CA2216021C - High resolution brain stimulation lead and method of use - Google Patents

High resolution brain stimulation lead and method of use Download PDF

Info

Publication number
CA2216021C
CA2216021C CA002216021A CA2216021A CA2216021C CA 2216021 C CA2216021 C CA 2216021C CA 002216021 A CA002216021 A CA 002216021A CA 2216021 A CA2216021 A CA 2216021A CA 2216021 C CA2216021 C CA 2216021C
Authority
CA
Canada
Prior art keywords
lead
electrodes
distal end
end portion
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002216021A
Other languages
French (fr)
Other versions
CA2216021A1 (en
Inventor
Johannes F.M. Gijsbers
Frans L.H. Gielen
Henricus M. Knuth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Inc
Original Assignee
Medtronic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtronic Inc filed Critical Medtronic Inc
Publication of CA2216021A1 publication Critical patent/CA2216021A1/en
Application granted granted Critical
Publication of CA2216021C publication Critical patent/CA2216021C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0526Head electrodes
    • A61N1/0529Electrodes for brain stimulation

Landscapes

  • Health & Medical Sciences (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Psychology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Electrotherapy Devices (AREA)

Abstract

A brain stimulation lead for precise delivery of electrical stimuli to a small dense brain target, and method of positioning such lead optimally in the patient's brain, is provided. The lead has a distal end portion which is substantially tubular or cylindrical along a longitudinal axis, and has a plurality of electrodes characterized by a diagonal geometry, permitting a greater number of electrodes to be provided within a very small lineal distance, e.g. 10 mm or even 5 mm. In a preferred embodiment, three ring electrodes are positioned on the distal end portion, each at a common angle of about 45 degrees and each extending only about 180 degrees around the lead body. The ring segment electrodes are about 0.5 mm in axial length, and have a separation of about 0.5 mm. The lead also has a tip electrode with a substantially spherical distal edge, and a proximal diagonal edge having the same angle as the ring segment electrodes. The diagonal ring geometry permits fine adjustment of the electrode assembly with respect to the target by simply rotating the lead about its axis, thereby facilitating an optimal electrode placement for precise stimulation of the target.

Description

' P-3434 PATENT
HIGH RESOLUTION BRAIN STIMULATION LEAD AND METHOD OF USE
FIELD OF THE INVENTION
This invention relates to brain stimulation leads and methods of employing such leads and, more particularly, a brain stimulation lead characterized by having a high resolution tip and method of placing such a lead.
BACKGROUND OF THE INVENTION
Brain stimulation leads designed to electrically stimulate nerve structures in specific areas of the brain are coming into increasing use. Deep brain stimulation has been used in the management of chronic intractable pain of neuropathic and or nociceptive origin.
In addition, brain stimulation is very important for treatment of movement disorders.
Implantation of a brain stimulation lead into a patient's brain, and delivery of stimulus pulses from a pulse generator to the lead electrodes, produces nerve impulses which may result in inhibition of pain. However, there is now a demand for such stimulation leads which are better able to stimulate exclusively certain selected small neurological targets, and without damage to involved brain tissue, which demand can not be met by existing leads. An example of such a small neurological brain target, for which extremely precise stimulation is needed, is the SubThalamic Nucleus (STN); another application is Globus Pallidus internal (Gpi) stimulation. Other like high density brain targets also require more precise stimulation than is 2 0 presently available.
The problem that is addressed requires a stimulation lead with high spatial resolution electrodes. The highest resolution lead presently available, such as the Model 3387 RESDBSTM, made by Medtronic, Inc., has plural electrodes, each with a length of 1.5 mm, and an electrode separation of 0.5 mm. For such a lead, only one of the four electrodes can be 2 5 positioned in a small target such as the STN. However, the functional spatial resolution in this target, combined with possible slight movements in the brain, require that more than one active electrode must be made available inside the target. Specifically, the need is to provide up to 4 electrodes within a 10 mm spacing, which imposes extreme requirements on lead construction. Additionally, it is desired to provide a brain stimulation lead, and method of using same, with a highly rigid, tip-bottomed stylet, to permit use of a stereotactic approach of the brain target, preferably without need for a guiding cannula.
SUN~iARY OF THE INVENTION
It is a primary object of this invention to provide a brain stimulation lead, and method of placing such lead, which presents an improved high spatial resolution tip carrying a plurality of electrodes that can be used in stimulating small neurological brain targets.
According to the invention there is provided a stimulation lead for delivery of electrical stimuli to a patient's brain, said lead having a longitudinal_ axis, a proximal end and a distal end portion, a first plurality of electrical conductors extending from said proximal end to said distal end, and a second plurality of electrodes positioned within said distal end portion, each said electrode being connected to a respective one of said conductors, each of said electrodes being a conductive ring;
characterized in that at least one conductive ring is diagonally positioned with respect to said longitudinal axis on said distal end portion.
In a preferred embodiment, the distal end is substantially cylindrical along a longitudinal axis, and each of the plurality of electrodes is diagonal7_y positioned at a common angle relative to the lead axis. Each ring electrode is diagonally around the lead axis anti may be separated from the adjacent electrodes by about 0.5 mm, 2a depending on the target. In addition, the lead may carry a distal tip electrode which is spherically configured at its distal end, and diagonally configured at its proximal end with the common angle to the axis. In a preferred embodiment, the lead distal portion carries three ring electrodes and a tip electrode, the four electrodes being positioned within a distance of no more than about 10 mm.
The ring electrodes may extend about 180 degrees around the lead axis, or may extend for a smaller or a greater angle.
In another embodiment, a greater number of ring segment electrodes are used, each electrode being less than 90 degrees around the lead, and the optimum plurality of electrodes is selected after testing different combinations of the ring segment electrodes at time of implant, or whenever an adjustment is desired.
In the method of this invention, the lead with high spatial resolution tip is positioned in the patient's brain with a stereotactic instrument, and adjusted axially, i.e., in an in-line direction. After this, finer tuning of the electrode positions for optimum stimulation is achieved simply by rotating the lead, thus re-arranging the relative positions of the ring segment electrodes within the target area.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure lA is a diagrammatic drawing of the distal end of the brain stimulation lead of this invention, showing the relation of the electrodes to each other and to the main lead body, and illustrating the diagonal ring geometry.

