CA2235783C - A stent - Google Patents

A stent Download PDF

Info

Publication number
CA2235783C
CA2235783C CA002235783A CA2235783A CA2235783C CA 2235783 C CA2235783 C CA 2235783C CA 002235783 A CA002235783 A CA 002235783A CA 2235783 A CA2235783 A CA 2235783A CA 2235783 C CA2235783 C CA 2235783C
Authority
CA
Canada
Prior art keywords
stent
stress
lumen
loading
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002235783A
Other languages
French (fr)
Other versions
CA2235783A1 (en
Inventor
Thomas Duerig
Dieter Stockel
Janet Burpee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitinol Development Corp
Original Assignee
Nitinol Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitinol Development Corp filed Critical Nitinol Development Corp
Priority to CA2589000A priority Critical patent/CA2589000C/en
Publication of CA2235783A1 publication Critical patent/CA2235783A1/en
Application granted granted Critical
Publication of CA2235783C publication Critical patent/CA2235783C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/022Metals or alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/006Resulting in heat recoverable alloys with a memory effect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0014Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/16Materials with shape-memory or superelastic properties

Abstract

A stent for use in a lumen in a human or animal body, has a generally tubular body formed from a shape memory alloy which has been treated so that it exhibits enhanced elastic properties with a point of inflection in the stress-strain curve on loading, enabling the body to be deformed inwardly to a transversely compressed configuration for insertion into the lumen and then revert towards its initial configuration, into contact with and to support the lumen. The shape memory alloy comprises nickel, titanium and from about 3 at.% to about 20 at.%, based on the weight of the total weight of the alloy composition, of a ternary element selected from the group consisting of niobium, hafnium, tantalum, tungsten and gold. The ratio of the stress on loading to the stress on unloading at the respective inflection points on the loading and unloading curves is at least about 2.5:1, and the difference between the stresses on loading and unloading at the inflection points at least about 250 MPa.

Claims (11)

1. A stent for use in a lumen in a human or animal, which has a generally tubular body formed from a superelastic shape memory alloy having an Af temperature at least about 10. degree. C. which has been treated so that it exhibits enhanced elastic properties with a point of inflection in the stress-strain curve on loading, enabling the body to be deformed inwardly to a transversely compressed configuration for insertion into the lumen and then revert towards its initial configuration, into contact with and to support the lumen, the shape memory alloy comprising nickel, titanium and from about 3 wt. % to about 20 wt. %, based on the weight of the total weight of the alloy composition, of at least one additional element selected from the group consisting of niobium, hafnium, tantalum, tungsten and gold, the ratio of the stress on loading to the stress on unloading at the respective inflection points on the stress-strain curve being at least about 2.5:1.
2. A stent as claimed in claim 1, in which the alloy comprises at least about 5 wt. t of the ternary element.
3. A stent as claimed in claim 1, in which the alloy comprises not more than about 10 wt. % of the ternary element.
4. A stent as claimed in claim 1, in which the Af temperature of the alloy is at least about 15° C.
5. A stent as claimed in claim 1, in which the Af temperature of the alloy is not more than about 40° C.
6. A stent as claimed in claim 1, which comprises a plurality of wire segments extending at least partially around the circumference of the stent.
7. A stent as claimed in claim 6, which includes generally longitudinally extending portions linking the circumferential wire segments.
8. A stent as claimed in claim 1, which is located within a restraint by which it is held in a configuration in which it has been transversely compressed elastically.
9. A stent for use in a lumen in a human or animal body, which has a generally tubular body formed from a superelastic shape memory alloy having an Af temperature less than about 15° C. which has been treated so that it exhibits enhanced elastic properties with a point of inflection in the stress-strain curve on loading, enabling the body to be deformed inwardly to a transversely compressed configuration for insertion into the lumen and then revert towards its initial configuration, into contact with and to support the lumen, the ratio of the stress on loading to the stress on unloading at the respective inflection points on the stress-strain curve being at least about 2.5:1.
10. A stent as claimed in claim 9, in which the value of the said ratio is at least about 3:1.
11. A stent as claimed in claim 9, in which the shape memory alloy comprises nickel, titanium and from about 3 wt. % to about 20 wt. %, based on the weight of the total weight of the alloy composition, of a ternary element selected from the group consisting of niobium, hafnium, tantalum, tungsten and gold.
CA002235783A 1997-04-25 1998-04-24 A stent Expired - Lifetime CA2235783C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA2589000A CA2589000C (en) 1997-04-25 1998-04-24 A stent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/846,130 US6312455B2 (en) 1997-04-25 1997-04-25 Stent
US08/846,130 1997-04-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CA2589000A Division CA2589000C (en) 1997-04-25 1998-04-24 A stent

