disabled. The AGC is inactive. This state is passed during 5 symbol intervals to allow various delays such as transmitter power stage rampup and MAC decision .

CDA (Carrier Detect Active) State In this state, the carrier detector and AGC are active. At the end of the slot (slot counter=19) the next state is determined by the status of the carrier detector and AGC.
The carrier is detected when the DSSS modem signal is present which is recognized by the carrier detection circuitry and the energy level as measured by the AGC
exceeds the carrier detect threshold. When no Garner is detected, the energy levels of the current and the previous slot are stored. This information can be used to determine the silence level.
When a carrier is detected but the AGC is not fully settled (inrange is '0'), the energy measurement in this slot is not valid.
Referring to Fig. 8, when a Garner is detected and the AGC is settled (inrange is ' 1'), the energy measurement in this slot is reliable enough to use. This slot is used as the first antenna selection slot for choosing one out of two antennae. The AGC
setting and energy level are stored.
When a carrier is detected and the energy level is above the defer threshold, MBUSY is put on.
AS1 (Antenna Select 1) State In this state, the energy level of the current antenna is measured. At the end of the slot the other antenna is selected and the state machine jumps to the second antenna select state AS2.
AS2 (Antenna Select 2) State In this state, the energy level of the current antenna is measured. At the end of the slot the antenna with the highest signal level is selected, and the state machine jumps to the receiver training state (TRAIN). At the end of this AS2 state, the signal levels and AGC
settings for both antennae are stored.