Figure 1B is a cross section of the lead of Figure lA, taken along line A-A of Figure 1.
Figure 2 is a diagrammatic drawing of another embodiment of the brain stimulation lead of this invention, illustrating a distal portion having more than three ring segment diagonally spaced electrodes, the electrodes being positioned to provide a variety of electrode combination choices.
Figures 3A and 3B illustrate lead having diagonal ring electrodes characterized by a different surface geometry.
Figure 4 is a flow diagram illustrating the method of placing the high resolution lead of this invention.
DESCRIPTION OF THF P FFEILRFD EMBODIMENTS
Referring now to Figures lA and 1B, there is illustrated the preferred embodiment of the brain stimulation lead of this invention. The lead body 30 is tubular, or cylindrical in form, and has a proximal end (not shown) with suitable connectors for connecting to a pulse stimulator. Lead body 30 suitably has a coating of a biocompatible material such as polyurethane, with a diameter typically of about 0.13 cm.
Contained within the lead body is a mufti-conductor coil 32, each conductor being individually insulated, connecting the pulse generator to respective electrodes carried by the distal end portion of the 2 0 lead. The lead has a lumen, within coil 32, in which is placed a stylet shown as 34 at the time of implant. The use of a highly rigid stylet provides the possibility of performing stereotactic placement without the need of any addition aid such as a cannula. The use of a stereotactic instrument, and of a stylet, is well known in the art. See, for example, U.S.
Patent No.
5,464,446 .
Still referring to Figures lA and 1B, the design of the distal portion, which carries the ring segment electrodes, can be seen. In this exemplary embodiment, three ring segment electrodes are shown, at 40, 41 and 42. As seen in Figure 1B, each ring electrode illustrated as being about 180 degrees ; for this embodiment, each ring is a segment which preferably extends within a range of 180 degrees 145 . As used in describing this invention, 3 0 the term "ring" is not limited in terms of the angle that it extends around the lead axis, nor in terms of the exact geometry. See the illustration of Figures 4A and 4B, discussed hereinbelow. Each diagonal ring electrode is suitably made of platinum iridium and embedded into the biocompatible coating, and has an axial length D1 of about 0.4 to 0.5 mm, although it could be as great as 0.8 mm. The spacing D2 between each ring segment electrode is suitably about 0.5 mm, although it could be within a range of 0.5 to 1.5 mm, depending greatly on the application. The diagonal angle, as indicated, is ideally 45 degrees relative to the lead axis Ax, but can be plus/minus 15 degrees. The tip electrode 43 has a roughly spherical distal surface, an axial length of about 0.8 to 1.6 mm, and a distal boundary which is diagonal at the common angle of the ring electrodes, e.g., 45 degrees. The outer diameter D4 of the distal portion, which is positioned in the patient's brain, is preferably 0.5 mm, but can be in the range of 0.3 to 1.2 mm, depending on the application.
As seen in Figure 1B, for this embodiment, the ring segment is shown as 1 o extending about 180 degrees around the cylindrical distal body, although this angle can be adapted within a range of about 135 to 225 degrees. Each electrode is connected to a respective conductor Cl, C2, C3 or C4 by a laser weld, as illustrated at 40W, 41 W, 42W and 43 W.
Refernng now to Figure 2, there is shown an alternate embodiment characterized by more than three diagonal ring segment electrodes, each being less than 90 degrees in arc, and each being connected to a respective separate conductor, thereby providing a greater menu of effective electrode choices while maintaining the required high spatial resolution. In this example, there are six ring segment electrodes, designated 51-56, and a tip electrode 58, each of which has a common diagonal geometry to permit positioning of the 2 0 electrodes on the same size distal portion. In use of this lead, any two or more electrodes can be electrically connected together at the pulse generator site, to provide an optimal electrode configuration Referring now to Figures 3A and 3B, there is shown another illustration of a lead distal tip in accordance with this invention. In this embodiment, the electrodes 71, 72, 2 5 73, 74 are diagonally oriented, but have a curved surface geometry which contrasts with that of conventional ring electrodes. This illustrates that the invention is not limited in the exact form of the ring electrodes.
Referring now to Figure 4, there is shown a simplified flow diagram of the primary steps taken in carrying out the method of implanting and positioning the high 3 o resolution lead of this invention. It is assumed that the patient has been prepared in a standard fashion, e.g., a burr hole has been drilled and an anchoring system is ready.
At 60, the novel lead of this invention, and the appropriate stereotactic instrument are provided. At 61, the lead is inserted into the brain using the stereotactic instrument and the stylet. At 62, the lead is positioned axially, and tested at 63. If the axial placement is not satisfactory as determined at 64, steps 62 and 63 are repeated. When the distal portion of the lead is positioned at the desired depth with respect to the target in the brain, the lead is then rotated at 65, and the stimulation effectiveness is tested at 66. Rotation will provide, due to the diagonal geometry of the ring segment electrodes, a different stimulation profile, and fine tuning is thus provided which could not be obtained with conventional positioning of the lead. If the position is tested at 67 to not be OK, further rotation and testing is performed until the position is determined to be OK. Such testing can include trying different combinations of electrodes to find an optimum stimulation pattern. After this, the lead is anchored securely at 68, in a known manner.
There has thus been set forth an improved brain stimulation lead and method of placement, which provides a high spatial resolution as is required to optimally stimulate high density brain targets. Although a preferred and alternate embodiments have been set forth specifically, it is to be noted that other variations and equivalent embodiments which use the diagonal geometry of this invention are within the scope of the invention as claimed.

Claims (20)