Publications (2)

Publication Number Publication Date
CA2235783A1 CA2235783A1 (en) 1998-10-25
CA2235783C true CA2235783C (en) 2008-11-04

Family

ID=25297032

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002235783A Expired - Lifetime CA2235783C (en) 1997-04-25 1998-04-24 A stent

Country Status (5)

Country Link
US (1) US6312455B2 (en)
EP (1) EP0873734B1 (en)
JP (1) JP4248618B2 (en)
CA (1) CA2235783C (en)
DE (1) DE69819063T2 (en)

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU3441001A (en) 1999-12-01 2001-06-12 Advanced Cardiovascular Systems Inc. Nitinol alloy design and composition for vascular stents
US6352515B1 (en) 1999-12-13 2002-03-05 Advanced Cardiovascular Systems, Inc. NiTi alloyed guidewires
US6706053B1 (en) 2000-04-28 2004-03-16 Advanced Cardiovascular Systems, Inc. Nitinol alloy design for sheath deployable and re-sheathable vascular devices
ES2369784T3 (en) 2000-05-19 2011-12-05 Advanced Bio Prosthetic Surfaces, Ltd. METHODS AND APPLIANCES FOR THE MANUFACTURE OF AN INTRAVASCULAR EXTENSOR.
US6572646B1 (en) 2000-06-02 2003-06-03 Advanced Cardiovascular Systems, Inc. Curved nitinol stent for extremely tortuous anatomy
US7402173B2 (en) 2000-09-18 2008-07-22 Boston Scientific Scimed, Inc. Metal stent with surface layer of noble metal oxide and method of fabrication
US7101391B2 (en) 2000-09-18 2006-09-05 Inflow Dynamics Inc. Primarily niobium stent
US6602272B2 (en) 2000-11-02 2003-08-05 Advanced Cardiovascular Systems, Inc. Devices configured from heat shaped, strain hardened nickel-titanium
US7976648B1 (en) * 2000-11-02 2011-07-12 Abbott Cardiovascular Systems Inc. Heat treatment for cold worked nitinol to impart a shape setting capability without eventually developing stress-induced martensite
EP1337286A1 (en) 2000-11-28 2003-08-27 Fortimedix B.V. Stent
US20060086440A1 (en) * 2000-12-27 2006-04-27 Boylan John F Nitinol alloy design for improved mechanical stability and broader superelastic operating window
US7128757B2 (en) * 2000-12-27 2006-10-31 Advanced Cardiovascular, Inc. Radiopaque and MRI compatible nitinol alloys for medical devices
US6855161B2 (en) * 2000-12-27 2005-02-15 Advanced Cardiovascular Systems, Inc. Radiopaque nitinol alloys for medical devices
US6569194B1 (en) * 2000-12-28 2003-05-27 Advanced Cardiovascular Systems, Inc. Thermoelastic and superelastic Ni-Ti-W alloy
US6824560B2 (en) 2001-06-13 2004-11-30 Advanced Cardiovascular Systems, Inc. Double-butted superelastic nitinol tubing
US6551341B2 (en) * 2001-06-14 2003-04-22 Advanced Cardiovascular Systems, Inc. Devices configured from strain hardened Ni Ti tubing
US7175655B1 (en) 2001-09-17 2007-02-13 Endovascular Technologies, Inc. Avoiding stress-induced martensitic transformation in nickel titanium alloys used in medical devices
US6830638B2 (en) 2002-05-24 2004-12-14 Advanced Cardiovascular Systems, Inc. Medical devices configured from deep drawn nickel-titanium alloys and nickel-titanium clad alloys and method of making the same
DE10302447B4 (en) * 2003-01-21 2007-12-06 pfm Produkte für die Medizin AG Occlusion device, placement system, set of such a placement system and such occlusion device and method for producing an occlusion device
US20080038146A1 (en) * 2003-02-10 2008-02-14 Jurgen Wachter Metal alloy for medical devices and implants
EP1444993B2 (en) * 2003-02-10 2013-06-26 W.C. Heraeus GmbH Improved metal alloy for medical devices and implants
US20070276488A1 (en) * 2003-02-10 2007-11-29 Jurgen Wachter Medical implant or device
US7763045B2 (en) 2003-02-11 2010-07-27 Cook Incorporated Removable vena cava filter
US7163550B2 (en) * 2003-03-26 2007-01-16 Scimed Life Systems, Inc. Method for manufacturing medical devices from linear elastic materials while maintaining linear elastic properties
DE602004018908D1 (en) * 2003-03-31 2009-02-26 Memry Corp MEDICAL DEVICES WITH MEDICAMENT ELUTION PROPERTIES AND METHOD OF PREPARATION THEREOF
US7942892B2 (en) * 2003-05-01 2011-05-17 Abbott Cardiovascular Systems Inc. Radiopaque nitinol embolic protection frame
US20040260315A1 (en) * 2003-06-17 2004-12-23 Dell Jeffrey R. Expandable tissue support member and method of forming the support member
US20060259137A1 (en) 2003-10-06 2006-11-16 Jason Artof Minimally invasive valve replacement system
JP4363633B2 (en) * 2004-02-17 2009-11-11 株式会社アルバック Double phase alloy for hydrogen separation / purification and production method thereof, metal membrane for hydrogen separation / purification and production method thereof