TRAIN (Receiver Trainin State In this state, the receiver digital processing circuitry core is trained, the AGC is fixed, and energy level measurements continue. After the receiver digital signal processing circuitry for symbol timing, frequency offset compensation, and channel estimation are trained, the data detection is sufficiently reliable. The first part of the IEEE 802.11 DSSS
frame header which contains the SFD (start frame delimiter) can be expected between 48 ~.s and 124 ~s after the antenna selection is completed. "The unknown moment (with respect to the local antenna slotting) at which the remote station starts transmission of the fixed format of the IEEE 802.11 DSSS preamble/header, along with the possibility that one antenna gets a very low signal due to fading, give this margin-in-time for the moment at which the SFD
can be expected.
On detection of the SFD, the state machine jumps to state HEAD. When the SFD
is not detected in the 'SFD detection window', the state machine jumps to state HUNT. When the LENGTH field can not be determined, the receiver uses the value 'MaxLength'. If, in this state, the energy level increases more than a ' message in message delta level' (1VIIMDLVL), the receiver assumes it is another measage and jumps to the MIM
state. In an alternative embodiment, the received data are stor~.:d in the call sign buffer until the SFD
detection.
The energy level of the incoming message is updated in the register signal_level selected every slot. l3it 'HuntMode' is kept reset until the DATA
phase.
State transitions:
1. Condition: SFD detected Actions: PDA on, receive clock at 1 MHz goto state HEAD.
2. Condition: SFD window passed Actions: cnt : = MaxLength (protection timer) goto state HUNT.
3. Condition: end of slot and energy level > signal_level-1 + MIMDLVL
Actions: enable earner detector and AGC, goto state MIM.
HEAD (IEEE header) State In this state, the IEEE 802.11 DSSS header is processed. The receiver clock is preferably at 1 MHz. The CRC checker is enabled. The CRC shift register is preset to all ones. The first 8 bits after SFD are the SIGNAL field. The SIGNAL field is used to determine the rate of the data part of the message. Valid values are OAh = 1 Mbitls and 14h = 2 Mbit/s. The next 8 bits (SERVICE field) are not used. The following 16 bits, the LENGTH field, are stored. The value of LENGTH indicates the length of the message in microseconds (~.s).
The SIGNAL, SERVICE, and LENGTH fields are processed by the CRC checker using the polynomial X'6+X'2+XS+l. The result is compared with the last 16 bits of the IEEE 802.11 DSSS header. When the header is v~ilid, the receiver switches the receive clock to the rate determined by the SIGNAL field. 1-f a non-valid header is received (e.g., wrong CRC or SIGNAL field out of spec), the receiver jumps to the HUNT state.
If the energy level increases more than the 'message in message delta level,' (MIMDLVL), the receiver assumes it is another message and jumps to the MIM
state.
State transitions:
1. Condition: end of header and wrong CRC or SIGNAL field not (OAh or 14h) Actions: PDA off, receive clock off, receive data '0' goto state HUNT.
2. Condition: end of header and correct CRC
Actions: if SIGNAL=14h then data rate is 2 Mbit/s else data rate is t Mbit/s end if, keep LENGTH, goto state DATA.
3. Condition: end of slot energy level > signal_levea_1 + MIMDLVL
Actions: PDA off, receive clock off, receive dasa '0', enable carrier detector and AGC, goto state MIM.
DATA (data phase St to In this state, the data (MPDU) is received. the receiver is transparent to the data because it does not use it. The length of this state is determined by the value of 'LENGTH'. Every microsecond (p.s), a counter is incremented until it reaches LENGTH, thereby signaling the end of the message. If, in this state, the energy level increases more than the ' message in message delta level' (MIMDL~'L), the receiver assumes it is another message and therefore then jumps to the MIM state. The MAC controller uses the address information of the source and destination stations. When the MAC determines that the destination address (which could be a group address) does not match with (its own) the address of the receiving station, the MAC supplies a command to the transceiver to go into 'HuntMode.' Note that the bit 'HuntMode' can only be set in this state. In the data phase state, the end of message is determined by the LENGTH field only, and not by carrier loss or energy drop.
State transitions:
1. Condition: cnt = LENGTH
Actions: PDA off, receive clock off, receive data'0', cnt : = 0, goto state WIFS.
2. Condition: HuntMode=1 Actions: PDA off, receive clock off, receive dada '0', goto state HUNT.
3. Condition: end of slot and energy level > signal_~evel_1 + MIMDLVL
Actions: PDA off, receive clock off, receive dada '0', 5 enable carrier detector and AGC, goto state MIM.
WIFS (Wait short Inter Frame Space) State This state is a wait state between two messages. At the end of this state, the slotting system is reset such that all stations which receive the transmission in question restart their 10 slotting in synchronization. The state machine jumps to the CDI state ready for the next message. A counter is incremented every rnicrosecc>nd (~s) until it reaches the parameter 'SIFS'.
MIM (Message In a Message) State This state is reached after the state machine detects an energy increase on the 15 selected antenna, whether caused by another message or an interferor.
Refernng to Fig. 9, after detection of the energy increase, the receiver measures the energy level and the earner detect status at the selected antenna in the next slot. If a carrier signal is detected, then the increase in energy level is from a second message. The state machine again does antenna selection followed by retraining on the new situation. The current slot is used as the first 20 antenna selection slot, the AGC setting and the energy level are stored, and the state machine jumps to AS2 for the second antenna selection slot. MBUSY stays on.
If there is no carrier signal detected, then the level increase is caused by an interferon The receiver stays in this state until either a carrier is detected or until the end of the first message. When the CRC of the first message is correct, the end of the first message is determined by the message length counter (cnt). The state machine then jumps to the WIFS state. When the CRC of the first message is wrong or when the SFD
is not detected within the time window, the state machine l;oes back to the CDI state either after the energy level drops below the defer threshold or until the message length counter expires (length has been set to its maximum in this case). Under this last condition, MBUSY stays on, and in every slot, the other antenna is selected for validation if another message does not arrive before the message length counter expires.
State transitions:
1. Condition: end of slot and carrier detected Actions: disable carrier detector, AGC unselected : = current AGG setting, signal level unselected : = energy level, select other antenna, goto state AS2.
Note that the AGC signal 'inrange' is not used.
2. Condition: CRC correct and cnt = LENGTH
Actions: MBUSY off, goto state WIFS
3. Condition: CRC wrong and (energy level < defer threshold or cnt =
MaxLength}
Actions: MBUSY off, goto state CIDI
HUNT (Message in a Message Hunt Mode) State In this state, the receiver waits for an energy increase on one of the two antennae.
The antenna with the highest delta level is used to a-eceive the message. The AGC stays fixed.
Refernng to Fig. 10, at the end of a slot, the current energy level is stored and the new delta level (the current level minus the level of two slots ago) is determined. It is assumed that another message is being received when the delta level is higher than HUNTDLVL and the carrier is detected. The next ':wo slots are used to determine which antenna has the highest delta level., When the energy level increase does not occur or when the increase occurs but no earner is detected (i.e., due to an interferor), the receiver jumps to state WIFS when the message length counter expires in case the CRC of the first message is correct. When the ('.RC is wrong or when the SFD is not detected, the state machine returns to the CDI state either after the energy level crops below the defer threshold or until the message length counter expires (the length is set to max. in this case).
At the end of each slot, the signal levels of the. current and previous slots are updated and the other antenna is selected.
State transitions:
1. Condition: end of slot and carrier detected and current energy level - signal level 2 slots ago > HUNTDLVL
Actions: enable AGC, goto state HAS 1 2. Condition: CRC correct and cnt = LENGTH
Actions: MBUSY off, goto state WIFS
3. Condition: CRC wrong and [(energy level < defer threshold) or (cnt =
MaxLength)]
Actions: MBUSY off, goto state CDI
HAS1 (Hunt mode Antgnna Select 1) State In this state, the delta energy level at the currevnt antenna is measured. At the end of the slot, the other antenna is selected and the state machine jumps to state HAS2, the second hunt mode antenna select.
HAS2 (Hunt mode Antenna Select 2) State In this state the delta energy level of the current antenna is measured. At the end of the slot, the antenna with the highest signal level is se~.lected, and the state machine jumps to the training state.