1. A stimulation lead for delivery of electrical stimuli to a patient's brain, said lead having a longitudinal axis, a proximal end and a distal end portion, a first plurality of electrical conductors extending from said proximal end to said distal end, and a second plurality of electrodes positioned within said distal end portion, each said electrode being connected to a respective one of said conductors, each of said electrodes being a conductive ring;
characterized in that at least one conductive ring is diagonally positioned with respect to said longitudinal axis on said distal end portion.
2. The lead as described in claim 1, wherein each of said conductive ring electrodes is diagonally positioned at a common angle with respect to said axis, said angle being 45 ~ 15 degrees.
3. The lead as described in claim 2, further comprising a tip electrode at the distal tip end of said distal end portion, said tip electrode being connected to one of said conductors.
4. The lead as described in claim 3, wherein said first plurality of conductors comprises 4 conductors, and said second plurality of electrodes comprises 3 ring electrodes.
5. The lead as described in claim 3, wherein said distal end portion has a length of no more than 5 mm.
6. The lead as described in claim 3, wherein there is a separation of about 0.4 to 0.8 mm between each of said electrodes.
7. The lead as described in claim 3, wherein said tip electrode has a diagonal proximal edge at said common angle.
8. The lead as described in claim 3, wherein each of said ring electrodes has a longitudinal width of no more than 0.5 mm.
9. The lead as described in claim 3, wherein said biocompatible coating is polyurethane, and said electrodes are embedded in said material.
10. The lead as described in claim 3, wherein said distal portion has an outer diameter no greater than 0.5 mm.
11. The lead as described in claim 1, wherein said ring electrodes extend around said distal end portion an angular distance in a range of 135-180 degrees.
12. The lead as described in claim 1, wherein said distal end portion is injection molded.
13. The lead as described in claim 3, wherein said tip electrode is spherically configured at its distal end, and diagonally configured at its proximal end.
14. The lead as described in claim 1, wherein each said ring electrode extends around said axis by an angle within the range of 135-225 degrees.
15. The lead as described in claim 1, wherein said distal end portion being cylindrical along a longitudinal axis.
16. The lead as described in claim 1 wherein said distal end portion has a length of less than 10 mm.
17. The lead as described in claim 1 further comprising a biocompatible outer coating.
18. A stimulation lead for delivery of electrical stimuli to a patient's brain, said lead having a longitudinal axis, a proximal end and a distal end portion, said distal end portion being no greater than 5 mm, said distal end portion having a plurality of conductive ring electrodes positioned at a common diagonal angle with respect to the longitudinal axis of said lead, and a plurality of electrical conductors connecting from respective ones of said electrodes to said lead proximal end.
19. The lead as described in claim 18, wherein each of said ring electrodes extends around said lead by an angle which is less than 180 degrees.
20. The lead as described in claim 18, wherein each of said ring electrodes extends around said lead by an angle which is at least 180 degrees.
CA002216021A 1996-09-27 1997-09-22 High resolution brain stimulation lead and method of use Expired - Fee Related CA2216021C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/721,816 US5843148A (en) 1996-09-27 1996-09-27 High resolution brain stimulation lead and method of use
US08/721,816 1996-09-27

Publications (2)

Publication Number Publication Date
CA2216021A1 CA2216021A1 (en) 1998-03-27
CA2216021C true CA2216021C (en) 2005-09-13

Family

ID=24899419

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002216021A Expired - Fee Related CA2216021C (en) 1996-09-27 1997-09-22 High resolution brain stimulation lead and method of use

Country Status (6)

Country Link
US (1) US5843148A (en)
EP (1) EP0832667B1 (en)
JP (1) JPH10137346A (en)
AU (1) AU726391B2 (en)
CA (1) CA2216021C (en)
DE (1) DE69727749T2 (en)