JP4351560B2 (en) * 2004-03-05 2009-10-28 Necトーキン株式会社 Balloon expandable superelastic stent
WO2005102213A1 (en) 2004-04-16 2005-11-03 Cook, Inc. Removable vena cava filter having primary struts for enhanced retrieval and delivery
JP4918637B2 (en) 2004-04-16 2012-04-18 クック メディカル テクノロジーズ エルエルシー Retrievable vena cava filter with anchor hooks positioned inward in a folded configuration
US7972353B2 (en) 2004-04-16 2011-07-05 Cook Medical Technologies Llc Removable vena cava filter with anchoring feature for reduced trauma
EP1737382B1 (en) 2004-04-16 2011-03-30 Cook Incorporated Removable vena cava filter for reduced trauma in collapsed configuration
WO2006024491A1 (en) 2004-08-30 2006-03-09 Interstitial Therapeutics Methods and compositions for the treatment of cell proliferation
EP1802252B1 (en) 2004-09-27 2011-07-20 Cook, Inc. Removable vena cava filter
FR2881946B1 (en) 2005-02-17 2008-01-04 Jacques Seguin DEVICE FOR THE TREATMENT OF BODILY CONDUIT AT BIFURCATION LEVEL
WO2006104823A2 (en) * 2005-03-25 2006-10-05 Gordon, Richard, F. Method for producing strain induced austenite
US8652193B2 (en) 2005-05-09 2014-02-18 Angiomed Gmbh & Co. Medizintechnik Kg Implant delivery device
JP4737518B2 (en) * 2005-05-23 2011-08-03 Necトーキン株式会社 Ti-Ni-Nb alloy element
JP5143342B2 (en) * 2005-05-23 2013-02-13 Necトーキン株式会社 Autonomous functional stent
EP1997922B1 (en) * 2006-03-20 2012-06-13 University of Tsukuba High-temperature shape memory alloy, actuator and motor
US20070293939A1 (en) * 2006-05-15 2007-12-20 Abbott Laboratories Fatigue resistant endoprostheses
US9103006B2 (en) * 2006-09-06 2015-08-11 Cook Medical Technologies Llc Nickel-titanium alloy including a rare earth element
US8128626B2 (en) * 2007-04-24 2012-03-06 Flexfix, Llc System and method for delivery conformation and removal of intramedullary bone fixation devices
US8500787B2 (en) 2007-05-15 2013-08-06 Abbott Laboratories Radiopaque markers and medical devices comprising binary alloys of titanium
US8500786B2 (en) 2007-05-15 2013-08-06 Abbott Laboratories Radiopaque markers comprising binary alloys of titanium
DE102007047523B3 (en) * 2007-10-04 2009-01-22 Forschungszentrum Jülich GmbH Process for the production of semi-finished products from NiTi shape memory alloys
EP2238270A2 (en) * 2007-12-21 2010-10-13 Cook Incorporated Radiopaque alloy and medical device made of this alloy
US8246672B2 (en) 2007-12-27 2012-08-21 Cook Medical Technologies Llc Endovascular graft with separately positionable and removable frame units
US9005274B2 (en) 2008-08-04 2015-04-14 Stentys Sas Method for treating a body lumen
US8246648B2 (en) 2008-11-10 2012-08-21 Cook Medical Technologies Llc Removable vena cava filter with improved leg
GB2475340B (en) 2009-11-17 2013-03-27 Univ Limerick Nickel-titanium alloy and method of processing the alloy
US8329021B2 (en) 2010-10-28 2012-12-11 Palmaz Scientific, Inc. Method for mass transfer of micro-patterns onto medical devices
US10022212B2 (en) 2011-01-13 2018-07-17 Cook Medical Technologies Llc Temporary venous filter with anti-coagulant delivery method
GB2495772B (en) 2011-10-21 2014-02-12 Univ Limerick Method of forming a sintered nickel-titanium-rare earth (Ni-Ti-RE) alloy
CN102525696A (en) * 2011-12-06 2012-07-04 常熟市碧溪新城特种机械厂 Medical metal bracket
WO2013109846A1 (en) 2012-01-18 2013-07-25 Cook Medical Technologies Llc Mixture of powders for preparing a sintered nickel-titanium-rare earth metal (ni-ti-re) alloy
US9119904B2 (en) 2013-03-08 2015-09-01 Abbott Laboratories Guide wire utilizing a nickel—titanium alloy having high elastic modulus in the martensitic phase
US20140255246A1 (en) * 2013-03-08 2014-09-11 Abbott Laboratories Medical device having niobium nitinol alloy
US9339401B2 (en) 2013-03-08 2016-05-17 Abbott Laboratories Medical device utilizing a nickel-titanium ternary alloy having high elastic modulus
CN103305723B (en) * 2013-05-23 2015-04-15 中国航空工业集团公司北京航空材料研究院 Metallurgy technological method for replacing W with Ti
CN104946931B (en) * 2015-05-18 2017-01-18 中国石油大学(北京) Nb nanobelt/martensitic NiTi memory alloy matrix composite filament and production method thereof
EP3352930B1 (en) * 2015-09-21 2021-12-29 Confluent Medical Technologies, Inc. Superelastic devices made from nitihf alloys using powder metallurgical techniques
JP7449627B2 (en) 2021-01-17 2024-03-14 インスパイア エム.ディー リミテッド Shunt with blood flow indicator

