CA2242326C - Advanced engineering resin and wood fiber composite - Google Patents

Advanced engineering resin and wood fiber composite Download PDF

Info

Publication number
CA2242326C
CA2242326C CA002242326A CA2242326A CA2242326C CA 2242326 C CA2242326 C CA 2242326C CA 002242326 A CA002242326 A CA 002242326A CA 2242326 A CA2242326 A CA 2242326A CA 2242326 C CA2242326 C CA 2242326C
Authority
CA
Canada
Prior art keywords
composite
resin
pellet
wood fiber
thermoplastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002242326A
Other languages
French (fr)
Other versions
CA2242326A1 (en
Inventor
Kasyap V. Seethamraju
Michael J. Deaner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Andersen Corp
Original Assignee
Andersen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Andersen Corp filed Critical Andersen Corp
Publication of CA2242326A1 publication Critical patent/CA2242326A1/en
Application granted granted Critical
Publication of CA2242326C publication Critical patent/CA2242326C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/045Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2001/00Use of cellulose, modified cellulose or cellulose derivatives, e.g. viscose, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2001/00Use of cellulose, modified cellulose or cellulose derivatives, e.g. viscose, as moulding material
    • B29K2001/08Cellulose derivatives
    • B29K2001/12Cellulose acetate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/253Cellulosic [e.g., wood, paper, cork, rayon, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2904Staple length fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2904Staple length fiber
    • Y10T428/2907Staple length fiber with coating or impregnation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2938Coating on discrete and individual rods, strands or filaments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • Y10T428/2965Cellulosic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31591Next to cellulosic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31725Of polyamide
    • Y10T428/31779Next to cellulosic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31725Of polyamide
    • Y10T428/31779Next to cellulosic
    • Y10T428/31783Paper or wood
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/3188Next to cellulosic

Abstract

The invention relates to a composition comprising an engineering resin and wood fiber composite that can be used in the form of a linear extrudate or thermoplastic pellet to manufacture structural members . The resin/wood fiber composite structural members can be manufactured in an extrusion process or an injection molding process. The linear extrudate or pellet can have a cross section of any arbitrary shape, or can be a regular geometric shape. The pellet can have a volume of at least about 12 mm3. Preferably the pellet is a right cylindrical pellet having a minimum radius of about 1.5 mm and a minimum length of 1 mm weighing at least 14 mg. The invention also relates to the environmentally sensitive recycle of waste streams. The resin/wood fiber composite can contain an intentional recycle of a waste stream comprising polymer flakes or particles or wood fiber. The waste stream can comprise, in addition to resin, other thermoplastics fibers, adhesive, paint, preservative, or other chemical stream common in the wood- window or door manufacturing process, or mixtures thereof.

Description

.prDVANCED ENGINEERING RESIN AND WOOD FIBER COMPOSTTE
Field of the Invention This invention relates to composite thermoplastic ~ 5 materials used for the fabrication of structural members. Such members can comprise any structural unit . or portion thereof. Preferably the member can be used in the manufacture of windows or doors for residential and commercial architecture. These composite materials can include an optional, intentional recycle of by-product streams derived from window and door manufacture, including thermoplastic resin, adhesive, paint, etc. More particularly, the invention relates to an improved composite material adapted to extrusion or injection molding processes, an formed into structural members that have improved properties when used in windows and doors. The composite materials of the invention can be made to manufacture structural components such as rails, jambs, stiles, sills, tracks, stop and sash, nonstructural trim elements such as grid, cove, bead, quarter round, etc.
Background of the Invention Conventional window and door manufacturers have commonly used wood and metal components in forming structural members. Commonly, residential windows are manufactured from milled wood products or extruded aluminum parts that are assembled with glass to form typically double hung or casement units. Wood windows while structurally sound, useful and well adapted for use in many residential installations, can deteriorate under certain circumstances. Wood windows also require painting and other periodic maintenance. Wooden windows ~ also suffer from cost problems related to the availability of suitable wood for construction. Clear wood products are slowly becoming more scarce and are becoming more expensive as demand increases. Metal components are often combined with glass and formed into single unit sliding windows. Metal windows typically
2 suffer from substantial energy loss during winter months.
extruded thermoplastic materials have also been used as non-structural components in window and door manufacture. Filled and unfilled thermoplastics have been extruded into useful seals, trim, weatherstripping, coatings and other window construction components.
Thermoplastic materials such as polyvinyl chloride have been combined with wood members in manufacturing FERMASHIEIaD brand windows manufactured by Andersen Corporation for many years. The technology disclosed in Zanini, U.S. Patent Nos. 2,9zs,72~ and 3,~32,~83, have been utilized in the manufacturing of plastic coatings or envelopes on wooden or other structural members_ Generally, the cladding or coating technology used in making PERMASHIELp windows involves extruding a thin polyvinyl chloride coating or envelope surrounding a wooden structural member_ Polyvinyl chloride has been combined With wood to make extruded materials. Such materials have successfully been used in the form of a structural member that is a direct replacement for wood. These extruded materials have sufficient rnodulus, compressive strength, coefficient of thermal expansion to match wood to produce a direct replacement material. Typical composite materials have achieved a modulus greater than about 500,000 psi acceptable COTS, tensile sxrength, compressive strength, etc. to be useful. Deaner et al., U_S. Patent Nos. S,AOS,768 and 5,441,801, -- disclose a PvC/wood fiber composite chat can pe used as a high strength material iri a structural member_ This PVC/fiber composite has utility in many window and door applications.
A substantial and continuing need exists to provide a improved composite material (using polymers having no
3 chloride containing monomer components? that can be made of thermoplastic polymer and wood fiber. The composite can be made with an optional, intentional recycle of a waste stream. A further need exists for a composite material that can be extruded into a shape that is a ' , direct substitute for the equivalent milled shape in a wooden or metal structural member. A thermoplastic with fiber compatibility, good thermal properties and good structural or mechanical properties is required. This need also requires a composite with a coefficient of thermal expansion that approximates wood, that can be extruded into reproducible stable dimensions, a high modulus, a high tensile strength, a high compressive strength, a low thermal transmission rate, an improved resistance to insect attack and rot while in use and a hardness and rigidity that permits sawing, milling, and fastening retention comparable to wood members.
Further, companies manufacturing window and door products have become significantly sensitive to waste streams produced in the manufacture of such products.
Substantial quantities of wood waste including wood trim pieces, sawdust, wood milling by-products, recycled thermoplastic materials, has caused significant expense to window manufacturers. Commonly, these materials are either burned for their heat value in electrical generation or are shipped to qualified landfills for disposal. Such waste streams are contaminated with substantial proportions of hot melt and solvent-based adhesives, waste thermoplastic, paint, preservatives, and other organic materials. A substantial need exists to find a productive environmentally compatible use for such waste streams to avoid returning the materials into the environment in an environmentally harmful way. A
composite that can be made with properties of these streams can be an advantage.
4 Brief Discussion of the Invention We have found that the problems relating to forming a substitute for wood and metal structural members and the problems relating to the recycle of waste streams in window manufacture can be solved by forming an engineering resin/wood fiber composite material into window and door structural members. A large variety of engineering resins have been provided over the last few years. These resins are available in a variety of grades, molecular weights, melting points, formulations, containing materials of great variability. We have found that not every engineering resin thermoplastic is useful in the manufacture of wood fiber composites. The engineering resin must be compatible in the melt form with wood fiber to form a high strength composite. The wood fiber must be fully wetted and penetrated, in its cellular structure, with the thermoplastic to form a high strength composite material. Further, the engineering resin must have thermal properties (melt flow properties or m.p < 240°C) that permit successful composite manufacture. Lastly, the resin should provide sufficient structural properties to the composite material to be successful in structural members in window and door manufacture. The engineering resin can be combined with wood fiber and optional waste materials to form a resin/wood fiber composite, preferably in the form of a pellet. The wood fiber comprises the sawdust or milling byproduct waste stream from milling wooden members in window manufacture and can be contaminated with substantial proportions of hot melt adhesive, paint, solvent or adhesive components, preservatives, resin, pigment, plasticizers, etc. V~7e have found that the resin and wood fiber composite can be manufactured into acceptable substitutes for wooden members if the resin and wood material contains less than about 10 wt- -preferably less than 3.5~ water based on pellet weight. The compositions can achieve in a final product high modulus, high compressive strength, reproducible, stable dimensions, a superior modulus of elasticity and a coefficient of thermal expansion that matches wooden members.
5 We have also found that the successful manufacture ' of structural members for windows and doors requires the preliminary manufacture of the resin\wood fiber composite in the form of a pellet wherein the materials are intimately mixed and contacted in forming the pellet prior to the extrusion of the members from an appropriately shaped die using the composite or pellet material. We have found that the intimate mixing of the resin, wood fiber, and optional waste in the manufacture of the composite or pellet with associated control of moisture content produces a pelletized product that is uniquely adapted to the extrusion manufacture of resin/wood fiber components and achieves the manufacture of a useful wood replacement product.