Families Citing this family (211)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6330466B1 (en) * 1998-02-23 2001-12-11 California Institute Of Technology Using a multi-electrode probe in creating an electrophysiological profile during stereotactic neurosurgery
US6238340B1 (en) * 1998-05-19 2001-05-29 Eckhard Alt Composite materials for avoidance of unwanted radiation amplification
US6216045B1 (en) * 1999-04-26 2001-04-10 Advanced Neuromodulation Systems, Inc. Implantable lead and method of manufacture
US6539263B1 (en) * 1999-06-11 2003-03-25 Cornell Research Foundation, Inc. Feedback mechanism for deep brain stimulation
US6343226B1 (en) * 1999-06-25 2002-01-29 Neurokinetic Aps Multifunction electrode for neural tissue stimulation
DE10044115A1 (en) 1999-09-13 2001-04-12 Medtronic Inc Combined micro-macro-brain stimulation lead and method of use
US6587733B1 (en) * 2000-02-08 2003-07-01 Medtronic, Inc. Percutaneous surgical lead body with directed stimulation
US20090209831A1 (en) * 2000-06-28 2009-08-20 Nexgen Medical Systems, Incorporated Imaging methods for visualizing implanted living cells
US7305268B2 (en) 2000-07-13 2007-12-04 Northstar Neurscience, Inc. Systems and methods for automatically optimizing stimulus parameters and electrode configurations for neuro-stimulators
US7831305B2 (en) 2001-10-15 2010-11-09 Advanced Neuromodulation Systems, Inc. Neural stimulation system and method responsive to collateral neural activity
US7024247B2 (en) 2001-10-15 2006-04-04 Northstar Neuroscience, Inc. Systems and methods for reducing the likelihood of inducing collateral neural activity during neural stimulation threshold test procedures
US7010351B2 (en) 2000-07-13 2006-03-07 Northstar Neuroscience, Inc. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US7236831B2 (en) * 2000-07-13 2007-06-26 Northstar Neuroscience, Inc. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US7756584B2 (en) 2000-07-13 2010-07-13 Advanced Neuromodulation Systems, Inc. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US7146217B2 (en) 2000-07-13 2006-12-05 Northstar Neuroscience, Inc. Methods and apparatus for effectuating a change in a neural-function of a patient
US7672730B2 (en) 2001-03-08 2010-03-02 Advanced Neuromodulation Systems, Inc. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US6529774B1 (en) 2000-11-09 2003-03-04 Neuropace, Inc. Extradural leads, neurostimulator assemblies, and processes of using them for somatosensory and brain stimulation
US7212867B2 (en) * 2000-12-07 2007-05-01 Medtronic, Inc. Directional brain stimulation and recording leads
US7033326B1 (en) 2000-12-29 2006-04-25 Advanced Bionics Corporation Systems and methods of implanting a lead for brain stimulation
US7177701B1 (en) 2000-12-29 2007-02-13 Advanced Bionics Corporation System for permanent electrode placement utilizing microelectrode recording methods
GB0104982D0 (en) * 2001-02-28 2001-04-18 Gill Steven Electrode
US7299096B2 (en) 2001-03-08 2007-11-20 Northstar Neuroscience, Inc. System and method for treating Parkinson's Disease and other movement disorders
US6560472B2 (en) 2001-06-21 2003-05-06 Microhelix, Inc. Multi-channel structurally robust brain probe and method of making the same
US20090069706A1 (en) * 2001-06-21 2009-03-12 Jerome Boogaard Brain probe adapted to be introduced through a canula
US6606521B2 (en) 2001-07-09 2003-08-12 Neuropace, Inc. Implantable medical lead
US6662035B2 (en) 2001-09-13 2003-12-09 Neuropace, Inc. Implantable lead connector assembly for implantable devices and methods of using it
AUPR851601A0 (en) * 2001-10-26 2001-11-29 Cochlear Limited Auditory midbrain implant
US6758828B2 (en) 2001-12-10 2004-07-06 Regents Of The University Of Minnesota Catheter for cell delivery in tissue
US7221981B2 (en) 2002-03-28 2007-05-22 Northstar Neuroscience, Inc. Electrode geometries for efficient neural stimulation
US7860570B2 (en) 2002-06-20 2010-12-28 Boston Scientific Neuromodulation Corporation Implantable microstimulators and methods for unidirectional propagation of action potentials
US20040049121A1 (en) * 2002-09-06 2004-03-11 Uri Yaron Positioning system for neurological procedures in the brain
US7082335B2 (en) * 2002-09-30 2006-07-25 Medtronic, Inc. Multipolar pacing method and apparatus
US7797057B2 (en) * 2002-10-23 2010-09-14 Medtronic, Inc. Medical paddle lead and method for spinal cord stimulation
US7236830B2 (en) 2002-12-10 2007-06-26 Northstar Neuroscience, Inc. Systems and methods for enhancing or optimizing neural stimulation therapy for treating symptoms of Parkinson's disease and/or other movement disorders
US7035690B2 (en) 2002-11-15 2006-04-25 Medtronic, Inc. Human-implantable-neurostimulator user interface having multiple levels of abstraction
US20050075680A1 (en) 2003-04-18 2005-04-07 Lowry David Warren Methods and systems for intracranial neurostimulation and/or sensing
US7302298B2 (en) 2002-11-27 2007-11-27 Northstar Neuroscience, Inc Methods and systems employing intracranial electrodes for neurostimulation and/or electroencephalography
US6959215B2 (en) 2002-12-09 2005-10-25 Northstar Neuroscience, Inc. Methods for treating essential tremor
CA2508800A1 (en) * 2002-12-11 2004-06-24 Proteus Biomedical, Inc. Method and system for monitoring and treating hemodynamic parameters
AU2004251021A1 (en) 2003-04-24 2005-01-06 Advanced Neuromodulation Systems, Inc. Systems and methods for facilitating and/or effectuating development, rehabilitation, restoration, and/or recovery of visual function through neural stimulation
JP2007501067A (en) 2003-08-01 2007-01-25 ノーススター ニューロサイエンス インコーポレイテッド Apparatus and method for applying neural stimulation to patient
EP1680180B1 (en) * 2003-10-02 2007-02-28 Medtronic, Inc. Implantable medical lead and method of manufacture
GB0413076D0 (en) 2004-06-11 2004-07-14 Medtronic Inc Deep brain stimulation of the Zona incerta
US7346382B2 (en) 2004-07-07 2008-03-18 The Cleveland Clinic Foundation Brain stimulation models, systems, devices, and methods
JP2008506464A (en) 2004-07-15 2008-03-06 ノーススター ニューロサイエンス インコーポレイテッド System and method for enhancing or influencing neural stimulation efficiency and / or efficacy
WO2006015087A2 (en) * 2004-07-27 2006-02-09 The Cleveland Clinic Foundation Thalamic stimulation device
DE102004037739A1 (en) 2004-08-04 2006-03-16 Degussa Ag Tungstate-containing catalysts for the synthesis of alkylmercaptan and process for their preparation
US20060041284A1 (en) * 2004-08-17 2006-02-23 Advanced Neuromodulation Systems, Inc. Electrical stimulation system and method for stimulating nerve tissue in the brain using a stimulation lead having a tip electrode, having at least five electrodes, or both
US20060161216A1 (en) * 2004-10-18 2006-07-20 John Constance M Device for neuromuscular peripheral body stimulation and electrical stimulation (ES) for wound healing using RF energy harvesting
US7565200B2 (en) 2004-11-12 2009-07-21 Advanced Neuromodulation Systems, Inc. Systems and methods for selecting stimulation sites and applying treatment, including treatment of symptoms of Parkinson's disease, other movement disorders, and/or drug side effects
US7783359B2 (en) * 2005-01-05 2010-08-24 Boston Scientific Neuromodulation Corporation Devices and methods using an implantable pulse generator for brain stimulation
US7809446B2 (en) * 2005-01-05 2010-10-05 Boston Scientific Neuromodulation Corporation Devices and methods for brain stimulation
US7761985B2 (en) * 2005-01-31 2010-07-27 Medtronic, Inc. Method of manufacturing a medical lead
JP4742356B2 (en) * 2005-02-02 2011-08-10 独立行政法人産業技術総合研究所 Embedded electrode device and electrode embedded device
US8644941B2 (en) 2005-06-09 2014-02-04 Medtronic, Inc. Peripheral nerve field stimulation and spinal cord stimulation
DE602006019869D1 (en) * 2005-06-09 2011-03-10 Medtronic Inc IMPLANTABLE MEDICAL MANAGEMENT
US8620435B2 (en) 2005-06-09 2013-12-31 Medtronic, Inc. Combination therapy including peripheral nerve field stimulation
US8271094B1 (en) * 2005-09-30 2012-09-18 Boston Scientific Neuromodulation Corporation Devices with cannula and electrode lead for brain stimulation and methods of use and manufacture
US7856264B2 (en) 2005-10-19 2010-12-21 Advanced Neuromodulation Systems, Inc. Systems and methods for patient interactive neural stimulation and/or chemical substance delivery
US7729773B2 (en) 2005-10-19 2010-06-01 Advanced Neuromodualation Systems, Inc. Neural stimulation and optical monitoring systems and methods
US8929991B2 (en) 2005-10-19 2015-01-06 Advanced Neuromodulation Systems, Inc. Methods for establishing parameters for neural stimulation, including via performance of working memory tasks, and associated kits
DE102006008501B3 (en) * 2006-02-23 2007-10-25 Albert-Ludwigs-Universität Freiburg Probe and method for data transfer between a brain and a data processing device
US8612024B2 (en) 2006-02-24 2013-12-17 Medtronic, Inc. User interface with 3D environment for configuring stimulation therapy
US8380321B2 (en) 2006-02-24 2013-02-19 Medtronic, Inc. Programming interface with a cross-sectional view of a stimulation lead with complex electrode array geometry
US20070203538A1 (en) 2006-02-24 2007-08-30 Medtronic, Inc. User interface with an atlas for configuring stimulation therapy
US8321025B2 (en) * 2006-07-31 2012-11-27 Cranial Medical Systems, Inc. Lead and methods for brain monitoring and modulation
US7583999B2 (en) 2006-07-31 2009-09-01 Cranial Medical Systems, Inc. Multi-channel connector for brain stimulation system
WO2008038208A2 (en) 2006-09-26 2008-04-03 Koninklijke Philips Electronics, N.V. Tissue stimulation method and apparatus
US20080154331A1 (en) * 2006-12-21 2008-06-26 Varghese John Device for multicentric brain modulation, repair and interface
US7987001B2 (en) 2007-01-25 2011-07-26 Warsaw Orthopedic, Inc. Surgical navigational and neuromonitoring instrument
US8374673B2 (en) 2007-01-25 2013-02-12 Warsaw Orthopedic, Inc. Integrated surgical navigational and neuromonitoring system having automated surgical assistance and control
US20100100152A1 (en) * 2007-03-02 2010-04-22 Koninklijke Philips Electronics N.V. Electrode system for deep brain stimulation
US9561053B2 (en) 2007-04-25 2017-02-07 Medtronic, Inc. Implant tool to facilitate medical device implantation
US9399130B2 (en) 2007-04-25 2016-07-26 Medtronic, Inc. Cannula configured to deliver test stimulation