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4390599A (en) 1980-07-31 1983-06-28 Raychem Corporation Enhanced recovery memory metal device
US4740253A (en) 1985-10-07 1988-04-26 Raychem Corporation Method for preassembling a composite coupling
US4770725A (en) 1984-11-06 1988-09-13 Raychem Corporation Nickel/titanium/niobium shape memory alloy & article
US4631094A (en) 1984-11-06 1986-12-23 Raychem Corporation Method of processing a nickel/titanium-based shape memory alloy and article produced therefrom
US5114504A (en) 1990-11-05 1992-05-19 Johnson Service Company High transformation temperature shape memory alloy
US6165292A (en) 1990-12-18 2000-12-26 Advanced Cardiovascular Systems, Inc. Superelastic guiding member
DE69129098T2 (en) 1990-12-18 1998-09-17 Advanced Cardiovascular System Process for producing a super-elastic guide part
US5147370A (en) 1991-06-12 1992-09-15 Mcnamara Thomas O Nitinol stent for hollow body conduits
CA2380683C (en) 1991-10-28 2006-08-08 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
US5540712A (en) * 1992-05-01 1996-07-30 Nitinol Medical Technologies, Inc. Stent and method and apparatus for forming and delivering the same
US5551871A (en) 1993-03-05 1996-09-03 Besselink; Petrus A. Temperature-sensitive medical/dental apparatus
US5441515A (en) 1993-04-23 1995-08-15 Advanced Cardiovascular Systems, Inc. Ratcheting stent
US5609627A (en) 1994-02-09 1997-03-11 Boston Scientific Technology, Inc. Method for delivering a bifurcated endoluminal prosthesis
US5584695A (en) 1994-03-07 1996-12-17 Memory Medical Systems, Inc. Bone anchoring apparatus and method
US5607442A (en) 1995-11-13 1997-03-04 Isostent, Inc. Stent with improved radiopacity and appearance characteristics
US5843244A (en) 1996-06-13 1998-12-01 Nitinol Devices And Components Shape memory alloy treatment