Detailed Description of the Invention The invention relates to the use of an engineering resin and wood fiber composite materials with a controlled water content in the form of a composite or pelletized material wherein the wood fiber is intimately contacted and wetted by the resin and organic materials.
The intimate contact and wetting between the components in the pelletizing process ensures high quality physical properties in the extruded composite materials after manufacture.
Pellet The engineering resin and wood fiber can be ' cpmbined and formed into a pellet using a thermoplastic extrusion processes. Tnitial pellet formation is an important step in composite manufacture. wood fiber can be introduced into pellet making process in a number of sizes. We believe that the wood fiber should have a WO 97125368 PCT/US97l00248
6 minimum length of at least 0.1 mm because wood flour (having a smaller dimension) tends to be explosive at certain wood to air ratios. Further, wood fiber of appropriate size of a aspect ratio greater than 1.5 tends to increase the physical properties of the . extruded structural member.
During the pelletizing process for the composite pellet, the resin and wood fiber are intimately contacted at high temperatures and pressures to insure that the wood fiber and polymeric material are wetted, mixed and extruded in a form such that the polymer material, on a microscopic basis, coats and flows into the pores, cavity, etc., of the fibers_ The fibers are preferably substantially oriented by the extrusion process in the extrusion direction. Such substantial orientation causes overlapping of adjacent parallel fibers and polymeric coating of the oriented fibers resulting a material useful for manufacture of improved structural members with improved physical properties.
The degree of orientation is about 20~, preferably 300 above random orientation which is about 45 to 50%. The structural members have substantially increased strength and tensile modulus with a coefficient of thermal expansion and a modulus of elasticity that is optimized for window and doors. The properties are a useful compromise between wood, aluminum and neat polymer.
Moisture control is an important element of manufacturing a useful linear extrudate or pellet..
Depending on the equipment used and processing conditions, control of the water content of the linear extrudate or pellet can be important in forming a successful structural member substantially free of internal voids or surface blemishes. The concentration of water present in the sawdust during the formation of pellet or linear extrudate when heated can flash from the surface of the newly extruded structural member and can come as a result of a rapid volatilization, form a WO 97/25368 PCT/(TS97/00248
7 steam bubble deep in the interior of the extruded member which can pass from the interior through the hot thermoplastic extrudate leaving a substantial flaw. In a similar fashion, surface water can bubble and leave cracks, bubbles or other surface flaws in the extruded ' member. Further, engineering resins that axe moisture sensitive should be avoided. Water can react with some condensation polymers resulting in increased MI and reduced MW.
Trees when cut depending on relative humidity and season can contain from 30 to 300 wt-a water based on fiber content. After rough cutting and finishing into sized lumber, seasoned wood can have a water content of from 20 to 30 wt-o based on fiber content. Kiln dried sized lumber cut to length can have a water content typically in the range of 8 to 12a, commonly 8 to 10 wt-based on fiber. Some wood source, such as poplar or aspen, can have increased moisture content while some hard woods can have reduced water content.
Because of the variation in water content of wood fiber source and the sensitivity of extrudate to water content control of water to a level of less than 8 wt-~
in the pellet based on pellet weight is important.
Structural members extruded in non-vented extrusian process, the pellet should be as dry as possible and have a water content between 0.01 and 5%, preferably less than 1.5 wt-%. When using vented equipment in manufacturing the extruded linear member, a water content of less than 8 wt-% can be tolerated if processing conditions are such that vented extrusion equipment can dry the thermoplastic material prior to the final formation of the structural member of the extrusion head.
The pellets or linear extrudate of the invention ' 35 are made by extrusion of the engineering resin and wood fiber composite through an extrusion die resulting in a linear extrudate that can be cut into a pellet shape.
8 PCT/ETS97/00248 The pellet cross-section can be any arbitrary shape depending on the extrusion die geometry. However, we have found that a regular geometric cross-sectional shape can be useful. Such regular cross-sectional shapes include a triangle, a square, a rectangle, a hexagonal, an oval, a circle, etc. The preferred shape of the pellet is a regular cylinder having a roughly circular or somewhat oval cross-section. The pellet volume is preferably greater than about 12 mm3. The preferred pellet is a right circular cylinder, the preferred radius of the cylinder is at least 1.5 mm with a length of at least 1 mm. Preferably, the pellet has a radius of 0.5 to 5 mm and a length of 1 to 50 mm. Most preferably, the cylinder has a radius of 1.5 to 2_5 mm, a length of 1.5 to 4.7 mm, a volume greater than 40 mm2, preferably greater than 100 mm3, a weight of 40 to 130 mg and a bulk density of about 0.2 to 0.8 gm/mm3.
We have found that the interaction, on a microscopic level, between the resin mass and the wood fiber is an important element of the invention. The physical properties of an extruded member are improved when the polymer melt during extrusion of the pellet or linear member thoroughly wets and penetrates the wood fiber particles. The thermoplastic material comprises an exterior continuous organic resin phase with the wood particle dispersed as a discontinuous phase in the continuous resin phase. The fiber material during mixing and extrusion obtains or retains an aspect ratio of at least 1.5 and preferably between 2 and 7, optimizes orientation such as at least 20 wt-%, preferably 30~ of the fibers are oriented in an extruder direction and are thoroughly mixed and wetted by the polymer such that ail exterior surfaces of the wood fiber are in contact with the polymer material. This means, that any pore, crevice, crack, passage way, indentation, etc., is fully filled by thermoplastic material. Such penetration as attained by ensuring that
9 the viscosity of the resin melt is reduced by operations at elevated temperature and the use of sufficient pressure to force the polymer into the available internal pores, cracks and crevices in and on the surface of the wood fiber.
' During the pellet or linear extrudate manufacture, substantial work is done in providing a uniform dispersion of the wood into the polymer material. Such work produces substantial orientation which when to extruded into a final structural member, permits the orientation of the fibers in the structural member to be increased in the extruder direction resulting in improved structural properties.
The pellet dimensions are selected for both I5 convenience in manufacturing and in optimizing the final properties of the extruded materials. A pellet is with dimensions substantially less than the dimensions set forth above are difficult to extrude, pelletize and handle in storage. Pellets larger than the range 20 recited are difficult to introduce into extrusion or injection molding equipment, and are different to melt and form into a finished structural member.
Enaineerina Resin Thermoplastic Polymer 25 Cot~olymers and Polymeric Alloys A large variety of engineering resins can be used in the pellet and the composite materials of the invention. For the purpose of this application, an engineering resin is a general term covering a 30 thermoplastic that may or may not contain a filler or reinforcing material that have mechanical, chemical and thermal properties suitable for use as structural a components, machine components and chemical processing equipment Components. We have found that the 35 engineering resins useful in the invention include both condensation polymeric materials and vinyl polymeric materials. Included are both vinyl and condensation polymer resins, and alloys thereof, such as acrylonitrile-butadiene-styrene (ABS), polyacetyl resins, polyacrylic resins, fluorocarbon resins, nylon, phenoxy resins, polybutylene resins, polyarylether such as polyphenylether, polyphenylsulfide materials;
5 polycarbonate materials, chlorinated polyether resins, polyethersulfone resins, polyphenylene oxide resins, polysulfone resins, polyimide resins, thermoplastic urethane elastomers and many other resin materials.
Vinyl polymers are typically manufactured by the
10 polymerization of monomers having an ethylenically unsaturated olefinic group. Condensation polymer resins are typically prepared by a condensation polymerization reaction which is typically considered to be a stepwise chemical reaction in which two or more molecules combined, often but not necessarily accompanied by the separation of water or some other simple typically volatile substance. If a polymer is formed, the process is called polycondensation.
Imt~ortant Polymer Characteristics Not every engineering resin is useful in the wood fiber composite materials that we had mentioned. First the engineering resin must have a surface energy such that the material is compatible with the wood fiber.
Resins that are not compatible with the wood fiber will not sufficiently wet the wood fiber to intimately bond and penetrate the wood fiber to obtain sufficient engineering properties. For the purpose of this invention, surface energy or surface wettability is defined in ASTMD 724-89 as revised and explained in the paper Owens et al. "Estimation of the Surface Free Energy of Polymers," Journal of Applied Polymers Science, Vol. 13 pp. 1741-1747 (1969). This method has become a standard method for quantifying surface energy.
We have found that a useful surface energy is greater than about 40 dynes per square centimeter. Further, we have found that the engineering resin must have WO 97/25368 PC~'/US97/OU248
11 sufficient viscosity at processing temperatures substantially less than the decomposition temperature of wood fiber. Accordingly, the processing temperature of the thermoplastic material must be substantially less than about 450°F (340°C.} preferably between 180 and 240°C. Further, we have found that the engineering resin used in the composite of the invention must have little or no moisture sensitivity. In other words, when processed at thermoplastic temperatures, the resin as a result of instability in the presence of moisture, does not substantially change its molecular weight or melt index. A substantial change in molecular weight or melt index is a 50% reduction in molecular weight or a doubling in melt index. Lastly, after the thermoplastic material is manufactured by combining the thermoplastic engineering resin and the wood fiber, the resulting composite has a modulus greater than about 500,000 psi.
Further, the composite material should have a two hour water absorption ASTM D-57-81 less than 2% preferably less than 1% most preferably less than 0.6%.
ENGINEERING RESIN THERMOPLASTIC PARAMETERS
USEFUL PREFERRED