WO2008133616A1 (en) * 2007-04-26 2008-11-06 Medtronic, Inc. Implantable medical lead with multiple electrode configurations
US7668601B2 (en) * 2007-04-26 2010-02-23 Medtronic, Inc. Implantable medical lead with multiple electrode configurations
WO2008144232A2 (en) 2007-05-18 2008-11-27 The Johns Hopkins University A treatment simulator for brain diseases and method of use thereof
US9592377B2 (en) * 2007-07-27 2017-03-14 Second Sight Medical Products, Inc. Implantable device for the brain
US8295943B2 (en) 2007-08-20 2012-10-23 Medtronic, Inc. Implantable medical lead with biased electrode
WO2009025817A2 (en) 2007-08-20 2009-02-26 Medtronic, Inc. Evaluating therapeutic stimulation electrode configurations based on physiological responses
US20090054947A1 (en) * 2007-08-20 2009-02-26 Medtronic, Inc. Electrode configurations for directional leads
WO2009052425A1 (en) 2007-10-17 2009-04-23 Neuronexus Technologies Implantable device including a resorbable carrier
US9220889B2 (en) 2008-02-11 2015-12-29 Intelect Medical, Inc. Directional electrode devices with locating features
US8019440B2 (en) 2008-02-12 2011-09-13 Intelect Medical, Inc. Directional lead assembly
US9272153B2 (en) 2008-05-15 2016-03-01 Boston Scientific Neuromodulation Corporation VOA generation system and method using a fiber specific analysis
US8788042B2 (en) 2008-07-30 2014-07-22 Ecole Polytechnique Federale De Lausanne (Epfl) Apparatus and method for optimized stimulation of a neurological target
US8359107B2 (en) * 2008-10-09 2013-01-22 Boston Scientific Neuromodulation Corporation Electrode design for leads of implantable electric stimulation systems and methods of making and using
US8788064B2 (en) 2008-11-12 2014-07-22 Ecole Polytechnique Federale De Lausanne Microfabricated neurostimulation device
KR101129364B1 (en) 2008-12-10 2012-03-26 한국전자통신연구원 An electrode for cerebral nerve stimulus and a substrate comprising the electrode
US20140255461A9 (en) * 2009-02-10 2014-09-11 Richard Jay McMurtrey Decorin and Gliosis and Related System and Method
DE102009015723B4 (en) * 2009-03-31 2013-12-19 Forschungszentrum Jülich GmbH stimulation electrode
AU2010236196B2 (en) 2009-04-16 2015-11-12 Boston Scientific Neuromodulation Corporation Deep brain stimulation current steering with split electrodes
US8694123B2 (en) * 2009-06-19 2014-04-08 Medtronic, Inc. Helical electrode arrangements for medical leads
WO2010148377A1 (en) 2009-06-19 2010-12-23 Medtronic, Inc. Electrode arrangements for suborbital foramen medical lead
US8509920B2 (en) 2009-06-19 2013-08-13 Medtronic, Inc. Electrode arrangements for medical lead
WO2011000791A1 (en) 2009-06-29 2011-01-06 3Win N.V. Atraumatic lead for deep brain stimulation
US8875391B2 (en) 2009-07-07 2014-11-04 Boston Scientific Neuromodulation Corporation Methods for making leads with radially-aligned segmented electrodes for electrical stimulation systems
US8887387B2 (en) 2009-07-07 2014-11-18 Boston Scientific Neuromodulation Corporation Methods of manufacture of leads with a radially segmented electrode array
US8543222B1 (en) 2009-08-14 2013-09-24 Jerzy Roman Sochor Implantable lead and accessories
JP5734295B2 (en) 2009-08-27 2015-06-17 ザ クリーブランド クリニック ファウンデーション System and method for estimating a site of tissue activity
EP2493564B1 (en) 2009-10-29 2016-07-13 Aortech International plc Polyurethane header formed directly on implantable electrical devices
US8391985B2 (en) 2009-11-30 2013-03-05 Boston Scientific Neuromodulation Corporation Electrode array having concentric windowed cylinder electrodes and methods of making the same
US8295944B2 (en) 2009-11-30 2012-10-23 Boston Scientific Neuromodulation Corporation Electrode array with electrodes having cutout portions and methods of making the same
US8874232B2 (en) * 2009-11-30 2014-10-28 Boston Scientific Neuromodulation Corporation Electrode array having concentric split ring electrodes and methods of making the same
US8788063B2 (en) 2009-11-30 2014-07-22 Boston Scientific Neuromodulation Corporation Electrode array having a rail system and methods of manufacturing the same
EP2506920B1 (en) 2009-12-01 2016-07-13 Ecole Polytechnique Fédérale de Lausanne Microfabricated surface neurostimulation device and method of making the same
WO2011068997A1 (en) 2009-12-02 2011-06-09 The Cleveland Clinic Foundation Reversing cognitive-motor impairments in patients having a neuro-degenerative disease using a computational modeling approach to deep brain stimulation programming
KR101156081B1 (en) * 2010-03-10 2012-06-20 주식회사 엠아이텍 Apparatus for making a multi-channel electrode in an Intracranial Stimulating and Method thereof
CA2792153C (en) * 2010-03-23 2018-05-15 Boston Scientific Neuromodulation Corporation Helical radial spacing of contacts on a cylindrical lead
WO2011121089A1 (en) 2010-04-01 2011-10-06 Ecole Polytechnique Federale De Lausanne (Epfl) Device for interacting with neurological tissue and methods of making and using the same
US8968331B1 (en) 2010-04-24 2015-03-03 Jerzy Roman Sochor Implantable lead and surgical accessories
JP5830090B2 (en) 2010-06-14 2015-12-09 ボストン サイエンティフィック ニューロモデュレイション コーポレイション Programming interface for spinal nerve regulation
US8868206B2 (en) 2010-06-18 2014-10-21 Boston Scientific Neuromodulation Corporation Electrode array having embedded electrodes and methods of making the same
JP5940532B2 (en) 2010-07-16 2016-06-29 ボストン サイエンティフィック ニューロモデュレイション コーポレイション System for radial steering of electrode arrays
US8583237B2 (en) 2010-09-13 2013-11-12 Cranial Medical Systems, Inc. Devices and methods for tissue modulation and monitoring
JP5808813B2 (en) 2010-09-21 2015-11-10 ボストン サイエンティフィック ニューロモデュレイション コーポレイション Electrical stimulation lead and method for forming a lead for a stimulation device
US8965482B2 (en) 2010-09-30 2015-02-24 Nevro Corporation Systems and methods for positioning implanted devices in a patient
US8805519B2 (en) 2010-09-30 2014-08-12 Nevro Corporation Systems and methods for detecting intrathecal penetration
EP2881139B1 (en) 2010-12-23 2021-10-06 Boston Scientific Neuromodulation Corporation Method and assembly for making a medical lead including removing connectors by grinding
WO2012095529A1 (en) * 2011-01-14 2012-07-19 Sapiens Steering Brain Stimulation B.V. Brain mapping probe
US8700179B2 (en) 2011-02-02 2014-04-15 Boston Scientific Neuromodulation Corporation Leads with spiral of helical segmented electrode arrays and methods of making and using the leads
EP2673043B1 (en) 2011-02-08 2015-08-19 Boston Scientific Neuromodulation Corporation Leads with segmented electrodes for electrical stimulation systems
ES2801326T3 (en) 2011-02-08 2021-01-11 Boston Scient Neuromodulation Corp Spirally arranged lead wires with segmented electrodes and lead wire manufacturing and use procedures
US20120203316A1 (en) 2011-02-08 2012-08-09 Boston Scientific Neuromodulation Corporation Leads with segmented electrodes for electrical stimulation of planar regions and methods of making and using
US8818525B2 (en) * 2011-02-11 2014-08-26 Medtronic, Inc. Lead having thin distal end portion
JP2014513622A (en) 2011-03-29 2014-06-05 ボストン サイエンティフィック ニューロモデュレイション コーポレイション Communication interface for therapeutic stimulus delivery system
US9592389B2 (en) 2011-05-27 2017-03-14 Boston Scientific Neuromodulation Corporation Visualization of relevant stimulation leadwire electrodes relative to selected stimulation information
AU2012294364A1 (en) 2011-08-09 2014-03-20 Boston Scientific Neuromodulation Corporation Remote control for blind clinical trials of electrical stimulation
EP2790773B1 (en) 2012-01-25 2020-10-14 Nevro Corporation Lead anchor
WO2013112905A1 (en) 2012-01-26 2013-08-01 Boston Scientific Neuromodulation Corporation Systems and methods for identifying the circumferential positioning of electrodes of leads for electrical stimulation systems
US8744596B2 (en) 2012-03-30 2014-06-03 Boston Scientific Neuromodulation Corporation Leads with X-ray fluorescent capsules for electrode identification and methods of manufacture and use
EP2841149B1 (en) 2012-04-27 2020-07-08 Medtronic, Inc. Method and system for fabricating a medical lead using an electrode fixture
EP2854936B1 (en) 2012-06-01 2016-05-25 Boston Scientific Neuromodulation Corporation Leads with tip electrode for electrical stimulation systems and methods of making and using
US8897891B2 (en) 2012-08-03 2014-11-25 Boston Scientific Neuromodulation Corporation Leads with electrode carrier for segmented electrodes and methods of making and using
EP2879757B1 (en) 2012-08-04 2019-06-26 Boston Scientific Neuromodulation Corporation Systems and methods for storing and transferring registration, atlas, and lead information between medical devices
EP2891091B1 (en) 2012-08-28 2018-01-31 Boston Scientific Neuromodulation Corporation Capture and visualization of clinical effects data in relation to a lead and/or locus of stimulation
US9295838B2 (en) 2012-10-31 2016-03-29 The Regents Of The University Of California Methods and systems for treating neurological movement disorders
US9792412B2 (en) 2012-11-01 2017-10-17 Boston Scientific Neuromodulation Corporation Systems and methods for VOA model generation and use
US9308022B2 (en) 2012-12-10 2016-04-12 Nevro Corporation Lead insertion devices and associated systems and methods
CN105246543A (en) 2013-05-15 2016-01-13 波士顿科学神经调制公司 Systems and methods for making tip electrodes for leads of electrical stimulation systems
CA2911239A1 (en) 2013-05-31 2014-12-04 Boston Scientific Neuromodulation Corporation Leads containing segmented electrodes with non-perpendicular legs and methods of making and using
CN105263568A (en) 2013-05-31 2016-01-20 波士顿科学神经调制公司 Leads with segmented electrodes and methods of making the leads
US9149630B2 (en) 2013-05-31 2015-10-06 Boston Scientific Neuromodulation Corporation Segmented electrode leads formed from pre-electrodes with alignment features and methods of making and using the leads
US9248272B2 (en) 2013-05-31 2016-02-02 Boston Scientific Neuromodulation Corporation Segmented electrode leads formed from pre-electrodes with depressions or apertures and methods of making and using
US9265935B2 (en) 2013-06-28 2016-02-23 Nevro Corporation Neurological stimulation lead anchors and associated systems and methods
EP3019232B1 (en) 2013-07-12 2019-08-21 Boston Scientific Neuromodulation Corporation Leads with segmented electrodes and methods of making the leads