Also Published As

Publication number Publication date
JPH1142283A (en) 1999-02-16
US20010007953A1 (en) 2001-07-12
DE69819063D1 (en) 2003-11-27
US6312455B2 (en) 2001-11-06
EP0873734A2 (en) 1998-10-28
EP0873734A3 (en) 1999-09-01
DE69819063T2 (en) 2004-07-08
CA2235783A1 (en) 1998-10-25
JP4248618B2 (en) 2009-04-02
EP0873734B1 (en) 2003-10-22

Similar Documents

Publication Publication Date Title
CA2235783C (en) A stent
US6626937B1 (en) Austenitic nitinol medical devices
CA2124302A1 (en) Medical stent
US6582461B1 (en) Tissue supporting devices
WO2006104823A3 (en) Method for producing strain induced austenite
JP4429397B2 (en) Composite stent device, stent assembly, and method of manufacturing composite stent device
WO2003059199A8 (en) Stent and method for the production thereof (variants)
US20070185560A1 (en) Expandable stent
EP1637177A4 (en) Temporarily indwelled stent and stent graft
CA2509298C (en) Novel stent for treatment of a bifurcated vessel
US20020095140A1 (en) Repositionable stent
WO2004098450A3 (en) Shape memory alloy articles with improved fatigue performance and methods therefore
CN101636130A (en) Intraluminal prosthesis
WO2001041859A3 (en) Nickel-titanium alloy guidewire
CA2304230A1 (en) Flexible metal wire stent
IL133120A0 (en) Self-expanding endoprosthesis
WO1997037615A1 (en) Implantable device for maintaining or resetting the normal section of a body duct, and fitting method thereof
JP4351560B2 (en) Balloon expandable superelastic stent
CA2674975A1 (en) Intravascular stent having improved design for loading and deploying
WO2004028405A3 (en) Balloon expandable stent
US20040260377A1 (en) Shape memory alloy endoprosthesis delivery system
CN111012550B (en) Heart valve tether and have its heart valve subassembly
CA2589000A1 (en) A stent
Conti et al. High frequency testing of Nitinol stent material
JPH0796036A (en) Catheter

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20180424