It is to be understood that the embodiments of the invention herein described are merely illustrative of the application of the principles of the invention.
Reference herein to details of the illustrated embodiments are not intended to limit the scope of the claims, which themselves recite those features regarded as essential to the invention.

Claims (4)

CLAIMS:
1. A method for operating a receiver of a station in a wireless local area network using a common wireless communication channel and employing a CSMA/CA (carrier sense multiple access with collision avoidance) protocol, comprising the steps of:
detecting a message;
determining when said message is addressed to said station;
demodulating said message when said message is addressed to said station;
detecting a first energy increase above a first specified level when said message is being demodulated;
detecting a carrier upon detection of said first energy increase;
retraining upon detection of said carrier;
detecting a second energy increase above a second specified level;
detecting said carrier when said second energy increase is detected; and retraining upon detection of said second energy increase and detection of said carrier, wherein there is no transmission of a collision detect signal either after detecting said first energy increase or after detecting said second energy increase.
2. A method according to claim 1, further comprising:
determining said first specified level; and determining said second specified level.
3. A receiver for a station in a wireless local area network using a common wireless communication channel and employing a CSMA/CA (carrier sense multiple access with collision avoidance) protocol, comprising:
first detecting means for detecting a message;
means for determining when said message is addressed to said station;
means for demodulating said message when said message is addressed to said station;
second detecting means for detecting a first energy increase above a first specified level when said message is being demodulated;
third detecting means for detecting a carrier upon detection of said first energy increase;
first retraining means for retraining upon detection of said carrier;
fourth detecting means for detecting a second energy increase above a second specified level;
fifth detecting means for detecting said carrier when said second energy increase is detected; and second retraining means for retraining upon detection of said second energy increase and detection of said carrier, wherein the receiver does not include means for transmitting a collision detect signal after detecting either said first or said second increase in energy.
4. A receiver according to claim 3, further comprising:
first determining means for determining said first specified level; and second determining means for determining said second specified level.
CA002246470A 1997-09-08 1998-09-03 Wireless lan with enhanced capture provision Expired - Fee Related CA2246470C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/925,416 1997-09-08
US08/925,416 US5987033A (en) 1997-09-08 1997-09-08 Wireless lan with enhanced capture provision

Publications (2)

Publication Number Publication Date
CA2246470A1 CA2246470A1 (en) 1999-03-08
CA2246470C true CA2246470C (en) 2003-07-29

Family

ID=25451701

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002246470A Expired - Fee Related CA2246470C (en) 1997-09-08 1998-09-03 Wireless lan with enhanced capture provision

Country Status (4)

Country Link
US (1) US5987033A (en)
EP (1) EP0901252A3 (en)
JP (1) JP3435076B2 (en)
CA (1) CA2246470C (en)

Families Citing this family (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE521599C2 (en) * 1996-11-27 2003-11-18 Hitachi Ltd Transmission power control method and apparatus for mobile communication system
US6480721B1 (en) * 1998-07-10 2002-11-12 Siemens Information And Communication Mobile Llc Method and system for avoiding bad frequency subsets in a frequency hopping cordless telephone system
SG87784A1 (en) * 1998-12-09 2002-04-16 Kent Ridge Digital Labs Csma/cd wireless lan
US6560443B1 (en) * 1999-05-28 2003-05-06 Nokia Corporation Antenna sharing switching circuitry for multi-transceiver mobile terminal and method therefor
US6272353B1 (en) 1999-08-20 2001-08-07 Siemens Information And Communication Mobile Llc. Method and system for mobile communications
JP4186355B2 (en) * 1999-11-24 2008-11-26 株式会社デンソー CSMA wireless LAN antenna device and terminal station
EP1107628A3 (en) * 1999-12-03 2004-01-21 Hewlett-Packard Company, A Delaware Corporation Deferral of transmissions in wireless local area network
US6967937B1 (en) 1999-12-17 2005-11-22 Cingular Wireless Ii, Llc Collision-free multiple access reservation scheme for multi-tone modulation links
US7570929B1 (en) 2000-01-14 2009-08-04 Symbol Technologies, Inc. 802.11 networks using dynamic power control for RF transmission
DE10012360C2 (en) * 2000-03-14 2002-01-31 Skidata Ag Method for controlling the heating elements of a thermal print head
US6975655B2 (en) * 2000-04-07 2005-12-13 Broadcom Corporation Method of controlling data sampling clocking of asynchronous network nodes in a frame-based communications network
US6411608B2 (en) * 2000-07-12 2002-06-25 Symbol Technologies, Inc. Method and apparatus for variable power control in wireless communications systems
EP1178630A1 (en) 2000-07-31 2002-02-06 Lucent Technologies Inc. Wireless LAN with enhanced carrier sensing
US7095754B2 (en) 2000-11-03 2006-08-22 At&T Corp. Tiered contention multiple access (TCMA): a method for priority-based shared channel access
US6807165B2 (en) 2000-11-08 2004-10-19 Meshnetworks, Inc. Time division protocol for an ad-hoc, peer-to-peer radio network having coordinating channel access to shared parallel data channels with separate reservation channel
US7072650B2 (en) 2000-11-13 2006-07-04 Meshnetworks, Inc. Ad hoc peer-to-peer mobile radio access system interfaced to the PSTN and cellular networks
US6873839B2 (en) 2000-11-13 2005-03-29 Meshnetworks, Inc. Prioritized-routing for an ad-hoc, peer-to-peer, mobile radio access system
US7027462B2 (en) * 2001-01-02 2006-04-11 At&T Corp. Random medium access methods with backoff adaptation to traffic
US7151769B2 (en) 2001-03-22 2006-12-19 Meshnetworks, Inc. Prioritized-routing for an ad-hoc, peer-to-peer, mobile radio access system based on battery-power levels and type of service
US7039033B2 (en) 2001-05-07 2006-05-02 Ixi Mobile (Israel) Ltd. System, device and computer readable medium for providing a managed wireless network using short-range radio signals
US7245725B1 (en) 2001-05-17 2007-07-17 Cypress Semiconductor Corp. Dual processor framer
JP2004531971A (en) 2001-06-14 2004-10-14 メッシュネットワークス インコーポレーティッド A routing protocol embedded under the internet protocol routing layer of the software architecture protocol stack in mobile ad hoc networks
US7277413B2 (en) * 2001-07-05 2007-10-02 At & T Corp. Hybrid coordination function (HCF) access through tiered contention and overlapped wireless cell mitigation
US7136361B2 (en) 2001-07-05 2006-11-14 At&T Corp. Hybrid coordination function (HCF) access through tiered contention and overlapped wireless cell mitigation
US7206294B2 (en) 2001-08-15 2007-04-17 Meshnetworks, Inc. Movable access points and repeaters for minimizing coverage and capacity constraints in a wireless communications network and a method for using the same
US7072323B2 (en) * 2001-08-15 2006-07-04 Meshnetworks, Inc. System and method for performing soft handoff in a wireless data network
US7349380B2 (en) * 2001-08-15 2008-03-25 Meshnetworks, Inc. System and method for providing an addressing and proxy scheme for facilitating mobility of wireless nodes between wired access points on a core network of a communications network
US20040081129A1 (en) * 2001-08-17 2004-04-29 Amit Haller Device, system, method and computer readable medium for selectively attaching to a cellular data service
US20040125762A1 (en) * 2001-08-17 2004-07-01 Amit Haller Device, system, method and computer readable medium for attaching to a device identifited by an access point name in a wide area network providing particular services
US20050030917A1 (en) * 2001-08-17 2005-02-10 Amit Haller Device, system, method and computer readable medium obtaining a network attribute, such as a DNS address, for a short distance wireless network
US7295532B2 (en) * 2001-08-17 2007-11-13 Ixi Mobile (R & D), Ltd. System, device and computer readable medium for providing networking services on a mobile device
US7016334B2 (en) * 2001-08-17 2006-03-21 Ixi Mobile ( Israel) Ltd. Device, system, method and computer readable medium for fast recovery of IP address change
US7613458B2 (en) * 2001-08-28 2009-11-03 Meshnetworks, Inc. System and method for enabling a radio node to selectably function as a router in a wireless communications network
US7145903B2 (en) * 2001-09-06 2006-12-05 Meshnetworks, Inc. Multi-master bus architecture for system-on-chip designs
KR100886202B1 (en) * 2001-09-25 2009-02-27 메시네트웍스, 인코포레이티드 A system and method employing algorithms and protocols for optimizing carrier sense multiple accesscsma protocols in wireless networks
US6754188B1 (en) 2001-09-28 2004-06-22 Meshnetworks, Inc. System and method for enabling a node in an ad-hoc packet-switched wireless communications network to route packets based on packet content
US6768730B1 (en) 2001-10-11 2004-07-27 Meshnetworks, Inc. System and method for efficiently performing two-way ranging to determine the location of a wireless node in a communications network
US6937602B2 (en) * 2001-10-23 2005-08-30 Meshnetworks, Inc. System and method for providing a congestion optimized address resolution protocol for wireless ad-hoc networks
US6771666B2 (en) 2002-03-15 2004-08-03 Meshnetworks, Inc. System and method for trans-medium address resolution on an ad-hoc network with at least one highly disconnected medium having multiple access points to other media
US6982982B1 (en) 2001-10-23 2006-01-03 Meshnetworks, Inc. System and method for providing a congestion optimized address resolution protocol for wireless ad-hoc networks
US6957045B2 (en) 2001-10-26 2005-10-18 Ixi Mobile (Israel) Ltd. Device, system, computer readable medium and method for providing status information of devices in a short distance wireless network
US7245604B2 (en) * 2001-11-02 2007-07-17 At&T Corp. Fixed deterministic post-backoff for cyclic prioritized multiple access (CPMA) contention-free sessions
US7248600B2 (en) * 2001-11-02 2007-07-24 At&T Corp. ‘Shield’: protecting high priority channel access attempts in overlapped wireless cells
US7277415B2 (en) 2001-11-02 2007-10-02 At&T Corp. Staggered startup for cyclic prioritized multiple access (CPMA) contention-free sessions
US7280517B2 (en) * 2001-11-02 2007-10-09 At&T Corp. Wireless LANs and neighborhood capture
US7180905B2 (en) * 2001-11-02 2007-02-20 At & T Corp. Access method for periodic contention-free sessions
US7245605B2 (en) 2001-11-02 2007-07-17 At&T Corp. Preemptive packet for maintaining contiguity in cyclic prioritized multiple access (CPMA) contention-free sessions
AU2002346389A1 (en) * 2001-11-02 2003-05-12 At And T Corp. Wireless lans and neighborhood capture
US7181214B1 (en) 2001-11-13 2007-02-20 Meshnetworks, Inc. System and method for determining the measure of mobility of a subscriber device in an ad-hoc wireless network with fixed wireless routers and wide area network (WAN) access points
US7136587B1 (en) 2001-11-15 2006-11-14 Meshnetworks, Inc. System and method for providing simulated hardware-in-the-loop testing of wireless communications networks
US6728545B1 (en) 2001-11-16 2004-04-27 Meshnetworks, Inc. System and method for computing the location of a mobile terminal in a wireless communications network
US6845097B2 (en) * 2001-11-21 2005-01-18 Ixi Mobile (Israel) Ltd. Device, system, method and computer readable medium for pairing of devices in a short distance wireless network
US7221686B1 (en) 2001-11-30 2007-05-22 Meshnetworks, Inc. System and method for computing the signal propagation time and the clock correction for mobile stations in a wireless network
US7013112B2 (en) * 2001-12-18 2006-03-14 Ixi Mobile (Israel) Ltd. Method, system and computer readable medium for making a business decision in response to information from a short distance wireless network
US7016648B2 (en) 2001-12-18 2006-03-21 Ixi Mobile (Israel) Ltd. Method, system and computer readable medium for downloading a software component to a device in a short distance wireless network
US7190672B1 (en) 2001-12-19 2007-03-13 Meshnetworks, Inc. System and method for using destination-directed spreading codes in a multi-channel metropolitan area wireless communications network
US7280545B1 (en) 2001-12-20 2007-10-09 Nagle Darragh J Complex adaptive routing system and method for a nodal communication network
US7106707B1 (en) 2001-12-20 2006-09-12 Meshnetworks, Inc. System and method for performing code and frequency channel selection for combined CDMA/FDMA spread spectrum communication systems
US7180875B1 (en) 2001-12-20 2007-02-20 Meshnetworks, Inc. System and method for performing macro-diversity selection and distribution of routes for routing data packets in Ad-Hoc networks
US7072618B1 (en) 2001-12-21 2006-07-04 Meshnetworks, Inc. Adaptive threshold selection system and method for detection of a signal in the presence of interference
US7039017B2 (en) 2001-12-28 2006-05-02 Texas Instruments Incorporated System and method for detecting and locating interferers in a wireless communication system
US6674790B1 (en) 2002-01-24 2004-01-06 Meshnetworks, Inc. System and method employing concatenated spreading sequences to provide data modulated spread signals having increased data rates with extended multi-path delay spread
US7218628B2 (en) * 2002-02-07 2007-05-15 Mediatek Incorporation Method and device for detecting preamble of wireless data frame
US6617990B1 (en) 2002-03-06 2003-09-09 Meshnetworks Digital-to-analog converter using pseudo-random sequences and a method for using the same
US7058018B1 (en) 2002-03-06 2006-06-06 Meshnetworks, Inc. System and method for using per-packet receive signal strength indication and transmit power levels to compute path loss for a link for use in layer II routing in a wireless communication network
JP4199672B2 (en) 2002-03-15 2008-12-17 メシュネットワークス、インコーポレイテッド System and method for automatic configuration of IP address to MAC address mapping and gateway presence discovery
US6904021B2 (en) 2002-03-15 2005-06-07 Meshnetworks, Inc. System and method for providing adaptive control of transmit power and data rate in an ad-hoc communication network
US7366144B2 (en) * 2002-03-25 2008-04-29 Agere Systems Inc. Method of dynamically setting at least one threshold at an access point in a wireless local area network and the access point
US6987795B1 (en) 2002-04-08 2006-01-17 Meshnetworks, Inc. System and method for selecting spreading codes based on multipath delay profile estimation for wireless transceivers in a communication network
US7200149B1 (en) 2002-04-12 2007-04-03 Meshnetworks, Inc. System and method for identifying potential hidden node problems in multi-hop wireless ad-hoc networks for the purpose of avoiding such potentially problem nodes in route selection
US7697420B1 (en) 2002-04-15 2010-04-13 Meshnetworks, Inc. System and method for leveraging network topology for enhanced security
US7107498B1 (en) 2002-04-16 2006-09-12 Methnetworks, Inc. System and method for identifying and maintaining reliable infrastructure links using bit error rate data in an ad-hoc communication network
US6580981B1 (en) 2002-04-16 2003-06-17 Meshnetworks, Inc. System and method for providing wireless telematics store and forward messaging for peer-to-peer and peer-to-peer-to-infrastructure a communication network
US7142524B2 (en) 2002-05-01 2006-11-28 Meshnetworks, Inc. System and method for using an ad-hoc routing algorithm based on activity detection in an ad-hoc network
US6970444B2 (en) 2002-05-13 2005-11-29 Meshnetworks, Inc. System and method for self propagating information in ad-hoc peer-to-peer networks
US7016306B2 (en) 2002-05-16 2006-03-21 Meshnetworks, Inc. System and method for performing multiple network routing and provisioning in overlapping wireless deployments
US7284268B2 (en) 2002-05-16 2007-10-16 Meshnetworks, Inc. System and method for a routing device to securely share network data with a host utilizing a hardware firewall
US7167715B2 (en) * 2002-05-17 2007-01-23 Meshnetworks, Inc. System and method for determining relative positioning in AD-HOC networks
US7106703B1 (en) 2002-05-28 2006-09-12 Meshnetworks, Inc. System and method for controlling pipeline delays by adjusting the power levels at which nodes in an ad-hoc network transmit data packets
US7610027B2 (en) * 2002-06-05 2009-10-27 Meshnetworks, Inc. Method and apparatus to maintain specification absorption rate at a wireless node
US6744766B2 (en) 2002-06-05 2004-06-01 Meshnetworks, Inc. Hybrid ARQ for a wireless Ad-Hoc network and a method for using the same
US7054126B2 (en) * 2002-06-05 2006-05-30 Meshnetworks, Inc. System and method for improving the accuracy of time of arrival measurements in a wireless ad-hoc communications network
US6687259B2 (en) 2002-06-05 2004-02-03 Meshnetworks, Inc. ARQ MAC for ad-hoc communication networks and a method for using the same
US7215638B1 (en) 2002-06-19 2007-05-08 Meshnetworks, Inc. System and method to provide 911 access in voice over internet protocol systems without compromising network security
US7072432B2 (en) * 2002-07-05 2006-07-04 Meshnetworks, Inc. System and method for correcting the clock drift and maintaining the synchronization of low quality clocks in wireless networks
US7796570B1 (en) 2002-07-12 2010-09-14 Meshnetworks, Inc. Method for sparse table accounting and dissemination from a mobile subscriber device in a wireless mobile ad-hoc network
US7046962B1 (en) 2002-07-18 2006-05-16 Meshnetworks, Inc. System and method for improving the quality of range measurement based upon historical data
US7042867B2 (en) 2002-07-29 2006-05-09 Meshnetworks, Inc. System and method for determining physical location of a node in a wireless network during an authentication check of the node
US6909878B2 (en) 2002-08-20 2005-06-21 Ixi Mobile (Israel) Ltd. Method, system and computer readable medium for providing an output signal having a theme to a device in a short distance wireless network
US7215681B2 (en) * 2002-09-11 2007-05-08 Itt Manufacturing Enterprises Inc. Adaptive channel access for carrier sense multiple access based systems
US7356571B2 (en) 2002-10-07 2008-04-08 Ixi Mobile (R&D), Ltd. System, method and processor readable medium for downloading information within a predetermined period of time to a device in a network responsive to price selection
US7372928B1 (en) 2002-11-15 2008-05-13 Cypress Semiconductor Corporation Method and system of cycle slip framing in a deserializer
WO2004064303A2 (en) 2003-01-13 2004-07-29 Meshnetworks, Inc. Method for continuous connectivity to an access point in a wireless network
JP4100182B2 (en) * 2003-01-30 2008-06-11 松下電器産業株式会社 Communication terminal device and control method thereof
US7167680B2 (en) 2003-02-05 2007-01-23 Ixi Mobile (Israel) Ltd. Method, system and computer readable medium for adjusting output signals for a plurality of devices in a short distance wireless network responsive to a selected environment
WO2004084022A2 (en) 2003-03-13 2004-09-30 Meshnetworks, Inc. Real-time system and method for computing location of mobile subcriber in a wireless ad-hoc network
US7171220B2 (en) 2003-03-14 2007-01-30 Meshnetworks, Inc. System and method for analyzing the precision of geo-location services in a wireless network terminal
US20040259585A1 (en) * 2003-06-04 2004-12-23 Avi Yitzchak Wireless device having dual bus archeticure for interfacing with cellular signals and short-range radio signals
WO2004109476A2 (en) 2003-06-05 2004-12-16 Meshnetworks, Inc. System and method to maximize channel utilization in a multi-channel wireless communication network
JP2006526938A (en) * 2003-06-05 2006-11-24 メッシュネットワークス インコーポレイテッド System and method for determining synchronization points in an OFDM modem for accurate time of flight measurements
WO2004110082A1 (en) 2003-06-05 2004-12-16 Meshnetworks, Inc. System and method for determining location of a device in a wireless communication network
WO2004114690A1 (en) 2003-06-05 2004-12-29 Meshnetworks, Inc. Optimal routing in ad hac wireless communication network
JP5054377B2 (en) 2003-06-06 2012-10-24 メッシュネットワークス インコーポレイテッド Systems and methods for achieving fairness and service differentiation in ad hoc networks
JP4505454B2 (en) 2003-06-06 2010-07-21 メッシュネットワークス インコーポレイテッド System and method for improving overall performance of a wireless communication network
EP1631916A1 (en) 2003-06-06 2006-03-08 Meshnetworks, Inc. A method to provide a measure of link reliability to a routing protocol in an ad hoc wireless network
WO2005001619A2 (en) 2003-06-06 2005-01-06 Meshnetworks, Inc. Mac protocol for accurately computing the position of wireless devices inside buildings
CN1317862C (en) * 2003-06-27 2007-05-23 联想(北京)有限公司 A method for preventing environment mode conflict on home network
US7062703B1 (en) * 2003-07-28 2006-06-13 Cisco Technology, Inc Early detection of false start-of-packet triggers in a wireless network node
US7366901B2 (en) * 2003-08-01 2008-04-29 Ixi Mobile (R&D), Ltd. Device, system, method and computer readable medium for identifying and authenticating a cellular device using a short-range radio address
JP3708095B2 (en) * 2003-08-12 2005-10-19 株式会社東芝 Wireless communication apparatus and wireless communication method
DE10346900A1 (en) * 2003-10-09 2005-05-12 Horst Ziegler Radio receiver for a radio transmission system
US20050141596A1 (en) * 2003-12-31 2005-06-30 Black Greg R. Method and apparatus for reducing data collisions in a frequency hopping communication system
US7167463B2 (en) 2004-10-07 2007-01-23 Meshnetworks, Inc. System and method for creating a spectrum agile wireless multi-hopping network
US7668102B2 (en) * 2004-12-13 2010-02-23 Intel Corporation Techniques to manage retransmissions in a wireless network
JP4551814B2 (en) * 2005-05-16 2010-09-29 Okiセミコンダクタ株式会社 Wireless communication device
JP4816123B2 (en) * 2006-02-17 2011-11-16 ソニー株式会社 Wireless communication apparatus and wireless communication method
US20070201412A1 (en) * 2006-02-28 2007-08-30 Lusheng Ji Protocol for improved utilization of a wireless network using interference estimation
IL184490A (en) * 2007-07-09 2011-06-30 Mariana Goldhamer Method and apparatus for combining transmissions of different communication protocols in a wireless communication system
US8717245B1 (en) 2010-03-16 2014-05-06 Olympus Corporation Planar multilayer high-gain ultra-wideband antenna
US9596702B2 (en) * 2013-06-19 2017-03-14 Dsp Group Ltd. Dynamic sensitivity control for wireless devices
US20160080974A1 (en) * 2014-09-15 2016-03-17 Qualcomm Incorporated Systems and methods for adjusting an operating characteristic of a wireless communication network based on load to increase quality of service
FR3064853B1 (en) * 2017-03-31 2019-03-22 Continental Automotive France METHOD AND SENSOR FOR DETECTING THE PRESENCE OF COCANAL INTERFERENCE
DE102017206236A1 (en) * 2017-04-11 2018-10-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. SPECIFIC HOPPING PATTERN FOR TELEGRAM SPLITTING

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4611334A (en) * 1984-08-31 1986-09-09 Motorola, Inc. Message capturing radio data system
GB9019490D0 (en) * 1990-09-06 1990-10-24 Ncr Co Transmission control for a wireless local area network station
GB9019488D0 (en) * 1990-09-06 1990-10-24 Ncr Co Local area network having a wireless transmission link
GB9019489D0 (en) * 1990-09-06 1990-10-24 Ncr Co Antenna control for a wireless local area network station
US5422887A (en) * 1991-11-27 1995-06-06 Ncr Corporation Medium access protocol for wireless local area network
GB9214107D0 (en) * 1992-07-03 1992-08-12 Ncr Int Inc Power control method in a wireless communication system
CH685897A5 (en) * 1993-01-26 1995-10-31 Royale Consultants Ltd Method and apparatus for bidirectional Informationsuebertragung (protocol)
EP0637417B1 (en) * 1993-01-26 2000-01-05 Inria Institut National De Recherche En Informatique Et En Automatique Radio network-type data transmission method and facility
CA2103134C (en) * 1993-11-15 1999-07-27 Jeane Shu-Chun Chen Medium access control protocol for wireless communication
US5657326A (en) * 1994-12-20 1997-08-12 3Com Corporation Radio based collision detection for wireless communication system
US5721733A (en) * 1995-10-13 1998-02-24 General Wireless Communications, Inc. Wireless network access scheme

Also Published As

Publication number Publication date
EP0901252A3 (en) 1999-03-24
EP0901252A2 (en) 1999-03-10
CA2246470A1 (en) 1999-03-08
JP3435076B2 (en) 2003-08-11
US5987033A (en) 1999-11-16
JPH11168480A (en) 1999-06-22

Similar Documents

Publication Publication Date Title
CA2246470C (en) Wireless lan with enhanced capture provision
US10588152B2 (en) Access point (AP) controlled uplink RTS/CTS configuration and disablement
Kamerman et al. WaveLAN®‐II: a high‐performance wireless LAN for the unlicensed band
US7061877B1 (en) System and method for providing high speed wireless media access
US9106323B1 (en) Method and apparatus for determining whether a channel is busy
EP2489218B1 (en) Retransmission techniques in wireless networks
US7796632B2 (en) Transmission channel bandwidth selection for communications between multi-bandwidth nodes
US8085806B2 (en) Method and apparatus for detecting a collision in a carrier sense multiple access wireless system
EP0903891B1 (en) Wireless local area network with enhanced carrier sense provision
US8724651B2 (en) Radio network system, radio communication method, and radio communication device
EP1832050B1 (en) Method for reducing the mutual interference of network subscribers in radio networks
US7406051B2 (en) Interference measurements in a wireless communications system
US20080144500A1 (en) Control frame feature on demand in a wireless communication system
US20070242621A1 (en) Dynamic carrier sensing thresholds
US20100037124A1 (en) Wireless communication apparatus, wireless lan system, interference detecting method, and interference avoidance method
EP1104961A1 (en) Deferral of transmissions in wireless local area network
Yao et al. On eliminating the exposed terminal problem using signature detection
Fullmer et al. Complete single-channel solutions to hidden terminal problems in wireless LANs
US8295261B2 (en) Method for detecting hidden nodes in cognitive radio networks
US8488574B2 (en) Wireless network system and association control method thereof
August et al. An efficient UWB radio architecture for busy signal MAC protocols
Du et al. Receiver initiated network allocation vector clearing method in WLANs
Kamerman Throughput density constraints for wireless LANs based on DSSS
US7372920B2 (en) Method for detecting a signal and receiver system for the implementation of the method
EP1107628A2 (en) Deferral of transmissions in wireless local area network

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20170905

MKLA Lapsed

Effective date: 20170905