US9566747B2 (en) 2013-07-22 2017-02-14 Boston Scientific Neuromodulation Corporation Method of making an electrical stimulation lead
WO2015031375A1 (en) 2013-08-30 2015-03-05 Boston Scientific Neuromodulation Corporation Methods of making segmented electrode leads using flanged carrier
EP3077039B1 (en) 2013-12-02 2021-10-13 Boston Scientific Neuromodulation Corporation Methods for manufacture of electrical stimulation leads with helically arranged electrodes
EP3476430B1 (en) 2014-05-16 2020-07-01 Aleva Neurotherapeutics SA Device for interacting with neurological tissue
US11311718B2 (en) 2014-05-16 2022-04-26 Aleva Neurotherapeutics Sa Device for interacting with neurological tissue and methods of making and using the same
WO2015192058A1 (en) 2014-06-13 2015-12-17 Boston Scientific Neuromodulation Corporation Leads with electrode carriers for segmented electrodes and methods of making and using
US9959388B2 (en) 2014-07-24 2018-05-01 Boston Scientific Neuromodulation Corporation Systems, devices, and methods for providing electrical stimulation therapy feedback
US10272247B2 (en) 2014-07-30 2019-04-30 Boston Scientific Neuromodulation Corporation Systems and methods for stimulation-related volume analysis, creation, and sharing with integrated surgical planning and stimulation programming
US10265528B2 (en) 2014-07-30 2019-04-23 Boston Scientific Neuromodulation Corporation Systems and methods for electrical stimulation-related patient population volume analysis and use
US9403011B2 (en) 2014-08-27 2016-08-02 Aleva Neurotherapeutics Leadless neurostimulator
US9474894B2 (en) 2014-08-27 2016-10-25 Aleva Neurotherapeutics Deep brain stimulation lead
US9925376B2 (en) 2014-08-27 2018-03-27 Aleva Neurotherapeutics Treatment of autoimmune diseases with deep brain stimulation
US9770598B2 (en) 2014-08-29 2017-09-26 Boston Scientific Neuromodulation Corporation Systems and methods for making and using improved connector contacts for electrical stimulation systems
EP3204112A1 (en) 2014-10-07 2017-08-16 Boston Scientific Neuromodulation Corporation Systems, devices, and methods for electrical stimulation using feedback to adjust stimulation parameters
WO2016065345A1 (en) * 2014-10-24 2016-04-28 Medtronic, Inc. Coronary sinus medical electrical lead
US9604068B2 (en) 2014-11-10 2017-03-28 Boston Scientific Neuromodulation Corporation Systems and methods for making and using improved connector contacts for electrical stimulation systems
US9561362B2 (en) 2014-11-10 2017-02-07 Boston Scientific Neuromodulation Corporation Systems and methods for making and using improved contact arrays for electrical stimulation systems
EP3229891B1 (en) 2015-02-06 2019-08-14 Boston Scientific Neuromodulation Corporation Systems with improved contact arrays for electrical stimulation systems
WO2016164361A1 (en) 2015-04-10 2016-10-13 Boston Scientific Neuromodulation Corporation Systems and methods for making and using improved contact arrays for electrical stimulation systems
WO2016182997A2 (en) 2015-05-10 2016-11-17 Alpha Omega Neuro Technologies, Ltd. Automatic brain probe guidance system
US11234632B2 (en) 2015-05-10 2022-02-01 Alpha Omega Engineering Ltd. Brain navigation lead
US11051889B2 (en) 2015-05-10 2021-07-06 Alpha Omega Engineering Ltd. Brain navigation methods and device
CN107530542B (en) 2015-05-26 2020-10-13 波士顿科学神经调制公司 System for analyzing electrical stimulation and selecting or manipulating activation volume
US10780283B2 (en) 2015-05-26 2020-09-22 Boston Scientific Neuromodulation Corporation Systems and methods for analyzing electrical stimulation and selecting or manipulating volumes of activation
US10441800B2 (en) 2015-06-29 2019-10-15 Boston Scientific Neuromodulation Corporation Systems and methods for selecting stimulation parameters by targeting and steering
WO2017003946A1 (en) 2015-06-29 2017-01-05 Boston Scientific Neuromodulation Corporation Systems and methods for selecting stimulation parameters based on stimulation target region, effects, or side effects
US9656093B2 (en) 2015-07-16 2017-05-23 Boston Scientific Neuromodulation Corporation Systems and methods for making and using connector contact arrays for electrical stimulation systems
US9956394B2 (en) 2015-09-10 2018-05-01 Boston Scientific Neuromodulation Corporation Connectors for electrical stimulation systems and methods of making and using
US10413737B2 (en) 2015-09-25 2019-09-17 Boston Scientific Neuromodulation Corporation Systems and methods for providing therapy using electrical stimulation to disrupt neuronal activity
US10071249B2 (en) 2015-10-09 2018-09-11 Boston Scientific Neuromodulation Corporation System and methods for clinical effects mapping for directional stimulation leads
US10328271B2 (en) 2015-11-12 2019-06-25 Medtronic, Inc. Implantable electrical stimulator with deflecting tip lead
US10342983B2 (en) 2016-01-14 2019-07-09 Boston Scientific Neuromodulation Corporation Systems and methods for making and using connector contact arrays for electrical stimulation systems
US10716942B2 (en) 2016-04-25 2020-07-21 Boston Scientific Neuromodulation Corporation System and methods for directional steering of electrical stimulation
US10201713B2 (en) 2016-06-20 2019-02-12 Boston Scientific Neuromodulation Corporation Threaded connector assembly and methods of making and using the same
AU2017281934B2 (en) 2016-06-24 2019-11-14 Boston Scientific Neuromodulation Corporation Systems and methods for visual analytics of clinical effects
US10307602B2 (en) 2016-07-08 2019-06-04 Boston Scientific Neuromodulation Corporation Threaded connector assembly and methods of making and using the same
US10350404B2 (en) 2016-09-02 2019-07-16 Boston Scientific Neuromodulation Corporation Systems and methods for visualizing and directing stimulation of neural elements
US10780282B2 (en) 2016-09-20 2020-09-22 Boston Scientific Neuromodulation Corporation Systems and methods for steering electrical stimulation of patient tissue and determining stimulation parameters
US10543374B2 (en) 2016-09-30 2020-01-28 Boston Scientific Neuromodulation Corporation Connector assemblies with bending limiters for electrical stimulation systems and methods of making and using same
JP6828149B2 (en) 2016-10-14 2021-02-10 ボストン サイエンティフィック ニューロモデュレイション コーポレイション Systems and methods for closed-loop determination of stimulation parameter settings for electrical stimulation systems
US10576269B2 (en) 2017-01-03 2020-03-03 Boston Scientific Neuromodulation Corporation Force-decoupled and strain relieving lead and methods of making and using
WO2018128949A1 (en) 2017-01-03 2018-07-12 Boston Scientific Neuromodulation Corporation Systems and methods for selecting mri-compatible stimulation parameters
ES2821752T3 (en) 2017-01-10 2021-04-27 Boston Scient Neuromodulation Corp Systems and procedures for creating stimulation programs based on user-defined areas or volumes
US10905871B2 (en) 2017-01-27 2021-02-02 Boston Scientific Neuromodulation Corporation Lead assemblies with arrangements to confirm alignment between terminals and contacts
WO2018160495A1 (en) 2017-02-28 2018-09-07 Boston Scientific Neuromodulation Corporation Toolless connector for latching stimulation leads and methods of making and using
AU2018231031B2 (en) 2017-03-09 2023-11-02 Nevro Corp. Paddle leads and delivery tools, and associated systems and methods
US10625082B2 (en) 2017-03-15 2020-04-21 Boston Scientific Neuromodulation Corporation Visualization of deep brain stimulation efficacy
WO2018187090A1 (en) 2017-04-03 2018-10-11 Boston Scientific Neuromodulation Corporation Systems and methods for estimating a volume of activation using a compressed database of threshold values
US10603499B2 (en) 2017-04-07 2020-03-31 Boston Scientific Neuromodulation Corporation Tapered implantable lead and connector interface and methods of making and using
WO2019014224A1 (en) 2017-07-14 2019-01-17 Boston Scientific Neuromodulation Corporation Systems and methods for estimating clinical effects of electrical stimulation
EP3658228A1 (en) 2017-07-25 2020-06-03 Boston Scientific Neuromodulation Corporation Systems and methods for making and using an enhanced connector of an electrical stimulation system
WO2019036180A1 (en) 2017-08-15 2019-02-21 Boston Scientific Neuromodulation Corporation Systems and methods for controlling electrical stimulation using multiple stimulation fields
AU2018331521B2 (en) 2017-09-15 2021-07-22 Boston Scientific Neuromodulation Corporation Biased lead connector for operating room cable assembly and methods of making and using
AU2018331512B2 (en) 2017-09-15 2021-06-24 Boston Scientific Neuromodulation Corporation Actuatable lead connector for an operating room cable assembly and methods of making and using
US11139603B2 (en) 2017-10-03 2021-10-05 Boston Scientific Neuromodulation Corporation Connectors with spring contacts for electrical stimulation systems and methods of making and using same
US11103712B2 (en) 2018-01-16 2021-08-31 Boston Scientific Neuromodulation Corporation Connector assemblies with novel spacers for electrical stimulation systems and methods of making and using same
US10702692B2 (en) 2018-03-02 2020-07-07 Aleva Neurotherapeutics Neurostimulation device
AU2019242906A1 (en) 2018-03-29 2020-10-15 Nevro Corp. Leads having sidewall openings, and associated systems and methods
WO2019210202A1 (en) 2018-04-27 2019-10-31 Boston Scientific Neuromodulation Corporation Multi-mode electrical stimulation systems and methods of making and using
US11285329B2 (en) 2018-04-27 2022-03-29 Boston Scientific Neuromodulation Corporation Systems and methods for visualizing and programming electrical stimulation
US11172959B2 (en) 2018-05-02 2021-11-16 Boston Scientific Neuromodulation Corporation Long, flexible sheath and lead blank and systems and methods of making and using
WO2019217415A1 (en) 2018-05-11 2019-11-14 Boston Scientific Neuromodulation Corporation Connector assembly for an electrical stimulation system
US11167128B2 (en) 2018-11-16 2021-11-09 Boston Scientific Neuromodulation Corporation Directional electrical stimulation leads, systems and methods for spinal cord stimulation
US11458300B2 (en) 2018-12-28 2022-10-04 Heraeus Medical Components Llc Overmolded segmented electrode
US11357992B2 (en) 2019-05-03 2022-06-14 Boston Scientific Neuromodulation Corporation Connector assembly for an electrical stimulation system and methods of making and using