PROCESS T <250C 150 - 240C

TEMPERATURE

MOISTURE Less than 4x Less than 2x SENSITIVITY increase in MI increase in MI

SURFACE E >40 E >45 ENERGY dynes/cm2 dynes/cm2 MODULUS"' >200,000 >300,000 (RESIN) * FLEX
Condensation Polymer Resins Condensation polymer resins that can be used in the composite materials of the invention include polyamides, polyamide-imide polymers, polyarylsulfones,
12 polycarbonate, polybutylene terephthalate, polybutylene naphthalate, polyetherimides, polyethersulfones, polyethylene terephthalate, thermoplastic polyimides, polyphenylene ether blends, polyphenylene sulfide, polysulfones, thermoplastic polyurethanes and others.
Preferred condensation engineering resins include polycarbonate materials, polyphenyleneoxide materials, and polyester materials including polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate and polybutylene naphthalate materials.
Polycarbonate engineering resins are high performance, amorphous engineering thermoplastics having high impact strength, clarity, heat resistance and dimensional stability. Polycarbonates are generally classified as a polyester or carbonic acid with organic hydroxy compounds. The most common polycarbonates are based on phenol A as a hydroxy compound copolymerized with carbonic acid. Materials are often made by the reaction of a bisphenol A with phosgene (COC12).
Polycarbonates can be made with phthalate monomers introduced into the polymerization extruder to improve properties such as heat resistance, further trifunctional materials can also be used to increase melt strength or extrusion blow molded materials.
Polycarbonates can often be used as a versatile blending material as a component with other commercial polymers in the manufacture of alloys. Polycarbonates can be combined with polyethylene terephthalate acrylonitrile-butadiene-styrene resins, styrene malefic anhydride resins and others. Preferred alloys comprise a styrene copolymer and a polycarbonate. Preferred melt for the polycarbonate materials should be indices between 0.5 and 7, preferably between Z and 5 gms/10 min.
A variety of polyester condensation polymer materials including polyethylene terephthalate, ' polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, etc. can be useful in the
13 engineering resin wood fiber thermoplastic composites of the invention. Polyethylene terephthalate and polybutylene terephthalate are high performance condensation polymer materials. Such polymers often made by a copolymerization between a diol (ethylene ' glycol, 1,4-butane diol) with dimethyl terephthalate.
In the polymerization of the material, the polymerization mixture is heated to high temperature resulting in the transesterification reaction releasing methanol and resulting in the formation of the engineering plastic. Similarly, polyethylene naphthalate and polybutylene naphthalate materials can be made by copolymerizing as above using as an acid source, a naphthalene dicarboxylic acid. The naphthalate thermoplastics have a higher Tg and higher stability at high temperature compared to the terephthalate materials. However, all these polyester materials are useful in the composite structural materials of the invention. Such materials have a preferred molecular weight characterized by melt flow properties. Useful polyester materials have a viscosity at 265°C of about 500-2000 cp, preferably about 800-1300 cP.
Polyphenylene oxide materials are engineering thermoplastics that are useful at temperature ranges as high as 330°C. Polyphenylene oxide has excellent mechanical properties, dimensional stability, and dielectric characteristics. Commonly, phenylene oxides are manufactured and sold as polymer alloys or blends when combined with other polymers or fiber.
Polyphenylene oxide typically comprises a homopolymer of 2,6-dimethyl-1-phenol. The polymer commonly known as ' poly(oxy-(2,6-dimethyl-1,4-phenylene)). Polyphenylene is often used as an alloy or blend with a polyamide, ' 35 typically nylon 6-6, alloys with polystyrene or high impact styrene and others. A preferred melt index (ASTM
1238) for the polyphenylene oxide material useful in the
14 invention typically ranges from about 1 to 20, preferably about 5 to 10 gm/10 min. The melt viscosity is about 1000 at 265°C.
Vinvl Polymers A large variety of vinyl polymeric materials can be used in the composite materials can be used in the composite materials of the invention.
However, a preferred class of thermoplastic include styrenic copolymers. The term styrenic copolymer indicates that styrene is copolymerized with a second vinyl monomer resulting in a vinyl polymer. Such materials contain at least a 5 mol-~ styrene and the balance being 1 or more other vinyl monomers. An important class of these materials are styrene acrylonitrile (SAN) polymers. SAN polymers are random amorphous linear copolymers produced by copolymerizing styrene acrylonitrile and optionally other monomers.
Emulsion, suspension and continuous mass polymerization techniques have been used. SAN copolymers possess transparency, excellent thermal properties, good chemical resistance and hardness. These polymers are also characterized by their rigidity, dimensional stability and load bearing capability. Olefin modified SAN's (OSA polymer materials) and acrylic styrene acrylonitriles (ASA polymer materials) are known. These materials are somewhat softer than unmodified SAN's and are ductile, opaque, two phased terpolymers that have surprisingly improved weatherability.
ASA resins are random amorphous terpolymers produced either by mass copolymerization or by graft copolymerization. In mass copolymerization, an acrylic monomer styrene and acrylonitrile are combined to form a heteric terpolymer. In an alternative preparation technique, styrene acrylonitrile oligomers and monomers can be grafted to an acrylic elastomer backbone. Such materials are characterized as outdoor weatherable and UV resistant products that provide excellent accommodation of color stability property retention and property stability with exterior exposure. These ' materials can also be blended or alloyed with a variety 5 of other polymers including polyvinyl chloride, ' polycarbonate, polymethyl methacrylate and others. An important class of styrene copolymers includes the acrylonitrile-butadiene-styrene monomers. These resins are very versatile family of engineering thermoplastics L0 produced by copolymerizing the three monomers. Each monomer provides an important property to the final terpolymer material. The final material has excellent heat resistance, chemical resistance and surface hardness combined with processability, rigidity and
15 strength. The polymers are also tough and impact resistant. The styrene copolymer family of resins have a melt index that ranges from about 0.5 to 25, preferably about 0.5 to 20.
An important class of engineering resins that can be used in the composites of the invention include acrylic resins. Acrylics comprise a broad array of polymers and copolymers in which the major monomeric constituents are an ester acrylate or methacrylate.
These resins are often provided in the form of hard, clear sheet or pellets. Acrylic monomers polymerized by free radical processes initiated by typically peroxides, azo compounds or radiant energy. Commercial polymer formulations are often provided in which a variety of additives are modifiers used during the polymerization provide a specific set of properties for certain applications. Pellets made for resin grade applications are typically made either in bulk (continuous solution polymerization), followed by extrusion and pelleting or continuously by polyermization in an extruder in which ' 35 unconverted monomer is removed under reduced pressure _ and recovered for recycling. Acrylic plastics are commonly made by using methyl acrylate, methylmethacrylate, higher alkyl acrylates and other copolymerizable vinyl monomers. Preferred acrylic resin materials useful in the composites of the invention has a melt index of about 0.5 to 50, preferably about 1 to 30 gm/10 min.
Vinyl polymer resins include a acrylonitrile; ' alpha-olefins such as ethylene, propylene, etc.;
chlorinated monomers such as vinylidene dichloride, acrylate monomers such as acrylic acid, methylacrylate, methylmethacrylate, acrylamide, hydroxyethyl acrylate, and others; styrenic monomers such as styrene, alphamethyl styrene, vinyl toluene, etc.; vinyl acetate;
and other commonly available ethylenically unsaturated monomer compositions.
Polymer blends or polymer alloys can be useful in manufacturing the pellet or linear extrudate of the invention. Such alloys typically comprise two miscible polymers blended to form a uniform composition.
Scientific and commercial progress in the area of polymer blends has lead to the realization that important physical property improvements can be made not by developing new polymer material but by forming miscible polymer blends or alloys. A polymer alloy at equilibrium comprises a mixture of two amorphous polymers existing as a single phase of intimately mixed segments of the two macro molecular components.
Miscible amorphous polymers form glasses upon sufficient cooling and a homogeneous or miscible polymer blend exhibits a single, composition dependent glass transition temperature (Tg). Immiscible or non-alloyed blend of polymers typically displays two or more glass transition temperatures associated with immiscible polymer phases. In the simplest cases, the properties of polymer alloys reflect a composition weighted average of properties possessed by the components. In general, ' however, the property dependence on composition varies in a complex way with a particular property, the nature 1. 7 of the components (glassy, rubbery or semi-crystalline), the thermodynamic state of the blend, and its mechanical state whether molecules and phases are oriented.
' The primary requirement for the substantially thermoplastic engineering resin material is that it ~ retain sufficient thermoplastic properties to permit melt blending with wood fiber, permit formation of linear extrudate pellets, and to permit the composition material or pellet to be extruded or injection molded in a thermoplastic process forming the rigid structural member. Engineering resin and resin alloys are available from a number of manufacturers including B.F.
Goodrich, G.E., Dow, and duPont.
Wood Fiber Wood fiber, in terms of abundance arid suitability can be derived from either soft woods or evergreens or from hard woods commonly known as broad leaf deciduous trees. Soft woods are generally preferred for fiber manufacture because the resulting fibers are longer, contain high percentages of lignin and lower percentages of hemicellulose than hard woods. While soft wood is the primary source of fiber for the invention, additional fiber make-up can be derived from a number of secondary or fiber reclaim sources including bamboo, rice, sugar cane, and recycled fibers from newspapers, boxes, computer printouts, etc.
However, the primary source for wood fiber of this invention comprises the wood fiber by-product of sawing or milling soft woods commonly known as sawdust or milling tailings. Such wood fiber has a regular reproducible shape and aspect ratio. The fibers based on a random selection of about 100 fibers are commonly at least 0.2 mm in length, up to 1 mm in thickness and commonly have an aspect ratio of at least 1.5.
Preferably, the fibers are 0.1 to 5 mm in length with an aspect ratio between 2 and 7, preferably 2.5 to 6. The preferred fiber f-or use in this invention are fibers WO 97/25368 PCTlLTS97/00248 derived from processes common in the manufacture of windows and doors. Wooden members are commonly ripped or sawed to size in a cross grain direction to form appropriate lengths and widths of wood materials. The by-product of SllCh sawing operations is a substantial quantity of sawdust. In shaping a regular shaped piece of wood into a useful milled shape, wood is commonly passed through machines which selectively removes wood from the piece leaving the useful shape. Such milling to operations produces substantial quantities of sawdust or mill tailing by-products. Lastly, when shaped materials are cut to size and mitered joints, butt joints, overlapping joints, mortise and tenon joints are manufactured from pre-shaped wooden members, substantial waste trim is produced. Such large trim pieces are commonly cut and machined to convert the larger objects into wood fiber having dimensions approximating sawdust or mill tailing dimensions. The wood fiber sources of the invention can be blended regardless of particle size and used to make the composite. The fiber stream can be pre-sized to a preferred range or can be sized after blending. Further, the fiber can be pre-pelletized before use in composite manufacture.
Such sawdust material can contain substantial proportions of waste stream by-products. Such by-products include waste polyvinyl chloride or other polymer materials that have been used as coating, cladding or envelope on wooden members; recycled structural members made from thermoplastic materials;
polymeric materials from coatings; adhesive components in the form of hot melt adhesives, solvent based adhesives, powdered adhesives, etc.; paints including water based paints, alkyd paints, epoxy paints, etc.;
preservatives, anti-fungal agents, anti-bacterial agents, insecticides, etc., and other waste streams common in the manufacture of wooden doors and windows.
The total waste stream content of the wood fiber materials is commonly less than 25 wt-% of the total wood fiber input into the composite product. Of the total waste recycle, approximately 10 wt-% of that can comprise a thermoplastic. Commonly, the intentional recycle ranges from about 1 to about 25 wt-%, preferably about 2 to about 20 wt-%, most commonly from about 3 to about 15 wt-% of contaminants based on the sawdust.
COMPOSTTE PARAMETERS
USEFUL PREFERRED

MODULUS* >500,000 >700,000 TWO HOUR WATER <1.0% <0.5%

ABSORPTION

COEFFICIENT OF <2.5 x 10-' <1.5 x 10-6 THERMAL in/in-F in/in-F

EXPANSION

HEAT T >100C T >105C

DISTRIBUTION

TEMPERATURE

IMPACT ENERGY >4 in-lb >6 in-lb * FLEX
Composition and Pellet Manufacture In the manufacture of the composition and pellet of the invention, the manufacture and procedure requires two important steps. A first blending step and a second pelletizing step.
During the blending step, the engineering resin and wood fiber are intimately mixed by high shear mixing components with recycled material to form a polymer wood composite wherein the polymer mixture comprises a continuous organic phase and the wood fiber with the recycled materials forms a discontinuous phase suspended or dispersed throughout the polymer phase. The manufacture of the dispersed fiber phase within a continuous polymer phase requires substantial mechanical input. Such input can be achieved using a variety of mixing means including preferably extruder mechanisms wherein the materials are mixed under conditions of high shear until the appropriate degree of wetting and intimate contact is achieved. After the materials are fully mixed, the moisture content can be controlled at a 5 moisture removal station. The heated composite is exposed to atmospheric pressure or reduced pressure at ' elevated temperature for a sufficient period of time to remove moisture resulting in a final moisture content of about 8 wt-% or less. Lastly, the polymer fiber is 10 aligned and extruded into a useful form.
The preferred equipment for mixing and extruding the composition and wood pellet of the invention is an industrial extruder device. Such extruders can be obtained from a variety of manufacturers including 15 Cincinnati Millicron, etc.
The materials feed to the extruder can comprise from about 30 to 50 wt-% of sawdust including recycled impurity along with the balance an engineering resin composition. Preferably, about 35 to 50 wt-~ wood fiber 20 or sawdust is combined with 65 to 50 wt-a of resin. The resin feed is commonly in a small particulate size which can take the form of flake, pellet, powder, etc. Any polymer resin form can be used such that the polymer can be dry mixed with the sawdust to result in a substantially uniform pre-mix. The wood fiber or sawdust input can be derived from a number of plant locations including the sawdust resulting from rip or cross grain sawing, milling of wood products or the intentional commuting or fiber manufacture from waste wood scrap. Such materials can be used directly from the operations resulting in the wood fiber by-product or the by-products can be blended to form a blended product. Further, any wood fiber material alone, or in combination with other wood fiber materials, can be blended with waste stream by-product from the ' manufacturer of wood windows as discussed above. The wood fiber or sawdust can be combined with other fibers WO 97/25368 PC"iYUS97/00248 and recycled in commonly available particulate handling equipment.
Resin and wood fiber are then dry blended in " appropriate proportions prior to introduction into blending equipment. Such blending steps can occur in separate powder handling equipment or the polymer fiber streams can be simultaneously introduced into the mixing station at appropriate feed ratios to ensure appropriate product composition.
In a preferred mode, the wood fiber is placed in a hopper, controlled by weight or by volume, to proportion fiber into the mixer. The resin is introduced into a similar resin input system. The amount of resin and fiber are adjusted to ensure that the composite material contains appropriate proportions on a weight or volume basis. The fibers are introduced into an extrusion device preferably a twin screw extrusion device. The extrusion device has a mixing section, a transport section and melt section. Each section has a desired heat profile resulting in a useful product. The materials are introduced into the extruder at a rate of about 600 to about 1000 pounds of material per hour and are initially heated to a temperature that can maintain an efficient melt flow of resin. A multistage device is used that profiles processing temperature to efficiently combine resin and fiber. The final stage of extrusion comprises a head section. The head sections can contain a circular distribution (6-8" diameter) of 10 to 500 or more, preferably 20 to 250 orifices having a cross-sectional shape leading to the production of a regular cylindrical pellet. As the material is extruded from the head it is cut with a double-ended knife blade at a ' rotational speed of about 100 to 400 rpm resulting in the desired pellet length.
The following examples were performed to further illustrate the invention that is explained in detail above. The following information illustrates the typical production conditions and compositions and the tensile modulus of a structural member made from the pellet. The following examples and data contain a best mode. ~
Sample Preparation A laboratory scale twin screw Brabender extruder is used to prepare samples of engineering resin-sawdust composites. The following resins were used:

v m -O U

Ch o m p 0 ~ N o i C~ch O
-rs cn .~
U

I o i Cs.
O o U m o t~1 UI o o LD

-r~.-i~1 N

> v - o r1 0 \ o '~ .~ M CO

I '-i O e-I
~

rl O O LI) \ ri IIl tIl lfl N t CL N

E E
'L3 N
C1 ~ ~ ~ ~ ~ N v ~ rl N

I O H

Ln O~ f-I O1 lf1 O ~i 00 i o o r~ o O o ts, -~ O.

I E
E

w to ~ ~

N C r- 'L3 ..' 1 'tJ v b ~

-o ~ ' ~ ; G ~

u~ .~ v ~ it ~

v v o ~ ~ o ~ o v E ~ U N v v >. ~ v r-iE
N !1 v cu v c .-1 E m-i >. U .C
t~ ~ ~.- ~

z r-tN --I ?. -~ ~ cU U
nS N rt1 U1 .--! S.~ r1 1.a U
~-I ~ ~ S-a U L.'~. :-1 O 1-1 (~ to N r-~
lfS O v N

-,~v ~ -,~ t~ -~ ~ ~n x v sa ~ v ~

~, G v v v ~ >.

N ~L.~ O N O -ri .C',U r-1 . (iS (d r-1 (Lf :

C2, r1 11 r-I N ~6 ~
r-I U '~ 1-a O

v ~.?. ,~ ~ w c~ ~-i ~. ri Q1 ~ (1, t0 ~ ~ la v1 ~ ~ ?. ~ ~ ~ 3 ~ ~ ~--~ ~ ~

O O U al U ~ L O v O O
~ U O v ~

w 0. r.~ ~C ~ ,fl v7 I1 U 0.~
~ r0 t~. t~ .f~

is x o '-' o ,-a v o \

x z ~ M ~ ~ p v v a . cn ~ v ~ ~ v ~~ ~

w H

z w w H ~ H ~ ~ >
~

F a x ~ "
.

TS ri O f~ H cti C4 ~ ~

~-1 -~ ~.-WQ r-!
f~

fLSS-dp 1J O l1 N
(/~ U7 O

~-1~-1.-1 G Cl~ Ul S-i p ~ lI7 ~ O

t11O r3 v a1 ~ O ~.O ~ v z > u~ ~N aE H~ a c~

m o u~
r-, r-, These polymers are premixed with sawdust (40~ by weight) in a dough mixer. To assist processability a lubricant, oxidized polyethylene AC 629A, is added at 1.5-2 phr (parts per hundred parts of resin). For example: 600 grams of polymer is mixed with 400 grams of sawdust and 9 grams of AC629A. The premixed polymer-sawdust is then fed into the lab extruder. The extruder is equipped with a slit die (1~~ width, 0.1.'~ thick) and a take -off puller with an air knife for cooling.
The polymer-sawdust mixture is fed to the extruder with a volumetric feeder. The feed rate is adjusted to give a smooth flow of material. The extruder is run at the following conditions:
PARAMETER SETTING

Barrel Zone 1 Temperature 150C

Barrel Zone 2 Temperature 165C

Barrel Zone 2 Temperature 180C

Adapter Temperature 185C

Die Temperature 180C

Screw Speed 10-15 Feeder setting 15-20 Air pressure for cooling 20 Psi The temperatures, feed rates and the screw speeds are adjusted to accommodate the varying flow characteristics of different polymers. After extrusion, about 4 feet length of strips were saved for physical property testing.
Physical Propertv Testing The following tests were conducted on the samples obtained from the extruded strips. The sample size for the respective physical property tests is given below as length, width and thickness in inches. Before any kind of testing all the samples were annealed in an oven at 90°C
for 30 minutes and left at room temperature for at least 12 hours.

WO 97/25368 PCT/US97/0024l3 Instron stress-strain curves at 0.05 in/min strain rate on 7x1x0.1 inch samples (ASTM D 3039 M) Heat Distortion Temperature testing in a heated air chamber on 5x1x0.1 inch samples (ASTM D 648-5 82) ' Coefficient of thermal expansion using a Dilatometer on 2.5x0.5x0.1 inch samples (ASTM D

696-91) Surface energy calculated from contact angles 10 using a Rame' Hart Goniometer All the tests were conducted in close accordance with the ASTM standards listed above. Instron and 15 Goniometer were operated at room temperature. Owing to the sensitivity of sawdust with the oil used as heat transfer fluid in a standard heat distortion measuring device, an insulated box with a strip heater and a temperature controller was built so that the samples 20 could be heated with hot air. The ramp rate of temperature as measured by a thermocouple near the samples was around 1.85°C/min, which is close to the ASTM standard of 2°C/min. The Coefficient of thermal expansion is measured on 2.5 inch long sample over a 25 temperature rise from 0. to 45°C.
Addition of filler to a polymer enhances its stiffness and its resistance to deform and expand with temperature rise as illustrated by measurements of modulus, HDT and COE, The contact angle as measured on a Goniometer reflects the wettability of a surface by a polar (water) and a non-polar (methylene iodide) liquids. A surface energy term has been computed from the contact angles obtained by placing a drop of water and methylene iodide on the surface. A surface with zero contact angle has high surface energy and good wettability. Wood has a high surface energy and thermoplastics have lower surface energy. Lesser the difference in surface energy between the wood and plastic, better the thermodynamic adhesion between them.

These criteria were used to evaluate the effects of addition of sawdust to thermoplastics.

y r,am n o o w e .G

o ~ ~, .e o o .n ov ..~

b a' uW c vc r m n H

V'~ N h V~ C, ~o ~ N ow n .-m n m h H

~ o ~ o a o 0 0~
p -A h N !f1 ~D Q1 T O

~ h r~ O d r''1O m 01 N N V~ h r1 dl U1 r-, o ., a r, a~ am ,n .d m o, h h .~ w o M ~ ~ ~, ~ ~ h w H

>z w a ~ ~ .. a ~, ar o a o v o a A

, U ~ ~-~

, .. G >. d -~ i ~ ~ m ~ L
U

.~ --.
>" a -I

.r -.i b ~ E., w ,--~ O L G R

' S N >. ~
~

tlm .-I a v ~ d E
.-. O

..r O ro >, ~ -a .~ y O
~ -, b z .1 y.~ a 27 .-I ro U
,., .-~

-.1 ro U CJ ro la S~
m ro ro ~ a~ ~ ~ s~

m L I -, ~ -~ a.lCI
O v W y .~ N H S1 C O t1 ar a cn b 'DC1. C a I O .Ll.-, C ro r~

x,, -.iN N C N .-i W
ro G w N

O v ?~ ~ -a y b U!
~ tt O

E' ~ a ~ a o ro a a~ m~

p ~ I U C I ~ 3 W U ro v Wa U ro O ~ U \
y rt >. to C ro U
I .I .i ~
tn G

>....,.--~>. ~, v >
h a o o a >. ~, ~ ~, ~r o~ w w w ~

v ~,~ ~I o\.. U ~, N --a x ~c3 r ~ U ca ro L Q .~ cd n..a ar ro c m ,~ m jSt m W -- x ~I wo ro m _ ~ ro a _ 1 >.~. >. l ~, >. .
a o o o s .-i.a ~, .~ .-~.--i~
ro v ~, m o m O O O .-a O O ~ .., > U a~ ~ o ai w o. w ~ w o~ U ~. II
-- -- m a ~ ~
N

u~ o m o r~i r-~ N N

TABLE II
SAMPLE DIMENSIONS FOR TESTS
Length Width Thickness in in in Instron 7 1 0.1 at 0.05 in/min (Modulus) strain rate ADT 5 1 0.1 at 264 psi or 0.44 lb Impact 2 1 0.1 with D.87 lb dart 1D COTE 2-2.5 0.4-0.5 0.09-0.11 Dilatometer between 0 to 45 C, ASTM

The above specification, examples and data provide a complete description of the manufacture and use of the composition of the invention. Since many embodiments of the invention can be made without departing from the 5 spirit and scope of the invention, the invention resides in the claims hereinafter appended.

Claims (29)

WE CLAIM:
1. A resin and fiber composite thermoplastic pellet, capable of formation into a structural member, which pellet comprises a thermoplastic extrudate consisting essentially of:
(a) a continuous phase comprising a thermoplastic engineering resin, comprising repeating monomer units substantially free of vinyl chloride, the resin having a surface energy greater than 4X10-4 N/cm, a processing temperature less than 250°C, and a moisture sensitivity such that the resin does not have a substantial reduction in melt index or molecular weight during processing in the presence of water; and (b) an effective amount of wood fiber having a minimum dimension of about 0.1 millimeter and a minimum aspect ratio of about 1.5 to provide structural properties to the composite;
wherein the resin and wood fiber are mixed at elevated temperatures and pressure such that an intimate admixture is formed, the wood fibers are dispersed in the a continuous thermoplastic phase, the pellet is a recyclable thermoplastic and the composite has a Young's modulus of at least 3447 MPa and a final water content of less than 8wt%.
2. A resin and fiber thermoplastic composite, capable of formation into a structural member, which composite comprises a thermoplastic engineering resin and fiber, the composite consisting essentially of:
(a) a continuous phase of a thermoplastic engineering resin, comprising repeating monomer units substantially free of vinyl chloride, the resin having a surface energy greater than 4X10-4 N/cm, a processing temperature less than 250°C, and a moisture sensitivity such that the resin does not have a substantial reduction in either melt index or molecular weight during processing in the presence of water: and (b) an effective amount of wood fiber having a minimum dimension of about 0.1 millimeter and a minimum aspect ratio of about 1.5 to provide structural properties to the composite;
wherein the resin and wood fiber are mixed at elevated temperatures and pressure such that an intimate admixture is formed, the wood fibers disperse throughout a continuous thermoplastic resin phase, the pellet is recyclable and the composite has a Young's modulus of at least 3447 MPa and a final water content of less than 8wt%.
3. The composite of claim 1 or 2 wherein the engineering resin comprises a condensation polymer.
4. The composite of claim 3 wherein the condensation polymer comprises a polyphenylene oxide.
5. The composite of claim 3 wherein the condensation polymer comprises a polybutylene terephthalate.
6. The composite of claim 3 wherein the condensation polymer comprises a polyethylene naphthalate.
7. The composite of claim 3 wherein the condensation polymer comprises cellulose acetate butyrate.
8. The composite of claim 1 or 2 wherein the engineering resin comprises a vinyl polymer.
9. The composite of claim 8 wherein the vinyl polymer comprises a copolymer comprising styrene.
10. The composite of claim 9 wherein the copolymer comprises acrylonitrile and styrene.
11. The composite of claim 8 wherein the vinyl polymer comprises acrylonitrile, butadiene and styrene.
12. The composite of claim 8 wherein the vinyl polymer comprises an acrylic polymer having repeating units derived from a monomer selected from the group consisting of acrylic acid, methacrylic acid, methylacrylate, methylmethacrylate, acrylamide and mixtures thereof.
13. The composite of claim 1 or 2 wherein the wood fiber comprises a by-product of milling or sawing wooden members and the pellet comprises less than about 8 wt-%
water.
14. The composite of claim 1 or 2 wherein the composite additionally comprises an agent that promotes the compatibility of the engineering resin and the wood fiber.
15. The composite of claim 3 wherein the condensation polymer has a melt flow index of about 1 to gm/10 min.
16. The composite of claim 8 wherein the vinyl polymer has a processing temperature least than 235°C
and a melt flow index of about 0.1 to 20g/10 minutes.
17. The composite of claim 1 or 2 wherein the wood fiber has a fiber length of about 0.1 to 2 millimeters and an aspect ratio of about 2 to 7.
18. The composite of claim 8 wherein the polymer is a polyacetal with a melt flow of about 0.001 to 0.1 gm/10 min.
19. The composite of claim 1 wherein the pellet comprises about 0.01 to 5% water.
20. The composite of claim 1 wherein the pellet comprises a right circular cylinder having a radius of about 0.1 to 5 mm and a length of about 0.1 to 4.7 mm.
21. The composite of claim 1 or 2 wherein the polymer comprises an additive selected from a lubricant, an antioxidant, a pigment, a thermal stabilizer, or a mixture thereof.
22. The composite of claim 1 or 2 wherein the aspect ratio is at least about 1.8.
23. The composite of claim 1 or 2 wherein the Young's modulus is at least 4137 MPa.
24. The composite of claim 1 or 2 wherein the Young's modulus is at least 6895 MPa.
25. The composite of claim 3 wherein the resin comprises a polyvinylidene fluoride.
26. The composite of claim 3 wherein the resin comprises a thermoplastic polyurethane.
27. The composite of claim 1 or 2 wherein the resin comprises a polymer alloy.
28. The composite of claim 27 wherein the polymer alloy comprises a polycarbonate resin and an acrylonitrile-butadiene-styrene resin.
29. The composite of claim 2 wherein the resin comprises a polyvinylidene chloride.
CA002242326A 1996-01-08 1997-01-02 Advanced engineering resin and wood fiber composite Expired - Lifetime CA2242326C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/585,320 1996-01-08
US08/585,320 US5948524A (en) 1996-01-08 1996-01-08 Advanced engineering resin and wood fiber composite
PCT/US1997/000248 WO1997025368A1 (en) 1996-01-08 1997-01-02 Advanced engineering resin and wood fiber composite

Publications (2)

Publication Number Publication Date
CA2242326A1 CA2242326A1 (en) 1997-07-17
CA2242326C true CA2242326C (en) 2005-06-28

Family

ID=24340940

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002242326A Expired - Lifetime CA2242326C (en) 1996-01-08 1997-01-02 Advanced engineering resin and wood fiber composite

Country Status (9)

Country Link
US (1) US5948524A (en)
EP (1) EP0869988B1 (en)
JP (1) JP2000503694A (en)
AT (1) ATE215580T1 (en)
AU (1) AU1693497A (en)
CA (1) CA2242326C (en)
DE (1) DE69711597T2 (en)
MX (1) MX9805509A (en)
WO (1) WO1997025368A1 (en)

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030187102A1 (en) 1997-09-02 2003-10-02 Marshall Medoff Compositions and composites of cellulosic and lignocellulosic materials and resins, and methods of making the same
US6448307B1 (en) 1997-09-02 2002-09-10 Xyleco, Inc. Compositions of texturized fibrous materials
US5973035A (en) 1997-10-31 1999-10-26 Xyleco, Inc. Cellulosic fiber composites
US6464913B1 (en) 1997-09-05 2002-10-15 Crane Plastics Company Limited Partnership In-line compounding and extrusion system
US6451882B1 (en) * 1997-09-24 2002-09-17 Hughes Processing, Inc. Acrylonitrile/styrene/acrylic/filler compositions and methods for making same
US6344268B1 (en) 1998-04-03 2002-02-05 Certainteed Corporation Foamed polymer-fiber composite
US6270883B1 (en) 1998-10-09 2001-08-07 The United States Of America As Represented By The Secretary Of Agriculture Composites containing cellulosic pulp fibers and methods of making and using the same
US6265037B1 (en) * 1999-04-16 2001-07-24 Andersen Corporation Polyolefin wood fiber composite
US6662515B2 (en) 2000-03-31 2003-12-16 Crane Plastics Company Llc Synthetic wood post cap
CA2306959A1 (en) * 2000-03-31 2001-10-26 Enviro Concept Ltd. A plant fiber composite material, its products and a processing method thereof
US20020166297A1 (en) * 2000-11-01 2002-11-14 David Plummer Attachment system for a decorative member
US6718704B2 (en) 2000-11-01 2004-04-13 Andersen Corporation Attachment system for a decorative member
US6881367B1 (en) * 2000-11-06 2005-04-19 Elk Composite Building Products, Inc. Composite materials, articles of manufacture produced therefrom, and methods for their manufacture
US9045369B2 (en) * 2000-11-06 2015-06-02 Elk Composite Building Products, Inc. Composite materials, articles of manufacture produced therefrom, and methods for their manufacture
US6578368B1 (en) 2001-01-19 2003-06-17 Crane Plastics Company Llc Cryogenic cooling of extruded and compression molded materials
US6637213B2 (en) 2001-01-19 2003-10-28 Crane Plastics Company Llc Cooling of extruded and compression molded materials
GB0110873D0 (en) * 2001-05-03 2001-06-27 Hyperlast Ltd Burglar resistant materials
JP2003004567A (en) * 2001-06-19 2003-01-08 Omron Corp Pressure sensor and sphygmomanometer
US6758996B2 (en) 2001-07-13 2004-07-06 Kadant Composites Inc. Cellulose-reinforced thermoplastic composite and methods of making same
US20030096132A1 (en) * 2001-10-25 2003-05-22 Richardson Mark P. PVC/wood fiber composite
US6632863B2 (en) 2001-10-25 2003-10-14 Crane Plastics Company Llc Cellulose/polyolefin composite pellet
US6780359B1 (en) 2002-01-29 2004-08-24 Crane Plastics Company Llc Synthetic wood composite material and method for molding
US20040096640A1 (en) * 2002-01-30 2004-05-20 M & G Usa Corporation Method for conditioning polyester and controlling expansion of polyester during thermoforming
US20030186052A1 (en) * 2002-03-29 2003-10-02 Cytech Fiber Processing Systems, Inc. Fiber pellets and processes for forming fiber pellets
NO319190B1 (en) * 2002-05-15 2005-06-27 Knut Magne Furuheim Process for producing a barrier material having good gas barrier properties, and barrier material obtained therefrom.
US7178308B2 (en) * 2002-06-28 2007-02-20 Masonite International Corporation Composite door structure and method of forming a composite door structure
US6890965B1 (en) 2002-07-02 2005-05-10 Hughes Processing, Inc Foamed composites and methods for making same
US7160601B2 (en) * 2002-10-17 2007-01-09 Reese Enterprises, Inc. Entryway with dimensionally stable plastic components
US7449229B2 (en) * 2002-11-01 2008-11-11 Jeld-Wen, Inc. System and method for making extruded, composite material
CA2462329A1 (en) * 2003-03-29 2004-09-29 Dover Chemical Corporation Wood filled composites
JP2007517078A (en) * 2003-06-13 2007-06-28 アグリ−ポリメリックス・エルエルシー Biopolymer structures and components
US20050183243A1 (en) * 2003-07-13 2005-08-25 Tinker Larry C. Fibrillation of natural fiber
US20060162879A1 (en) * 2003-07-13 2006-07-27 Tinker Larry C Compounding of fibrillated fiber
UA79054C2 (en) * 2003-10-01 2007-05-10 Фрітц Еггер Гмбх Унд Ко. Moulding compound and method for manufacturing moulded items made of said moulding material moulded item
US20050257455A1 (en) * 2004-03-17 2005-11-24 Fagan Gary T Wood-plastic composite door jamb and brickmold, and method of making same
US20060147582A1 (en) * 2004-06-14 2006-07-06 Riebel Michael J Biopolymer and methods of making it
US20060073319A1 (en) * 2004-10-05 2006-04-06 Nfm/Welding Engineers, Inc. Method and apparatus for making products from polymer wood fiber composite
US8074339B1 (en) 2004-11-22 2011-12-13 The Crane Group Companies Limited Methods of manufacturing a lattice having a distressed appearance
US20060148935A1 (en) * 2005-01-04 2006-07-06 Davidsaver John E Polyvinyl chloride blend
ES2662168T3 (en) 2005-03-24 2018-04-05 Xyleco, Inc. Procedure to prepare a composite material
US20150328347A1 (en) 2005-03-24 2015-11-19 Xyleco, Inc. Fibrous materials and composites
US7708214B2 (en) 2005-08-24 2010-05-04 Xyleco, Inc. Fibrous materials and composites
US7214420B2 (en) * 2005-05-23 2007-05-08 Robert Joyce Molded article
US7659330B2 (en) * 2005-09-16 2010-02-09 University Of Maine System Board Of Trustees Thermoplastic composites containing lignocellulosic materials and methods of making same
US20070066722A1 (en) * 2005-09-16 2007-03-22 University Of Maine System Board Of Trustees Thermoplastic composites containing lignocellulosic materials and methods of making the same
US8167275B1 (en) 2005-11-30 2012-05-01 The Crane Group Companies Limited Rail system and method for assembly
US7743567B1 (en) 2006-01-20 2010-06-29 The Crane Group Companies Limited Fiberglass/cellulosic composite and method for molding
US7875655B2 (en) 2006-01-20 2011-01-25 Material Innovations, Llc Carpet waste composite
EP1844917A3 (en) 2006-03-24 2008-12-03 Entex Rust &amp; Mitschke GmbH Method for processing products which must be degassed
FR2910877B1 (en) 2006-12-28 2009-09-25 Eurocopter France IMPROVEMENT TO ROTORS OF GIRAVIONS EQUIPPED WITH INTERPAL SHOCK ABSORBERS
US8460797B1 (en) 2006-12-29 2013-06-11 Timbertech Limited Capped component and method for forming
DE102007007168A1 (en) 2007-02-09 2008-08-21 J. Rettenmaier & Söhne Gmbh + Co. Kg Smooth, hydrophobized shaped articles, especially useful as animal litters, are obtained by hydrophobically sizing cellulosic material then shaping without addition of binders
WO2008144333A1 (en) * 2007-05-16 2008-11-27 Nova Chemicals Inc. Plastic-cellulosic composite articles
EP1997608A3 (en) 2007-05-16 2009-05-27 Entex Rust &amp; Mitschke GmbH Method for machining products to be degassed
AR070957A1 (en) * 2008-01-11 2010-05-19 Nova Chem Inc METHOD FOR PRODUCING THERMOPLASTIC COMPOUND MATERIALS OF A COPOLYMER CONTAINING LOADED ANHYDRID WITH CELLULOSICAL MATERIALS
US20090321981A1 (en) 2008-01-15 2009-12-31 RheTech, Inc. Cellulosic inclusion thermoplastic composition and molding thereof
US9061987B2 (en) * 2008-09-10 2015-06-23 Poet Research, Inc. Oil composition and method for producing the same
US8702819B2 (en) * 2008-09-10 2014-04-22 Poet Research, Inc. Oil composition and method of recovering the same
US8086794B2 (en) * 2008-12-12 2011-12-27 Datadirect Networks, Inc. System and method for data migration between computer cluster architecture and data storage devices
CA2747717C (en) 2008-12-19 2018-07-10 Fiber Composites, Llc Wood-plastic composites utilizing ionomer capstocks and methods of manufacture
EP3632581A1 (en) 2009-01-15 2020-04-08 U.B.Q. Materials Ltd. A composite material and method of preparing the same from substantially unsorted waste
EP2547505A1 (en) * 2010-03-16 2013-01-23 Andersen Corporation Sustainable compositions, related methods, and members formed therefrom
US8722773B2 (en) 2011-02-14 2014-05-13 Weyerhaeuser Nr Company Polymeric composites
DE102011112081A1 (en) 2011-05-11 2015-08-20 Entex Rust & Mitschke Gmbh Process for processing elastics
CN104395388A (en) 2012-02-17 2015-03-04 安德森公司 Polylactic acid containing building component
WO2014056553A1 (en) 2012-10-11 2014-04-17 Entex Gmbh Rust & Mitschke Gmbh Extruder for processing plastics which are suitable for adhesion
WO2016075593A1 (en) * 2014-11-13 2016-05-19 Sabic Global Technologies B.V. Polyester composition and article prepared therefrom
DE102017001093A1 (en) 2016-04-07 2017-10-26 Entex Rust & Mitschke Gmbh Degassing during the extrusion of plastics with sintered metal filter discs
DE102015001167A1 (en) 2015-02-02 2016-08-04 Entex Rust & Mitschke Gmbh Degassing during the extrusion of plastics
DE102015008406A1 (en) 2015-07-02 2017-04-13 Entex Rust & Mitschke Gmbh Process for processing products in the extruder
JP7071921B2 (en) 2015-09-21 2022-05-19 ストラ エンソ オーワイジェイ Complex products and the process of manufacturing the products
US10550257B2 (en) 2016-02-23 2020-02-04 Andersen Corporation Composite extrusion with non-aligned fiber orientation
US11813818B2 (en) 2016-02-23 2023-11-14 Andersen Corporation Fiber-reinforced composite extrusion with enhanced properties
DE102016002143A1 (en) 2016-02-25 2017-08-31 Entex Rust & Mitschke Gmbh Filling module in planetary roller extruder design
JP6142053B1 (en) * 2016-07-07 2017-06-07 株式会社大貴 Excrement treatment material and manufacturing method thereof
KR102493210B1 (en) 2016-11-08 2023-01-27 우디오 오와이 Compressed articles and methods of making the same
WO2018142314A1 (en) 2017-02-03 2018-08-09 Stora Enso Oyj A composite material and composite product
DE102017006638A1 (en) 2017-07-13 2019-01-17 Entex Rust & Mitschke Gmbh Filling module in planetary roller extruder design
US11680439B2 (en) 2017-08-17 2023-06-20 Andersen Corporation Selective placement of advanced composites in extruded articles and building components
CA3128657A1 (en) 2020-08-19 2022-02-19 Andersen Corporation Selectively filled hollow profiles and methods of preparing hollow profiles for joining operations
US11572646B2 (en) 2020-11-18 2023-02-07 Material Innovations Llc Composite building materials and methods of manufacture
AU2022336635A1 (en) 2021-08-31 2024-02-15 U.B.Q Materials Ltd. Organic composite material, methods of obtaining the same from heterogenous waste, and uses thereof

Family Cites Families (163)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2188396A (en) * 1937-02-20 1940-01-30 Goodrich Co B F Method of preparing polyvinyl halide products
US2519442A (en) * 1944-04-28 1950-08-22 Saint Gobain Compositions containing cellulosic filler united by polyvinyl chloride
US2489373A (en) * 1944-05-04 1949-11-29 Bakelite Corp Method of preparing a moldable composition in pellet form
US2558378A (en) * 1947-01-15 1951-06-26 Delaware Floor Products Inc Composition for floor and wall covering comprising plasticized vinyl resin and filler and method of making same
US2635976A (en) * 1948-06-15 1953-04-21 Plywood Res Foundation Method of making synthetic constructional boards and products thereof
US2680102A (en) * 1952-07-03 1954-06-01 Homasote Company Fire-resistant product from comminuted woody material, urea, or melamine-formaldehyde, chlorinated hydrocarbon resin, and hydrated alumina
US2935763A (en) * 1954-09-01 1960-05-10 Us Rubber Co Method of forming pellets of a synthetic rubber latex and a particulate resin
US2789903A (en) * 1954-09-02 1957-04-23 Celanese Corp Process for production of shaped articles comprising fibrous particles and a copolymer of vinyl acetate and an ethylenically unsaturated acid
FR1160743A (en) * 1956-04-07 1958-07-29 Method and device for the production of wooden slats with plastic coating
US3147518A (en) * 1960-01-13 1964-09-08 Pittsburgh Plate Glass Co Panel support
US3308218A (en) * 1961-05-24 1967-03-07 Wood Conversion Co Method for producing bonded fibrous products
GB1046246A (en) * 1962-06-07 1966-10-19 George Berthold Edward Schuele Improvements in or relating to the utilisation of natural fibrous materials
US3493527A (en) * 1962-06-07 1970-02-03 George Berthold Edward Schuele Moldable composition formed of waste wood or the like
DE1554995B1 (en) * 1964-01-24 1972-01-20 Luigi Zanini PROCESS AND DEVICE FOR THE CONTINUOUS PRODUCTION OF PLASTIC COVERED PROFILE STRIPS
US3287480A (en) * 1964-03-31 1966-11-22 Borden Co Pelletizing plastics
US3349538A (en) * 1965-09-07 1967-10-31 Crossman A Virginia Tubular structure
CH466568A (en) * 1966-01-13 1968-12-15 Urlit Ag Process for producing hardboards as well as hardboard manufactured according to the process
US3645939A (en) * 1968-02-01 1972-02-29 Us Plywood Champ Papers Inc Compatibilization of hydroxyl containing materials and thermoplastic polymers
US3562373A (en) * 1969-03-06 1971-02-09 Norristown Rug Mfg Co Method of manufacturing pellets of thermoplastic material
AU1858070A (en) 1969-08-25 1972-02-10 Showa Marutsutsu Company Limited Extruded products for various uses and methods of making same
US3671615A (en) * 1970-11-10 1972-06-20 Reynolds Metals Co Method of making a composite board product from scrap materials
JPS5654335B2 (en) * 1972-07-11 1981-12-24
FR2193350A5 (en) * 1972-07-21 1974-02-15 Sebreg
US3833325A (en) * 1972-08-23 1974-09-03 J Ramsey Balanced flow extrusion head
GB1443194A (en) 1972-09-19 1976-07-21 Braeuning H Method of and apparatus for producing a shaped material made of wood and thermoplastic plastic
US3931384A (en) * 1972-10-02 1976-01-06 Plexowood, Inc. Method of making end frames for upholstered furniture
US3899559A (en) * 1972-11-24 1975-08-12 Mac Millan Bloedel Research Method of manufacturing waferboard
CH570869A5 (en) * 1973-03-23 1976-05-14 Icma San Giorgio S R L Ind Cos
US3969459A (en) * 1973-07-18 1976-07-13 Champion International Corporation Fiberboard manufacture
US4305901A (en) * 1973-07-23 1981-12-15 National Gypsum Company Wet extrusion of reinforced thermoplastic
US3844091A (en) * 1973-11-01 1974-10-29 Mayer & Co Inc O Package cut-out apparatus
SE398134B (en) * 1973-11-19 1977-12-05 Sunden Olof PROCEDURE FOR MODIFICATION OF CELLULOSIAN FIBERS BY SILIC ACID AND IMPREGNATION SOLUTION FOR PERFORMANCE OF THE PROCEDURE
US4056591A (en) * 1973-12-26 1977-11-01 Monsanto Company Process for controlling orientation of discontinuous fiber in a fiber-reinforced product formed by extrusion
US3878147A (en) * 1973-12-27 1975-04-15 Du Pont Composition for increasing the friction of surfaces on ice
SE7415817L (en) * 1974-01-18 1975-07-21 Baehre & Greten
FR2270311A1 (en) 1974-02-20 1975-12-05 Brenez Sarl Plastiques Moulding compsn contg a thermoplastic and sawdust - impermeable to (sea)water
US3943079A (en) * 1974-03-15 1976-03-09 Monsanto Company Discontinuous cellulose fiber treated with plastic polymer and lubricant
US4016232A (en) * 1974-05-02 1977-04-05 Capital Wire And Cable, Division Of U.S. Industries Process of making laminated structural member
US3956541A (en) * 1974-05-02 1976-05-11 Capital Wire & Cable, Division Of U. S. Industries Structural member of particulate material and method of making same
DE2427080B2 (en) 1974-06-05 1977-09-29 Papenmeier, Friedrich Horst, 5840 Schwerte; Kimmel, Hans, 4930 Detmold Process for the production of a starting material composed of a dry powdery cellulose material and a powdery thermo-plastic polymerizate
US3956555A (en) * 1974-09-23 1976-05-11 Potlatch Corporation Load carrying member constructed of oriented wood strands and process for making same
US4012348A (en) * 1974-11-29 1977-03-15 Johns-Manville Corporation Method of preparing a mixture for making extruded resin articles
US4058580A (en) * 1974-12-02 1977-11-15 Flanders Robert D Process for making a reinforced board from lignocellulosic particles
FR2296513A1 (en) * 1974-12-31 1976-07-30 Inst Nat Rech Chimique MANUFACTURING PROCESS OF FINISHED OR SEMI-FINISHED PRODUCTS FROM MIXTURES OF WASTE OF DIFFERENT SYNTHETIC RESINS
US4097648A (en) * 1975-02-10 1978-06-27 Capital Wire & Cable, Division Of U.S. Industries, Inc. Laminated structural member and method of making same
US4018722A (en) * 1975-03-10 1977-04-19 Elizabeth I. Bellack Reclaimed plastic material
US4045603A (en) * 1975-10-28 1977-08-30 Nora S. Smith Construction material of recycled waste thermoplastic synthetic resin and cellulose fibers
NO138127C (en) * 1975-12-01 1978-07-12 Elopak As PROCEDURE FOR "MUNICIPAL" WASTE AA MANUFACTURING RAW MATERIAL FOR PRESS BODIES
DE2610721C3 (en) 1976-03-13 1978-12-21 Rehau-Plastiks Gmbh, 8673 Rehau Use of a plastic-wood flour mixture for the production of insulation material for the electrical industry
US4071479A (en) * 1976-03-25 1978-01-31 Western Electric Company, Inc. Reclamation processing of vinyl chloride polymer containing materials and products produced thereby
FR2365019A1 (en) 1976-09-17 1978-04-14 Anodisation Sa Rectangular hollow section for window shutter frame - is cut to build frames on site and has channels for anchor-ties, seals and corner-fixing screws
DE2647944C2 (en) * 1976-10-22 1979-04-12 Rolf 8502 Zirndorf Schnause Method and device for the production of moldings from thermoplastics and a sheet-shaped, chipped, fibrous, non-thermoplastic material
US4102106A (en) * 1976-12-28 1978-07-25 Gaf Corporation Siding panel
US4263184A (en) * 1977-01-05 1981-04-21 Wyrough And Loser, Inc. Homogeneous predispersed fiber compositions
FR2381804A1 (en) * 1977-02-28 1978-09-22 Solvay MOLDABLE COMPOSITIONS BASED ON THERMOPLASTIC POLYMERS AND VEGETABLE FIBROUS MATERIALS AND USE OF THESE COMPOSITIONS FOR CALENDERING AND THERMOFORMING
NL184773C (en) * 1977-04-19 1989-11-01 Lankhorst Touwfab Bv METHOD FOR PROCESSING THERMOPLASTIC PLASTIC MATERIAL INTO AN ARTICLE WITH THE PROCESSING AND PROCESSING PROPERTIES OF WOOD.
US4145389A (en) * 1977-08-22 1979-03-20 Smith Teddy V Process for making extruded panel product
US4181764A (en) * 1977-08-31 1980-01-01 Totten Clyde D Weather resistant structure and method of making
US4277428A (en) * 1977-09-14 1981-07-07 Masonite Corporation Post-press molding of man-made boards to produce contoured furniture parts
US4508595A (en) * 1978-05-25 1985-04-02 Stein Gasland Process for manufacturing of formed products
DE2831616C2 (en) * 1978-07-19 1984-08-09 Kataflox Patentverwaltungs-Gesellschaft mbH, 7500 Karlsruhe Process for producing a non-combustible molded body
US4202804A (en) * 1978-09-11 1980-05-13 Desoto, Inc. Viscosity stable, stainable wood textured caulking composition containing water immiscible organic solvent
JPS5944963B2 (en) * 1978-10-06 1984-11-02 ロンシール工業株式会社 Method for manufacturing vinyl chloride sheet with printed shibori pattern
DE2845112C3 (en) * 1978-10-17 1981-11-05 Casimir Kast Gmbh & Co Kg, 7562 Gernsbach Process and plant for the production of mats from cellulosic fibers and process for the production of molded parts from these
SE7811543L (en) 1978-11-08 1980-05-09 Kemanobel Ab LIST AND PROCEDURE FOR ITS MANUFACTURING AND USE
US4248820A (en) * 1978-12-21 1981-02-03 Board Of Control Of Michigan Technological University Method for molding apertures in molded wood products
US4440708A (en) * 1978-12-21 1984-04-03 Board Of Control Of Michigan Technological University Method for molding articles having non-planar portions from matted wood flakes
FR2445885A1 (en) 1979-04-20 1980-08-01 Bfg Glassgroup Fixed or opening window frame - uses channels to locate individual sheet edges and has rigid and flexible walls for gripping glass
US4311621A (en) * 1979-04-26 1982-01-19 Kikkoman Corporation Process for producing a filler for adhesive for bonding wood
US4239679A (en) * 1979-06-27 1980-12-16 Diamond Shamrock Corporation High bulk density rigid poly(vinyl chloride) resin powder composition and preparation thereof
SE8005194L (en) * 1979-07-17 1981-01-18 Lion Corp THERMOPLASTIC COMPOSITION AND SET TO FORM FORM THEREOF
US4248743A (en) * 1979-08-17 1981-02-03 Monsanto Company Preparing a composite of wood pulp dispersed in a polymeric matrix
DE3063511D1 (en) * 1979-08-29 1983-07-07 Michael John Hewitt Manufacture of frames for windows and the like from cored plastics profiles
US4393020A (en) * 1979-12-20 1983-07-12 The Standard Oil Company Method for manufacturing a fiber-reinforced thermoplastic molded article
FR2483966A1 (en) * 1980-06-10 1981-12-11 Rhone Poulenc Textile SOLUTIONS CONFORMABLE FROM CELLULOSE MIXTURES AND VINYL POLYCHLORIDE AND FORM ARTICLES THEREOF
US4323625A (en) * 1980-06-13 1982-04-06 Monsanto Company Composites of grafted olefin polymers and cellulose fibers
US4328136A (en) * 1980-12-30 1982-05-04 Blount David H Process for the production of cellulose-silicate products
US4414267A (en) * 1981-04-08 1983-11-08 Monsanto Company Method for treating discontinuous cellulose fibers characterized by specific polymer to plasticizer and polymer-plasticizer to fiber ratios, fibers thus treated and composites made from the treated fibers
US4376144A (en) * 1981-04-08 1983-03-08 Monsanto Company Treated fibers and bonded composites of cellulose fibers in vinyl chloride polymer characterized by an isocyanate bonding agent
US4426470A (en) * 1981-07-27 1984-01-17 The Dow Chemical Company Aqueous method of making reinforced composite material from latex, solid polymer and reinforcing material
HU183546B (en) 1981-08-19 1984-05-28 Muanyagipari Kutato Intezet Process for preparing a combined substance containing a thermoplastic material, a fibrous polymeric skeleton substance of natural origin and an insaturated polyester
DE3147989A1 (en) * 1981-12-04 1983-06-16 Hoechst Ag, 6230 Frankfurt DECORATIVE, IN PARTICULAR PLATE-SHAPED MOLDED PART, METHOD FOR THE PRODUCTION THEREOF AND THE USE THEREOF
JPS58102745A (en) * 1981-12-15 1983-06-18 Takashi Honda Manufacture of wood series synthetic resin composite material
US4382108A (en) * 1981-12-21 1983-05-03 The Upjohn Company Novel compositions and process
NL8300428A (en) * 1982-02-04 1983-09-01 Ausonia Spa ADHESIVE JOINT.
US4505869A (en) * 1982-03-03 1985-03-19 Sadao Nishibori Method for manufacturing wood-like molded product
US4420351A (en) * 1982-04-29 1983-12-13 Tarkett Ab Method of making decorative laminated products such as tiles, panels or webs from cellulosic materials
JPS58204049A (en) * 1982-05-22 1983-11-28 Ain Eng Kk Reinforced resin molded article
US4455709A (en) * 1982-06-16 1984-06-26 Zanini Walter D Floor mounted guide and shim assembly for sliding doors
US4562218A (en) * 1982-09-30 1985-12-31 Armstrong World Industries, Inc. Formable pulp compositions
JPS59156172A (en) * 1983-02-23 1984-09-05 Hitachi Ltd Starting method of induction motor
EP0122460B1 (en) * 1983-03-23 1988-07-06 Chuo Kagaku Co., Ltd. Production of resin foam by aqueous medium
BG39560A1 (en) * 1983-08-25 1986-07-15 Natov Polyvinylchloride composition
DE3336647A1 (en) * 1983-10-08 1985-04-25 Hoechst Ag, 6230 Frankfurt MOLDING DIMENSIONS BASED ON VINYL CHLORIDE POLYMERISATS AND METHOD FOR THE PRODUCTION OF FILMS FROM THESE SHAPING MATERIALS FOR THE PREPARATION OF COUNTERFEIT-SECURE SECURITIES
DE3346469A1 (en) * 1983-12-22 1985-07-18 Heggenstaller, Anton, 8892 Kühbach METHOD AND DEVICE FOR EXTRUDING PLANT SMALL PARTS MIXED WITH BINDERS, IN PARTICULAR SMALL WOOD PARTS
US4597928A (en) * 1984-03-23 1986-07-01 Leningradsky Tekhnologichesky Institute Tselljulozno-Bumazhnoi Promyshlennosti Method for fiberboard manufacture
FR2564374B1 (en) 1984-05-15 1987-04-17 Grepp SOLID PROFILES BASED ON WOOD AND RECYCLED THERMOPLASTICS AND THEIR MANUFACTURING METHOD
JPS6116965A (en) * 1984-07-04 1986-01-24 Karupu Kogyo Kk Composite resin sheet
JPS6131447A (en) * 1984-07-23 1986-02-13 Kanegafuchi Chem Ind Co Ltd Thermoplastic woody composition
FR2568164B1 (en) * 1984-07-27 1987-09-04 Ostermann Michel PROCESS FOR PRODUCING DECORATIVE PRODUCTS FROM FRAGMENTS OR PIECES OF WOOD AND PRODUCTS OBTAINED
JPS6186042A (en) * 1984-10-02 1986-05-01 Daido Steel Co Ltd Forging machine
US4610900A (en) * 1984-12-19 1986-09-09 Sadao Nishibori Wood-like molded product of synthetic resin
JPS61151266A (en) * 1984-12-25 1986-07-09 Chisso Corp Cellulosic filler for thermoplastic resin
DE3507640A1 (en) 1985-03-05 1986-09-11 Hubert 5778 Meschede Möller METHOD FOR PRODUCING REINFORCED PROFILE PARTS
SE8501212D0 (en) 1985-03-12 1985-03-12 Uponor Ab SET FOR MANUFACTURE OF PREMIUATED PIPES
JPS61236858A (en) * 1985-04-13 1986-10-22 Chisso Corp Thermoplastic resin composition
US4619097A (en) * 1985-07-29 1986-10-28 Kawneer Company, Inc. Thermally insulated composite frame member and method for manufacture
US4820763A (en) 1985-08-08 1989-04-11 The B. F. Goodrich Company Poly(vinyl chloride) polyblend containing a crystalline polyester with limited miscibility and reinforced composites thereof
DE3538531A1 (en) 1985-10-30 1987-05-07 Mende & Co W METHOD FOR THE CONTINUOUS PRODUCTION OF CHIP, FIBER AND THE LIKE PANELS
US4716062A (en) * 1985-11-08 1987-12-29 Max Klein Composite materials, their preparation and articles made therefrom
US4659754A (en) * 1985-11-18 1987-04-21 Polysar Limited Dispersions of fibres in rubber
US4734236A (en) * 1985-12-02 1988-03-29 Sheller-Globe Corporation Method for forming fiber web for compression molding structural substrates for panels
US4957809A (en) 1985-12-02 1990-09-18 Sheller-Globe Corporation Fiber web for compression molding structural substrates for panels
US4865788A (en) 1985-12-02 1989-09-12 Sheller-Globe Corporation Method for forming fiber web for compression molding structural substrates for panels and fiber web
DE3605066C1 (en) 1986-02-18 1987-08-13 Hubert Moeller Hollow profile made of a plastic-fiber mixture
US4663225A (en) * 1986-05-02 1987-05-05 Allied Corporation Fiber reinforced composites and method for their manufacture
US4790966A (en) * 1986-06-30 1988-12-13 Board Of Control Of Michigan Technological University Method for forming a pallet with deep drawn legs
GB8618729D0 (en) 1986-07-31 1986-09-10 Wiggins Teape Group Ltd Fibrous structure
JPH0679811B2 (en) 1986-08-06 1994-10-12 トヨタ自動車株式会社 Method for manufacturing wood-based molded body
US4774272A (en) * 1986-08-08 1988-09-27 Minnesota Mining And Manufacturing Company Composite sheet material for storage envelopes for magnetic recording media
DE3630937A1 (en) 1986-09-11 1988-03-24 Rehau Ag & Co USE OF NATURAL CELLULOSE FIBERS AS ADDITIVE TO POLYVINYL CHLORIDE
US4769274A (en) * 1986-12-22 1988-09-06 Tarkett Inc. Relatively inexpensive thermoformable mat of reduced density and rigid laminate which incorporates the same
US4769109A (en) * 1986-12-22 1988-09-06 Tarkett Inc. Relatively inexpensive thermoformable mat and rigid laminate formed therefrom
DE3726921A1 (en) 1987-02-10 1988-08-18 Menzolit Gmbh SEMI-FINISHED PRODUCT AND METHOD AND DEVICE FOR PRODUCING MOLDED SEMI-PREPARED PRODUCTS FROM THERMOPLAST
US4818604A (en) * 1987-03-27 1989-04-04 Sub-Tank Renewal Systems, Inc. Composite board and method
DE3714828A1 (en) 1987-05-01 1988-11-17 Rettenmaier Stefan METHOD FOR PRODUCING BITUMEN MASSES
ATE69992T1 (en) 1987-05-23 1991-12-15 Mario Miani METHOD OF MAKING PLATES, DEVICE FOR CARRYING OUT THE PROCESS AND PLATES OBTAINED.
ATE67712T1 (en) 1987-07-10 1991-10-15 Karl Reinhard Zeiss PROCESSES FOR THE MANUFACTURE AND PROCESSING OF REACTION PLASTIC MIXTURES.
DE3725965A1 (en) 1987-08-05 1989-02-16 Signode System Gmbh METHOD FOR PRODUCING MOLDED BODIES FROM PAPER AND A THERMOPLASTIC PLASTIC
BE1000910A3 (en) 1987-09-16 1989-05-16 Advanced Recycling Tech THERMOPLASTIC MATERIAL EXTRUSION SCREWS.
FR2622833B1 (en) 1987-11-06 1990-04-27 Omnium Traitement Valorisa PROCESS AND INSTALLATION FOR THE MANUFACTURE OF MOLDED OR EXTRUDED OBJECTS FROM WASTE CONTAINING PLASTIC MATERIALS
CN1017881B (en) 1987-12-16 1992-08-19 库特·赫尔德·法布里肯特 Apparatus and method for manufacturing wood plank
FR2625645B1 (en) 1988-01-13 1991-07-05 Wogegal Sa PROCESS AND INSTALLATION FOR PRODUCING A PRODUCT AS A CULTURE SUPPORT
JPH0649288B2 (en) 1988-01-22 1994-06-29 豊田合成株式会社 Method for producing polyvinyl chloride material for extrusion molding
US5183837A (en) 1988-03-30 1993-02-02 Presidenza Del Consiglio Dei Ministri - Ufficio Del Ministro Per Il Coordinamento Delle Iniziativae Per La Ricerca Scientifica E Tecnologica Process for binding cellulosic materials with a binding agent of an aqueous emulsions of polyisocyanates and cellulose ether
US4927579A (en) 1988-04-08 1990-05-22 The Dow Chemical Company Method for making fiber-reinforced plastics
US4837977A (en) 1988-06-27 1989-06-13 Mauro Gerald D Wood clad windows
DE3842072C1 (en) 1988-12-14 1989-12-28 Pallmann Maschinenfabrik Gmbh & Co Kg, 6660 Zweibruecken, De
DE3903022C1 (en) 1989-02-02 1990-04-26 Hermann Berstorff Maschinenbau Gmbh, 3000 Hannover, De
US4973440A (en) 1989-03-15 1990-11-27 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method for production of fiber-reinforced thermosetting resin molding material
US5093058A (en) 1989-03-20 1992-03-03 Medite Corporation Apparatus and method of manufacturing synthetic boards
CA1332987C (en) 1989-04-19 1994-11-08 Govinda Raj Process for chemical treatment of discontinuous cellulosic fibers and composites of polyethylene and treated fibers
US5008310A (en) 1989-05-15 1991-04-16 Beshay Alphons D Polymer composites based cellulose-V
US5021490A (en) 1989-08-03 1991-06-04 The B. F. Goodrich Company Internally plasticized polyvinyl halide compositions and articles prepared therefrom
CA1308013C (en) 1989-09-25 1992-09-29 Lars Bach Post-press heat treatment process for improving the dimensional stability of a waferboard panel
US5075359A (en) 1989-10-16 1991-12-24 Ici Americas Inc. Polymer additive concentrate
US5002713A (en) 1989-12-22 1991-03-26 Board Of Control Of Michigan Technological University Method for compression molding articles from lignocellulosic materials
US5096046A (en) 1990-03-14 1992-03-17 Advanced Environmental Recycling Technologies, Inc. System and process for making synthetic wood products from recycled materials
US5088910A (en) 1990-03-14 1992-02-18 Advanced Environmental Recycling Technologies, Inc. System for making synthetic wood products from recycled materials
US5082605A (en) 1990-03-14 1992-01-21 Advanced Environmental Recycling Technologies, Inc. Method for making composite material
US5096406A (en) 1990-03-14 1992-03-17 Advanced Environmental Recycling Technologies, Inc. Extruder assembly for composite materials
US5084135A (en) 1990-03-27 1992-01-28 Advanced Environmental Recycling Technologies, Inc. Recycling plastic coated paper product waste
FI85451C (en) 1990-06-08 1992-04-27 Rauma Repola Oy FARING EQUIPMENT FOR FRAMING PROCESSING OF SKIVPRODUKTAEMNE.
US5100545A (en) 1990-12-03 1992-03-31 Advanced Environmental Recycling Technologies, Inc. Separation tank
US5075057A (en) 1991-01-08 1991-12-24 Hoedl Herbert K Manufacture of molded composite products from scrap plastics
US5284710A (en) 1991-09-17 1994-02-08 Crane Plastics Company Fluoropolymer-acrylic plastic composite and coextrusion method
IT1251723B (en) 1991-10-31 1995-05-23 Himont Inc POLYOLEFINIC COMPOSITES AND PROCEDURE FOR THEIR PREPARATION
US5322899A (en) 1992-07-21 1994-06-21 Ppg Industries, Inc. Fluoropolymer blend for coextrusion onto thermoplastic substrates
CA2100319C (en) 1992-08-31 2003-10-07 Michael J. Deaner Advanced polymer/wood composite structural member
CA2100320C (en) 1992-08-31 2011-02-08 Michael J. Deaner Advanced polymer wood composite
US5441801A (en) 1993-02-12 1995-08-15 Andersen Corporation Advanced polymer/wood composite pellet process
JP2769776B2 (en) * 1993-12-09 1998-06-25 難波プレス工業株式会社 Modification method of polypropylene / wood flour composite
CA2178036C (en) 1995-06-07 2008-09-09 Kasyap V. Seethamraju Advanced compatible polymer wood fiber composite

Also Published As

Publication number Publication date
EP0869988B1 (en) 2002-04-03
MX9805509A (en) 1998-11-30
DE69711597T2 (en) 2002-10-31
CA2242326A1 (en) 1997-07-17
EP0869988A1 (en) 1998-10-14
JP2000503694A (en) 2000-03-28
AU1693497A (en) 1997-08-01
WO1997025368A1 (en) 1997-07-17
ATE215580T1 (en) 2002-04-15
DE69711597D1 (en) 2002-05-08
US5948524A (en) 1999-09-07

Similar Documents

Publication Publication Date Title
CA2242326C (en) Advanced engineering resin and wood fiber composite
US6004668A (en) Advanced polymer wood composite
US6015611A (en) Advanced polymer wood composite
US5985429A (en) Polymer fiber composite with mechanical properties enhanced by particle size distribution
EP0610619B1 (en) Pellet extrusion process
US5773138A (en) Advanced compatible polymer wood fiber composite
US5981067A (en) Advanced compatible polymer wood fiber composite
EP0586211B1 (en) Advanced polymer/wood composite structural member
CA2178036C (en) Advanced compatible polymer wood fiber composite
US6342172B1 (en) Method of forming a foamed thermoplastic polymer and wood fiber profile and member
US20040126568A1 (en) Advanced polymer wood composite
US5406768A (en) Advanced polymer and wood fiber composite structural component
EP0958445B1 (en) Polymer covered, composite wood and/or polymer structural member
EP0918603A1 (en) Resin and wood fiber composite profile extrusion method
CA2258691C (en) Resin and wood fiber composite profile extrusion method

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20170103