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US164184A (en) * 1875-06-08 Improvement in vesicular electrodes
US932775A (en) * 1909-06-05 1909-08-31 Charles W Gaston Electric therapeutic instrument.
US3804098A (en) * 1972-04-17 1974-04-16 Medronic Inc Body implantable lead
CA1065969A (en) * 1977-09-28 1979-11-06 Gratien Bouillon Self-blocking cerebral catheter
US4890623A (en) * 1988-03-14 1990-01-02 C. R. Bard, Inc. Biopotential sensing device and method for making
FR2629710B1 (en) * 1988-04-08 1997-10-24 Mxm ELECTRODE HOLDER DEVICES IMPLANTABLE IN THE COCHLEE FOR ELECTRICALLY STIMULATING THE HEARING NERVE
US5127403A (en) * 1988-07-05 1992-07-07 Cardiac Control Systems, Inc. Pacemaker catheter utilizing bipolar electrodes spaced in accordance to the length of a heart depolarization signal
US4903702A (en) * 1988-10-17 1990-02-27 Ad-Tech Medical Instrument Corporation Brain-contact for sensing epileptogenic foci with improved accuracy
US5358514A (en) * 1991-12-18 1994-10-25 Alfred E. Mann Foundation For Scientific Research Implantable microdevice with self-attaching electrodes
GB9317099D0 (en) * 1993-08-17 1993-09-29 Medinnova Sf Electrode assembly
US5464446A (en) 1993-10-12 1995-11-07 Medtronic, Inc. Brain lead anchoring system
AU1837695A (en) * 1994-02-09 1995-08-29 University Of Iowa Research Foundation, The Human cerebral cortex neural prosthetic

Also Published As

Publication number Publication date
DE69727749D1 (en) 2004-04-01
EP0832667B1 (en) 2004-02-25
CA2216021A1 (en) 1998-03-27
AU3923797A (en) 1998-04-02
AU726391B2 (en) 2000-11-09
JPH10137346A (en) 1998-05-26
DE69727749T2 (en) 2005-01-20
EP0832667A3 (en) 1999-11-24
US5843148A (en) 1998-12-01
EP0832667A2 (en) 1998-04-01

Similar Documents

Publication Publication Date Title
CA2216021C (en) High resolution brain stimulation lead and method of use
US8560074B2 (en) Electrode array having concentric windowed cylinder electrodes and methods of making the same
US9168369B2 (en) Electrode array having a rail system and methods of manufacturing the same
US8666509B2 (en) Electrode array with electrodes having cutout portions and methods of making the same
US9248277B2 (en) Electrode array having concentric split ring electrodes and methods of making the same
US7212867B2 (en) Directional brain stimulation and recording leads
EP1848496B1 (en) Method of manufacturing a medical lead
JP5834065B2 (en) Directional lead wire assembly
US6587733B1 (en) Percutaneous surgical lead body with directed stimulation
US9079018B2 (en) Implantable medical electrical leads, kits, systems and methods of use thereof
EP2144665B1 (en) Implantable medical lead with multiple electrode configurations

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed